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The Center for Reliable Engineering Computing (REC) at Georgia Tech Savannah has, as part of its mission, 
organized several international workshops that involve the investigation and advancement of different aspects 
of reliable engineering computing. This NSF workshop focuses on Imprecise Probability in Engineering Analy-
sis and Design.

Probability-based methods for uncertainty treatment have been under development for about 50 years. While 
there has been much progress over that time, there remains a lack of widespread use of probabilistic methods 
by designers. The difficulty of acquiring the needed information, specifically the Probability Density Functions 
(PDF’s) for risk based design, and the lack of viable engineering tools allowing for imprecise or incomplete 
information to be employed are among the main difficulties with the methodology of probability-based design 
approaches. Similar concerns arise when dealing with utility. In many practical cases, a complete ranking over 
all rewards is unrealistic. Imprecise utility aims to represent and reason with such incomplete preferences over 
rewards.  

The objective of this workshop is to bring together researchers from various engineering fields as well as from 
mathematics and computer science to share, discuss and lay ground for the development of novel methods 
and tools for ensuring reliability of engineering models with incomplete information. In addition, the workshop 
is looking for integrating the individual advancement of the various disciplines into a general approach of 
imprecise probabilistic methodology for engineering analysis and design, allowing smooth transition between 
probabilistic and non-probabilistic approaches. 

The topics of the workshop include:
1.  Uncertainty modeling with incomplete information
2.  Analysis and design of engineering systems with imprecise parameters
3.  Design-based decision making under imprecise information

While some aspects of this workshop’s focus are included in conferences on general numerical methods, 
computer science, and engineering, to our knowledge, none have united all these disciplines with a focus on 
engineering analysis and design calculations. This workshop is unique in combining computer science, math-
ematics, and engineering analysis to discuss the integration of the treatment of modeling errors and uncertainty 
into engineering computations. 

The work presented represent a significant step towards achieving the goal of true reliability in engineering 
calculations.

The sponsors of this workshop are:
■  National Science Foundation
■  Sun Microsystems
■  The Society for Imprecise Probability: Theories and Applications
■  CASE (Computer Aided Structural Engineering) Center (GT STRUDL)
■  Georgia Institute of Technology

The organizers appreciate the support of the sponsors: this workshop would not have occurred without their 
contributions and commitment.

Rafi L. Muhanna and Robert L. Mullen
Editors
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Abstract. The task of autonomous and robust design cannot be regarded as a single task, but
consists of two tasks that have to be accomplished concurrently. First, the design should be found
autonomously; this indicates the existence of a method which is able to find the optimal design
choice automatically. Second, the design should be robust; in other words: the design should be
safeguarded against uncertain perturbations.

Traditional modeling of uncertainties faces several problems. The lack of knowledge about distri-
butions of uncertain variables or about correlations between uncertain data, respectively, typically
leads to underestimation of error probabilities. Moreover, in higher dimensions the numerical com-
putation of the error probabilities is very expensive, if not impossible, even provided the knowledge
of the multivariate probability distributions.

Based on the clouds formalism we have developed new methodologies to gather all available
uncertainty information from expert engineers, process it to a reliable worst-case analysis and
finally optimize the design seeking the optimal robust design.

The new methods are applied to problems for autonomous optimization in robust spacecraft
system design at the European Space Agency (ESA).

Keywords: uncertainty modeling, robust design, clouds, autonomous design, design optimization
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2 Martin Fuchs and Arnold Neumaier

1. Introduction

In general terms, uncertainty handling for design optimization has the goal to safeguard reliably
against uncertain perturbations while seeking an optimal design. The achieved design can thus be
qualified as robust.

An engineer who designs a structure faces the task to develop a product which satisfies given
requirements formulated as design constraints. Output of the engineer’s work should be an optimal
design with respect to a certain design objective. In many cases this is the cost or the mass of
the designed product. An algorithmic method for design optimization functions as decision making
support for engineers. In the last years, much research has been dedicated to the achievement
of decisions support systems. Even the attempt of autonomous design has been made trying to
capture the reasoning of the system experts. For more complex kinds of structures, e.g., a spacecraft
component or a whole spacecraft, the design process involves several different engineering fields,
so the design optimization becomes multidisciplinary, and an interaction between the comprised
disciplines is necessary. The resulting overall optimization process is known as multidisciplinary
design optimization (MDO). Design related uncertainties are handled to safeguard against failures
of the design, i.e., a violation of the design requirement constraints, caused by uncertain errors.

In many cases, in particular for early design phases, it is common engineering practice to handle
uncertainties by assigning intervals, or safety margins, to the uncertain variables, usually combined
with an iterative process of refining the intervals while converging to a robust optimal design. The
refinement of the intervals is done by experts who assess whether the worst-case scenario, that has
been determined for the design at the current stage of the iteration process, is too pessimistic or
too optimistic. How to assign the intervals and how to choose the endpoint of the assigned intervals
to get the worst-case scenario is usually not computed but assessed by an expert. The goal of the
whole iteration includes both optimization of the design and safeguarding against uncertainties.
Apart from interval assignments there are further ways to handle uncertainties in design processes,
e.g., methods from probability theory or fuzzy theory like fuzzy clustering, portfolio theory, or
simulation techniques like Monte Carlo.

Real life applications of uncertainty methods disclose various problems. The dimension of many
uncertain real life scenarios is very high which causes severe computational problems, famous as the
curse of dimensionality, see, e.g., (Koch et al., 1999). Even given the knowledge of the multivariate
probability distributions the numerical computation of the error probabilities becomes very expen-
sive, if not impossible. Moreover, the available uncertainty information in early design phases is often
very limited, mostly there are only interval bounds on the uncertain variables, sometimes probability
distributions for single variables without correlation information. When the amount of uncertainty
information available is small, traditional methods face additional problems. To make use of well-
known current methods from probability or fuzzy theory more such information would be required.
Simulation techniques also require a larger amount of information to be reliable, or unjustified
assumptions on the uncertainties have to be made. The lack of information typically causes these
methods to underestimate the effects of the uncertain tails of the probability distribution, cf.
(Ferson, 1996). Similarly, a reduction of the problem to an interval analysis after assigning intervals
to the uncertain variables as described before (e.g., 3 σ boxes) entails a loss of valuable uncertainty
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Robust autonomous design 3

information which would actually be available, maybe unformalized, but is not at all involved in
the uncertainty model.

Many previous works are dedicated to MDO or robust design. In a classical approach to MDO,
cf. (Alexandrov and Hussaini, 1997), (Roy, 1996), (Belton and Stewart, 2002), each specialist would
prepare a subsystem design rather independently, using stand-alone tools. Design iterations among
the different discipline experts would take place in meetings at certain time intervals. This well-
established approach reduces the opportunity to find interdisciplinary solutions and to create system
awareness in the specialists. A considerable step forward in MDO for early design phases has been
achieved by concurrent engineering where a sequential iterative routine is replaced by a parallel
and cooperative procedure. Facilities where these methodologies are implemented for the special
case of spacecraft design are, among others, the ESA Concurrent Design Facility (Bandecchi et al.,
1999), the NASA Goddard Integrated Mission Design Center (Karpati et al., 2003) and the Concept
Design Center at The AeroSpace Corporation (Aguilar et al., 1998). An approach to MDO via game
theory can be found, e.g., in (Lewis and Mistree, 1997). To improve the robustness in the process
of design optimization there are various approaches dealing with uncertainty modeling. In (Pate-
Cornell and Fischbeck, 1993) probability risk analysis is applied to the uncertainties in space shuttle
design; an approach from fuzzy theory can be found, e.g., in (Ross, 1995); in (Thunnissen, 2005)
a general qualitative and quantitative investigation of uncertainties in space design is given. The
work by (Amata et al., 2004) presents studies harmonizing the interests from different disciplines in
multidisciplinary design optimization. The attempt to incorporate both uncertainty and autonomy
in the design process was made, e.g., in (McCormick and Olds, 2002), using Monte-Carlo simulation
techniques, or in (Lavagna and Finzi, 2002), with a fuzzy logic approach.

The ESA Advanced Concepts Team in cooperation with the University of Vienna performed
an Ariadna study on the application of the clouds theory in space design optimization, cf. (Neu-
maier et al., 2007). This study presented an initial step on how clouds could be applied to handle
uncertainties in spacecraft design. A significant further step is given in (Fuchs et al., 2007).

Deepening the understanding of the latter studies, we here focus on the theory of clouds and
emphasize the capability of an adaptive processing of unformalized uncertainty information with
clouds. Clouds allow the representation of incomplete stochastic information in a clearly under-
standable and computationally attractive way, mediating between aspects of fuzzy set theory and
probability distributions, cf. (Dubois and Prade, 2005). The use of clouds permits an adaptive
worst-case analysis without losing track of important probabilistic information. At the same time,
all computed probabilities, and hence the resulting designs, are reasonably safeguarded against
perturbations due to unmodeled and possibly unavailable information. For given confidence levels,
the clouds provide regions of relevant scenarios affecting the worst-case for a given design. We have
the ambitious goal to achieve a quantification of reliability close to classical probability theory
methods, but in higher dimensional spaces of uncertain scenarios so that we can deal with real-life
design problems. To find a reliable robust and optimal design autonomously, we have additionally
developed heuristic optimization methods.

Figure 1 illustrates the basic concept of our approach. The expert provides the underlying model,
given as a black-box model, and all currently available uncertainty information on the model inputs.
The information is processed to generate a cloud that provides a nested collection of regions of
relevant scenarios parameterized by a confidence level α, and thus produces safety constraints for
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4 Martin Fuchs and Arnold Neumaier

the optimization. The optimization minimizes a certain objective function (e.g., cost, mass) subject
to the safety constraints and to the functional constraints which are represented by the underlying
model. The results of the optimization are returned to the expert, who is given an interactive
possibility to provide additional uncertainty information afterwards and rerun the procedure.

Expert opinion

Uncertainty

Cloud

Underlying model

Optimization

Design point

Design
objective

information

Figure 1. Basic concept.

Focussing on application examples from early phase spacecraft design, we will deal with a limited
amount of uncertainty information, provided on the one hand as bounds or marginal probability
distributions on the uncertain variables, without any formal correlation information. On the other
hand, the engineers can adaptively improve the uncertainty model, even if their expert knowledge
is only little formalized, by adding correlation constraints to exclude scenarios deemed irrelevant.
The information can also be provided as real sample data, if available.

This paper is organized as follows. In Section 2 we present a more detailed study of uncertainty
modeling with clouds. This is used to investigate robust design optimization, cf. Section 3. The
techniques are applied to an example from spacecraft system design, described in Section 4. In
Section 5 we discuss general and detailed aspects of our approach and conclude with a summary of
our results.
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Robust autonomous design 5

2. Uncertainty modeling with clouds

The clouds formalism will serve as the central theoretical background for our uncertainty handling.
Clouds will allow us an interpretation of uncertainties in terms of safety constraints. An impor-
tant additional aspect of clouds is the ability to deal with high dimensional and non-formalized
uncertainties.

This section starts with the definition of clouds in Section 2.1. The special case of potential clouds
will be introduced as particularly interesting in Section 2.2, Section 2.3 will give an introduction
about potential cloud generation.

2.1. Theoretical background

We start with the formal definition of clouds and introduce the notations. Let ε ∈ M ⊆ R
n be

an n-dimensional vector of uncertainties, we call ε an uncertain scenario. A cloud is a mapping
χ(ε) = [χ(ε), χ(ε)], where χ(ε) is a nonempty, closed and bounded interval ∈ [0, 1] for all ε ∈ M,
and ]0, 1[⊆ ⋃

ε∈M
χ(ε) ⊆ [0, 1]. We call χ(ε) − χ(ε) the width of the cloud χ. A cloud is called thin

if it has width 0, and continuous if the lower level χ and the upper level χ are continuous functions
of ε.

There exists a close relationship between thin continuous 1-dimensional clouds and cumulative
distribution functions (CDFs) of real univariate random variables ε which is stated in Proposition
4.1 in (Neumaier, 2004): Let Fε(x) = Pr(ε ≤ x) be the CDF of ε, then χ(x) := Fε(x) defines a
thin cloud and Pr(χ(ε) ≤ y) = y, y ∈ M. The latter refers just to the fact that Fε(x) is uniformly
distributed.

CDFs are well known from probability theory. Especially the 1-dimensional case is computa-
tionally unproblematic and intuitively understandable. However, we want to deal with significantly
higher dimensions than 1. This leads to the idea to construct continuous clouds from user-defined
potential functions V : M → R.

2.2. Potential clouds

As we learned in the last section potential function based clouds, in short potential clouds, are a
special class of continuous clouds supposed to help to cope with high dimensional uncertainties. The
idea is to construct a cloud from an interval-valued function χ of a user-defined potential function
V , i.e., χ ◦ V : M → [a, b], where [a, b] is an interval in [0, 1].

Define the mapping

χ(x) := [α(V (x)), α(V (x))], (1)

where α(y) := Pr(V (ε) < y), α(y) := Pr(V (ε) ≤ y), y ∈ R, and ε ∈ M a random variable. Then
we get from Theorem 4.3 in (Neumaier, 2004) that we thus constructed a cloud χ that gives us an
important interpretation in terms of confidence regions for ε.

Let α ∈ [0, 1] be a given confidence level. The remarks to Theorem 4.3 in (Neumaier, 2004)
tell us that if we choose α(y) as a lower bound for Pr(V (ε) < y) and α(y) as an upper bound for
Pr(V (ε) ≤ y), α, α smooth and monotone, then χ as defined above is still a cloud. An appropriate
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6 Martin Fuchs and Arnold Neumaier

bounding α, α can be found, e.g., by Kolmogoroff-Smirnov (KS) statistics (Kolmogoroff, 1941).
Then we define

Cα := {ε | V (ε) ≤ V α}, (2)

if a solution V α of α(V α) = α exists and Cα := ∅ otherwise; analogously

Cα := {ε | V (ε) ≤ V α}, (3)

if a solution V α of α(V α) = α exists and Cα := M otherwise. These are nested families of confidence
regions parameterized by α: The region Cα contains at most a fraction of α of all scenarios in M,
since Pr(ε ∈ Cα) ≤ Pr(α(V (ε)) ≤ α) ≤ Pr(F (V (ε)) ≤ α) = α; analogously Cα contains at least a
fraction of α of all scenarios in M.

2.3. Potential cloud generation

Let’s summarize what is needed to generate a potential cloud: a potential function V has to be
chosen, then appropriate bounds on the CDF F of V (M) must be found. We will investigate how to
find these bounds. But first we consider the question how to choose the potential function. There
are endless possibilities (see, e.g., Figure 2) to make the choice.

−1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

   α=20%

  α=40%

 α=60%

 α=80%

α=100%

ε1

ε2

Figure 2. Nested confidence regions for the example of a 2-dimensional potential cloud, α = 0.2, 0.4, 0.6, 0.8, 1.

Two special cases for choices of the potential function are

V (ε) := max
k

|εk − µk|
rk

, (4)
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where ε, µ, r ∈ R
n, εk, µk, rk are the kth components of the vectors, defines a box-shaped potential.

V (ε) := ‖Aε − b‖2
2, (5)

where ε, b ∈ R
n, A ∈ R

n×n, defines an ellipsoid-shaped potential.
A good choice of the potential should allow for a simple computational realization of the confi-

dence regions, e.g., by linear constraints represented by Aε ≤ b. This leads us to the investigation
of polyhedron-shaped potentials, a generalization of box-shaped potentials. A polyhedron potential
can be defined as:

V (ε) := max
k

(Aε)k

bk
, (6)

where (Aε)k, bk are the kth components of the vectors (Aε) and b, respectively.
But how to achieve a polyhedron that reflects the given uncertainty information in the best

way? As mentioned we assume the uncertainty information to consist of given samples, boxes or
marginal distributions, and unformalized correlation constraints. After generation of a sample S as
described later we define a box b0 containing all sample points, and we define our potential V0(ε)
box-shaped taking the value 1 on the margin of b0.

Based on expert knowledge, a user-defined variation of V0 can be performed by cutting off
sample points deemed irrelevant for the worst-case. The exclusion of sample points is given by
linear constraints Aε ≤ b. Thus an expert can specify the uncertainty information in the form of
linear correlation bounds adaptively resulting in a polyhedron shaped potential (6), even if the
expert knowledge is only little formalized.

The adaptive exclusion of irrelevant scenarios, cf. Figure 3, can be realized in a graphical user
interface (GUI). This procedure imitates iterative improvement in common real life MDO.

Figure 3. Exclusion of irrelevant scenarios by correlation bounds.

Now we turn to the investigation on how to find appropriate bounds on the CDF F (V (ε)). As
we do not have the knowledge of F we have to approximate it before we can assign bounds on it.
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8 Martin Fuchs and Arnold Neumaier

To this end we will make use of KS statistics as suggested before. That means we approximate F

by an empirical distribution F̃ . The generation of an empirical distribution requires the existence
of a sample S representing our uncertainties.

It depends on the given uncertainty information whether a sample already exists. In case there is
no sample provided or the given sample is very small, a sample has to be generated. For these cases
we first use a Latin hypercube sampling, cf. (McKay et al., 1979), inspired method to generate the
sample S = {x1, . . . , xNS

} of NS sample points. The sample points are chosen from a grid fulfilling
the well-known Latin hypercube condition. If only boxes are given, then the grid is equidistant, if
marginal distributions are given the grid is transformed with respect to them to ensure that each
grid interval has the same marginal probability. Thus the generated sample represents the marginal
distributions. However after a modification of S, e.g., by cutting off sample points as described, an
assignment of weights to the sample is necessary to preserve the marginal CDFs.

In order to do so the weights ω1, . . . , ωNS
∈ [0, 1] are required to satisfy the following conditions:

Let πj be a sorting permutation of {1, . . . , NS}, such that x
j

πk(1) ≤ . . . ≤ x
j

πk(NS). Let I be the

index set of those entries of the uncertainty vector ε where a marginal CDF Fi, i ∈ I ⊆ {1, . . . , n}
is given. Then the weights should satisfy (7) ∀i ∈ I, k = 1, . . . , NS

k∑

j=1

ωπi(j) ∈ [Fi(x
i
πi(k)) − d, Fi(x

i
πi(k)) + d],

NS∑

k=1

ωk = 1. (7)

The function

F̃i(ξ) :=
∑

{j|xi
j
≤ξ} ωj (8)

is a weighted marginal empirical distribution. For trivial weights, ω1 = . . . = ωNS
= 1

NS
, F̃i is a

standard empirical distribution. The constraints (7) require the weights to represent the marginal
CDFs with some reasonable margin d. In other words, the weighted marginal empirical distributions
F̃i, i ∈ I should not differ from the given marginal CDF Fi by more than d. In practice, one chooses
d = dKS with KS statistics:

dKS =
φ−1(αKS)√

NS + 0.12 + 0.11√
NS

, (9)

where φ is the Kolmogoroff function, αKS the confidence in the KS theorem, cf. (Kolmogoroff,
1941), (Press et al., 1992).

Assume we have achieved weights satisfying (7), this yields a weighted empirical distribution

F̃ (ξ) :=
∑

{j|V (xj)≤ξ} ωj (10)

approximating the CDF of V (ε). If weights satisfying (7) can only be achieved with d > dKS, the
relaxation d gives us an indicator for the quality of the approximation which will be useful to
construct bounds on the CDF F (V (ε)).

After the approximation of F (V (ε)) with F̃ we are just one step away from generating a potential

cloud. Remember that we seek an appropriate bounding on F (V (ε)). We define F := min(F̃ +D, 1)

REC 2008 - Martin Fuchs and Arnold Neumaier



Robust autonomous design 9

and F := max(F̃ −D, 0), where D is computed with help of the KS approach (9), and fit these two
step functions to smooth, monotone lower bounds α(V (ε)) and upper bounds α(V (ε)). If the the

quality of our approximation with F̃ or the sample size NS is decreased, the width of the bounds
is increased correspondingly.

Thus we have found an appropriate bounding of the CDF F (V (ε)) and according to the remarks
to Theorem 4.3. in (Neumaier, 2004) mentioned we have generated a potential cloud that fulfills
the conditions that define a cloud via the mapping χ : ε → [α(V (ε)), α(V (ε))].

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V (ε)

Figure 4. The smooth lower bounds α(V (ε)) and upper bounds α(V (ε)) for a potential cloud.

The cloud represents the given uncertainty information and now enables us to interpret the
potential level maps {ε | V (ε)) ≤ V α} = Cα as confidence regions for our uncertain vector ε. They
are the worst-case relevant regions.

Hence the clouds give an intuition and guideline how to construct confidence regions for safety
constraints. To this end we have combined several different theoretical means: potential func-
tions, CDF approximations with empirical distributions, KS statistics to estimate bounds, sample
generation methods, and weighting techniques.

3. Robust design optimization

A classic approach to design optimization, without taking uncertainties into account, leads to
decision support for engineers, but to a design which completely lacks robustness. We want to safe-
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10 Martin Fuchs and Arnold Neumaier

guard the design against uncertain errors. That will involve the methods for uncertainty modeling
we introduced in the last section.

First we give a formal statement of the optimization problem in Section 3.1. Afterwards we point
out the difficulties related in Section 3.2 and finally present a solution approach in Section 3.3.

3.1. Problem formulation

Provided an underlying model of a given structure like a spacecraft component, with several inputs
and outputs, we denote as x the vector containing all output variables, and as z the vector containing
all input variables.

The inputs contained in z can be divided into global input variables u and design variables v.
The design variables are determined by the so called design choice variables. A choice variable is
a univariate variable controllable for the design. The choice variables can be continuous, e.g., the
diameter of an antenna, or discrete, e.g., the choice of a thruster from a set of different thruster
types. Let θ be the vector of design choice variables θ1, . . . , θno . Let Id be the index set of choice
variables which are discrete and Ic be the index set of choice variables which are continuous,
Id ∪ Ic = {1, . . . , no}, Id ∩ Ic = ∅. In the discrete case, i ∈ Id, the choice variable θi determines the
value of ni design variables. For example, if θi was the choice of a thruster, each choice could be
specified by the thrust and specific impulse of the thruster. Thrust and specific impulse would be
design variables vi

1 and vi
2, and ni = 2 in this example. Let 1, . . . , Ni be the possible choices for θi,

i ∈ Id, then the discrete choice variable θi corresponds to a finite set of Ni points (vi
1, . . . , v

i
ni

) ∈ R
ni .

Usually this set is provided in a Ni×ni table (see, e.g., Table II, Ni = 30, ni = 3). In the continuous

case, i ∈ Ic, the choice variable θi can be regarded as a design variable in a given interval [θi, θi].
A global input variable is an external input with a nominal value that cannot be controlled for the
underlying model, this could be, e.g., a specific temperature. Let Z(θ) be a mapping assigning an
input vector z to the design choice θ. We call Z a table mapping as the nontrivial parts of Z consist
of tables.

Both design and global input variables contained in z can be uncertain, ε denotes the related
vector of uncertainties. We assume that the optimization problem can be formulated as a mixed-
integer, bi-level problem of the following form:

min
θ

max
x,z,ε

g(x) (objective functions)

s.t. z = Z(θ) + ε (table constraints)

G(x, z) = 0 (functional constraints) (11)

θ ∈ T (selection constraints)

V (ε) ≤ V α (cloud constraint)

where the design objective g(x) is a function of the output variables of the underlying model. The
table constraints assign to each choice θ a vector z of input variables whose value is the nominal
entry from Z(θ) plus its error ε with uncertainty specified by the cloud. The functional constraints
express the functional relationships defined in the underlying model. It is assumed that the number
of equations and the number of output variables is the same (i.e., dimG = dim x), and that the
equations are (at least locally) uniquely solvable for x. The selection constraints specify which

REC 2008 - Martin Fuchs and Arnold Neumaier



Robust autonomous design 11

choices are allowed for each choice variable, i.e., θi ∈ {1, . . . , Ni} if i ∈ Id and θi ∈ [θi, θi] if i ∈ Ic.
The cloud constraint involves the potential function V as described in the Section 2 and models
the worst-case relevant region {ε | V (ε) ≤ V α} = Cα.

