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1. Cyberinfrastructure: A Brief Overview

• Practical problem: need to combine geographically sep-
arate computational resources.

• Centralization of computational resources – traditional
approach to combining computational resources.

• Limitations of centralization:

– need to reformat all the data;

– need to rewrite data processing programs: make
compatible w/selected formats and w/each other

• Cyberinfrastructure – a more efficient approach to com-
bining computational resources:

– keep resources at their current locations, and

– in their current formats.

• Technical advantages of cyberinfrastructure: a brief
summary.
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2. Data Processing vs. Data Fusion

• Practically important situation: difficult to measure
the desired quantity y with a given accuracy.

• Data processing:

– measure related easier-to-measure quantities x1, . . . , xn;

– estimate y from the results x̃i of measuring xi as
ỹ = f(x̃1, . . . , x̃n).

• Example: seismic inverse problem.

• Data fusion:

– measure the quantity y several times;

– combine the results ỹ1, . . . ỹn of these measurements.

• Specifics of cyberinfrastructure: first looks for stored
results x̃i (corr., ỹi), measure only if necessary.

• Combination of data processing and data fusion.
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3. Need for Uncertainty Propagation, and for Prove-
nance of Uncertainty

• Need for uncertainty propagation.

– main reasons for data processing and data fusion:
accuracy is not high enough;

– we must make sure that after the data processing
(data fusion), we get the desired accuracy.

• In cyberinfrastructure this is especially important:

– accuracy varies greatly, and

– we do not have much control over these accuracies.

• Need for the provenance of uncertainty:

– sometimes, the resulting accuracy is still too low;

– it is desirable to find out which data points con-
tributed most to the inaccuracy.
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4. Uncertainty of the Results of Direct Measurements:
Probabilistic and Interval Approaches

• Manufacturer of the measuring instrument (MI) sup-

plies ∆i s.t. |∆xi| ≤ ∆i, where ∆xi
def
= x̃i − xi.

• The actual (unknown) value xi of the measured quan-
tity is in the interval xi = [x̃i −∆i, x̃i + ∆i].

• Probabilistic uncertainty: often, we know the probabil-
ities of different values ∆xi ∈ [−∆i, ∆i].

• How probabilities are determined: by comparing our
MI with a much more accurate (standard) MI.

• Interval uncertainty: in two cases, we do not determine
the probabilities:

– cutting-edge measurements;

– measurements on the shop floor.

• In both cases, we only know that xi ∈ [x̃i−∆i, x̃i+∆i].
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5. Typical Situation: Measurement Errors are Rea-
sonably Small

• Typical situation:

– direct measurements are accurate enough;

– the resulting approximation errors ∆xi are small;

– terms which are quadratic (or of higher order) in
∆xi can be safely neglected.

• Example: for an error of 1%, its square is a negligible
0.01%.

• Linearization:

– expand f in Taylor series around the point (x̃1, . . . , x̃n);

– restrict ourselves only to linear terms:

∆y = c1 ·∆x1 + . . . + cn ·∆xn,

where ci
def
=

∂f

∂xi
.
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6. Case of Data Processing

• Propagation (probabilistic case): if ∆xi are indepen-
dent with st. dev. σi (and 0 mean), then ∆y has st. dev.

σ2 = c2
1 · σ2

1 + . . . + c2
n · σ2

n.

• Provenance:

– we know which component σ2 comes from the i-th
measurement;

– we can predict how replacing the i-th measurement
with a more accurate one (σnew

i � σi) will affect σ2.

• Propagation of interval uncertainty:

∆ = |c1| ·∆1 + . . . + |cn| ·∆n.

• We can predict how replacing the i-th measurement
with a more accurate one (∆new

i � ∆i) will affect ∆.
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7. Propagation of Probabilistic Uncertainty Through
Data Fusion

• Situation: we know several results ỹ1, . . . , ỹn of mea-
suring the same quantity y with st. dev. σi:

ρi(y) =
1√

2π · σi

· exp

(
−(y − ỹi)

2

2σ2
i

)
.

• Resulting probability density:

ρ(y) = ρ1(y)·. . .·ρn(y) = const·exp

(
−

n∑
i=1

(y − ỹi)
2

2σ2
i

)
.