3.2. Difficulties

The problem formulated in the last section features several difficulties of most complex nature.
The variable types can be both continuous and integer, so the problem comes as a mixed integer
nonlinear program (MINLP). MINLP is still a recent research direction which has not yet matured.
Profound difficulties arise from the fact that the functional constraints, represented by G, can have
strong nonlinearities and can contain branching decisions such as case differentiation (implemented
as, e.g., if-structures in the code) which leads to discontinuities. Additionally we face a bi-level
structure imposed by the uncertainties, which is already a nontrivial complication in the traditional
situation where all variables are continuous. The current methods for handling such problems require
at least that the objective and the functional constraints are continuously differentiable. Standard
optimization tools cannot be used to tackle problem (11).

In view of these difficulties we are limited to the use of heuristic methods, i.e., we treat the
functional constraints of the underlying model as a black-box function x = Gbb(z) and make use
of specific strategies to sample from the set of allowed inputs z = Z(θ), θ ∈ T .

3.3. Solution approach

We will first reformulate the problem incorporating the objective function and functional constraints
for the underlying model in the black-box function Gbb(z).

min
θ

max
z,ε

Gbb(z)

s.t. z = Z(θ) + ε (12)

θ ∈ T

V (ε) ≤ V α

We start with a look at the inner level of the problem, i.e., for a fixed θ ∈ T

max
z,ε

Gbb(z) (13)

s.t. z = Z(θ) + ε

V (ε) ≤ V α

Because of the polyhedral structure of our clouds, the cloud constraint V (ε) ≤ V α can be written
as a collection of linear inequalities parameterized by the confidence level α. We approximate Gbb

in a small box containing the region {ε | V (ε) ≤ V α} linearly. Thus problem (13) becomes an LP
solved by an LP solver, cf. (Grant and Boyd, 2007). The maximizer ε̂, ẑ = Z(θ) + ε̂ for the fixed

design choice θ corresponds to the worst-case objective function value Ĝbb(θ) := Gbb(Z(θ) + ε̂).

The function θ → Ĝbb(θ) implicated by the solution of problem (13) is now used to get rid of the
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bi-level structure in problem (12):

min
θ

Ĝbb(θ) (14)

s.t. θ ∈ T

The method we develop to solve this 1-level problem, and to seek the robust, optimal design, is
based on separable underestimation. It exploits the characteristics of the problem, takes advantage
of the discrete nature of many of the choice variables involved in real life design, supporting, at
the same time, continuous choice variables. Remember θ is the vector of design choice variables
θ1, . . . , θno. We look for a separable underestimator q(θ) for the objective function of the form:

q(θ) :=
no∑

i=1

qi(θ
i). (15)

Let θ ∈ T , z = Z(θ). Assume the black-box Gbb has been evaluated No times resulting in the
function evaluations Gbb1

, . . . , GbbNo
for the design choices θ1, . . . , θN0

. Let l ∈ {1, . . . , No}. For a

discrete choice θi
l , i ∈ Id, we define qi(θ

i
l) := qi,θi

l
, θi

l ∈ {1, . . . , Ni}, simply as a constant. For a

continuous choice θi
l , i ∈ Ic, we define qi(θ

i
l) := qi1 · θi

l + qi2 · θi
l

2
by a quadratic expression with the

two constants qi1 and qi2. If Id = ∅ we add an integer choice θi with Ni = 1 artificially to represent
the constant part which is missing in the definition of qi, i ∈ Ic. The vectors qi of constants have
the length Ni for i ∈ Id, and 2 for i ∈ Ic. They are treated as variables qi in a linear optimization
program (LP) satisfying the constraints

no∑

i=1

qi(θ
i
l) ≤ Gbbl

l = 1, . . . , No (16)

and ensuring that many constraints in (16) will be active. The underestimator q(θ) is separable
and can be easily minimized.

Apart from the method of separable underestimation we also make use of further strategies to
find a solution of the optimization problem (14). The first one fits a quadratic model for the Gbb

which is minimized afterwards, cf. (Huyer and Neumaier, 2006). Integers are treated as continuous
variables and rounded to a grid with step width 1. Another method is based on evolution strategy
with covariance matrix adaptation, cf. (Hansen and Ostermeier, 2001). It is a stochastic method
to sample the search space. Integers are also treated as continuous variables rounded to the next
integer value.

Finally the minimizers that result from all methods used are starting points for a limited global
search that consists of an integer line search for the discrete choice variables and multilevel coordi-
nate search (Huyer and Neumaier, 1999) for the continuous choice variables. Thus we hope to find
the global optimal solution, but as we are using heuristics there is no guarantee.

Remark. For the implementation of our methods we formulated them as Matlab code. The
following is a summary of all external routines we use in our methods: we make use of the Statistics
Toolbox of Matlab to evaluate probability distributions; we use CVX (Grant and Boyd, 2007)
to solve linear programs; Snobfit (Huyer and Neumaier, 2006) and MCS (Huyer and Neumaier,
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1999) as external optimization routines; NLEQ (Deuflhard, 2004), (Nowak and Weimann, 1990) to
solve systems of nonlinear equations.

4. Application example

Here we apply our methods for robust and autonomous design to a case study of early phase
spacecraft engineering, i.e., the Attitude Determination and Control Subystem (ADCS) for the
NASA’s Mars Exploration Rover (MER) mission cf. (MER, 2003), (Erickson, 2004) whose scientific
goal is to investigate the history of water on Mars. The ADCS is composed by eight thrusters aligned
in two clusters. Onboard the spacecraft there is no main propulsion subsystem. The mission sequence
after orbit injection includes a number of spin maneuvers and slew maneuvers. Spin maneuvers
are required for keeping the gyroscopic stability of the spacecraft, whereas slew maneuvers serve
to control the direction of the spacecraft and to fight effects of solar torque. Fault protection is
considered to correct possible errors made when performing nominal maneuvers.

Our goal is to select the type of thrusters (from a set of possible candidates as listed in Table
II) considering both minimization of the total mass mtot, and assessment of the worst possible
performance of a thruster with respect to mtot. That corresponds to finding the thruster with
the minimal worst-case scenario. The total mass consists of the fuel needed for attitude control
(computed as the sum of the fuel needed for each maneuver) plus the mass of the eight thrusters
that need to be mounted on the spacecraft. According to the notations introduced, the choice
variable θ, i.e., the type of thruster, can be selected as an integer between 1 and 30.

Uncertainty specifications, variable structure, the MER mission maneuver sequence, and system
model equations to compute the total mass mtot are taken from (Thunnissen, 2005). The uncertainty
specification for the model variables are reported in Table III of Appendix C. The number of
uncertain global input variables (dimension of u) in this application example is 33 plus 1 uncertain
design variable. The variable structure is summarized in Appendix A. Moreover, a survey on the
system model equations and the MER mission sequence can be found in the Appendices of (Fuchs
et al., 2007).

4.1. Results

The cloud constraints for the optimization are generated for a confidence level of α = 95% and
a generated sample size NS = 1000. The results for optimization are divided into four different
configurations of uncertainty handling and specifications:

a. The uncertainties are as specified in Table III. Here we treat them in a classical engineering
way, assigning 3 σ boxes to the uncertain variables which is supposed to correspond to a 99.7%
confidence interval for a single variable. Then the optimal design choice is θ = 9 with an
objective function value of mtot = 3.24 kg in the nominal case and mtot = 5.56 kg in the worst
case.

b. The uncertainties are again as in Table III. With our methods we find the optimal design
choice θ = 9 as in Configuration a. However, if we compare the worst-case analysis of b and a,
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it is apparent that the results for the 3 σ boxes are far too optimistic to represent a reliable
worst-case scenario, the value of mtot is now 8.08 kg instead of 5.56 kg for the 3 σ boxes.

c. In this configuration we do not take any uncertainties into account, generally assuming the
nominal case for all uncertain input variables. The optimal design choice then is θ = 3 with
a value of mtot = 2.68 kg in the nominal, but mtot = 8.75 kg in the worst case, which is
significantly worse than in Configuration b.

d. The uncertainties are obtained by taking the values from Table III and doubling the standard
deviation of the normally distributed variables. It is interesting to report that if we increase
the uncertainty in the normally distributed uncertain variables simply in this way, the optimal
design choice changes to θ = 17 with a value of mtot = 3.38 kg in the nominal and mtot = 9.49
kg in the worst case.

The results are summarized in Table I, showing the optimal design choice for each configuration
and the corresponding value of the objective function mtot for the nominal case and for the worst
case, respectively.

Table I. Nominal and worst-case values of mtot for different design choices obtained by the four
different configurations.

Configuration Design Choice θ Nominal value mtot Worst-case mtot

a 9 3.24 5.56

b 9 3.24 8.08

c 3 2.68 8.75

d 17 3.38 9.49

The results show a number of important facts related to spacecraft design. The comparison
between the configurations b and d suggests that in a preliminary stage of the spacecraft sys-
tems modeling the optimal design point θ is quite sensitive to the uncertainty description, a fact
well-known to the system engineers who see their spacecraft design changing frequently during
preliminary phases when new information becomes continuously available. Our method captures
this important dynamics and processes it in rigorous mathematical terms.

The comparison between the configurations b and c suggests that the uncertainties need to be
accounted for in order not to critically overestimate the spacecraft performances.

Finally, the comparison between the configurations b and a suggests that the simple 3 σ analysis
of uncertainties, frequent in real engineering practice, produces a quite different estimation of the
spacecraft performances with respect to a more rigorous accounting of the uncertainty information.
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5. Discussion & Conclusions

The importance of robustness in design optimization has been the starting point and main moti-
vation of our research work, and our results on a case study confirm that the optimal spacecraft
design is strongly sensitive to uncertainties. At the present stage we can clearly state that neglecting
uncertainties results in a design that completely lacks robustness and a simplified uncertainty model
(like a 3 σ approach) may yield critical underestimations of worst-case scenarios.

When trying to collect the uncertainty information, it turned out to be very difficult to get
useful information directly from expert engineers. To collect the information, an interactive dialogue
between the experts and the computer can be realized by a GUI where the engineers can specify
uncertainties, provide sample data, cut off worst-case irrelevant scenarios, and adjust the quality of
the uncertainty model. We expect that this kind of interaction is an inevitable next step in design
processes, especially spacecraft design. We continue the discussion with more detailed considerations
on the study.

− In the theory of clouds, cf. Section 2 and (Neumaier, 2004), there is a distinction between the
confidence regions of α-relevant scenarios Cα, α-reasonable scenarios Cα and borderline cases
(which is the set difference of the α-reasonable and the α-relevant regions). In robust design
the possibly uncertain scenarios are required to satisfy safety constraints. With respect to our
terminology the regions above have the following interpretation: if at least one of the α-relevant
scenarios fails to satisfy the safety constraints, the design is unsafe; if all of the α-reasonable
scenarios satisfy the safety constraints, the design is safe. Between these two cases there is
the borderline region where no precise statement can be made without additional uncertainty
information. The volume of the borderline region is increasing if the width of the cloud increases
and vice versa. So widening the cloud enlarges the borderline region, corresponding to a lack
of uncertainty information. This fact is reflected in our approach as both a smaller sample size
and an increased dimension of the uncertainty result in a wider cloud.

− The width of the cloud is defined as the difference between the mappings α and α (cf. Section
2). We constructed the mappings to fulfill the conditions that define a cloud with an algorithm
which is non-rigorous, but has a high, adjustable reliability. Thus the user of the algorithm is
able to control the desired level of reliability.

− As mentioned before the reliability of our worst-case analysis with clouds is determined by user-
defined parameters, i.e., the size of the generated sample S and confidence levels for sample
generation, CDF bounding and approximation. Concerning the sample size: if we increase the
size of S we artificially refine the uncertainty model and get more reliability of the worst-
case analysis. A larger sample is computationally more expensive, in particular the weight
computation, so the reliability is also a trade-off with performance.

− The choice of the potential function is arbitrary. Different shapes of the cloud (i.e., shapes of
the potential) can make the worst-case analysis more pessimistic or optimistic. We point out
that a poor choice of the potential makes the worst-case analysis more pessimistic, but will
still result in a valid robust design. We allow a variation of the potential by switching from a
box-shaped to a polyhedron-shaped potential to enable the experts to improve the uncertainty
model iteratively.
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− A good weight computation (cf. Section 2.3) is the key to a good uncertainty representation
with clouds. In higher dimensions the weight computation is very expensive. To overcome this
problem and to allow the adjustment of the computation time, the relaxation radius d must be
increased carefully. In our algorithm we respect the relaxation property, widening the cloud by
the amount of relaxation after evaluating the quality of the weights as described in Section 2.3.

− As mentioned before, we are limited to the use of heuristic methods since the design problem
(11) is highly complex and not suitable for standard optimization methods. In our problem
formulation we seek the design with the optimal worst-case scenario. It is possible to trade off
between the worst-case scenario and the nominal case of a design, but this would lead to a
multi-objective optimization problem formulation.

− The number 34 of uncertain variables in our case study is large enough to make our problem
representative for uncertainty handling in real-life applications.

− Though global optimality for the solution in our application example is very likely, as the choice
variable is 1-dimensional and discrete, in general the heuristical methods cannot guarantee
global optimality of the problem solution.

− The approach with separable underestimation introduced in this chapter takes advantage of
inherent characteristics of spacecraft design problems, i.e., the discrete nature of many of the
variables involved, supporting, at the same time, continuous choice variables. Details on our
heuristic methods for design optimization introduced in Section 3 will be published elsewhere.

5.1. Conclusions and Future Work

In this chapter we presented a new approach to autonomous robust design optimization. Starting
from the background of the cloud theory we developed methodologies to process the uncertainty
information from expert knowledge towards a reliable worst-case analysis and an optimal and robust
design. Our approach is applicable to real-life problems such as, e.g., early phase spacecraft system
design. In the example of the community of spacecraft engineers, at present, in most instances of the
design process, reliability is only assessed qualitatively by the experts. We present a step forward
towards quantitative statements about the design reliability.

The adaptive nature is one of the key features of our uncertainty model as it imitates real-life
design strategies. The iteration steps significantly improve the uncertainty information and we are
able to process the new information to an improved uncertainty model.

The presented approach is generally applicable to problems of robust design optimization, not
only spacecraft design. In particular problems with discrete design choices can be tackled. The
advantages of achieving the optimal design autonomously is undeniable. Though we already applied
the new methods to different design problems, cf. (Neumaier et al., 2007), one future goal is to apply
them to more problem classes in order to learn from new challenges.

With our approach we can process the available uncertainty information to perform a reliable
worst-case analysis linked to an adjustable confidence level. An additional value of the uncertainty
model is the fact that one can capture various forms of uncertainty information, even those less
formalized. There is no loss of valuable information, and the methods are capable of handling the
uncertainties reliably, even if the amount of information is very limited.
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Summing up, the presented methods offer an exciting novel approach to face the highly complex
problem of autonomous robust design optimization, an approach which is easily understandable,
reliable and computationally realizable.

Appendix

A. Model Variable Structure

Remark. Do not confuse the notations in these appendices with our notation of the main sections.
The 47 variables involved in the model fall into the following four categories:

− 5 constant parameters.
Input variables for the model with fixed values and no uncertainty.

Constant parameter Description Value

c0 speed of light in a vacuum 299792458 m/s

d average distance from the spacecraft to the sun in AU 1.26 AU

g0 gravity constant 9.8 m/s2

t total mission time 216 days

θi sunlight angle of incidence 0◦

− 33 Uncertain input variables.
The uncertainties are specified by probability distributions for each of these variables (cf.
Appendix C).

Variable Description

Amax maximal cross-sectional area

Jxx, Jzz moments of inertia

R engine moment arm

δ1, δ2 engine misalignment angle

gs solar constant at 1 AU

κ distance from the center of pressure to the center of mass

ωspini
spin rates, i = 0...3, given in rpm

ψslewi
slew angles, i = 1...19, given in ◦

q spacecraft surface reflectivity

uncfuel
additive uncertain constant that represents inaccuracies in

the equations used for the calculation of the fuel masses

− 3 Design variables.
Thruster specifications relevant for the model. There is uncertainty information given on one
of them (the thrust).
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Variable Description

F thrust

Isp specific impulse

mthrust mass of a thruster

− 6 Result variables.
Result variables containing the objective for the optimization mtot.

Variable Description

mfp fuel mass needed for fault protection maneuvers

mfuel total fuel mass needed for all maneuvers

mslew fuel mass needed for slew maneuvers

mslews
fuel mass needed for slew maneuvers fighting solar torque

mspin fuel mass needed for spin maneuvers

mtot total mass of the subsystem

B. Thruster specification

Table II shows the thruster specifications and the linked choice variable θ. The table entries are
sorted by the thrust F . The difference between the so called design and choice variables can be
seen easily in this table: the table represents 30 discrete choices in R

3. The 3 design variables
are the 3 components of these points in R

3. The choice variable θ is 1-dimensional and has an
integer value between 1 and 30. The various sources for the data contained in Table II are (EADS,
2007), (Thunnissen, 2005), (Purdue School of Aeronautics and Astronautics, 1998), (Zonca, 2004),
(Personal communication, 2007).

C. Uncertainty specification

All uncertainty specifications taken from (Thunnissen, 2005) are reported in Table III. The notation
used for the probability distributions is:

Notation Distribution

U(a, b) uniform distribution in (a, b)

N(µ, σ) normal distribution with mean µ and variance σ2

Γ(α, β) gamma distribution with mean αβ and variance αβ2

L(µ, σ)
lognormal distribution, distribution parameters µ and σ (mean and standard

deviation of the associated normal distribution)

The uncertainty information on the design variable F should be interpreted as follows: The
actual thrust of a thruster is normally distributed, has the mean Ftable (:= the nominal value for
F specified in Table II) and standard deviation 7

300Ftable.
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Table II. Thruster specifications and the linked choice variable θ.

θ Thruster F/N Isp/s mthrust/kg

1 Aerojet MR-111C 0.27 210 0.2

2 EADS CHT 0.5 0.5 227.3 0.195

3 MBB Erno CHT 0.5 0.75 227 0.19

4 TRW MRE 0.1 0.8 216 0.5

5 Kaiser-Marquardt KMHS Model 10 1 226 0.33

6 EADS CHT 1 1.1 223 0.29

7 MBB Erno CHT 2.0 2 227 0.2

8 EADS CHT 2 2 227 0.2

9 EADS S4 4 284.9 0.29

10 Kaiser-Marquardt KMHS Model 17 4.5 230 0.38

11 MBB Erno CHT 5.0 6 228 0.22

12 EADS CHT 5 6 228 0.22

13 Kaiser-Marquardt R-53 10 295 0.41

14 MBB Erno CHT 10.0 10 230 0.24

15 EADS CHT 10 10 230 0.24

16 EADS S10 - 01 10 286 0.35

17 EADS S10 - 02 10 291.5 0.31

18 Aerojet MR-106E 12 220.9 0.476

19 SnM 15N 15 234 0.335

20 TRW MRE 4 18 217 0.5

21 Kaiser-Marquardt R-6D 22 295 0.45

22 Kaiser-Marquardt KMHS Model 16 22 235 0.52

23 EADS S22 - 02 22 290 0.65

24 ARC MONARC-22 22 235 0.476

25 ARC Leros 20 22 293 0.567

26 ARC Leros 20H 22 300 0.4082

27 ARC Leros 20R 22 307 0.567

28 MBB Erno CHT 20.0 24 234 0.36

29 EADS CHT 20 24.6 230 0.395

30 Daimler-Benz CHT 400 400 228.6 0.325
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Abstract: Validation is the assessment of the match between a model‘s predictions and any empirical 

observations relevant to those predictions. This comparison is straightforward when the data and 

predictions are deterministic, but is complicated when either or both are expressed in terms of uncertain 

numbers (i.e., intervals, probability distributions, p-boxes, or more general imprecise probability 

structures). There are two obvious ways such comparisons might be conceptualized. Validation could 

measure the discrepancy between the shapes of the uncertain numbers representing prediction and data, or 

it could characterize the differences between realizations drawn from the respective uncertain numbers. 

When both prediction and data are represented with probability distributions, comparing shapes would 

seem to be the most intuitive choice because it sidesteps the issue of stochastic dependence between the 

prediction and the data values which would accompany a comparison between realizations. However, 

when prediction and observation are represented as intervals, comparing their shapes seems overly strict 

as a measure for validation. Intuition demands that the measure of mismatch between two intervals be 

zero whenever the intervals overlap at all. Thus, intervals are in perfect agreement even though they may 

have very different shapes. The unification between these two concepts relies on defining the validation 

measure between prediction and data as the shortest possible distance given the imprecision about the 

distributions and their dependencies. 

 

Keywords: validation, observation, prediction, distribution, interval, p-box 

 

1. Introduction 

 

Validation is the comparison of the predictions of a theory or model against empirical data (AIAA 1998; 

ASME 2006; Oberkampf and Truncano 2002; Oberkampf et al. 2004; Oberkampf and Barone 2006; Hills 

2006; Trucano et al. 2006; Romero 2007; Ferson et al. 2008). It is often contrasted with verification, 

which is the checking of a model‘s implementation against the intended specification (Oberkampf et al. 

2004; Oberkampf and Trucano 2007). We also contrast validation with calibration, which is the 

adjustment of the model‘s parameters or its structure for the purpose of improving the match between its 

predictions and empirical reality (Kennedy and O‘Hagan 2001; Trucano et al. 2006). Measures of 

validation might be useful in a calibration, but the processes are entirely different in their goals. 

Calibration seeks to correct a model, and validation seeks only to measure how correct the model is.  
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 Several approaches to validation have recently been suggested based on simple comparisons of trends 

in means (e.g., Oberkampf and Barone 2006), more elaborate hypothesis testing (e.g., Hills and Trucano 

2002; Hills and Leslie 2003; Rutherford and Dowding 2003; Chen et al. 2004; Dowding et al. 2004), or 

still more comprehensive Bayesian schemes (e.g., Hanson 1999; Kennedy and O‘Hagan 2001; Hazelrigg 

2003; Zhang and Mahadevan 2003; O‘Hagan 2006; Chen et al. 2006; 2007). This paper concerns only the 

basic question of how we should summarize and measure the discrepancies between a model‘s predictions 

and relevant empirical data. Oberkampf and Truncano (2007) called this problem the ‗validation 

assessment‘. Other important issues such as how such the measure could be used to inform or quantify the 

predictive capability of a model or deciding whether the model is adequate for some intended use are out 

of our present scope. 

 We consider validation assessment in a context where non-negligible uncertainty is present in the 

prediction or the data, or both. This uncertainty can come in different forms. It may arise from natural 

stochasticity or randomness in the world, perhaps owing to fluctuations in processes across space or 

through time, heterogeneity of individuals, or variability among engineered components. This uncertainty 

is objective in the sense that it exists irrespective of observation by humans and it is irreducible in the 

sense that empirical study does not necessarily reduce it. We call it aleatory uncertainty and recognize 

traditional probability theory as the primary calculus for addressing it. Aleatory uncertainty is often 

contrasted with epistemic uncertainty which is the partial ignorance, incertitude or imprecision that arises 

from incomplete or imperfect scientific study and comes from small sample sizes, missing data or data 

censoring or other measurement uncertainties, and perhaps doubt about the proper form of a model. 

Epistemic uncertainty is sometimes called subjective or reducible uncertainty because it‘s a function of 

the observer rather than physical reality and because it can in principle be reduced by empirical effort. 

Although probability theory has often been used to address epistemic uncertainty, other approaches are 

also employed, notably including interval analysis. 

 Recently, several researchers have suggested that methods beyond traditional probability theory 

might be necessary for models that must distinguish aleatory and epistemic uncertainty (Shafer 1976; 

Walley 1991; Klir and Wierman 1999; Oberkampf et al. 2001; Nikolaidis and Haftka 2001; Ferson et al. 

2003; Helton and Oberkampf 2004; inter alia). We use the phrase ‗uncertain number‘ (Ferson et al. 2003) 

to denote a varying or imperfectly known quantity that is mathematically characterized by an interval, 

probability distribution, p-box (Ferson et al. 2003), Dempster-Shafer structure (Shafer 1976; Oberkampf 

et al. 2001; Oberkampf and Helton 2005), random set (Matheron 1975; Molchanov 2006), set of 

probability measures or ‗credal set‘ (Levi 1980), or similar structure from the theory of imprecise 

probabilities (Walley 1991). In general, an uncertain number can express both aleatory uncertainty and 

epistemic uncertainty. One might hold that a probability distribution, as a special case of an uncertain 

number, expresses purely aleatory uncertainty and an interval, also a special case, expresses purely 

epistemic uncertainty. 

 The engineering value of a model‘s quantitative prediction is a function of both its accuracy and its 

precision. The precision of a prediction expressed as an uncertain number is inversely related to the 
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epistemic uncertainty encoded in the uncertain number. This uncertainty is sometimes called ‗non-

specificity‘ (Klir and Wierman 1999) and might be quantified as the width of an interval or the breadth 

between the left and right bounds of a p-box. A validation assessment lets us quantify the second essential 

component determining the worth of the prediction: its accuracy in the face of empirical evidence. 

 Section 2 considers validation for the case where both prediction and data are represented by 

probability distributions. Section 3 considers the more elementary problem of validation when they are 

both intervals. Section 4 tries to harmonize the measures developed for these two special cases. Section 5 

considers some alternative solutions, and section 6 offers some conclusions. 

 

2. Validation Metric for Comparing Probability Distributions 

 

The difference between two probability distributions can be characterized in many ways. The comparison 

could be conceived in terms of differences of their realizations (i.e., real numbers) or in terms of the 

discrepancies between their distribution shapes. In other words, if X and Y are random numbers 

distributed according to their respective cumulative distribution functions F and G, then we could talk 

about the distribution or average of X  Y, or we could focus on the difference between the shapes of F 

and G. The characterization that seems to be most useful in the context of validation of engineering 

models is based on comparing the shapes of the distributions of the random variables representing the 

prediction and relevant observations. Random variables whose distribution functions are identical are said 

to be ‗equal in distribution‘. If the distributions are not quite identical in shape, the discrepancy can be 

measured with any of many possible measures that have been proposed for various purposes in fields 

including statistical goodness of fit (e.g., Stephens 1974; Feller 1948; Kolmogorov 1941; Smirnov 1939), 

probability scoring rules (Winkler 1996; Lindley et al. 1979; de Finetti 1962; Brier 1950), information 

theory (Song 2002; Kullback 1959; Kullback and Leibler 1951), and texture analysis (e.g., Mathiassen et 

al. 2002). 

 Ferson et al. (2008) proposed to quantify the mismatch between prediction and observation with the 

area between the prediction‘s probability distribution and the empirical distribution of observations. This 

area is the Minkowski L1 metric 

 

d(F, Sn) = xxSxF n d)()(




 , 

 

where F is the cumulative distribution representing the model‘s prediction for the random variable and Sn 

is the empirical distribution function for relevant observations Xi, i = 1,…,n, of that random variable. The 

empirical distribution function is 
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Sn(x) = 
 

n

xX i #
 

 

where # denotes the cardinality of the set, so Sn(x) is the fraction of values in the data set that are at or 

below each magnitude x. The validation metric is thus computed solely from the prediction F provided by 

the modeler and observations Xi provided by the empiricist. A small area means there is a good match, 

and a large area means that prediction and data disagree.  

 Figure 1 illustrates an example prediction distribution for rainfall as the smooth curve drawn in gray, 

together with the empirical distribution functions Sn for a hypothetical data set consisting of the values 

770, 790, 820, 865 in millimeters of rain. The prediction distribution is approximately normal, with mean 

about 810 mm and variance of about 1700. The area of the shaded region between the two functions 

which measures their disagreement is almost 40 mm. Note that the empirical distribution function is zero 

for all values smaller than the minimum of the data and one for all values larger than the maximum of the 

data. Likewise, beyond the range of the prediction distribution, the value of F(x) is either zero or one 

extending to infinity in both directions. For graphical clarity, however, these flat portions at probability 

zero or one are not depicted when the distributions are plotted. 
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Figure 1. Area (shaded) between a prediction distribution (gray) and an empirical distribution function (black). 

 

 This metric can be computed for small data sets or even a single data value, in which case the Sn 

function would be the unit step function at that value. The approach can also be used even when the 

model is so complex and computationally expensive that it can only generate a small number of 

realizations for its prediction distribution. In such situations, the prediction distribution is modeled with 

an ‗empirical‘ distribution formed from the sample realizations. 
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 The area between the prediction distribution and the empirical distribution summarizing observations 

has several desirable properties as a formal validation measure of the mismatch between a model and 

evidence (Ferson et al. 2008). Most importantly, the area metric is an objective measure. Given a 

collection of observations and a prediction distribution, the area will be the same no matter who computes 

it because it does not depend on any judgments or parameters chosen by the analyst. Another important 

property is that the area metric generalizes deterministic comparisons between scalar values that have no 

uncertainty; if the prediction and the observation are both scalar point values, the area is equal to their 

difference. The area will tend not to be overly sensitive to minor discrepancies in the distribution tails 

(assuming the area is finite), but it obviously reflects the full distributions in assessing performance. In 

particular, it is clearly not merely a measure of the difference in the means or even the means and 

variances, but takes account of any differences between the prediction and observation distributions. 

Because probability is dimensionless, the units of the area are the same as those of the system response 

quantity in which the prediction and data are expressed. This property is very important in making the 

measure intuitively meaningful to engineers. Its units are the same as one would expect for the result of a 

subtraction. If it were some dimensionless index or, worse, had some complex or esoteric statistical units, 

its physical interpretation would be difficult. The area measure is also unbounded in the sense that, if the 

prediction is completely off the mark of the observations, the area characterizing this discrepancy can in 

principle grow to be an arbitrarily large value, which is also an intuitive feature of distances. Finally, the 

area measure is mathematically well behaved and well understood. So long as the area converges to a 

finite value, it is a true metric in the mathematical sense, which means it has the essential features of a 

distance function. By definition, a mathematical metric d has four properties (Fréchet 1906): 

 

non-negativity,    d(x, y)  0, 

symmetry,     d(x, y) = d(y, x), 

triangle inequality,    d(x, y) + d(y, z)  d(x, z), and 

identity of indiscernibles,   d(x, y) = 0 if and only if x = y. 
 

All of these properties suggest that the area metric will be more comprehensive and easier to interpret 

than any of several alternative statistical measures or some distance measure based on merely matching 

prediction and observation distributions in the mean or in both mean and variance.  

 Ferson et al. (2008) also showed how the area metric could be extended to synthesize evidence of the 

conformance between model and data into a single measure when observations are to be compared to 

different prediction distributions. The trick is to transform each observation Xi to ui = Fi(Xi) where Fi is 

the prediction distribution against which Xi is to be compared. The ui express all the available evidence on 

a universal scale of probability. By the probability integral transform theorem (Angus 1994), the ui will be 

uniformly distributed over the unit interval [0,1] so long as the original Xi are distributed according to 

their respective prediction distributions Fi, which is to say, so long as the model is predicting the 

observations well. Statistical tests and diagnostics are straightforward to define for this synthesis. The 

model‘s performance can be assessed directly in terms of the ui, or the values may first be back-
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transformed to a common axis that re-expresses the evidence in physical units. The back-transformation 

can be chosen so as to maximize the relevance of the assessment for a particular regulatory or 

performance question. This strategey can even be used to combine evidence about model-data 

conformance collected in entirely different dimensions (such as, for instance, rainfall and temperature). 

This synthesis abandons the interpretation of the area in original units of course, but it does allow analysts 

to compare the relative performance of the model for different system response quantities in a meaningful 

way. 

2.1. WHY NOT BASE THE METRIC ON DIFFERENCES OF VALUES FROM THE TWO DISTRIBUTIONS? 

 

One could imagine developing an alternative validation measure based on the absolute difference between 

a random value realized from the prediction distribution and a random value drawn from the data 

distribution. There would of course be a distribution of such differences. It might seem preferable to use 

this distribution of differences to characterize the disagreement between probability distributions (Menger 

1942). A distribution could be more informative than the area metric which is a crude scalar summary that 

could not capture the information embodied in an entire distribution. The distribution of differences could 

be used itself as a characterization of the disagreement between the two distributions, or it might be 

summarized in various ways that might highlight aspects of the disagreement of special interest. But such 

a notion would need to consider the stochastic dependence between random values from the two 

distributions. Specifying an assumption about the dependence is necessary to define the distribution of 

differences X – Y from specified distributions for X and Y. Are the values statistically independent? Do 

they have some correlation or a nonlinear dependence? Different assumptions can lead to starkly different 

distributions for the random difference.  

 Consider, for example, a weather model that predicts daily temperatures and, by aggregating these 

values, also predicts a distribution of daily temperatures over the course of a year. Suppose that relevant 

daily temperature observations are available. It may be the case that the predicted distribution of 

temperatures over the year matches the observed distribution of temperatures very well and yet the 

correlation between predicted and observed daily temperatures is markedly poor. For instance, if the 

model is out of phase with respect to seasons, it may be predicting summer temperatures during the winter 

and vice versa, which would lead to a correlation close to 1, even though it gets the distributions exactly 

right. The performance of such a model would have to be considered very poor in any sensible validation 

assessment. But note that this poor performance is really associated with the deterministic results from the 

model rather than the probabilistic ones per se. If the model had not made the deterministic predictions 

and confined itself to purely probabilistic forecasts, this problem would not have arisen. 

 Contrast the weather model with another model that does not predict individual daily temperatures, 

but only the summary distribution of daily temperatures. Essentially, this retreat changes the weather 

model into a climate model that does not make predictions about the temperature for any particular day, 

except to assert that, considered as a group over the course of many days, these temperatures will 
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converge in distribution to the prediction. And it is certainly not making any predictions about the 

dependence between values that might be drawn from the prediction distribution and observed 

temperature values. The model is not even saying that such temperature pairs are independent. In fact, 

actual temperatures have strong autocorrelation from day to day, so supposing that temperatures should 

be drawn independently from the predicted distribution would obviously be empirically incorrect too. It is 

possible, of course, to construct a probabilistic weather model of daily temperatures. Such a model might 

predict a probability distribution for each and every day‘s temperature. But these predictions would not be 

saying anything about dependence or even about randomness; they are asserting only that Fi(Xi) are 

uniformly distributed, where Fi is the probability prediction for day i and Xi is the observed temperature 

for that day. In any case, if the model refrains from making deterministic forecasts and makes only purely 

probabilistic predictions about distributions without characterizing dependence, then the model would 

have excellent performance in a validation assessment. 

 If the model asserts nothing about the possible dependence between predicted and observed values of 

a system response quantity, then the distribution of differences between predictions and data cannot be 

uniquely defined. Thus, it would be seem to be impossible to base a validation metric on the distribution 

differences. It is possible, however, to bound the distribution of absolute differences even without 

specifying anything about the dependence between the subtrahend and the minuend. Elementary 

probability bounds analysis (Frank et al. 1987; Williamson and Downs 1990; Ferson 2002; Ferson et al. 

2003) can be used to compute these bounds, which may be informative. Figure 2 depicts four examples of 

validation as characterized by the area metric and bounds on the distribution of differences. In the upper 

panel of graphs, prediction distributions F are depicted as gray curves, and data distributions Sn are 

depicted as black step functions. Under each of these four graphs, the corresponding area metric is plotted 

as a dotted spike. On the same graph, bounds on the distribution of absolute differences between random 

values from the prediction and data distributions are shown as thin lines. In each of the four comparisons, 

the prediction is a normal distribution with mean 2 and standard deviation 0.2, truncated at the 0.5
th
 and 

99.5
th
 percentiles. In the first comparison, the data consists of a single observed value at 4, so the 

empirical distribution is degenerate. The validation metric in this case is 2 units, which is the area 

between the truncated normal and this degenerate step function. The distribution of absolute differences 

between random values drawn from the prediction distribution and the observed value 4 ranges between 

1.5 and 2.5. The data forming the empirical distribution in the second comparison comes from 8 

measurements scattered between roughly 2.2 and 3.2. The area validation metric in the second 

comparison is almost 0.6 units. Without specifying the stochastic dependence between the prediction and 

data distributions, it is impossible to define the distribution of their differences, but probability bounds 

analysis can bound the distribution (Ferson 2002). The thin lines in the second graph of the lower panel of 

Figure 2 represent the best-possible bounds on the distribution of absolute differences between predicted 

values and observed values. The breadth of the bounds comes from not making any assumption about the 

dependence between the two distributions. In the third comparison, the empirical data have a larger 

dispersion and the resulting area metric is somewhat larger. In the fourth comparison, the data values 

come much closer to the prediction distribution, so the area metric is much closer to zero. Note, however, 

that the distribution of differences could nevertheless include values close to one. 
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 These few examples convey an idea for how the area metric and the bounds on the distribution of 

differences compare to each other. The bounds tell us how wrong we might be if dependence matters, but 

they do not contain the information needed to compute the area metric, so, insofar as the area metric is 

important or informative, the bounds on differences are incomplete as a summarization of the 

disagreement. Likewise, the bounds contain information not encapsulated in the area metric as well, 

although engineering judgment does not seem to recognize the information in the bounds as particularly 

relevant to the question of whether the distributions match well. 
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Figure 2. Predictions (gray) and data (black) yielding area metrics (dotted) and difference distributions (thin p-boxes). 

 

3. Validation Measure for Comparing Intervals 

 

Predictions should include epistemic uncertainty if it exists in our knowledge about the modeled physical 

process. Indeed, except in rare situations, precise predictions are not reasonable in real-world problems, or 

they only result from assumptions that modelers themselves do not unequivocally believe. Although a 

model may give point predictions, there is almost always an implied precision associated with each 

quantity. Modern notions of best practice argue that these implicit considerations be made explicit, and 

more and more modelers are accepting this and incorporating uncertainty analyses into their models. The 

simplest quantitative expression of epistemic uncertainty is an interval. Giving an interval as the 

representation of an estimated quantity is asserting that the value (or values) of the quantity lie 

somewhere within the interval. Intervals can arise in both predictions and observations. When a prediction 

is an interval, its width relates the modeler‘s inability to nail down the prediction precisely. The modeler 

is saying the quantity in question is within a particular range, but not saying any more than this. In 

particular, the modeler is not making any assertion about which possible values might be more likely than 

which other possible values. If there is such extra information available about a prediction, but too little to 

justify the selection of a particular probability distribution, the information can be expressed in a more 

general uncertain number such as a p-box, Dempster-Shafer structure or credal set. 
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 Empirical observations can also contain epistemic uncertainty. Again, the simplest form of this is an 

interval. Uncertainty about measurements that is appropriately characterized by intervals is called 

incertitude, and it arises naturally in a variety of circumstances, including plus-or-minus reports, 

significant digits, intermittent measurement, non-detects, censoring, data binning, rounding or bit 

compression in data transmission, missing data and gross structural ignorance (Ferson et al. 2007; 2004). 

When a collection of such intervals comprise a data set, one can think of the breadths of the intervals as 

representing epistemic uncertainty while the scatter among the intervals represents variability or aleatory 

uncertainty. Recent reviews (Manski 2003; Gioia and Lauro 2005; Ferson et al. 2007) have described how 

interval uncertainty in data sets produces uncertain numbers containing epistemic uncertainty. When 

empirical observations have uncertainty of this form that is too large to simply ignore, these elementary 

techniques can be used to characterize it is a straightforward way. 

 The comparison between two fixed real numbers reduces to the scalar difference between the two. 

Suppose that, instead of both numbers being reals, at least one of them is an interval range representing 

acknowledged uncertainty. If the prediction and the observation overlap, then we should say that the 

prediction is correct, in an important sense, relative to the observation. If the prediction is an interval, this 

means that the model, or perhaps one would say the modeler, is being modest about what is being 

claimed. For example, the assertion that a regional maximum temperature will be between 20 and 40 °C is 

a weaker claim than saying it will be exactly 30. And it is a stronger claim than saying the temperature 

will be between 10 and 60. In the extreme case, a vacuous prediction, while not very useful, is certainly 

true, if just because it isn‘t claiming anything that might be false. For example, predicting that some 

probability will be between zero and one doesn‘t require any bravery, but at least it is free from 

contradiction. It is proper that a prediction‘s express uncertainty be counted toward reducing any measure 

of mismatch between theory and data in this way because the model(er) is admitting doubt. If it were not 

so, an uncertainty analysis could otherwise have no epistemological value. From the perspective of 

validation, when the uncertainty of prediction encompasses the actual observation, the prediction ought to 

be regarded as true, because validity is distinct from precision. Both are important in determining the 

usefulness of a model, but it is reasonable to distinguish them and give credit where it is due. 

 A reciprocal consideration applies, by the same token, if the datum is an interval to be compared 

against a prediction that‘s a real number. Validation has to give to the model whatever benefit of the 

doubt that arises because of the uncertainty about the datum. For instance, if the prediction is, say, 30% 

and the observation tells us that it was somewhere between 20% and 50%, then we would have to admit 

that the prediction might be perfectly correct. If on the other hand the evidence was that it was between 

35% and 75%, then we would have to say that the disagreement between the prediction and the 

observation might be as low as 5%. We could also be interested in how bad the comparison might be, but 

a validation metric shouldn‘t penalize the model for the empiricist‘s imprecision. In most conceptions of 

the word, the ‗distance‘ between two things is the length of the shortest path between them. The distance 

between England and France is the breadth of the English Channel between Dover and Calais; it doesn‘t 

matter that Newcastle and Marseilles are much further apart. Similarly, the validation measure between a 

point prediction and an interval datum, or vice versa, should be the shortest difference between the 
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characterizations of the quantities. Likewise, the validation measure between an interval prediction and an 

interval datum is the shortest distance between the two intervals, which will be zero if they overlap. 

Symbolically, the validation measure for comparing intervals A with B is 

 

.inf YX

BY

AX





 

 

where inf denotes the infimum (which just generalizes minimum for intervals that might be open or 

partially open). Although this choice for the validation measure shares a similar graphical intuition with 

the area metric discussed in section 2, this measure is quite different from it. Note, for instance, that this 

measure is not a mathematical metric. It violates the property of identity of indiscernibles, because a value 

of zero for the measure does not imply that the intervals are identical. Mathematicians call a non-negative, 

symmetric function that satisfies the triangle inequality but not identity of indiscernibles a ‗pseudometric‘. 

More fundamentally, this measure is not based on the shapes of the intervals like the area metric was 

based on the shapes of the probability distributions. Indeed, the shape of the intervals could be wildly 

different yet still yield a value of zero for the validation measure if they overlap at all. In fact, the formula 

above suggests that the measure is based instead on considering possible realizations of values X and Y 

from the respective intervals. 

 

4. Unification of the Two Conceptualizations for General Uncertain Numbers 

 

The key to harmonizing the shape-based comparison described in section 2 with the realization-based 

comparison described in section 3 is to recognize that both are essentially special cases of the Wasserstein 

distance (Vallender 1973; Dobrushin 1970) 
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where the E denotes the expectation operator, and the infimum is taken over all possible random variables 

X and Y that are distributed according to F and Sn respectively. When the prediction F and the data 

distribution Sn are probability distributions, the infimum searches over all possible stochastic 

dependencies between the random variables X and Y (constrained by the fact that they must respect their 

marginal distributions F and Sn). The Wasserstein distance is a metric for any distributions for which the 

infimum is finite (Dobrushin 1970). When the random variables are univariate, then it equals the area 

metric (Vallender 1973). The infimum occurs when the X and Y are comonotonic, that is, when the 
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dependence between X and Y is perfect, and the correlation between them is a large as is possible given 

their marginal distributions. It is this fact that creates the graphical interpretation as the area between the 

distributions. 

 When the prediction and data are intervals, we interpret the tilda to mean ‗is an element of‘ and 

ignore the E operator (because intervals do not have probability measures defined over them) so that the 

Wasserstein distance is the same as our intuitive formula for the validation measure for intervals 

described in section 3. 

 The generalization of the Wasserstein distance for uncertain numbers is now clear: it should be the 

infimum expectation of the absolute value of the difference between the variates, where the infimum is 

taken over all possible distribution with respective uncertain numbers and under all possible dependencies 

between those distributions. The computational task of identifying this infimum may be challenging for 

some uncertain numbers such as credal sets, but it turns out to be rather simple for p-boxes. The area 

measuring mismatch for general p-boxes is the integral  
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where F and Sn denote the prediction and the data distributions, respectively, and the subscripts L and R 

denote the left and right bounds for those distributions, and  
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is the shortest distance between two intervals, or zero if the intervals touch or overlap. This measure 

integrates the regions of non-overlap between the two sets of bounds, for every value along the 

probability axis. 

 The thin p-boxes in the lower panel of graphs in Figure 2 are bounds on all possible distributions of 

the difference between the two random values. Instead of all possible distributions, we want the mean of 

the precise distribution of differences assuming perfect dependence between the prediction F and data 

distribution Sn. We might therefore characterize this measure as the mean perfect absolute difference of 

deviates, but perhaps it will suffice to continue to call it the ‗area measure‘. It is important to keep in mind 

that we‘re not selecting perfect dependence as our model of how the prediction and observation 

distributions are expected to be related to each other. Perfect dependence would mean that locally large 

observations would always be associated with locally large predicted values, and small with small, in a 
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very strict fashion. We certainly do not believe that they would be related in this way in reality. Perfect 

dependence just falls out of the formula because it is the dependence that leads to the smallest possible 

value of the mean of the absolute differences. The smallest area is the one of interest because the distance 

between two things is the length of the shortest connection between them. At least for p-boxes, this also 

has the happy graphical interpretation as the area between the prediction and the observation. 

 Figure 3 depicts four more examples. As before, predictions are depicted in the upper panel in gray, 

and data are depicted in black, but now they are p-boxes rather than precise distributions. Under each of 

these four graphs, the corresponding area measure is shown as a dotted spike and bounds on the all 

distribution of differences between random values from the prediction and observation p-boxes are shown 

as thin lines. In each of the four comparisons, the prediction is a p-box of normal distributions whose 

means are in the interval [1.75, 2.25] with standard deviation 0.2, truncated at the 0.5
th
 and 99.5

th
 

percentiles. In the first comparison, the data consists of a single interval [4,5], so the resulting area 

measure is 1.75. It is the area between the rightmost normal distribution inside the gray p-box and the 

leftmost scalar inside the black interval. It seems reasonable that the discrepancy between the prediction 

and data in this case is only 1.75 units even though the difference between a predicted value and an 

observed data value could be larger than 3.5 units. The wide breadth of the bounds on the differences 

comes from the epistemic uncertainty about the prediction distribution and the data distribution within 

their respective p-boxes and also from not making any assumption about the dependence between them. 

The data in the second comparison comes from 8 measurements for which measurement incertitude was 

0.25. The 8 intervals implied by this incertitude were cumulated into a p-box describing epistemic 

uncertainty about the empirical distribution function (Ferson et al. 2007). The area in the second 

comparison is about 0.34, which is the between the right edge of the graph prediction and left edge of the 

black data p-box. In the third comparison, the empirical data had the same sample size and the same 

incertitude as in the second comparison, but the values happened to have a larger dispersion. In this case, 

the area is the sum of the two areas where the gray prediction p-box and the black data p-box do not 

overlap. In the fourth comparison, the data values had the same measurement uncertainty but a smaller 

dispersion and central tendency so the area measure is zero because there exist distributions that lie within 

both the prediction and data p-boxes. 
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Figure 3. Predictions (gray) and data (black) yielding area measures (dotted) and difference p-boxes (thin). 

 

5. ‘Same Shape’ versus ‘Possibly Equal’ 

 

Although we think that using the area distance when the prediction and observations are uncertain 

numbers as described in the previous section is appropriate both mathematically and in practical 

engineering terms, we acknowledge that there are several other ways this generalization could be 

conceived. This section introduces three alternative generalizations of the area metric for use when 

uncertain numbers are used to characterize predictions or observations. 