• Maximum Likelihood Estimate: ρ(y) → max, hence

ỹ =
1

n∑
i=1

1

σ2
i

·
n∑

i=1

ỹi

σ2
i

.
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8. Propagation of Probabilistic Uncertainty Through
Data Fusion (cont-d)

• Reminder:

ỹ =
1

n∑
i=1

1

σ2
i

·
n∑

i=1

ỹi

σ2
i

.

• Resulting st. dev. σ for ỹ: ỹ is a linear combination of
independent normal ỹi, hence its st. dev. is:

σ2 =
1(

n∑
i=1

1

σ2
i

)2 ·
n∑

i=1

σ2
i

σ4
i

=
1(

n∑
i=1

1

σ2
i

)2 ·
n∑

i=1

1

σ2
i

=
1

n∑
i=1

1

σ2
i

.

• Simplified expression:

1

σ2 =
n∑

i=1

1

σ2
i

.

• Provenance: we can predict how replacing σi with a
“more accurate” value σnew

i � σi affects σ.
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9. Propagation of Interval Uncertainty Through Data
Fusion

• Situation: we know several results ỹ1, . . . , ỹn of mea-
suring the same quantity y with bounds ∆i.

• Analysis: the unknown (actual) value y belongs to n

intervals yi
def
= [ỹi −∆i, ỹi + ∆i].

• Conclusion: the range y of possible values of y is the
intersection y = [y, y] = y1 ∩ . . . ∩ yn of intervals yi:

[max(ỹ1−∆1, . . . , ỹn−∆n), min(ỹ1 +∆1, . . . , ỹn +∆n)].

• Provenance – a problem: if we replace ∆i with the same
new value ∆new

i � ∆i, we may get different accuracies.

• Example: y1 = [−1, 1], y2 = [−2, 2], and y = [−1, 1].
If we use ∆new

2 = 1 � ∆2 = 2, we may get:

• y2 = [−1, 1]; then y = [−1, 1] is unchanged.

• y2 = [0, 2]; then y = [0, 1] is much narrower.
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10. Pre-Estimating the Accuracy of Data Fusion Un-
der Interval Uncertainty: A Problem

• We know: the i-th measurement error ∆yi ∈ [−∆i, ∆i].

• Fact: different values ∆yi lead to different intersections

y = [y, y] =
n⋂

i=1

[(y + ∆yi)−∆i, (y + ∆yi) + ∆i].

• Reasonable assumptions:

• ∆yi is uniformly distributed on [−∆i, ∆i];

• ∆yi and ∆yj (i 6= j) are independent;

• we allow a small probability p0 of mis-estimation.

• Formulation of the problem: find the smallest ∆ s.t.:

– the probability to have y ≤ y +∆ is at least 1− p0,
and

– the probability to have y ≥ y −∆ is also ≥ 1− p0.
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11. Pre-Estimating the Accuracy of Data Fusion Un-
der Interval Uncertainty: Solution

• Resulting formula: when fusion is efficient (∆ � ∆i),

we get
1

∆
= const ·

n∑
i=1

1

∆i
, with const = 2| ln(p0)|.

• Example: for ∆1 = . . . = ∆n, we get ∆ =
const

n
·∆1.

• Prob. case:
1

σ2 = const ·
n∑

i=1

1

σ2
i

, w/∆i instead of σ2
i .

• Observation: for prob. uncertainty, σ ∼ const√
n
· σ1.

• Data processing: ∆ =
n∑

i=1
|ci| ·∆i vs. σ2 =

n∑
i=1
|ci|2 · σ2

i .

• ∼: ‖ and sequential resistors
1

R
=

n∑
i=1

1

Ri
, R =

n∑
i=1

Ri.
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12. Optimal Data Processing and Data Fusion

• Problem: find the least expensive way to guarantee the
given accuracy σ or ∆.

• Costs: cprob
i (σi) =

Ci

σαi

i

and cint
i (∆i) =

Ci

∆αi
.

• Case of data fusion: we measure the same quantity, so
C1 = . . . = Cn and α1 = . . . = αn.

• Optimal data fusion: minimizing cost, we get
σ1 = . . . = σn =

√
n · σ and ∆1 = . . . = ∆n = n ·∆.

• Optimal data processing: probabilistic case.