 The area metric proposed in section 2 is based on the distribution functions of the predictions and the 

data, as distinguished from the random variables those distributions summarize. Although we chose to 

compare the shapes of the probability distributions when the quantities had only aleatory uncertainty, this 

choice does not seem satisfactory when there is epistemic uncertainty present as well. The area measure 

between the prediction and data in the general case as described in section 4, is no longer a mathematical 

metric when at least one is an interval or a more general uncertain number because the area can fall to 

zero without the prediction and data becoming identical (as in the rightmost graph of Figure 3). In 

section 4, the application of the area measure when prediction and data are characterized as uncertain 

numbers was based on the conventional idea that distance between two things is the length of the shortest 

line between them. There are, however, different ways to look at the question. A standard mathematical 

way to construct a metric between two potentially overlapping sets is to define  
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where F is an element of the first set x and G is an element of the second set y and d is a metric on the 

space containing the sets (Pompieu 1905), which is our case would just be the area metric. The elements 

F and G are possible distribution functions taken from the respective prediction and data uncertain 

numbers x and y. This function is zero if and only if the set of distributions representing the prediction is 

the same as the set of distributions representing the data, that is, if their respective uncertain numbers had 

identical shapes. This function constitutes a much stricter view about agreement between prediction and 

data. It holds that perfect agreement involves not only overlapping but having exactly the same 

imprecision. Generalizing the area distance using this function would mean that our measure would 

remain a true mathematical metric, but it seems overly strict about what constitutes perfect agreement. 

For instance, suppose that the theoretical prediction is a simple interval and is to be compared with an 

observation that is also an interval and that the prediction interval is a subset of the observation interval. 

In other words, the prediction and observation agree in that they overlap, but the imprecision about the 

observation is wider than that of the prediction. It doesn‘t seem reasonable to insist that the theory and 

data are somehow not in perfect agreement in this situation, nor to require that the theory somehow inflate 

the uncertainty of its prediction simply to match the poorer precision associated with the observation. 

 Another way to generalize the area metric for uncertain numbers considers comparisons between 

distributions realized from the uncertain numbers, rather than the shapes of the uncertain numbers. For 

example, it might be natural to find upper and lower bounds on the areas between distributions that are 

consistent with the two uncertain numbers. Rather than differences between pairs of bounds, this would 

be bounds on differences between pairs of distributions. In this case, the measure would be the smallest 

and largest possible values of the underlying metric 
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where F and G are distribution functions within (consistent with) the respective uncertain numbers x and 

y. The range would be degenerate, i.e., the infimum and supremum would be the same if the two 

uncertain numbers are actually particular probability distributions, neither having any epistemic 

uncertainty. The range being double-zero would mean that the prediction and the data distribution are 

identical, and that neither has any epistemic uncertainty. This generalization is not a metric because it 

does not have the property of identity of indiscernibles; x and y could be identical and not yield a double-

zero. 

 Note that this scheme, like the Pompieu scheme, can be very difficult computationally because there 

are infinitely many distributions within the uncertain numbers to be compared. It obviously does not 

suffice to compare extreme distributions corresponding to the edges of the uncertain numbers. For 

example, consider the leftmost graph of Figure 4. It is intuitively clear that that the smallest possible value 

of the area between a distribution inside the prediction bounds and a distribution inside the observation 

bounds corresponds to the shaded area. This area corresponds to a prediction distribution that follows the 
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left edge of the prediction bounds (smooth gray bounds) for small probability levels and follows the right 

edge of the prediction bounds for large probabilities. The corresponding distribution consistent with the 

observation bounds (black step bounds) conversely follows the right edge of those bounds for small 

probabilities and the left edge for large probabilities. For intermediate probabilities, the prediction 

distribution and the empirical distribution are coincident monotone curves in the region where the bounds 

overlap. The largest possible area, however, is not so easy to discern from the graph. The two 

distributions that lead to the largest possible area are depicted on the rightmost graph of Figure 4. The 

distribution from within the prediction bounds is shown as a dashed line;  the distribution from within the 

observation bounds is shown as a dotted line. The area between these two distributions is shaded in the 

middle graph of the figure. The non-intuitive shape of the shading gives a hint at the computational 

complexity of bounding the area metric. This scheme of bounding the area is not itself a mathematical 

metric. Firstly, it produces two numbers rather than a single scalar. Secondly, it does not satisfy the 

property of identity of indiscernibles. Even if the prediction uncertain number is identical to the data 

uncertain number, the upper bound will not be zero (unless there is no epistemic uncertainty). 
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Figure 4. Smallest (left) and largest (middle and right) possible areas between a distribution inside the uncertain predictions (gray 

bounds) and a distribution inside the uncertain empirical observations (black step functions). The extremal distributions yielding 

the largest area are depicted in the right graph. 

 

 As yet another alternative, we could generalize our validation metric as the two-dimensional vector 

Д(x,y) = (d(xL, yL), d(xR, yR)) where the subscript L denotes the left side of a p-box and the subscript R 

denotes the right side, and d is our regular area metric for distributions. The left value of the pair reflects 

the difference between the left side of the prediction and the left side of the observations. Likewise, the 

right side of the distance pair reflects the difference between the right side of the prediction and the right 

side of the observations. This pair would constitute what we might call a double metric, Д: B  B  
+
  


+
, where B is the set of all p-boxes (which includes intervals, probability distributions and scalars as 

special cases), and 
+
 is the set of all positive real numbers, satisfying the following generalizations of 

the four metric properties: 
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  Д(x, y) = (a, b)  implies both  a  0 and b  0         (non-negativity),       
   

  Д(x, y)  =  Д(y, x)                                                                       (symmetry),       
  

  Д(x, y) = (0,0)  if and only if  x = y                                     (identity of indiscernibles), and 
 

    Д(x, y) = (a1, b1)   

    Д(y, z) = (a2, b2)   imply a1 + a2  a3 and b1 + b2  b3             (triangle inequality). 

    Д(x, z) = (a3, b3)   
 

Figure 5 shows three examples of this double metric. In the leftmost graph, a scalar prediction at x = 7, 

depicted as a gray spike, is compared to an interval observation y = [14, 19] shown in black. The value 7 

is compared against both sides of the interval to yield Д(x, y) = (|147|, |197|) = (7, 12). In the middle 

graph, the comparison is between two intervals, and the two-dimensional difference is Д([4, 9], [13, 18]) 

= (|134|, |189|) = (9, 9). In the rightmost graph of Figure 5 the black observation interval overlaps with 

the gray prediction interval. The double metric is Д([3, 11], [8, 17]) = (|83|, |1711|) = (5, 6). The value 

of the double metric would be (0,0) when the corresponding edges coincide exactly. Being double-zero 

would not mean that the uncertainty in either the evidence or prediction has gone to zero, but only that 

they match in both location and imprecision. 
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Figure 5. A generalized, two-dimensional metric between uncertain numbers (intervals). 

 

 Four possible generalizations of the area metric for epistemic uncertainty in predictions or 

observations have been discussed in this and the previous section. None has all the properties one might 

desire. Neither the shortest distance nor the range of possible areas is a true mathematical metric because 

they do not have the property of identity of indiscernibles. In the case of the shortest distance, the distance 



 Validation of imprecise probabilistic models 39 

 

REC 2008 – Ferson et al 

being zero does not guarantee that the representation of the prediction is identical to the representation of 

the observations. In the case of the range of possible areas, if the prediction and observation 

representations are identical, the value will not generally be zero. The double metric and Pompieu‘s max-

sup-inf both have formal metric properties (or at least generalizations of them), but they seem to be overly 

strict in that predictions must match observations in their uncertainties even though there‘s no physical or 

engineering reason to demand this. The double metric is the easiest to compute, followed by the shortest 

distance. Pompieu‘s max-sup-inf and the range of possible areas are hardest to compute. The shortest 

distance measure and the double metric are both based on the comparing the shapes of the representations 

of the prediction and observations, whereas the other two measures are based on comparing individual 

elements (i.e., distribution functions consistent with those representations). The table below summarizes 

these observations. 

 

 Measure Scheme Metric Compute Strictness 

 Shortest distance Shape No Medium Reasonable 

 Pompieu‘s max-sup-inf Element Yes Hard Too strict 

 Range of possible areas Element No Hard Reasonable 

 Double metric Shape Yes Easy Too strict 
 

We expect that the shortest distance will be most useful in many practical applications. In some situations, 

the range of possible areas will be most informative. 

 The comparison between random numbers characterized by probability distributions could be 

understood in terms of their difference as real numbers that are realizations from those distributions or in 

terms of the discrepancies between the shapes of those distributions. When there is only aleatory 

uncertainty associated with the prediction and observations, it seems reasonable to use the latter 

comparison based on distribution shapes for the purposes of validation. The analogous comparison 

between uncertain numbers, i.e., characterizations of numerical quantities that express both aleatory and 

epistemic uncertainty, can also be considered in these two senses. But comparing the shapes of 

distributions does not seem completely satisfactory when there is epistemic uncertainty present as well. 

There are several approaches possible for handling epistemic uncertainty based on the area metric. Two of 

these approaches seem most promising. The first is based on comparing shapes and considers the measure 

of the disagreement to the smallest possible value of the area metric that would be consistent with 

distributions from within the express uncertainty. The second approach, based on realizations, considers 

the range of possible values of the area metric consistent with distributions within the uncertainty. 

6. Conclusions 

 

The comparison between random numbers that are characterized by probability distributions can be 

understood in terms of their difference as real numbers that are realizations from those distributions, or in 
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terms of the discrepancies between the shapes of their distributions. It seems reasonable to use the latter 

comparison based on distribution shapes for the purposes of validation for (precise) probabilistic models. 

The analogous comparison between uncertain numbers, i.e., characterizations of numerical quantities that 

simultaneously express both aleatory and epistemic uncertainty, can also be considered in these two 

senses. But, whereas we chose to compare the shapes of the probability distributions when the quantities 

had only aleatory uncertainty, this choice does not seem satisfactory when there is epistemic uncertainty 

present as well. In the case of comparing two simple intervals which contain only epistemic uncertainty, if 

the prediction interval overlaps with the datum interval, then the prediction is perfectly correct from the 

perspective of a validation assessment. The shapes of the two intervals could be quite different, and 

indeed, their overlap could be very small, yet the validation measure of their mismatch is zero if they 

overlap at all. 

 There are several ways to unify and extend these apparently disparate notions of validation for the 

case of general uncertain numbers that include both epistemic and aleatory uncertainty. Perhaps the most 

workable is the smallest area between the uncertain numbers. This is the smallest possible area between 

probability distributions contained in the respective uncertain numbers under any possible dependence. 

For many situations in which p-boxes are used to characterize the prediction and the data, the smallest 

area is easy to compute when the edges of the p-boxes represent admissible distributions. In these cases, 

the smallest area is the mean of the distribution of differences of the extremal distributions computed 

under the assumption of perfect dependence. 
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Abstract. Different representations of imprecise probabilities have been proposed, such as behav-
ioral theory, evidence theory, possibility theory, probability bound analysis, F-probabilities, fuzzy
probabilities, and clouds. These methods use interval-valued parameters to discribe probability
distributions such that uncertainty is distinguished from variability. In this paper, we proposed a
new form of imprecise probabilities based on generalized or modal intervals. Generalized intervals
are algebraically closed under Kaucher arithmetic, which provides a concise representation and
calculus structure as an extension of precise probabilities.

With the separation between proper and improper interval probabilities, focal and non-focal
events are differentiated based on the modalities and logical semantics of generalized interval prob-
abilities. Focal events have the semantics of critical, uncontrollable, specified, etc. in probabilistic
analysis, whereas the corresponding non-focal events are complementary, controllable, and derived.

A generalized imprecise conditional probability is defined based on unconditional interval prob-
abilities such that the algebraic relation between conditional and marginal interval probabilities is
maintained. A Bayes’ rule with generalized intervals (GIBR) is also proposed. The GIBR allows us
to interpret the logic relationship between interval prior and posterior probabilities.

Keywords: imprecise probablity, conditioning, updating, interval arithmetic, generalized interval

1. Introduction

Imprecise probability differentiates uncertainty from variability both qualitatively and quantita-
tively, which is to complement the traditional sensitivity analaysis in probablistic reasoning. There
have been several interval-based representations proposed in the past four decades and applied
in various engineering domains, such as sensor data fusion (Guede and Girardi, 1997; Elouedi et
al., 2004), reliability assessment (Kozine and Filimonov, 2000; Berleant and Zhang, 2004; Coolen,
2004), reliability-based design optimization (Mourelatos and Zhou, 2006; Du et al., 2006), design
decision making under uncertainty (Nikolaidis et al., 2004; Aughenbaugh and Paredis, 2006). The
core issue is to characterize incomplete knowledge with lower and upper probability pairs so that
we can improve the robustness of decision making.

There are many representations of imprecise probabilities. For example, the Dempster-Shafer
evidence theory (Dempster, 1967; Shafer, 1976) characterizes uncertainties as discrete probability
masses associated with a power set of values. Belief-Plausibility pairs are used to measure likelihood.
The behavioral imprecise probability theory (Walley, 1991) models behavioral uncertainties with the
lower prevision (supremum acceptable buying price) and the upper prevision (infimum acceptable
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selling price). A random set (Molchanov, 2005) is a multi-valued mapping from the probability
space to the value space. The possibility theory (Zadeh, 1978; Dubois and Prade, 1988) provides an
alternative to represent uncertainties with Necessity-Possibility pairs. Probability bound analysis
(Ferson et al., 2002) captures uncertain information with p-boxes which are pairs of lower and
upper probability distributions. F-probability (Weichselberger, 2000) incorporates intervals into
probability values which maintains Kolmogorov properties. Fuzzy probability (Möller and Beer,
2004) considers probability distributions with fuzzy parameters. A cloud (Neumaier, 2004) is a
fuzzy interval with an interval-valued membership, which is a combination of fuzzy sets, intervals,
and probability distributions.

These different representations model the indeterminacy due to incomplete information very
well with different forms. There are still challenges in practical issues such as assessment and
computation to derive inferences and conclusions (Walley, 1996). A simple algebraic structure is
important for applications in engineering and science. In this paper, we propose a new form of
imprecise probabilities based on generalized intervals. Unlike traditional set-based intervals, such as
the interval [0.1, 0.2] which represents a set of real values between 0.1 and 0.2, generalized or modal
intervals also allow the existence of the interval [0.2, 0.1]. With this extension, logic quantifiers (∀
and ∃) can be integrated to provide the interpretation of intervals. Another advantage of generalized
interval is that it is closed under arithmetic operations (+,−,×,÷). This property simplifies the
set structures.

We are interested to explore the potential of generalized interval to provide a connection between
imprecise and precise probability, as well as among different representations of imprecise probability.
In this paper, we study the algebraic properties of imprecise probablities with a generalized interval
form and associated interpretation issues. In the remainder of the paper, Section 2 gives a brief
overview of generalized intervals. Section 3 presents the interval probability with the generalized
interval form. Section 4 describes the Bayes’ rule based on generalized intervals.

2. Generalized Interval

Modal interval analysis (MIA) (Gardenes et al., 2001; Markov, 2001; Shary, 2002; Popova, 2001;
Armengol et al., 2001) is an algebraic and semantic extension of interval analysis (IA) (Moore,
1966). Unlike the classical interval analysis which identifies an interval by a set of real numbers,
MIA identifies the intervals by the set of predicates which is fulfilled by the real numbers. A
generalized interval is not restricted to ordered bounds. A modal interval or generalized interval
x := [x, x] ∈ KR is called proper when x ≤ x and improper when x ≥ x. The set of proper intervals
is denoted by IR = {[x, x] | x ≤ x}, and the set of improper interval is IR = {[x, x] | x ≥ x}.
Operations are defined in Kaucher arithmetic (Kaucher, 1980).

Given a generalized interval x = [x, x] ∈ KR, two operators pro and imp return proper and
improper values respectively, defined as

prox := [min(x, x), max(x, x)] (1)

impx := [max(x, x),min(x, x)] (2)

The relationship between proper and improper intervals is established with the operator dual :
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Table I. The major differences between MIA and the tranditional IA

Classical Interval Analysis Modal Interval Analysis

Validity [3, 2] is an invalid or empty interval Both [3, 2] and [3, 2] are valid inter-
vals

Semantics richness [2, 3] + [2, 4] = [4, 7] is the only
valid relation for +, and it only
means“stack-up” and worst-case”.
−,×,÷ are similar.

[2, 3] + [2, 4] = [4, 7],
[2, 3] + [4, 2] = [6, 5],
[3, 2] + [2, 4] = [5, 6],
[3, 2] + [4, 2] = [7, 4]
are all valid, and each has a different
meaning. −,×,÷ are similar.

Completeness of arithmetic a + x = b, but x 6= b− a.
[2, 3] + [2, 4] = [4, 7], but
[2, 4] 6= [4, 7]− [2, 3]
a× x = b, but x 6= b÷ a.
[2, 3]× [3, 4] = [6, 12], but
[3, 4] 6= [6, 12]÷ [2, 3]
x− x 6= 0
[2, 3]− [2, 3] = [−1, 1] 6= 0

a + x = b, and x = b− duala.
[2, 3] + [2, 4] = [4, 7], and
[2, 4] = [4, 7]− [3, 2]
a× x = b, and x = b÷ duala.
[2, 3]× [3, 4] = [6, 12], and
[3, 4] = [6, 12]÷ [3, 2]
x− dualx = 0
[2, 3]− [3, 2] = 0

dualx := [x, x] (3)

For example, a = [−1, 1] and b = [1,−1] are both valid intervals. While a is a proper interval, b
is an improper one. The relation between a and b can be established by a = dualb. The inclusion
relation between generalized intervals x = [x, x] and y = [y, y] is defined as

[x, x] ⊆ [y, y] ⇐⇒ x ≥ y ∧ x ≤ y
[x, x] ⊇ [y, y] ⇐⇒ x ≤ y ∧ x ≥ y

(4)

The less-than-or-equal-to and greater-than-or-equal-to relations are defined as
[x, x] ≤ [y, y] ⇐⇒ x ≤ y ∧ x ≤ y
[x, x] ≥ [y, y] ⇐⇒ x ≥ y ∧ x ≥ y

(5)

Table I lists the major differences between MIA and IA. MIA offers better algebraic properties
and more semantic capabilities.

For a solution set S ⊂ Rn of the interval system f(x) = 0 where x ∈ IRn, an inner estimation
xin of the solution set S is an interval vector that is guaranteed to be included in the solution set,
and an outer estimation xout of S is an interval vector that is guaranteed to include the solution
set. Not only for outer range estimations, generalized intervals are also convenient for inner range
estimations (Kupriyanova, 1995; Kreinovich et al., 1996; Goldsztejn, 2005).

Another uniqueness of generalized intervals is the modal semantic extension. Unlike IA which
identifies an interval by a set of real numbers only, MIA identifies an interval by a set of predicates
which is fulfilled by real numbers. Given a set of closed intervals of real numbers in R, and the set
of logical existential (∃) and universal (∀) quantifiers, each generalized interval has an associated
quantifier. The semantics of x ∈ KR is denoted by (Qxx ∈ prox) where Qx ∈ {∃, ∀}. An interval
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x ∈ KR is called existential if Qx = ∃. Otherwise, it is called universal if Qx = ∀. If a real relation
z = f(x1, . . . , xn) is extended to the interval relation z = f(x1, . . . ,xn), the interval relation z is
interpretable if there is a semantic relation

(Qx1x1 ∈ prox1) · · · (Qxnxn ∈ proxn) (Qzz ∈ proz) (z = f(x1, . . . , xn)) (6)

In this paper, we propose an interval probability representation that incorporates the generalized
interval in imprecise probability. The aim is to take the advantage of its algebraic closure so that
the structure of interval probability can be simplified. At the same time, the interpretation of
probablistic properties can be integrated with the logic relations in the structure.

3. Imprecise Probability based on Generalized Intervals

Given a sample space Ω and a σ-algebra A of random events over Ω, we define the generalized
interval probability p : A 7→ [0, 1]×[0, 1] which obeys the axioms of Kolmogorov: (1) p(Ω) = [1, 1] =
1; (2) 0 ≤ p(E) ≤ 1 (∀E ∈ A); and (3) for any countable mutually disjoint events Ei∩Ej = ∅(i 6= j),
p(

⋃n
i=1 Ei) =

∑n
i=1 p(Ei). This implies p(∅) = 0. We also define

p(E1 ∪ E2) := p(E1) + p(E2)− dualp(E1 ∩ E2) (7)

When the probabilities of E1 and E2 are measurable and become precise, Eq.(7) has the same form
as the traditional precise probabilities. The lower and upper probabilities in the generalized interval
form do not have the traditional meanings of lower and upper envelops. Rather, they provide the
algebraic closure. From Eq.(7), we have

p(E1 ∪ E2) + p(E1 ∩ E2) = p(E1) + p(E2) (8)

which also indicates the generalized interval probabilities are 2-monotone (and 2-alternating) in the
sense of Choquet’s capacities. But the relation of Eq.(8) is stronger than 2-monotonicity.

Let (Ω,A) be the probability space and P a non-empty set of probability distribution on that
space. The lower and upper probability envelopes are usually defined as

P∗(E) = inf
P∈P

P (E)

P ∗(E) = sup
P∈P

P (E)

Not every probability envelope is 2-monotone. However, 2-monotone closed-form representations
are more applicable because it may be difficult to track probability envelopes during manipulations.
Therefore it is of our interest that a simple algebraic structure can provide such practical advantages
for broader applications.

Furthermore, we have
p(E1 ∪ E2) ≤ p(E1) + p(E2) (∀E1, E2 ∈ A) (9)

in the new interval representation, since p(E1 ∩ E2) ≥ 0. Note that Eq.(9) is different from the
relation defined in the Dempster-Shafer structure or F-probability. Here it has the same form as the
precise probability except for the newly defined inequality (≤,≥) relations for generalized intervals.
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Both lower and upper probabilities are subadditive. Similar to the precise probability, the equality
of Eq.(9) occurs when p(E1 ∩ E2) = 0.

We also define the probability of the complement of event E as
p(Ec) := 1− dualp(E) (10)

which is equivalent to
p(Ec) := 1− p(E) (11)

p(Ec) := 1− p(E) (12)

The definitions in Eq.(11) and Eq.(12) are equivalent to the other forms of interval probabilities.
The calculation based on generalized intervals as in Eq.(10) can be more concise.

p(E) + p(Ec) = 1 (∀E ∈ A) (13)

In general, for a mutually disjoint event partition
⋃n

i=1 Ei = Ω, we have
n∑

i=1

p(Ei) = 1 (14)

This requirement is more restrictive than the traditional coherence constraint (Walley, 1991).
Suppose p(Ei) ∈ IR (for i = 1, . . . , k) and p(Ei) ∈ IR (for i = k + 1, . . . , n). If the range of an
interval probability is defined as

p′(E) := prop(E) (15)

Eq.(14) can be interpreted as

∀p1 ∈ p′(E1), . . . , ∀pk ∈ p′(Ek), ∃pk+1 ∈ p′(Ek+1), . . . ,∃pn ∈ p′(En),
n∑

i=1

pi = 1 (16)

based on the interpretability principles of MIA (Gardenes et al., 2001). Therefore, we call Eq.(14)
the logic coherence constraint.

The values of interval probabilities are between 0 and 1. As a result, the interval probabilities
p1, p2, and p3 have the following algebraic properties:

p1 ≤ p2 ⇔ p1 + p3 ≤ p2 + p3

p1 ⊆ p2 ⇔ p1 + p3 ⊆ p2 + p3

p1 ≤ p2 ⇔ p1p3 ≤ p2p3

p1 ⊆ p2 ⇔ p1p3 ⊆ p2p3

3.1. Focal and Non-Focal Events

We differentiate two types of events. An event E is a focal event if its associated semantics is
universal (Qp(E) = ∀). Otherwise it is a non-focal event if the semantics is existential (Qp(E) = ∃).
A focal event is an event of interest in the probabilistic analysis. The uncertainties associated with
focal events are critical for the analysis of a system. In contrast, the uncertainties associated with
non-focal events are “complementary” and “balancing”. The corresponding non-focal event is not
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the focus of the assessment. The quantified uncertainties of non-focal events are derived from those
of the corresponding focal events. For instance, in risk assessment, the high-consequence event of
interest is the target and focus of study, such as the event of a hurricane landfall at U.S. coastline
or the event of a structural failure at the half of a bridge’s life expectancy, whereas the event of
the hurricane landfall at Mexican coastline and the event of the structral failure when the bridge
is twice as old as it was designed for may become non-focal.

In the interpretation in Eq.(16), the interval probability of a focal event Ei is proper (p(Ei) ∈ IR),
and the interval probability of a non-focal event Ej is existential (p(Ej) ∈ IR). Focal events have the
semantics of critical, uncontrollable, specified in probabilistic analysis, whereas the corresponding
non-focal events are complementary, controllable, and derived. The complement of a focal event is
a non-focal event. For a set of mutually disjoint events, there is at least one non-focal event because
of Eq.(14).

Two relations between events are defined. Event E1 is said to be less likely (or more likely) to
occur than event E2, E1 ¹ E2 (or E1 º E2), defined as

E1 ¹ E2 ⇐⇒ p(E1) ≤ p(E2)
E1 º E2 ⇐⇒ p(E1) ≥ p(E2)

(17)

Event E1 is said to be less focused (or more focused) than event E2, denoted as E1 v E2 (or
E1 w E2), defined as

E1 v E2 ⇐⇒ p(E1) ⊆ p(E2)
E1 w E2 ⇐⇒ p(E1) ⊇ p(E2)

(18)

LEMMA 3.1. E1 ⊆ E2 ⇒ E1 ¹ E2.

Proof. E1 ⊆ E2 ⇒ p(E2) = p(E1∪(E2−E1)) = p(E1)+p(E2−E1)−dualp(E1∩(E2−E1)) ≥ p(E1).

LEMMA 3.2. If E1 ∩ E3 = ∅ and E2 ∩ E3 = ∅, E1 ¹ E2 ⇔ E1 ∪ E3 ¹ E2 ∪ E3, E1 v E2 ⇔
E1 ∪ E3 v E2 ∪ E3.

Proof.
E1 ¹ E2 ⇔ p(E1) ≤ p(E2) ⇔ p(E1) + p(E3) ≤ p(E2) + p(E3) ⇔ p(E1 ∪ E3) ≤ p(E2 ∪ E3) ⇔
E1 ∪ E3 ¹ E2 ∪ E3.
E1 v E2 ⇔ p(E1) ⊆ p(E2) ⇔ p(E1) + p(E3) ⊆ p(E2) + p(E3) ⇔ p(E1 ∪ E3) ⊆ p(E2 ∪ E3) ⇔
E1 ∪ E3 v E2 ∪ E3.

LEMMA 3.3. If E1 and E3 are independent, and also E2 and E3 are independent, E1 ¹ E2 ⇔
E1 ∩ E3 ¹ E2 ∩ E3, E1 v E2 ⇔ E1 ∩ E3 v E2 ∩ E3.

Proof.
E1 ¹ E2 ⇔ p(E1) ≤ p(E2) ⇔ p(E1)p(E3) ≤ p(E2)p(E3) ⇔ p(E1∩E3) ≤ p(E2∩E3) ⇔ E1∩E3 ¹
E2 ∩ E3.
E1 v E2 ⇔ p(E1) ⊆ p(E2) ⇔ p(E1)p(E3) ⊆ p(E2)p(E3) ⇔ p(E1∩E3) ⊆ p(E2∩E3) ⇔ E1∩E3 v
E2 ∩ E3.

LEMMA 3.4. Suppose E ∪ Ec = Ω and p(E) ∈ IR. (1) p(E) ≤ p(Ec) if p(E) ≤ 0.5; (2) p(E) ≥
p(Ec) if p(E) ≥ 0.5; (3) p(E) ⊇ p(Ec) if p(E) ≤ 0.5 and p(E) ≥ 0.5.
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Figure 1. inf-sup diagrams for different relations between p(E) and p(Ec) when p(E) ∈ IR

Proof. (1) Because p(E) ∈ IR, p(Ec) ∈ IR, and p(E) + p(Ec) = 1, it is easy to see p(E) ≤ p(Ec)
and p(E) ≤ p(Ec) if p(E) ≤ 0.5. (2) can be verified similarly. (3) If p(E) ≤ 0.5 and p(E) ≥ 0.5,
then p(Ec) ≥ 0.5 and p(Ec) ≤ 0.5. Thus p(E) ≤ p(Ec) and p(E) ≥ p(Ec).
Remark. As illustrated in Fig. 1 (a-c) respectively, a focal event E is less likely to occur than its
complement if p(E) ≤ 0.5; E is more likely to occur than its complement if p(E) ≥ 0.5; otherwise,
E is more focused than its complement. When E is a non-focal event, its complement Ec is a focal
event. The relationships between p(E) and p(Ec) are just opposite.

For three events Ei(i = 1, 2, 3),

p(E1 ∪ E2 ∪ E3) = p(E1) + p(E2) + p(E3)− dualp(E1 ∩ E2)
−dualp(E2 ∩ E3)− dualp(E1 ∩ E3) + p(E1 ∩ E2 ∩ E3)

In general, for A ⊆ Ω,

p(A) =
∑

S⊆A

(−dual)|A|−|S|p(S) (19)

3.2. Conditional Interval Probabilities

There have been several conditioning schemes proposed based on the Demspter-Shafer struc-
tures (Smets, 1991; Fagin and Halpern, 1991; Jaffray, 1992; Dubois and Prade, 1994; Chrisman,
1995; Kulasekere et al., 2004). Different from the coherent provision or F-probability theory, we
define conditional generalized interval probabilities based on marginal probabilities. The conditional
interval probability p(E|C) for ∀E, C ∈ A is defined as

p(E|C) :=
p(E ∩ C)
dualp(C)

=

[
p(E ∩ C)

p(C)
,
p(E ∩ C)

p(C)

]
(20)

when p(C) > 0.
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Not only does the definition in Eq.(20) ensure the algebraic closure of the interval probability
calculus, but also it is a generalization of the canonical conditional probability in F-probabilities.
Different from the Dempster’s rule of conditioning or geometric conditioning, this conditional
structure maintains the algebraic relation between marginal and conditional probabilities. Further,

p(C|C) = 1

.
The available logic interpretations of the conditional interval probabilities are as follows.

− when p(E ∩ C) ∈ IR, p(C) ∈ IR, and p(E|C) ∈ IR

∀pE∩C ∈ p′(E ∩ C), ∀pC ∈ p′(C), ∃pE|C ∈ p′(E|C), pE|C =
pE∩C

pC
(21)

or
∀pE|C ∈ p′(E|C), ∃pE∩C ∈ p′(E ∩ C), ∃pC ∈ p′(C), pE|C =

pE∩C

pC
(22)

− when p(E ∩ C) ∈ IR, p(C) ∈ IR, and p(E|C) ∈ IR

∀pE∩C ∈ p′(E ∩ C), ∃pC ∈ p′(C), ∃pE|C ∈ p′(E|C), pE|C =
pE∩C

pC
(23)

or
∀pE|C ∈ p′(E|C), ∀pC ∈ p′(C), ∃pE∩C ∈ p′(E ∩ C), pE|C =

pE∩C

pC
(24)

− when p(E ∩ C) ∈ IR, p(C) ∈ IR, and p(E|C) ∈ IR

∀pE∩C ∈ p′(E ∩ C), ∀pE|C ∈ p′(E|C), ∃pC ∈ p′(C), pE|C =
pE∩C

pC
(25)

or
∀pC ∈ p′(C), ∃pE∩C ∈ p′(E ∩ C), ∃pE|C ∈ p′(E|C), pE|C =

pE∩C

pC
(26)

The logic interpretations of interval conditional probabilities build the connection between point
measurements and probability sets. Therefore, we may use them to check if a range estimation is a
tight envelop. We use the Example 3.1 in (Weichselberger, 2000) to illustrate.

EXAMPLE 3.1. Given the following probabilities in the sample space Ω = E1 ∪ E2 ∪ E3,

p′(E1) = [0.10, 0.25] p′(E2 ∪ E3) = [0.75, 0.90]
p′(E2) = [0.20, 0.40] p′(E1 ∪ E3) = [0.60, 0.80]
p′(E3) = [0.40, 0.60] p′(E1 ∪ E2) = [0.40, 0.60]

A partition of Ω is
C = {C1, C2} where C1 = E1 ∪ E2 and C2 = E3

p(C1) = [0.40, 0.60] p(C2) = [0.60, 0.40]
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Suppose p(E1) = [0.10, 0.25] and p(C1) = [0.60, 0.40], we have

p(E1|C1) =
[0.10, 0.25]
[0.40, 0.60]

= [0.1666, 0.6250]

The interpretation of

∀pE1 ∈ [0.10, 0.25], ∀pC1 ∈ [0.40, 0.60], ∃pE1|C1
∈ [0.1666, 0.6250], pE1|C1

=
pE1

pC1

indicates that the range estimation p(E1|C1) = [0.1666, 0.6250] is complete in the sense that it con-
siders all possible occurences of p(E1) and p(C1). However, the range estimation is not necessarily
a tight envelop.

On the other hand, if p(E1) = [0.25, 0.10] and p(C1) = [0.40, 0.60], we have

p(E1|C1) =
[0.25, 0.10]
[0.60, 0.40]

= [0.6250, 0.1666]

The interpretation of

∀pE1|C1
∈ [0.1666, 0.6250], ∃pE1 ∈ [0.10, 0.25], ∃pC1 ∈ [0.40, 0.60], pE1|C1

=
pE1

pC1

indicates that the range estimation [0.1666, 0.6250] is also sound in the sense that the range esti-
mation is a tight envelop.

Suppose p(E1) = [0.25, 0.10], p(E2) = [0.20, 0.40], and p(C1) = [0.60, 0.40], we have

p(E1|C1) =
[0.25, 0.10]
[0.40, 0.60]

= [0.4166, 0.25]

p(E2|C1) =
[0.20, 0.40]
[0.40, 0.60]

= [0.3333, 1.0]

The interpretations are

∀pE1|C1
∈ [0.25, 0.4166],∀pC1 ∈ [0.40, 0.60], ∃pE1 ∈ [0.10, 0.25], pE1|C1

=
pE1

pC1

∀pE2 ∈ [0.20, 0.40], ∀pC1 ∈ [0.40, 0.60],∃pE2|C1
∈ [0.3333, 1.0], pE2|C1

=
pE2

pC1

respectively. Combining the two, we can have the interpretation of

∀pE2 ∈ [0.20, 0.40], ∀pC1 ∈ [0.40, 0.60], ∀pE1|C1
∈ [0.25, 0.4166],

∃pE1 ∈ [0.10, 0.25]∃pE2|C1
∈ [0.3333, 1.0],

pE1|C1
= pE1

pC1
, pE2|C1

= pE2
pC1

If events A and B are independent, then

p(A|B) =
p(A)p(B)
dualp(B)

= p(A) (27)

For a mutually disjoint event partition
⋃n

i=1 Ei = Ω, we have
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p(A) =
n∑

i=1

p(A|Ei)p(Ei) (28)

LEMMA 3.5. If B ∩ C = ∅, (1) p(A|C) ⊆ p(A|B) ⇔ p(A|B ∪ C) ⊆ p(A|B). (2) p(A|B ∪ C) ⊇
p(A|B) ⇔ p(A|C) ⊇ p(A|B) .

Proof. (1) p(A|C) ⊆ p(A|B) ⇔ p(A ∩ C)/dualp(C) ⊆ p(A|B) ⇔ p(A ∩ C) ⊆ p(A|B)p(C) ⇔
p(A|B)p(B)+p(A∩C) ⊆ p(A|B)p(B)+p(A|B)p(C)⇔ p(A∩B)+p(A∩C) ⊆ p(A|B)p(B∪C)⇔
p (A ∩ (B ∪ C)) ⊆ p(A|B)p(B ∪C) ⇔ p (A ∩ (B ∪ C)) /dualp(B ∪C) ⊆ p(A|B) ⇔ p(A|B ∪C) ⊆
p(A|B). (2) can be verified similarly.
Remark. The interpretation of the relationship (1) is that if there are two pieces of evidence (B and
C), and one (C) may provide more precise estimation about a focal event (A) than the other (B)
may, then the new estimation of probability about the focal event (A) based on the disjunctively
combined evidence can be more precise than the one based on only one of them (B), even though
the two pieces of information are contradictory to each other. The other direction of the reasoning
is that if the precision of the focal event estimation with the newly introduced evidence (C) is
improved, the new evidence (C) must be more informative than the old one (B) although these
two are controdictory.
Remark. The interpretation of the relationship (2) is that if the estimation about a focal event (A)
becomes more precise if some new evidence (B) excludes some possibilities (C) from the original
evidence (B ∪ C), then the estimation of probability about the focal event (A) based on the new
evidence (B) must be more precise than the one based on the excluded one (C) along. The other
direction of the reasoning is that if the precision of the focal event estimation with a contradictory
evidence (C) is not improved compared to the old one with another evidence (B), then the new
evidence (B ∪ C) does not improve the estimation of the focal event (A).

4. Bayes’ Rule with Generalized Intervals

The Bayes’ rule with generalized intervals (GIBR) is defined as

p(Ei|A) =
p(A|Ei)p(Ei)∑n

j=1 dualp(A|Ej)dualp(Ej)
(29)

where Ei(i = 1, . . . , n) are mutually disjoint event partitions of Ω and
∑n

j=1 p(Ej) = 1. The lower
and upper probabilities are calculated as

[
p(Ei|A), p(Ei|A)

]
=

[
p(A|Ei)p(Ei)∑n

j=1 p(A|Ej)p(Ej)
,

p(A|Ei)p(Ei)∑n
j=1 p(A|Ej)p(Ej)

]
(30)

We can see Eq.(29) is algebraically consistent with the conditional definition in Eq.(20), with∑n
j=1 dualp(A|Ej)dualp(Ej) =

∑n
j=1 dual [p(A|Ej)p(Ej)] = dual

∑n
j=1 p(A ∩ Ej) = dualp(A).

When n = 2, p(E) + p(Ec) = 1. Let p(Ec) ∈ IR. Eq.(29) becomes
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p(E|A) =
p(A|E)p(E)

p(A|E)p(E) + p(A|Ec)p(Ec)
=

p(A ∩ E)
p(A ∩ E) + p(A ∩ Ec)

(31)

p(E|A) =
p(A|E)p(E)

p(A|E)p(E) + p(A|Ec)p(Ec)
=

p(A ∩ E)
p(A ∩ E) + p(A ∩ Ec)

(32)

When p(A∩E) ∈ IR and p(A∩Ec) ∈ IR, the relation is equivalent to the well-known 2-monotone
tight envelop (Fagin and Halpern, 1991; de Campos et al., 1990; Wasserman and Kadan, 1990;
Jaffray, 1992; Chrisman, 1995), given as:

P∗(E|A) =
P∗(A ∩ E)

P∗(A ∩ E) + P ∗(A ∩ Ec)
(33)

P ∗(E|A) =
P ∗(A ∩ E)

P ∗(A ∩ E) + P∗(A ∩ Ec)
(34)

where P∗ and P ∗ are the lower and upper probability bounds defined in the traditional interval
probabilities. Here P ∗(A∩Ec) = p(A∩Ec) and P∗(A∩Ec) = p(A∩Ec) are the estimations of the
lower and upper probability envelops.

LEMMA 4.1. p(A|E) ⊆ p(A|Ec) ⇔ p(E|A) ⊆ p(E). p(A|E) ⊇ p(A|Ec) ⇔ p(E|A) ⊇ p(E).

Proof. p(A|E) ⊆ p(A|Ec) ⇔ p(A ∩ E)/dualp(E) ⊆ p(A ∩ Ec)/dualp(Ec) ⇔ p(A ∩ E)p(Ec) ⊆
p(A ∩ Ec)p(E) ⇔ p(A ∩ E)p(Ec) ≥ p(A ∩ Ec)p(E) and p(A ∩ E)p(Ec) ≤ p(A ∩ Ec)p(E) ⇔
p(A∩E)

[
1− p(E)

]
≥ p(A∩Ec)p(E) and p(A∩E) [1− p(E)] ≤ p(A∩Ec)p(E) ⇔p(A∩E) ≥ p(A∩

E)p(E)+p(A∩Ec)p(E) and p(A∩E) ≤ p(A∩E)p(E)+p(A∩Ec)p(E)⇔ p(A∩E) ⊆ p(A∩E)p(E)+
p(A∩Ec)p(E)⇔ p(A∩E) ⊆ [p(A ∩ E) + p(A ∩ Ec)]p(E)⇔ p(A∩E)/dual [p(A ∩ E) + p(A ∩ Ec)] ⊆
p(E) ⇔ p(E|A) ⊆ p(E).

The proof of p(A|E) ⊇ p(A|Ec) ⇔ p(E|A) ⊇ p(E) is similar.
Remark. When the likelyhood functions p(A|E) and p(A|Ec) as well as prior and posterior
probabilities are proper intervals, we can interpret the above relation as follows. If the likelyhood
estimation of event A given E occurs is more accurate than that of event A given event E does not
occur, then the extra information A can reduce the ambiguity of the prior estimation.

LEMMA 4.2. p(A|E) ≥ p(A|Ec) ⇔ p(E|A) ≥ p(E). p(A|E) ≤ p(A|Ec) ⇔ p(E|A) ≤ p(E).

Proof. The proof is similar to the previous Lemma.
Remark. If the occurance of event E increases the likelyhood estimation of event A compared to
the one without the occurance of event E, then the extra information A will increase the probability
of knowing that event E occurs.

LEMMA 4.3. p(A|E) = p(A|Ec) ⇔ p(E|A) = p(E).

Proof. From either of the above two lemmas, p(A|E) = p(A|Ec) ⇔ p(A|E) ⊇ p(A|Ec) and
p(A|E) ⊆ p(A|Ec) ⇔ p(E|A) ⊇ p(E) and p(E|A) ⊆ p(E) ⇔ p(E|A) = p(E). Or p(A|E) =
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p(A|Ec) ⇔ p(A|E) ≥ p(A|Ec) and p(A|E) ≤ p(A|Ec) ⇔ p(E|A) ≥ p(E) and p(E|A) ≤ p(E) ⇔
p(E|A) = p(E).
Remark. The extra information A does not add much value to the assessment of event E if we
have very similar likelyhood ratios, p(A|E) and p(A|Ec).

One of common issues associated with the Bayes’ rule based on traditional set-based intervals
is the loss of information during belief updating. The general bounds of posterior probabilities
obtained depend on the sequence in which updates are performed (Pearl, 1990; Chrisman, 1995).
That is, the posterior lower and upper bounds obtained by applying a series of evidences sequencially
may disagree with the bounds obtained by conditioning the prior with all of the evidences in a
single step. The belief updating based on Eq.(29) is sequence-independent because p(E|A) can be
calculated incrementally, given as follows.

LEMMA 4.4. p(E|A ∩B) = p(E ∩B|A)/dualp(B|A) for ∀A,B, E ∈ A.

Proof. p(E|A ∩ B) = p(E ∩ A ∩ B)/dualp(A ∩ B) = [p(E ∩B|A)p(A)] /dual [p(B|A)p(A)] =
p(E ∩B|A)/dualp(B|A).
At the same time, p(E) can be calculated incrementally based on

p(A ∩B) = p(B|A)p(A)

The above sequence-independent property is due to the algebraic closure of the conditional proba-
bility defined in Eq.(20).

4.1. Logic Interpretation

Some examples of logic interpretations for the relationships between prior and posterior interval
probabilities in Eq.(29) are as follows.

− when p(A|Ei) ∈ IR, p(Ei) ∈ IR, p(A|Ej) ∈ IR (j = 1, . . . , n, j 6= i), p(Ej1) ∈ IR (j1 =
1, . . . , k, j1 6= i), p(Ej2) ∈ IR (j2 = k + 1, . . . , n, j2 6= i) and p(Ei|A) ∈ IR

∀j 6=ipA|Ej
∈ p′(A|Ej), ∀j1 6=ipEj1 ∈ p′(Ej1),

∃pA|Ei
∈ p′(A|Ei), ∃pEi ∈ p′(Ei),∃j2 6=ipEj2 ∈ p′(Ej2), ∃pEi|A ∈ p′(Ei|A),

pEi|A =
pA|Ei

pEi∑n

j=1
pA|Ej

pEj

(35)

− when p(A|Ei) ∈ IR, p(Ei) ∈ IR, p(A|Ej) ∈ IR (j = 1, . . . , n, j 6= i), p(Ej) ∈ IR (j =
1, . . . , n, j 6= i), and p(Ei|A) ∈ IR

∀j 6=ipA|Ej
∈ p′(A|Ej),∀j 6=ipEj ∈ p′(Ej),∀pEi|A ∈ p′(Ei|A),

∃pA|Ei
∈ p′(A|Ei), ∃pEi ∈ p′(Ei),

pEi|A =
pA|Ei

pEi∑n

j=1
pA|Ej

pEj

(36)

Notice that because both p(A|Ei) and dualp(A|Ei) occur in Eq.(29), the associated logic inter-
pretation about p(A|Ei) is always existential. This indicates that the completeness of the posterior
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probability p(Ei|A) cannot be checked by the interpretation itself. Yet the soundness of the posterior
probability estimation can be checked by some interpretations such as the one in Eq.(36).

5. Concluding Remarks

In this paper, we presented a new form of imprecise probability based on generalized intervals.
Generalized intervals allow the coexistence of proper and proper intervals. This enables the alge-
braic closure of arithmetic operations. We differentiate focal events from non-focal events by the
modalities and semantics of interval probabilities. An event is focal when the semantics associated
with its interval probability is universal, whereas it is non-focal when the semantics is existential.
This differentiation allows us to have a simple and unified representation based on a logic coherence
constraint, which is a stronger restriction than the regular 2-monotoniciy. This stronger requirement
appears to be the cost we pay for the algebraic closure.

New rules of conditioning and updating are defined with generalized intervals. The new condi-
tional probabilities ensure the algebraic relation with marginal interval probabilities. It is also shown
that the new Bayes’ updating rule is a generalization of the 2-monotone tight envelop updating rule
under the new representation. This enables sequence-independent updating. Generalized intervals
also allow us to interpret the algebraic relations among intervals in terms of the first-order logic.
This helps us to understand the relationship between individual measurements and probability sets
as well as to check completeness and soundness of bounds.

In summary, the algebraic closure of the new form provides some advantages for a simpler
probability calculus, which is helpful in engineering and computer science practices. Future work
may include the study of interpretation with the new form for assessment guidance. That is, we
need to understand the algebraic conclusions better and take appropriate actions. Even though
the computation is simplified, the completeness of lower and upper envelop estimations based
on generalized intervals is not clear in general. We need to study how generalized intervals may
underestimate envelops. We also need to investigate how much difference between the new and the
traditional interval forms because of the logic coherence constraint.
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Abstract: Uncertain information about a system variable described by a random set or an equivalent 

Dempster-Shafer structure on a finite space of singletons determines an infinite convex set of probability 

distributions, given by the convex hull of a finite set of extreme distributions. Extreme distributions allow 

one to evaluate (through the Choquet integral) exact upper/lower bounds of the expectation of monotonic 

and non-monotonic functions of uncertain variables, for example in reliability evaluation of engineering 

systems. The paper considers the simple case of a single variable, and details applications to random sets 

with nested focal elements (consonant random sets or the equivalent fuzzy set) and to p-boxes. A simple 

direct procedure to derive extreme distributions from a p-box is described through simple numerical 

examples. 

 

Keywords: random sets, fuzzy sets, p-boxes 

 

 

1 Introduction 

 

In Civil Engineering practice, the growing need for rationally including uncertainty in engineering 

modelling and calculations is witnessed by the adoption of reliability-based EuroCodes or Load and 

Resistance Factor Design codes (Level I). More sophisticated reliability-based approaches are used in 

research or special practical problems (Levels II and III). This need, however, has been accompanied by 

the realization of the limitations that affect probabilistic modelling of uncertainty when dealing with 

imprecise data (Walley. 1991). 