σi =

(
αi · Ci

2λ · c2
i

)1/(2+αi)

, with
n∑

i=1

c2
i ·
(

αi · Ci

2λ · c2
i

)2/(2+αi)

= σ2.

• Optimal data processing: interval case.

∆i =

(
αi · Ci

λ · |ci|

)1/(1+αi)

, with
n∑

i=1

|ci|·
(

αi · Ci

λ · |ci|

)2/(2+αi)

= ∆.
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13. Beyond Probabilistic and Interval Uncertainty

• Up to now: we considered two extreme situations:

– probabilistic uncertainty, when we know all the prob-
abilities;

– interval uncertainty, when we have no information
about the probabilities.

• Fact: probabilistic situation is a particular case of the
interval situation.

• Conclusion: interval bounds are wider.

• In practice: often, we have partial information about
probabilities.

• As a result:

– probabilistic bounds are too narrow,

– interval bounds are too wide.

• We need: intermediate bounds.
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14. Case Study: Seismic Inverse Problem in the Geo-
sciences
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15. Estimating Uncertainty, First Try: Probabilistic
Approach
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16. Estimating Uncertainty, Second Try: Interval Ap-
proach
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17. Towards a Better Estimate: Revisiting Estimation
Algorithms Under Probabilistic and Interval Un-
certainty

• Linearization: ∆y =
n∑

i=1
ci ·∆xi, where ci

def
=

∂f

∂xi
.

• Formulas: σ2 =
n∑

i=1
c2
i · σ2

i , ∆ =
n∑

i=1
|ci| ·∆i.

• Numerical differentiation: n iterations, too long.

• Monte-Carlo approach: if ∆xi are Gaussian w/σi, then

∆y =
n∑

i=1
ci ·∆xi is also Gaussian, w/desired σ.

• Advantage: # of iterations does not grow with n.

• Interval estimates: if ∆xi are Cauchy, w/ρi(x) =
∆i

∆2
i + x2 ,

then ∆y =
n∑

i=1
ci ·∆xi is also Cauchy, w/desired ∆.
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18. Resulting Fast (Linearized) Algorithm for Esti-
mating Interval Uncertainty

• Apply f to x̃i: ỹ := f(x̃1, . . . , x̃n);

• For k = 1, 2, . . . , N , repeat the following:

• use RNG to get r
(k)
i , i = 1, . . . , n from U [0, 1];

• get st. Cauchy values c
(k)
i := tan(π · (r(k)

i − 0.5));

• compute K := maxi |c(k)
i | (to stay in linearized area);

• simulate “actual values” x
(k)
i := x̃i − δ

(k)
i , where

δ
(k)
i := ∆i · c(k)

i /K;

• simulate error of the indirect measurement:

δ(k) := K ·
(
ỹ − f

(
x

(k)
1 , . . . , x(k)

n

))
;

• Solve the ML equation
N∑

k=1

1

1 +

(
δ(k)

∆

)2 =
N

2
by bisec-

tion, and get the desired ∆.
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19. A New (Heuristic) Approach

• Problem: guaranteed (interval) bounds are too high.

• Gaussian case: we only have bounds guaranteed with
confidence, say, 90%.

• How: cut top 5% and low 5% off a normal distribution.

• New idea: to get similarly estimates for intervals, we
“cut off” top 5% and low 5% of Cauchy distribution.

• How:

– find the threshold value x0 for which the probability
of exceeding this value is, say, 5%;

– replace values x for which x > x0 with x0;

– replace values x for which x < −x0 with −x0;

– use this “cut-off” Cauchy in error estimation.

• Example: for 95% confidence level, we need x0 = 12.706.
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20. Heuristic Approach: Results with 95% Confidence
Level
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21. Heuristic Approach: Results with 90% Confidence
Level
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22. Conclusions

• In the past: communications were much slower.

• Conclusion: use centralization.

• At present: communications are much faster.

• Conclusion: use cyberinfrastructure.

• Related problems:

– gauge the the uncertainty of the results obtained
by using cyberinfrastructure;

– which data points contributed most to uncertainty;

– how an improved accuracy of these data points will
improve the accuracy of the result.

• We described: algorithms for solving these problems.

• Additional problem: what if interval estimates are too
wide and probabilistic estimates are too narrow.
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