On one hand, in the enlarged ambit of a multi-valued logic, alternative models of uncertainty have 

been propounded that attempt to capture qualitative or ambiguous aspects of engineering models. 

Particularly important models are based on the idea of fuzzy sets and relations, and  positive applications 

have been reported in the fields of automatic controls in robotics and artificial intelligence, more 

generally in the field of optimal decisions and approximate reasoning. Less convincing and frequently 

charged with leading to unrealistic or unverifiable conclusions are the tentative applications of fuzzy 
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models in predicting or simulating objective phenomena, for example to evaluate the reliability of an 

engineering design or to assess the reliability of an existing engineering system. 

On the other, new models of uncertainty have been formulated, based on a generalisation of the 

probabilistic paradigm, and in particular its objective interpretation as relative frequency of events. The 

main point is the considerations of ―imprecise probabilities‖ of events or ―imprecise previsions‖ of 

functions, based on the idea of bounded sets of probability distributions compatible with the available 

information or, alternatively, on the combination of a probability distribution (randomness) with 

imprecise events (set uncertainty). Because these models retain the semantics of probability theory, 

comparisons with probability theory are straightforward. 

The subjectivist formulation of this approach (Theory of evidence, (Shafer. 1976)) is compatible with 

a different interpretation based on statistics of objective but imprecise events (Theory of random sets). 

When imprecise events are nested, it includes the notion of fuzzy set as a particular case. 

After a quick review of the definitions and properties of imprecise probabilities and classification of 

the corresponding upper/lower bounds according to the order of Choquet capacities, the paper focuses on 

the theory of random sets, with particular emphasis on fuzzy sets (consonant random sets) and p-boxes 

(non consonant random sets that contain, as a particular case, the ordinary probability distributions). Both 

fuzzy sets and p-boxes are indexable-type random set, i.e the imprecise events can be ordered and 

univocally determined by an index varying from 0 to 1 (Alvarez. 2006). This property is very useful in 

applications involving numerical simulations. 

With reference to a finite probability space for a single variable, the paper continues by discussing the 

properties of the infinite convex set of probability distributions, and of the finite set of extreme 

distributions generated by random sets, fuzzy sets, and p-boxes. The finite sets of extreme distributions 

are particularly useful in evaluating exact expectation bounds for a real-valued function of the considered 

variable, in the case of both monotonic and not monotonic functions. 

A simple and direct procedure to derive extreme distributions from a p-box is described. 

 

 

2 Imprecise probabilities and convex sets of probability distributions 

 

2.1 COHERENT UPPER AND LOWER PROBABILITIES AND PREVISIONS 

 

Le us consider a finite probability space (, F, P), where F is the -algebra generated by a finite partition 

of  into elementary events (or singletons) S = s1, s2…, sj ,… sn. Hence the probability space is fully 

specified by the probabilities P(sj), which sum up to 1 (in the following: the ―probability distribution‖). 

Imprecise probabilities arise when the available information does not allow one to uniquely determine 

a unique probability distribution. In this case, the information could be given by means of upper and/or 

lower probabilities, LOW(Ti), UPP(Ti), of some events  Ti  F, or directly through a set  of probability 

distributions, . 
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The foundation of a theory of imprecise probabilities is mainly due to the work of Peter Walley in the 

1980s/90s on a new theory of probabilistic reasoning, statistical inference and decision, under uncertainty, 

partial information or ignorance ((Walley. 1991), or for a concise introduction (Walley. 2000)). In his 

work, the basic idea of upper/lower probabilities is enlarged to the more general concept of upper/lower 

previsions for a family of bounded and point-valued functions fi: SY=. For a specific precise 

probability distribution P(sj), the prevision is equivalent to the linear expectation: 

 

           
j

P i i j j

s S

E f f s P s


   (2.1) 

 

Since the probability of an event Ti is equal to the expectation of its indicator function (equal to: 1 if sjTi, 

0 if sjTi), upper/lower previsions generalize and hold upper/lower probabilities as a particular case. 

Let us now focus on the information about the space of events in S given by upper and/or lower 

previsions, ELOW[fi] and EUPP[fi], for a family of bounded and point-valued functions fi, K . This is 

accomplished by the set, 
E
, of probability distributions P(sj) compatible with ELOW[fi] and EUPP[fi]:  

      :   E
LOW i P i UPP i iP E f E f E f f     K   (2.2) 

 


E
 is convex and closed. One is interested in checking two basic conditions of the suggested bounds:  

1. A preliminary, strong condition requires that set 
E
 should be non-empty. If set 

E
 is empty, 

it means there is something basically irrational in the suggested bounds. For example, the set 


E
 is empty if ELOW[fi] > maxj fi(sj) or EUPP[fi] < minj fi(sj) (for upper/lower probabilities: 

LOW(Ti) > 1 or  UPP(Ti) < 0). In the behavioural interpretation adopted by Walley, the 

functions fi are called gambles, and this basic condition is said to avoid sure loss. 

2. A second, weaker but reasonable condition requires that the given bounds should be the same 

as the naturally extended expectation bounds that can be derived from 
E
 (coherence 

according to Walley’s nomenclature) 

 

   

   

,

,

min

max   

E

E

LOW c i P i
P

UPP c i P i
P

E f E f

E f E f








 

(2.3) 

 

In this case, one says that ELOW[fi] and EUPP[fi] are (lower and upper, respectively) envelopes 

of 
E
.  

 

If the given bounds are not coherent, i.e. envelopes to 
E
, because they do not satisfy Eq. (2.3), the 

given bounds can be restricted without changing the probabilistic content of the original information, i.e. 

set 
E
. These restricted bounds, calculated by using Eq. (2.3), are called ―natural extension‖ of the given 

bounds ELOW[fi] and EUPP[fi]. For example if bounds are given for both function fi and the opposite -fi 
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coherence requires the ―duality condition‖: EUPP[fi] = - ELOW[-fi] (equivalently for upper/lower 

probabilities of complementary sets  Ti and Ti
c
 : UPP(Ti) = 1- LOW(Ti

c
)).  

The applications that follow are restricted to the special case when K is a set of indicator functions, 

i.e. previsions coincide with probabilities. In this special case, there is no one-to-one correspondence 

between imprecise probabilities and closed convex sets of probability distributions because several closed 

convex sets of probability distributions could give the same imprecise probabilities. This one-to-one 

correspondence only holds between previsions and convex sets of probability distributions when K is the 

set of all functions. In other terms, imprecise probabilities are less informative than previsions.  

2.2 CHOQUET CAPACITIES AND ALTERNATE CHOQUET CAPACITIES 

 

An important criterion for classifying monotonic (with respect to inclusion) measures of sets was 

introduced by Choquet in his theory of capacities (Choquet. 1954). Given a finite set S, let P (S) be the 

power set (set of all subsets) of S. A regular monotone set function : P (S)  0, 1 |  () = 0, (S)= 1 

is called 2-monotone (or a Choquet Capacity of order k = 2) if, given two subsets T1 and T2: 

 

1 2 1 2 1 2( ) ( ) ( ) ( )T T T T T T         (2.4) 

 

The dual coherent upper probabilities (UPP(Ti) = 1- (Ti
c
)) are called Alternate Choquet Capacity of 

order k = 2, and satisfy the relation: 

 

1 2 1 2 1 2( ) ( ) ( ) ( )UPP UPP UPP UPPT T T T T T         (2.5) 

 

More generally, monotone dual set functions (, UPP) are k-monotone (Choquet Capacity of order k), 

and, respectively, Alternate Choquet Capacity of order k, if, given k subsets T1, T2 ….Tk: 
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(2.6) 

 

Precise probability distributions are both an Choquet Capacity and an Alternate Choquet Capacity of 

order k= , that satisfy relations (2.5) and (2.6) as equalities. 

Choquet and dual Alternating Choquet capacities of order k > 1 are coherent lower and upper 

probabilities respectively. Indeed, compare the above properties with the necessary conditions for 

coherent upper/lower probabilities: 

- Monotonicity with inclusion:  T1 T2      LOW(T1)  LOW( T2);       UPP(T1)  UPP( T2) 
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- Super-additivity of LOW for disjoint sets (T1T2 = ): LOW(T1T2) LOW(T1)+ LOW(T2) 

-    Sub-additivity of UPP for any pair of sets T1, T2:          UPP(T1T2)  UPP(T1)+  UPP (T2). 

Therefore, coherent super-additive lower probabilities are not necessarily Choquet capacities of order k > 

1. 

 

There is a strong connection between the order k and the Möbius transform of the set function (T): 

 

 ( ) 1 ( ) |
A T

m A T T A


     
(2.7) 

 

The Möbius transform of a set function  is a one-to-one invertible set function 

m:  P (S) , and its 

inverse is precisely : 

 

(T) ( ) | T,         T S;m m A A      (2.8) 

 

For the purposes of this study, the most interesting properties (see for example (Chateauneuf and Jaffray. 

1989, Klir. 2005) are the following: 

 

1- a set function  is monotone if and only if:  

 

( )

( ) 0; ( ) 1;   ( ) : ( ) 0
T S A T

m m T T S m A
 

       

P

P  (2.9) 

and, therefore,  j:  

m(sj)  0. 

 

2- If (T) is k-monotone and |T| k then 

m(T) 0 

 

3- (T) is  -monotone if and only if:  TP (S) : 

m(T) 0. 

 

2.3 EXTREME DISTRIBUTIONS 

 

For a given regular monotone set function , a permutation (j) of the indexes of the singletons in the set 

S = s1, s2…, sj ,… sn defines the following probability distribution: 
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(j)=11

(j)=1 (j)=1 11
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j

k kj k

P s s

P s s s s s



 



 



 



 

 

(2.10) 

 

The |S|! possible permutations define a finite set of probability distributions, EXT, together with its 

convex hull, 
EXT

. 

If the same permutation is applied to a pair (LOW, UPP) of dual regular monotone set functions, a pair 

of dual distinct probability distributions is generated, but (LOW, UPP) always generate the same set EXT.  

Now, one would wonder what the relationship is between 
EXT

 and the set 

 calculated for (LOW, 

UPP) by using (Eq. 2.2). It turns out that the two sets could be different, and satisfy the inclusion: 
E
  


EXT

. Precisely: 

 

- For coherent monotone measures (k = 1), Eq. (2.10) could generate probability distributions in EXT 

that do not satisfy the bounds in (Eq. 2.2); hence 

 could be strongly included in 

EXT
; 

 

- for monotone measures with k > 1, all probability distributions in EXT (and in 
EXT

) satisfy the 

bounds in (Eq. 2.2), and thus 
EXT

 = 

; EXT coincides with the set of the extreme points (or the 

profile) of the closed convex set 

 . 

 

2.4 EXPECTATION BOUNDS AND CHOQUET INTEGRALS FOR REAL VALUED FUNCTIONS 

 

When the sets 

 or 

EXT
 are known, or when a generic set  is assigned, the upper and lower 

expectation bounds for any real function f: S Y=  could be calculated by solving the optimization 

problems in Eqs (2.3) by substituting  

, 

EXT
, or  for 

E
, respectively. However, the Choquet integral 

(a direct calculation based on the dual upper/lower probabilities) is generally suggested in the literature to 

solve the problem more easily. 

The expectation of a point valued function f: S Y=[yL, yR]   with CDF F(y) can be calculated as 

follows by using the Stieltjes Integral and equivalent expressions: 
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(2.11) 
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The Choquet Integral is the direct extension of the last functional expression to a monotonic measure , 

for the ordered family of subsets 

T , which depend on the selected function f: 

 

( , ) ( )
R

L

y

L

y

C f y T d  
    

 

(2.12) 

 

Indeed, the Choquet integral gives a numerical value that coincides with the expectation of the function f 

for a particular probability distribution. The latter distribution is obtained by the permutation leading to a 

monotonic (decreasing) ordering of the function values. 

The expectation bounds are therefore obtained through the dual probability distributions obtained by 

applying Eq. (2.11) to the dual upper/lower probabilities (LOW, UPP). The Choquet integral determines 

optimal bounds with respect to the set EXT (or 
EXT

) defined in Section 2.3: hence, for general monotone 

measures (k = 1), it can give larger bounds than the correct bounds calculated by using the extreme points 

of 

; on the other hand, for k > 1, the Choquet integral gives exact expectation bounds. 

 

 

 

3 Random sets 

 

3.1 GENERAL PROPERTIES OF RANDOM SETS 

 

Among the different definitions of random set, we refer here to the formalism of the Theory of Evidence, 

but with no particular limitation to the subjectivist emphasis of this theory. The original information is 

described by a family of pairs of nonempty subsets A
i
 (―focal elements‖) and attached m

i
 = m(A

i
)> 0, i=1, 

2, …n (―probabilistic assignment‖), with the condition that the sum of m
i
 is equal to 1. The (total) 

probability of any subset T of S can therefore be bounded by means of the additivity rule. Shafer 

suggested the words Belief (Bel) and Plausibility (Pla) for the lower and upper bounds, respectively. 

Formally: 

 

 

 

: ( ) | ,   

               ( ) |

i i
UPP

i

i i
LOW

i

T S T Pla T m A T

T Bel T m A T

     

  








 

 

(3.1) 

 

Comparison with Eq. (2.8) demonstrates that Bel is the inverse Möbius transform of the non-negative set 

function m: hence Bel is a -monotone set function, and Pla an Alternate Choquet capacity of order k = 
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. As explained in Section 2.3, 
 


Bel 
(calculated with Eq. 2.2 for Bel) coincides with the set 

EXT
, where 

EXT (calculated with Eq. 2.11) is the set of extreme distributions that can be used to evaluate exact 

expectation bounds for a function of interest. 

 

3.2 FUZZY SETS 

 

The conclusions in Section 3.1 also apply in the particular case of a consonant random set; i.e. when focal 

elements are nested, and hence can be ordered in such a way that: 

 
1 2 .... nA A A    (3.2) 

 

Consonant random sets satisfy the relation: 

 

   1 2 1 2max ( ), ( )Pla T T Pla T Pla T   (3.3) 

 

and hence (similar to classical Probability measures) they satisfy the following ―decomposability 

property‖: the measure of uncertainty of the union of any pair of disjointed sets depends solely on the 

measures of the individual sets. Therefore, in the case of a consonant random set, the point-valued 

contour function (Shafer. 1976) : S  [0, 1]: 

 

   ( )  j js Pla s   (3.4) 

 

completely defines the information on the measures of any subset TS, exactly in the same way as the 

probability distribution P(sj) defines, although through a different rule (the additivity rule), the probability 

of every subset T in the algebra generated by the singletons. Indeed: 

 

       max ;      e 1 max  
c

j j

j j
s T s T

Pla T s B l T s 
 

    (3.5) 

 

Moreover, the Möbius inversion (2.7) of the set function Bel allows the (nested) family of focal elements 

to be determined through the set function m. 

More directly, let us assume: 
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(3.6) 

 

The family of focal elements and related probabilistic assignments (summing up to 1) are given by: 

 

   1|  ;       = -       i i
j j i i iA s S s m        (3.7) 

 

The number of focal elements, n, is therefore equal to the cardinality of the range of S through ; of 

course this cardinality is less then or equal to |S|, because some singletons could map onto the same value 

of plausibility. 

There is a narrow correspondence between consonant random sets and other decomposable measures 

of uncertainty: fuzzy sets and possibility distributions. This connection can clearly be envisaged using the 

dual representation of a fuzzy set through their -cuts 

A. They are classical subsets of S defined, for any 

selected value of membership , by the formula: 

 

  |A s S s      (3.8) 

 

When a fuzzy set is implicitly given through the (finite or infinite) sequence of its -cuts 

A, its 

membership function can be reconstructed through the equation: 

 

    max    min ,   j A
s s 


    (3.9) 

 

where  
A

s  is the indicator function of the classical subset 

A. 

By comparing Eq. (3.8) with Eq.  (3.7), it is clear that the -cuts 

A of any given normal fuzzy set are 

a nested sequence of subsets of set S, and therefore the family of focal elements of an associated 

consonant random set: the membership function of normal fuzzy sets gives the contour function of the 

corresponding random sets, and the basic probabilistic assignment (for a finite sequence of -cuts) is 

given by m(A
i
 = 

i
A ) =  i - i +1. 
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By considering Eq. (3.5) from this point of view, the membership function of a fuzzy subset A allows 

measures of Plausibility and Belief to be attached to every classical subset T  S; this very different 

interpretation of a fuzzy set was recognized by Zadeh himself in 1978 (Zadeh. 1978), as the basis of a 

theory of Possibilities defined by a possibility distribution numerically equal to A(s), and later 

extensively developed by other authors, in particular Dubois and Prade (Dubois and Prade. 1988).  

This comparison suggests a probabilistic (objective or subjective) content of the information 

summarized by a fuzzy set and allows one to evaluate by means of the set EXT exact expectation bounds 

for real functions of a fuzzy variable. Although the discussion was restricted to finite discrete variables, 

the conclusion can be extended to continuous variables. 

 

 

Example 3—1. Consider S =s1, s2, s3, s4, and the point-valued function f(sj) mapping to the set Y= 5, 

20, 10, 0. The fuzzy set of S is measured by the set of membership values (0, 0.1, 1, 0.1).  Eqs. (3.6) 

give: 1 =1;   2 = 0.1;  3 = 0. The associated consonant random set is defined by the set of pairs  (A
1
 = 

s3, m
1
 = 1 – 0.1 =  0.9), (A

2
 =  s2, s3, s4, m

2
 = 0.1 – 0 = 0.1). 

The permutation leading to a monotonic decreasing ordering of the function f(sj) is the following: 

( (s2) = 1, (s3) = 2, (s1) = 3, (s4) = 4). Table 3—1 shows the corresponding dual extreme distribution 

according to Eq. (2.10) and the dual set functions Pla and Bel. 

 

 

Table 3—1. Dual extreme distributions for Example 3—1 

T Pla(T) PEXT,UPP(s) Tc Bel(T) = 
1- Pla(Tc) 

PEXT,LOW(s) 

T1 =
s2 0.1 P(s2) = Pla(T1) = 0.1 s1, s3, s4 0 P(s2)= Bel(T1) = 0 

T2 =
s2, s3 1 P(s3)= Pla(T2) - Pla(T1) = 0.9 s1,  s4 0.9 P(s3)= Bel(T2) - Bel(T1) = 0.9 

T3 =
s2, s3, s1 1 P(s1)= Pla(T3) - Pla(T2) = 0  0.9 P(s1)= Bel(T3) - Bel(T2)= 0 

T4 =S 1 P(s4)= Pla(T4) - Pla(T3)  = 0  1 P(s4)= Bel(T4) - Bel(T3)=0.1 

 

Hence:  

EUPP[f]  =  
,EXT UPPPE f = 20x 0.1 + 10 x 0.9 = 11 ;    ELOW[f]  =  

,EXT LOWPE f = 10x 0.9 + 0 x 0.1 = 9.    

The same results can be obtained through the Choquet integral (Eq. (2.12)). For example: 

 

C(f, LOW = Bel) =  0 + Bel({s2, s3, s1}) x (= f(s1)- f(s4))+ Bel(s2, s3) x (= f(s3)- f(s1))+ Bel(s2) x 

(= f(s2)- f(s3)) = 0 + 0.9 x (5-0) + 0.9 x (10 – 5) + 0 x (20 – 10)= 9 

 

C(f, UPP = Pla) =  0 + Pla(s2, s3, s1) x (= f(s1)- f(s4))+ Pla(s2, s3) x (= f(s3)- f(s1))+ Pla(s2) x 

(= f(s2)- f(s3)) = 0 + 1 x (5-0) + 1 x (10 – 5) + 0.1 x (20 – 10)= 11 
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3.3 P-BOXES 

 

Given a finite space S, a set 
F
 of probability distributions is implicitly defined by lower and upper 

bounds, FLOW(sj) and FUPP(sj), of the cumulative distribution functions F(sj): 

 

   1: ( ) ( ) ,..., ( ), 1  to | |F

LOW j j j UPP jP F s F s P s s F s j S       (3.10) 

The set 
F
 is non-empty if FLOW(sk) FUPP(sj) for any k  j. 

However, coherence clearly requires stronger conditions: the bounds FLOW(sj) and FUPP(sj) should be 

non-negative, non-decreasing in j, and both must be equal to 1 for j = |S| (Walley. 1991, § 4.6.6). 

Explicit evaluation of set 
F
 can be obtained by solving the constraints (3.10) for the probabilities of 

the singletons P(sj): 
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(3.11) 

 

A simple iterative procedure can be used. For example, the explicit solution of the first two constraints is 

shown in Figure 3—1: observe that the p-box defines 4 (case a)) or 5 (case b)) extreme points of the 

projection of set 
F
 on the two-dimensional space (P(s1), P(s2)). 
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Figure 3—1.  Explicit solution of the first 2 constraints in Eq. (3.11): case a): FLOW(s2) -FUPP(s1)>0;  case b: FLOW(s2) 

-FUPP(s1)<0. Projection of set 
F
 is shown hatched. 

 

The interval bounds for the probability of the singletons are given by the intervals: 

[l1, u1] = [FLOW(s1), FUPP(s1)],  

[l2, u2] = [max(0, FLOW(s2) –FUPP(s1)), FUPP(s2) –FLOW(s1)] 

 

However, the set 
F*

 generated by the same interval probabilities thought of as being non-interactive 

could be much larger. Indeed, provided that the last constraint in (3.11) is satisfied, the extreme points 

U=(u1, u2) and L=(l1, l2) could be in 
F*

  together with the entire Cartesian product [l1, u1]  [l2, u2]. 

More generally, the interval probabilities for singleton sj  are given by the intervals: 

 

        1 1[ , ] max 0, ,j j LOW j UPP j UPP j LOW jl u F s F s F s F s 
   
 

 (3.12) 

 

The extreme points of the projection of set 
F
 on the j-dimensional space (P(s1), …, P(sj)) can be derived 

from each extreme point on the j–1-dimensional space, by considering that the sum P(s1)+ …+P(sj) must 

be bounded by FLOW(sj) and FUPP(sj). 

A constructive algorithm to evaluate the extreme distributions compatible with the information given 

by a p-box can be obtained by selecting the set, EXT, corresponding to the cumulative (non-decreasing) 

distribution functions jumping from FLOW(sj) to FUPP(sj) at some points sj and from FUPP(sk) to FLOW(sk) at 

other points sk (or at least non-decreasing values of F, case b) in Figure 3—1). Of course, the set EXT 

contains the distribution functions corresponding to the bounds of the p-box: PEXT,LOW(sj)= FLOW(sj) –

FLOW(sj-1); PEXT,UPP(sj)= FUPP(sj) –FUPP(sj-1). 
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The same set EXT (and therefore the same set 
R
=

F
 of probability distributions) can be given by an 

equivalent random set, R, with focal elements and probabilistic assignment derived from the p-box by 

using a rule quite similar to the algorithm for deriving an equivalent random set from a normal fuzzy set 

(when the membership function is meant as a possibility distribution; see § 3.2). 

Define : 
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(3.13) 

 

and define: 

 

     1| ; ; ( )i i

j UPP j i LOW j i i iA s S F s F s m A   

       (3.14) 

 

Consequently: 

- the lower/upper probabilities for subsets T  S are Choquet capacities and Alternate Choquet 

capacities of order  respectively (or Belief and Plausibility set functions respectively); 

 

- the probabilistic assignment of the equivalent random set can alternatively be derived from the 

Belief function through the Möbius transform; 

 

- the upper bounds uj of the singletons (Eq. (3.12)) give the contour function of the equivalent 

random set R. 
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In (Alvarez 2006) the procedure is extended to p-boxes on infinite spaces, thus deriving equivalent 

random sets with infinite focal elements given by the -cuts of the upper/lower CDFs. 

 

 

Example 3—2. Let us consider S =s1, s2, s3, s4 and the p-box defined in the first three columns of Table 

3—2. The table also displays the bounds for the singletons. The upper bounds give the contour function 

of the associated non-consonant random set, R. The five extreme points in the two-dimensional space 

(P(s1), P(s2)) (case b)) determine the 10 extreme points shown in Figure 3—2a for the projection in the 

three-dimensional space (P(s1), P(s2), P(s3)). Of course in the four-dimensional space (P(s1), P(s2), P(s3), 

P(s4)) 10 extreme distributions are obtained when P(s4)=1– P(s1) –P(s2) –P(s3). The extreme points PEXT,1 

and PEXT,2 correspond to the cumulative distribution functions FLOW(sj) and FUPP(sj) respectively.  
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Table 3—3 presents the lower probabilities for all of the subsets in S together with their Möbius transform 

m, which confirms the rules given by Eqs. (3.13) and (3.14). The resulting focal elements and 

probabilistic assignments for R are calculated in Table 3—3 and displayed in Figure 3—2b. The random 

set is completely described by a stack of rectangular boxes: the width of each box identifies its (in this 

particular case convex, but more generally non convex) focal element along the S axis, and the height of 

each box is equal to its probabilistic assignment. Hence, the total height of the stack is equal to 1. The 

focal elements are here ordered in such a way as to obtain a stack enclosed by the cumulative upper and 

lower bounds of the p-box. 

Table 3—2. Bounds and lower/upper CDF in Example 3-2. 

sj FLOW(sj) FUPP(sj) FLOW(s 
-
 j) l= Bel(sj)  u=Pla(sj)=(sj)   

s1 0 0.2 0 0 0.2 

s2 0.1 0.3 0 max(0, 0.1 – 0.2) = 0 0.3 – 0 = 0.3 

s3 0.7 1.0 0.1 max(0, 0.7 – 0.3) = 0.4 1.0 – 0.1 = 0.9 

s4 1.0 1.0 0.7 max(0, 1 – 1) = 0 1.0 – 0.7 = 0.3 
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Table 3—3.  Set functions in Example 3-2. 

i i(s1) i(s2) i(s3) i(s4) LOW (A
i
) m

i
= m(A

i
) 

1  1 0 0 0 0 0 

2  0 1 0 0 0 0 

3  0 0 1 0 0.4 0.4 

4 0 0 0 1 0 0 

5 1 1 0 0 0.1 0.1 

6 0 1 1 0 0.5 0.5-0.4=0.1 

7 0 0 1 1 0.7 0.7-0.4=0.3 

8 1 0 1 0 0.4 0.4-0.4=0 

9 0 1 0 1 0 0 

10 1 0 0 1 0 0 

11 1 1 1 0 0.7 0.7-1+0.4=0.1 

12 0 1 1 1 0.8 0.8-1.2+0.4=0 

13 1 0 1 1 0.7 0.7-1.1+0.4=0 

14 1 1 0 1 0.1 0.1-0.1+0=0 

15 1 1 1 1 1.0 1-2.3+1.7-0.4=0 

 

 
 

a) b) 

Figure 3—2.: Example 3-2 a) extreme points in the 3-dimensional space (P(s1), P(s2), P(s3)); b) equivalent random 

set R. 
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Table 3—4.  Set functions in Example 3-2. 

i i A
i
 m

i
= m(A

i
) 

1  1 s3 , s4 1 – 0.7 = 0.3 

2  max(max(0, 0.1, 0.7), max (0.2, 0.3)) = 0.7 s3 0.7 – 0.3 = 0.4 

3  max(max(0, 0.1), max (0.2, 0.3)) = 0.3 s2 , s3 0.3 – 0.2 = 0.1 

4 max(max(0, 0.1, 0.7), max (0.2)) = 0.2 s1, s2, s3 0.2 – 0.1 = 0.1 

5 max(max(0, 0.1)) = 0.1 s1 , s2 0.1 – 0 = 0.1 

6 max(max(0)) = 0   

 

Table 3—5. Dual extreme distributions for Example 3-2. 

T Pla(T) PEXT,UPP(s) T
c 

Bel(T) = 1- Pla(T
c
) PEXT,LOW(s) 

T1 =
s2 0.3 P(s2)= 0.3 s1, s3, s4 0 P(s2)= 0 

T2 =
s2, s3 1 P(s3)= 0.7  0.5 P(s3)= 0.5 

T3 =
s2, s3, s1 1 P(s1)= 0  0.7 P(s1)= 0.2 

T4 =S 1 P(s4)= 0  1 P(s4)= 0.3 

 

Now, let us evaluate the expectation bounds for the same function considered in Example 3—1, i.e. the 

point-valued function f(sj) mapping onto the set Y= 5, 20, 10, 0. The extreme distributions are identified 

in Table 3—5: events T are the same as events T as in Table 3—1. Pla(T) and Bel(T) are calculated by 

using m from Table 3—3. The expectation bounds are: 

EUPP[f]  = 20x 0.3 + 10 x 0.7 = 13 ;   ELOW[f]   = 10x 0.5 + 5x0.2+ 0 x 0.3 = 6 

 

It is easy to show that the random set R determined by Eqs. (3.13) and (3.14) is not the only random 

set compatible with the p-box. However it must be considered as the natural extension of the information 

given by the p-box because the set 
R
 determined by Eqs. (3.13) and (3.14) includes all probability 

distributions compatible with the p-box, and also the set 
R*

 of any other random set R* compatible with 

the p-box. 

For example, when the maximum of the contour function defined by the p-box (Eq. (3.12) with 

(sj)=uj) is equal to 1, the algorithm (3.5)-(3.6) can be used to derive a consonant random set compatible 

with the p-box: the focal elements are now the -cuts of the contour function and the probabilistic 

assignment is again defined by the increments of . In other words: the information given by the p-box 

together with additional information suggesting that the structure of the underlying random set should be 

consonant determine a consonant random set R’ and a corresponding set 
R’

 of probability distributions, 

and of course 
R’


R
. 
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Example 3—3. Table 3—6 presents a slightly modified p-box (with respect to the p-box discussed in 

Example 3-2). The 8 extreme points EXT
F
 of set 

F
 and the underlying non-consonant random set are 

shown in Figure 3—3 a) and b), respectively. The projection of 
F
 onto the two-dimensional space (P(s1), 

P(s2)) now contains 4 extreme points because FLOW(s1) = FLOW(s2).  Table 3—7 shows that the extreme 

distributions giving the expectation bounds are the same as in Example 3-2 (compare with Table 3—5): 

hence E[f ] = [6, 13]. 

Table 3—6. Reachable bounds and lower/upper CDF in Example 3—3. 

sj FLOW(sj) FUPP(sj) l= Bel(sj)  u=Pla(sj)=(sj)   

s1 0 0.2 0 0.2 

s2 0 0.3 max(0, 0 – 0.2) = 0 0.3 - 0 = 0.3 

s3 0.7 1.0 max(0, 0.7 – 0.3) = 0.4 1.0 – 0 = 1 

s4 1.0 1.0 max(0, 1 – 1) = 0 1.0 – 0.7 = 0.3 

Table 3—7. Dual extreme distributions for Example 3—3. 

T Pla(T) PEXT,UPP(s) T
c 

Bel(T) = 1- Pla(T
c
) PEXT,LOW(s) 

T1 =
s2 0.3 P(s2)= 0.3 s1, s3, s4 0 P(s2)= 0 

T2 =
s2, s3 1 P(s3)= 0.7  0.5 P(s3)= 0.5 

T3 =
s2, s3, s1 1 P(s1)= 0  0.7 P(s1)= 0.2 

T4 =S 1 P(s4)= 0  1 P(s4)= 0.3 

 

 
 

a) b) 

Figure 3—3. Example 3—3: a) extreme points in the 3-dimensional space (P(s1), P(s2), P(s3)); b) equivalent random 

set. 
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Since now (s3) = 1, the contour function can be assumed to be a possibility distribution that defines a 

consonant random set R’, and corresponding set EXT
R’

 of extreme distributions shown in Figure 3—4. 

The set EXT
R’

 contains only 5 of the 8 extremes in set EXT
F
. These 5 extreme points are the vertices of a 

pyramid with vertex in PEXT,1 and quadrangular base on the equilateral triangle P(s4)= 1 - P(s1)- P(s2) - 

P(s3) = 0. Both EXT
R’

 and EXT
F
 contain the extreme points PEXT,1 and PEXT,2, which correspond to the 

cumulative distribution functions FLOW(sj) and FUPP(sj) respectively.  

 

  
a) b) 

Figure 3—4. Consonant random set in Example 3—3: a) extreme points in the 3-dimensional space 

Table 3—8. Dual extreme distributions for the consonant random set in Example 3—3 

T Pla(T) PEXT,UPP(s) T
c 

Bel(T) = 1- Pla(T
c
) PEXT,LOW(s) 

T1 =
s2 0.3 P(s2)= 0.3 s1, s3, s4 0 P(s2)= 0 

T2 =
s2, s3 1 P(s3)= 0.7  0.7 P(s3)= 0.7 

T3 =
s2, s3, s1 1 P(s1)= 0  0.7 P(s1)= 0 

T4 =S 1 P(s4)= 0  1 P(s4)= 0.3 

 

Hence:  EUPP[f]  = 13 ;   ELOW[f]  = 10x 0.7 + 0 x 0.3 = 7 
 

The same procedure (to get a consonant random set) cannot be applied to the p-box discussed in Exampe 

3-2 because the contour function maximum value is equal to 0.9; however, it is easy to derive a second 

random set compatible with the p-box in Example 3-2 that has a nearly consonant structure: it is enough 

to modify the third focal element displayed in Figure 3—4 b) by taking m
3
 = 0.1 and introducing a fourth 

focal element  A
4
 = =s1, s2, with m

4
 = 0.1. 
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4 Conclusions 
 

Random sets, which combine aleatory and set uncertainty, appear to be a powerful generalization of the 

classical probability theory. On the other hand, they are particular cases of a more general theory of 

monotone non-additive measures, Choquet capacities of different orders, coherent upper/lower 

probabilities, and previsions. More precisely, belief functions are coherent lower probabilities and 

Choquet capacities of infinite order. 

The set of probability distributions compatible with the information given by a random set coincides 

with the natural extension of the belief/plausibility set functions, and also with the convex hull of a set of 

extreme distributions. 

Therefore, exact bounds of the expectation of any real-valued function can be derived through the 

Choquet integral or equivalently by a couple of dual extreme distributions. This property seems to be very 

useful in engineering applications, optimal design and decision making under strong uncertainty 

conditions. 

Fuzzy sets and p-boxes can be considered as particular indexable-type random sets, whose set of focal 

elements are ordered and uniquely determined by a single real number. In both the cases, simple rules can 

be given to derive the corresponding family of focal elements, the probabilistic assignment, and the 

extreme distributions of the associated random set. 

Finally, the possibility of considering a hierarchy of random sets ordered by the inclusions of the 

corresponding sets of probability distributions has been highlighted. For example, conditions have been 

given to derive an included consonant random set (a fuzzy set) from the contour function of the random 

set corresponding to a p-box. 
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interval hull solution of parametric linear systems
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Abstract. Systems of parametric linear interval equations are encountered in many practical
applications. Parametric linear interval system is a family of real linear systems. Parametric solution
set is a set of all solutions of real systems from the family. In general case the parametric solution
set is not an interval vector. Hence, instead of the parametric solution set itself, interval vector
containing the solution set (outer interval solution) is calculated. The tightest outer interval solution
is called an interval hull solution. To calculate the interval hull solution 2n constrained optimization
problems are solved using the global optimization method with some accelerating techniques. The
monotonicity test is performed using a direct method for solving parametric linear interval systems.
Some other techniques like special ordering of subdivided boxes is also used. A bisection and
multisection techniques are compared. Various subdivision direction selections rules are tested.

Keywords: parametric linear systems, hull solution, global optimization

1. Introduction

This paper focuses on solving parametric linear systems of structure mechanics with interval
parameters. Parametric interval methods allow the engineering practice to account for uncer-
tainty connected either to external factors, such as boundary conditions or applied loads, or to
internal factors, such as mechanical or geometric characteristics (Aughenbaugh, 2006; Lallemand,
2000; Muhanna, 2006; Muhanna, 2006; Zalewski et. al., 2006), and to calculate the very sharp
bounds on the system response for all possible scenarios in a single analysis (Mullen, 2002).

In general case the parametric solution set is not an interval vector (Neumaier, 1990). Hence,
instead of the parametric solution set itself, interval vector containing the parametric solution set
(outer interval solution) is calculated. The tightest outer interval solution is called an interval
hull solution. The problem of computing the hull solution is NP-hard (Rohn and Kreinovich, 1995).
However, when the parametric solution is monotone with respect to all interval parameters, interval
hull can be calculated by solving at most 2n real linear systems.

c© 2008 by authors. Printed in USA.
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The problem of calculating hull solution can be written as a problem of solving 2n constrained
optimization problems. In (Skalna, 2006) an evolutionary optimization methods for approximating
(from below) the hull solution has been proposed. One may argue that the underestimation is
unknown. However, numerical experiments and the comparison with other methods for solving
parametric systems show that the method performs very well.

In this paper global optimization method (GOM for short) with some accelerating techniques
is used to calculate the interval hull solution. The monotonicity test is performed using a Direct
Method for solving parametric linear interval systems. Some other techniques like special ordering of
subdivided boxes are also exploited. A bisection and multisection techniques are compared. Various
subdivision direction selections rules are tested.

The paper is organized as follows. The second section contains preliminaries on solving paramet-
ric interval linear systems with two disjoint sets of parameters. In the third section, the optimization
problem is outlined. This is followed by a description of global optimization algorithm and selected
accelerating techniques. Next, some illustrative examples of truss structures and the results of
computational experiments are presented. The paper ends with summary conclusions.

2. Preliminaries

Italic faces will be used for real quantities, while bold italic faces will denote their interval coun-
terparts. Let IR denote a set of real compact intervals x = [x, x] = {x ∈ R | x 6 x 6 x}. For two
intervals a, b ∈ IR, a > b, a 6 b and a = b will mean that, resp., a > b, a > b, and a = b z a = b.
IRn will denote interval vectors, IRn×n square interval matrices (Neumaier, 1990). The midpoint
x̌ = m(x) = (x + x)/2, the radius r(x) = (x − x)/2, and the width w(x) = x − x are applied to
interval vectors and matrices componentwise.

Consider linear algebraic system

A(p)x(p, q) = b(q) , (1)

with linear dependencies

aij(p) = αij0 + αT
ij · p , bj(q) = βj0 + βT

j · q , (2)

where αij0, βj0 ∈ R, αij = {αijν} ∈ Rk, βj = {βjν} ∈ Rl, i, j = 1, . . . , n.
Now assume that some model parameters are unknown. The real vectors p and q are replaced by

interval vectors p and q (the real elements are represented by point intervals). This gives a family
of the systems

A(p)x(p, q) = b(q), p ∈ p, q ∈ q , (3)

which is usually written in a symbolic compact form

A(p)x(p, q) = b(q) , (4)

and is called the parametric interval linear system. Parametric (united) solution set of the system
(4) is defined (Jansson, 1991; Kolev, 2004; Rump, 1994) as

S(p, q) = {x | ∃p ∈ p, ∃q ∈ q, A(p)x(p, q) = b(q)} . (5)
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If the solution set S = S(p, q) is bounded, then its interval hull exists and is defined as

2S = [inf S, supS] =
⋂
{y ∈ IRn |S ⊆ y} .

2S is called an interval hull solution. In order to guarantee that the solution set is bounded, the
matrix A(p) must be regular, i.e. A(p) must be non-singular for all parameters p ∈ p.

3. Optimization problem

The problem of computing the interval hull solution of the parametric linear system (3) can be
written as a problem of solving 2n constrained optimization problems

min
p∈p
q∈q

xi(p, q), i = 1, . . . , n (6)

and
max
p∈p
q∈q

xi(p, q), i = 1, . . . , n (7)

where xi(p, q) =
{
A(p)−1b(q)

}
i is the i-th coordinate of the solution of the parametric linear

system (1), p ∈ IRk and q ∈ IRl are vectors of interval parameters.

Theorem 1. Let A(p) be regular, p ∈ IRk, and xi
min, xi

max denote the global solutions of the i-th
minimization (6), resp. maximization (7) problems. Then the interval vector

x = [xmin, xmax] =
([

xi
min, xi

max

])n

i=1
= 2S(p, q). (8)

The optimization problems (6) and (7) will be solved using a global optimization approach.
As a result of the minimization (maximization) problem approximation of the solution set hull,
possibly the solution hull itself, will be gained.

4. Global optimization

Global optimization refers to finding the extreme value of a given nonconvex function in a certain
feasible region. Solving global optimization problems has made great gain from the interest in the
interface between computer science and operations research.

It is assumed in what follows that the inclusion functions have the isotonicity property; i.e.,
x ⊆ y implies F (x) ⊆ F (y) and that for all the inclusion functions holds

w(F (xi)) −→ 0 as w(xi) −→ 0. (9)
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4.1. Algorithm

Consider x(p, q), and define r ∈ IRk+l with ri = pi for i = 1, . . . , k, ri = qi for i = k+1, . . . , k+l.
Now x(p, q) can be written in shorter form as x(r) keeping in mind that x has two vector arguments.
Inclusion function is calculated using the Direct Method (Skalna, 2007). It can be easily shown that
the method preserves isotonicity property.

The model algorithm is as follows:

Step 0 Set y = r and f = minx(y). Initialize the list L = {(f, y)}
and the cutoff level z = maxx(y).

Step 1 Choose a coordinate direction using one of the rules: ν ∈ {1, 2, ..., k + l}.
Step 2 Bisect (multisect) y in direction ν: y1 ∪ y2(

s⋃

i=1

yi, int(yi) ∩ int(yj) = ∅, i 6= j

)
, int denotes the interior.

Step 3 Calculate x(y1), x(y2), and set fi = minx(yi) for i = 1, 2
and z = min {z, maxx(y1), maxx(y2)}.

Step 4 Remove (f, y) from the list L.
Step 5 Cutoff test: discard the pair (fi, yi) if fi > z (where i ∈ {1, 2}).
Step 6 Monotonicity test: discard or reduce any remaining pair

(fi, yi) if 0 /∈ xj(yi) for any j ∈ {1, 2, ..., n} and i = 1, 2.
Step 7 Add any remaining pairs to the list L. If the list becomes empty, then STOP.
Step 8 Denote the pair with the smallest first element by (f∗,y∗).
Step 9 If the width of x(y∗) is less than ε, then print x(y∗) and y∗, STOP.
Step 10 Go to Step 1.

4.2. Midpoint test

The midpoint test is used to reduce the number of intervals in the list L. The pair (f̃ , ỹ) which
satisfies f̃ < f for all pairs (f, y) of the list L is chosen out of L. Then, f̌ = supF (c) is computed,
with c = mid(ỹ). Now, all pairs (f ′, y′) satisfying f̌ < f ′ can be discarded from the list L. Also,
a new pair (f ′′, y′′) must only be entered in the list L if f̃ > f ′′ is satisfied.

4.3. Monotonicity test

The monotonicity test is used to figure out whether the function f is strictly monotone in a whole
subbox y ⊆ x Then, y cannot contain a global minimizer in its interior. Therefore, if f satisfies

∂f

∂xi
(y) < 0 ∨ ∂f

∂xi
(y) < 0 (10)

then the subbox y can be reduced to one of its edges.
Monotonicity test is pefromed using the Method for Checking the Monotonicity (MCM for

short) proposed in (Skalna, 2007). The MCM method is based on a Direct Method (Skalna, 2007)
for solving parametric linear systems. Let f = x(p, q). Briefly speaking, the approximations of
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∂x
∂pm

(p, q), ∂x
∂qr

(p, q) are obtained by solving the following k + l parametric linear systems

A(p)
∂x

∂pm
= b′m(x∗), m = 1, . . . , k; A(p)

∂x

∂qr
= b′′r, r = 1, . . . , l , (11)

where b′mj (x∗) = −αijmx∗j , b′′rj = βjr, j = 1, . . . , n, x∗ ∈ x∗. Detailed description of the MCM
method can be found in (Skalna, 2007).

4.4. Subdivision direction selection

Following Ratz and Csendes the interval subdivision direction selection rules has the following merit
function:

k := min {j | j ∈ {1, . . . , n} and D(j) = maxiD(i)} (12)

where D(i) is determined by a given rule.
Rule A. The first rule to be applied was the interval-width-oriented rule (Hansen, 1980), it can

also be aaplied to non-differentiable function. This rule chooses the coordinate direction with

D(i) = w(y). (13)

and was justified by the idea that if the original interval is subdivided in a uniform way then the
width of the actual subintervals goes to zero most rapidly.

Rule B. Define the indicator

p(fk, f) =
fk − f

f − f
(14)

that gives which interval is to be selected for subdivision. Here fk is the approximation of the global
minimum value in the iteration k (Casado, 200)

fk = min {fl | (fl, yl) ∈ L} . (15)

Rule B selects the coordinate direction for which (12) holds with

D(i) = p(fk, fi). (16)

Rule C. Hansen described another rule (initiated by G.W. Walster) (Hansen, 1980). Rule C
selects the coordinate direction for which (12) holds with

D(i) = w
(
F ′

i (y)w(y)
)
. (17)

4.5. Multisection

Global optimization is based on successive subdivision of the set of feasible solutions. The main
idea of multisection technique is to subdivide the problem (in a single step) into many (> 2) smaller
problems in contrast to traditional bisection, where to new subintervals are always produced.
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5. Examples

To check the performance of the method some illustrative examples of structural mechanical systems
are provided. The results of the Global Optimization Method are compared with the results of the
Evolutionary Optimization Method (EOM for short) (Skalna, 2006) .

Example 1. (21-bar plane truss structure)
For the plane truss structure shown in Fig. 1 the displacements of the nodes are computed. The
truss is subjected to downward forces P1 = P2 = P3 = 30[kN] as depicted in the figure; Young’s
modulus Y = 7.0× 1010[Pa], cross-section area C = 0.003[m2], and length L = 2[m]. Assume the
stiffness of all bars is uncertain by ±5%. This gives 21 interval parameters.

P
1

L

0.5L

P
2

P
3

Figure 1. Example 1: 21 planar truss structure

The results produced by the GOM and the EOM methods (Table I) coincide.

Table I. Example 1: results of the GOM and the EOM methods

n x [×10−5] x [×10−5] n x [×10−5] x [×10−5]

1 -32.53 -29.27 12 3.90 4.67

2 -1.61 -1.45 13 -16.23 -14.67

3 -26.45 -23.93 14 3.18 3.87

4 -2.41 -2.17 15 -3.63 -2.96

5 -15.78 -14.27 16 3.18 3.87

6 -1.69 -1.37 17 -0.05 0.05

7 -4.08 -3.37 18 2.35 3.02

8 -0.96 -0.57 19 -0.46 -0.40

9 0.36 0.50 20 0.85 1.47

10 3.90 4.67 21 -2.78 -2.09

11 -26.45 -23.93
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Example 2. (Baltimore bridge built in 1870)
Consider the plane truss structure shown in Figure 2 subjected to downward forces of P1 = 80[kN ]
at node 11, P2 = 120[kN ] at node 12 and P1 at node 15; Young’s modulus Y= 2.1× 1011 [Pa],
cross-section area C = 0.004[m2], and length L = 1[m]. Assume that the stiffness of 16 bars is
uncertain by ±5%. This gives 16 interval parameters.

P
1

P
1P

2

L

L

L

Figure 2. Example 2: Baltimore bridge (built in 1870)

Once again the results of the GOM and the EOM methods coincide. The average relative error
produced by both methods equals 2.51%. Maximal relative error equals 34%. For 23 coordinates
relative error equals 1%, for another 10 coordinates equals 2%.

6. Conclusions

The problem of solving parametric linear systems has been considered in Section 2. In Section 3
the global optimization method GOM for approximating the solution set hull of parametric linear
systems has been described. Computations performed in Section 5 show that the GOM is a powerful
tool for solving such systems. The results of the GOM method have been compared with the results
of the evolutionary optimization method EOM. Both methods produced the same result which
proves that both approaches are powerful tools for solving parametric linear systems. It turns
out from the experiments that the monotonicity test and the cutoff test significantly speeds up
the convergence of the GOM method, while different rules of subdivision direction selection have
no impact on the convergence. Multisection technique is not useful for the problem of solving
parametric linear systems since the computation of implicitly given inclusion function is very
expensive.
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Abstract. Engineering analysis and design problems, either static or dynamic, frequently involve
uncertain parameters and inputs. Propagating these uncertainties through a complex model to
determine their effect on system states and outputs can be a challenging problem, especially for
dynamic models. In this work, we demonstrate the use of Taylor model methods for propagating
uncertainties through nonlinear ODE models. We concentrate on uncertainties whose distribution
is not known precisely, but can be represented by a probability box (p-box), and show how to
use p-boxes in the context of Taylor models. This allows us to obtain p-box representations of the
uncertainties in the state variables and outputs of a nonlinear ODE model. Examples are used to
demonstrate the potential of this approach for studying the effect of uncertainties with imprecise
probability distributions.

Keywords: Ordinary differential equations, Interval analysis, Probability bounds analysis

1. Introduction

Ordinary differential equations (ODEs) are the basis for many mathematical models in the sciences
and engineering. Often a system of ODEs is formulated as an initial value problem (IVP), in which
the model is integrated through time beginning with specified initial values of the state variables.
Especially in cases where no analytical solution exists, the numerical integration of these systems
is necessary to obtain the trajectories of ODE systems.

Of particular interest here is the verified, or mathematically guaranteed, solution of systems of
ODEs, especially such systems that involve uncertainty in initial conditions or model parameters.
Traditional numerical methods, such as Euler’s method or the Runge-Kutta schemes, only approx-
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imate the trajectory of an ODE system since truncation errors from both function approximation
and machine arithmetic are present. Furthermore, if any particular parameter or initial state is
uncertain, normal use of these methods will not fully guarantee that all possible trajectories are
found.

In response to the need for guaranteed results, both with and without uncertainty, interval
methods have been proposed. Computations with intervals, as opposed to real numbers, can provide
mathematical and computational guarantees, and further, intervals are a logical way to deal with
uncertainty in any parameters or initial conditions. An excellent review of interval methods for
IVPs has been given by Nedialkov et al. (1999), and more recent work has been reviewed by Neher
et al. (2007). Much work has been done for the case in which the initial values are given by intervals,
and there are several available software packages that deal with this case, including AWA (Lohner,
1992), VNODE (Nedialkov et al., 2001), and COSY VI (Berz and Makino, 1998). These methods
can also deal with interval-valued parameters, by treating them as additional state variables with
derivative of zero. In the work described here, we will use a new validated IVP solver for parametric
ODEs (Lin and Stadtherr, 2007b) called VSPODE (Validating Solver for Parametric ODEs), which
is used to produce guaranteed bounds on the solutions of nonlinear dynamic systems with interval-
valued initial states and parameters. VSPODE treats interval-valued parameters directly without
the need to increase the number of state variables. Both COSY VI and VSPODE use Taylor
models (Makino and Berz, 1996; Makino and Berz, 1999; Makino and Berz, 2003), but in different
ways, to deal with the uncertain quantities (parameters and initial values).

Other methods exist to solve ODE systems with uncertainty, but they do not provide a mathe-
matical guarantee that all possible trajectories are enclosed. These methods are often a combination
of a Monte Carlo process with a standard integration scheme, such as Runge-Kutta. While such
methods cannot guarantee that all solutions are enclosed, they can propagate uncertainty in ways
that standard interval methods cannot. Interval methods do not use knowledge about the distribu-
tion of uncertainty in a variable or parameter, while such knowledge can be put to use in Monte
Carlo methods to discern the most probable trajectory of an ODE system.

When the concepts of intervals and probability distributions are combined, the result has been
called a probability distribution variable (PDV), and theorems and computations with this data
type have been presented by Li and Hyman (2004). Intervals and “probability boxes” (p-boxes) can
be viewed as specific enclosures of the more broadly defined PDV. If there are only upper and lower
bounds on the uncertainties but no known probability distribution, then this can be represented
by an interval. If there is some knowledge of the probability distribution, but it is uncertain, then
this can be represented by a probability box (p-box). For computations with p-boxes, we use here
the risk analysis software RAMAS Risk Calc (Ferson, 2002).

In this paper, we demonstrate the use of Taylor model methods for propagating uncertainties
through nonlinear ODE models. We concentrate here on uncertainties represented by p-boxes, and
show how to use p-boxes in the context of Taylor models. This allows us to obtain p-box represen-
tations of the uncertainties in the state variables. Examples are used to demonstrate the potential
of this approach for studying the effect of uncertainties with imprecise probability distributions.

This paper is divided as follows. The next section will provide a general statement of the problem
to be addressed. Section 3 gives background on interval analysis, Taylor models, and p-boxes. In
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Section 4 we outline the specific method that is used, and in Section 5 we show the results of
applying this method to some specific examples.

2. Problem Statement

Here we introduce the notation used in the paper as we describe the problems to be solved. We
will consider the verified solution of the parametric autonomous IVP

y′(t) = f(y, θ), y(t0) = y0 ∈ Y0, θ ∈ Θ, (1)

where t ∈ [t0, tm] for some tm > t0. Here y is the n-dimensional vector of state variables with initial
value y0, and θ is a p-dimensional vector of time-invariant parameters. The vectors Y0 and Θ are
intervals that enclose uncertainties in the initial states and parameters, respectively. Additional
information about these uncertainties is available in the form of p-boxes, as described in the next
section, for at least one component of Y0 or Θ. We assume that f maps the variable and parameter
space back to the variable space and that f is (k−1) times continuously differentiable with respect
to y and (q + 1) times continuously differentiable with respect to θ. Here k is the order of the
truncation error in the interval Taylor series (ITS) method used by VSPODE, and q is the order
of the Taylor model in VSPODE used to represent dependence on parameters and initial values.
We also assume that f can be represented by a finite number of standard functions. Our goal is to
obtain a guaranteed enclosure of the state variables y at time tm and a probability distribution, in
the form of a p-box, for the values of y within the enclosure.

3. Background

3.1. Interval Analysis

A real interval X is the set of real numbers between and inclusive of its lower bound (denoted X)
and upper bound (denoted X). The width of an interval, denoted w(X), is equal to X −X, while
the midpoint m(X) is (X + X)/2. A real interval vector X = (X1, X2, ..., Xn)T has n real interval
components and can be interpreted as an n-dimensional rectangle or box. Interval matrices are
similarly defined.

Basic arithmetic operations are defined on intervals according to

X op Y = {x op y | x ∈ X, y ∈ Y }, op ∈ {+,−,×,÷}. (2)

Division in the case of Y containing zero is only allowed in extensions of interval arithmetic (Hansen
and Walster, 2004). Addition and multiplication are commutative and associative but only subdis-
tributive. Interval versions of the elementary functions can also be defined.

For a real function f(x), the interval extension F (X) encloses the range of f(x) for x ∈ X.
When f(x) can be written as a series of arithmetic operations and elementary functions, the natural
interval extension is obtained by substituting the given interval X into f(x) and evaluating using
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interval arithmetic. Computing the interval extension in this way often results in overestimation
of the function range due to the “dependency” problem. While a variable may take on any value
within its interval, it must take on the same value each time it occurs in an expression. However,
this type of dependency is not recognized when the natural interval extension is computed. In effect,
when the natural interval extension is used, the range computed for the function is the range that
would occur if each instance of a particular variable was allowed to take on a different value in its
interval range.

Another source of overestimation that may arise in the use of interval methods is the “wrapping”
effect. This occurs when an interval is used to enclose (wrap) a set of results that is not an interval.
If this overestimation is propagated from step to step in an integration procedure for ODEs, it can
quickly lead to the loss of a meaningful enclosure.

Several good introductions to interval analysis, as well as interval arithmetic and other aspects
of computing with intervals, are available (Hansen and Walster, 2004; Jaulin et al., 2001; Kearfott,
1996; Neumaier, 1990). Implementations of interval arithmetic and elementary functions are also
readily available, and recent compilers from Sun Microsystems directly support interval arithmetic
and an interval data type.

3.2. Taylor Models

Makino and Berz (1996) have described a remainder differential algebra (RDA) approach for
bounding function ranges and control of the dependency problem of interval arithmetic (Makino
and Berz, 1999). In this method, a function is represented using a model consisting of a Taylor
polynomial and an interval remainder bound. Such a model is called a Taylor model.

One way of forming a Taylor model of a function is by using the Taylor theorem. Consider a
real function f(x) that is (q + 1) times partially differentiable on X and let x0 ∈ X. The Taylor
theorem states that for each x ∈ X, there exists a real ζ with 0 < ζ < 1 such that

f(x) = pf (x− x0) + rf (x− x0, ζ), (3)

where pf is a q-th order polynomial (truncated Taylor series) in (x − x0), and rf is a remainder,
which can be quantitatively bounded over 0 < ζ < 1 and x ∈ X using interval arithmetic or other
methods to obtain an interval remainder bound Rf . A q-th order Taylor model Tf = pf + Rf for
f(x) over X then consists of the polynomial pf and the interval remainder bound Rf and is denoted
by Tf = (pf , Rf ). Note that f ∈ Tf for x ∈ X, and thus Tf encloses the range of f over X.

In practice, it is more useful to compute Taylor models of functions by performing Taylor model
operations. Arithmetic operations with Taylor models can be done using the RDA operations
described by Makino and Berz (1996; 1999; 2003), which include addition, multiplication, reciprocal,
and intrinsic functions. Using these, it is possible to start with simple functions such as the constant
function f(x) = k, for which Tf = (k, [0, 0]), and the identity function f(xi) = xi, for which Tf =
(xi0+(xi−xi0), [0, 0]), and then to compute Taylor models for very complicated functions. Therefore,
it is possible to compute a Taylor model for any function representable in a computer environment
by simple operator overloading through RDA operations. It has been shown that, compared to
other rigorous bounding methods, the Taylor model often yields sharper bounds for modest to
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Figure 1. A cumulative probability density function is a one-to-one function where the value of a quantity x is on
the abscissa and the corresponding cumulative probability is given by the ordinate. Here, P (x ≤ 0) = 0.48.

complicated functional dependencies (Makino and Berz, 1996; Makino and Berz, 1999; Neumaier,
2003). A discussion of the uses and limitations of Taylor models has been given by Neumaier (2003).

3.3. P-Boxes

For some quantity (variable or parameter) x, the cumulative distribution function (CDF) F (z) gives
the probability that x ≤ z. A sample CDF is shown in Figure 1. Here, for example, the probability
that x ≤ 0 is 0.48. Probability boxes, or p-boxes, are similar, but provide an interval of cumulative
probability values represented by a pair of CDFs. A sample p-box is shown in Figure 2. This
indicates, for example, that the probability of x ≤ 0 is [0.40, 0.59]. The slightly stepped appearance
of the p-box curves, here and below, is due to the discretized representation of a p-box used by
Risk Calc. This representation is used in the implementation of p-box arithmetic.

A probability box, then, is essentially a hybrid of an interval and a probability distribution. As
an interval bounds a range of real numbers, a p-box bounds a range of probability distributions.
Also, as a probability distribution gives a real-valued probability for the value of a real parameter, a
p-box provides an interval-valued probability for the value of a real parameter (Ferson, 2002). Read
in another way, for a real-valued probability, a p-box provides the interval of values corresponding
to that probability. Formally, a p-box is a pair of functions (F,G) such that the true probability
distribution H of a number satisfies F ≥ H ≥ G. The function F is called the left bound of the
p-box, while the function G is the right bound, which should be apparent from the definition. For
a given real-valued probability, the left bound provides the lower bound of the parameter, and the
right bound corresponds to the upper bound. For a given value of a parameter, the left bound
corresponds to the upper bound of its probability and the right bound to its lower bound.

When the probabilities of parameters are independent, computations with p-boxes are analogous
to those with intervals. They are defined beginning with arithmetic and standard functions, again
using Eq. (2). In this case, p-boxes encounter the same dependency issues that intervals do. However,
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Figure 2. A p-box encloses the cumulative probability distribution function for a quantity x. Now the corresponding
cumulative probability is an interval. Here, P (x ≤ 0) = [0.4, 0.59].

Figure 3. Sample p-box with bounds obtained from a uniform distribution with a mean of 0 and standard deviation
in [0.2, 0.3].

p-box arithmetic can vary depending on assumptions about the parameters; much more detail is
provided by Ferson et. al. (2004).

There are three types of p-boxes employed in the examples used in Section 5. The first, as
illustrated in Figure 3, is a p-box with bounds obtained from a uniform distribution with a fixed
mean and an interval-valued standard deviation. Note that such a p-box encloses both uniform
(straight line) and nonuniform CDFs. The second is a p-box with bounds obtained from a normal
distribution, again with fixed mean and an interval-valued standard deviation, as shown in Figure 4.
The third type of p-box used is shown in Figure 5 and corresponds to the case of an uncertain
distribution with a specified minimum and maximum and fixed mean and standard deviation. This
is referred to as the mmms distribution.
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Figure 4. Sample p-box with bounds obtained from a normal distribution with a mean of 0 and standard deviation
in [0.2, 0.3].

Figure 5. Sample p-box for mmms distribution. This p-box has a minimum of −0.8, maximum of 0.8, mean of 0, and
standard deviation of 0.3.

4. Solution Procedure

In this section, we outline the method used for solving the problem described in Section 2. This
involves using the VSPODE program for the verified integration of the IVP given by Eq. (1) and
the RAMAS Risk Calc software for calculations with p-boxes. More detailed descriptions of the
VSPODE program and RAMAS Risk Calc software can be found elsewhere (Lin and Stadtherr,
2007b; Ferson, 2002).

As a first step, VSPODE is used to integrate the IVP. This provides a guaranteed enclosure of
the state variables at each time step in the integration and a Taylor model representation of the
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final state ym = y(tm). This Taylor model, Tym = Tym(y0, θ), is a polynomial in y0 and θ with an
interval remainder bound, and is valid for all y0 ∈ Y0 and θ ∈ Θ.

Then, in the second step, information about the distribution of y0 and θ values is substituted into
the Taylor model Tym , and the distribution of final state values is computed using Risk Calc. Each
initial state and parameter is given by either an interval (no distribution known) or by a p-box, and
Risk Calc can do the necessary arithmetic with either. To reduce the occurrence of overestimation
in these calculations, Risk Calc can employ a subinterval reconstitution (SIR) procedure. These
methods are described in more detail by Ferson and Hajagos (2004).

5. Examples

The following examples illustrate the solution procedure when applied to a model from population
ecology and to three reactor modeling problems from chemical engineering. On all of the example
problems, the order of the interval Taylor series used in VSPODE was k = 17, and the order of the
Taylor models used was q = 5. Unless specified otherwise, a constant step size of 0.2 was used in
VSPODE, though this step size may be automatically reduced during the integration procedure if
needed.

5.1. Lotka-Volterra Model

One of the most basic population ecology models is the Lotka-Volterra model of a predator-prey
system. The model equations, with parameter uncertainties, can be written as

dx1

dt
= θ1x1(1− x2), x1(0) = 1.2, θ1 ∈ [2.99, 3.01] (4)

dx2

dt
= θ2x2(x1 − 1), x2(0) = 1.1, θ2 ∈ [0.99, 1.01]. (5)

This example has served as a test problem for comparing interval-based ODE solvers (Lin and
Stadtherr, 2007b), in which uncertainty is represented as an interval. Figure 6 reproduces the
interval trajectories computed by VSPODE for t = [0, 10]. The Taylor model describing the solution
at t = 10 can be combined with probability bound analysis when more specific information regarding
the distribution of uncertainty is known. Figures 7 and 8 show the p-box solutions if both parameters
are described by a p-box with bounds obtained from a uniform distribution with standard deviation
of [0.0050, 0.0057] and mean at the interval midpoint. If the parameters were simply intervals (no
distribution known), then only an interval enclosure of the states would be obtained, and these upper
and lower bounds would match the upper and lower bounds of the p-boxes shown in Figures 7 and 8.
If no probability bounds analysis was done, we could only say that the probability that x1 ≤ 1.14
is in [0, 1]. However, using p-boxes it can be seen from Figure 7 that the probability that x1 ≤ 1.14
is in the interval [0.05, 0.5]. We can run subinterval reconstitution to make the p-boxes tighter.
Figures 9 and 10 show that the areas of the p-boxes can be drastically reduced with this technique.
Now, the probability that x1 ≤ 1.14 is shown to be about [0.13, 0.36]. The choice of a uniform
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Figure 6. The interval bounds on the state trajectories of Lotka-Volterra model as computed by VSPODE.

Figure 7. The p-box enclosure of x1 at time t = 10 in the Lotka-Volterra model as computed by Risk Calc.

distribution for the p-box bounds in this problem was an arbitrary one. Other types of p-boxes
could also be used.

5.2. Microbial Growth Model with Monod Kinetics

The system of equations for a simple bioreactor model (Lin and Stadtherr, 2007a) is

dX

dt
= (µ− αD)X (6)

dS

dt
= D(Sf − S)− kµX, (7)
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Figure 8. The p-box enclosure of x2 at time t = 10 in the Lotka-Volterra model as computed by Risk Calc.

Figure 9. The inner curves show the p-box enclosure of x1 at time t = 10 in the Lotka-Volterra model as computed
by Risk Calc, now using the subinterval reconstitution technique. The outer box corresponds to the solution shown
in Figure 7 for comparison.

where X represents the concentration of cells in the system, and S represents the concentration
of substrate. The parameters α, D, Sf , and k represent the heterogeneity parameter, the dilution
rate of substrate, the feed concentration of substrate, and the yield coefficient, respectively. The
growth rate of cells, µ, is dependent on the concentration of substrate, S. This term may take a
variety of forms. For a simple initial example, we consider Monod kinetics (Bastin and Douchain,
1990; Bequette, 2003), where

µ =
µmaxS

KS + S
. (8)

In the above expression, µmax is the maximum growth rate, and KS is the saturation parameter.
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Figure 10. The inner curves show the p-box enclosure of x2 at time t = 10 in the Lotka-Volterra model as computed
by Risk Calc, now using the subinterval reconstitution technique. The outer box corresponds to the solution shown
in Figure 8 for comparison.

We explore a subset of the uncertain conditions and parameters used by Lin and Stadtherr
(2007a): X0 ∈ [0.794, 0.864] g/L, µmax ∈ [1.15, 1.25] day−1, and KS ∈ [6.8, 7.2] g/L. We assume an
mmms distribution for these parameters, with the mean being the midpoint of the interval, and the
standard deviation being one tenth of the width of the interval (these are arbitrary choices). Other
initial conditions and parameters are expressed as real numbers: S0 = 0.8 g/L, α = 0.5, D = 0.36
day−1, Sf = 5.7 g/L, and k = 10.53 g substrate/ g cells. We employ VSPODE to integrate the
equation from t = 0 to t = 10 days. The biomass trajectory produced by VSPODE is shown in
Figure 11. The resulting Taylor model that describes X and S at t = 10 is used with Risk Calc,
and the p-box calculations give bounds on the probability distributions for the state variables as
shown in Figures 12 and 13. This shows, for example, that the probability that the biomass of cells
is less than or equal to 0.85 g is in the interval [0.9, 1.0].

5.3. Microbial Growth Model with Haldane Kinetics

The same bioreactor model described by Eqs. (6)-(7) can be solved using the slightly more compli-
cated Haldane kinetics (Bastin and Douchain, 1990; Lin and Stadtherr, 2007a), also called substrate
inhibition kinetics (Bequette, 2003). Here we replace the growth rate equation previously given as
Eq. (8) with

µ =
µmaxS

KS + S + KIS2
. (9)

The new parameter, KI , is called the inhibition parameter. Following Lin and Stadtherr (2007a),
we will treat this new parameter as uncertain, with its value lying in the interval [0.0025, 0.01] and
its uncertainty described again using the mmms p-box as discussed above.

Integrating this equation the same way as before, we obtain the transient biomass trajectory
shown in Figure 14 and a Taylor model describing the variables at time t = 10. The p-box enclosures
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Figure 11. Interval bounds on trajectory of cell biomass X under Monod kinetics as computed by VSPODE.

Figure 12. P-box enclosure of cell biomass X at t = 10 for Monod kinetics as computed by Risk Calc.

computed by Risk Calc for the state variables are shown in Figures 15 and 16. These enclosures
are larger than the enclosures determined in the previous example, which is expected because there
is an additional uncertain parameter. Now the probability that the biomass of cells is less than or
equal to 0.85 g is in the interval [0.86, 1.0].

5.4. Three-State Bioreactor Model

A second bioreactor model explored by Lin and Stadtherr (2007a) is a three-state biochemical
reactor. Here, we model the growth of cells x1 that consume substrate x2, but which also form a
product x3. The model is

dx1

dt
= (µ−D)x1 (10)
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Figure 13. P-box enclosure of substrate S at t = 10 for Monod kinetics as computed by Risk Calc.
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Figure 14. Interval bounds on trajectory of biomass X under Haldane kinetics as computed by VSPODE.

dx2

dt
= D(x2f − x2)− µx1

Y
(11)

dx3

dt
= −Dx3 + (αµ + β)x1, (12)

with the growth rate as a function of both substrate and product concentrations,

µ =
µmax [1− (x3/x3m)]x2

ks + x2
. (13)

In the above equations, the initial concentration of cells is unknown but within [6.4549, 6.5676],
and is represented by a p-box with bounds obtained from a uniform distribution with standard
deviation of [0.028170, 0.032533]. Two parameters are uncertain; the maximum growth rate µmax ∈
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Figure 15. P-box enclosure of cell biomass X at t = 10 for Haldane kinetics as computed by Risk Calc.

Figure 16. P-box enclosure of substrate S at t = 10 for Haldane kinetics as computed by Risk Calc.

[0.46, 0.47] is represented by a p-box with bounds obtained from a normal distribution with standard
deviation of [0.0282, 0.0325], and the saturation parameter ks ∈ [1.03, 1.1] is represented by a p-box
corresponding to the mmms distribution with standard deviation equal to 0.007. All p-box means
are at the interval midpoint. All other initial conditions and parameters are known exactly: x20 = 5
g/L, x30 = 15 g/L, Y = 0.4 g/g, β = 0.2 hour−1, D = 0.202 hour−1, α = 2.2 g/g, x3m = 50 g/L,
and x2f = 20 g/L.

VSPODE provides the biomass trajectory shown in Figure 17 and the Taylor model used in Risk
Calc to create Figures 18, 19, and 20, which give the probability distribution for the state variables
as p-boxes at time t = 10. One purpose for this example is to show the ability to have uncertain
conditions under a variety of probability distributions. Such an ability is essential in complicated
biological models where a variety of distributions is likely.
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Figure 17. Interval bounds on trajectory of biomass x1 in three-state reactor as computed by VSPODE.

Figure 18. P-box enclosure of biomass x1 at t = 10 in three-state reactor as computed by Risk Calc.

6. Concluding Remarks

The verified ODE solver VSPODE (Lin and Stadtherr, 2007b) provides a powerful tool for bounding
the solutions of parametric nonlinear ODEs. Because it provides output in the form of Taylor
models, VSPODE is also useful in situations in which uncertainties in parameters and initial states
are represented by p-boxes. In this case, the Taylor models from VSPODE can be combined with
the p-box uncertainties in initial states and parameters using RAMAS Risk Calc, resulting in a
propagation of these uncertainties into the final values of the state variables. In this way, probability
distributions (p-boxes) for the final state values can be obtained, as demonstrated in several example
problems.
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Figure 19. P-box enclosure of substrate mass x2 at t = 10 in three-state reactor as computed by Risk Calc.

Figure 20. P-box enclosure of product mass x3 at t = 10 in three-state reactor as computed by Risk Calc.
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Abstract: Assessing the reliability of components and systems is an important problem in engineering 

design. Estimates of the reliability of a design can play a significant role in final design decisions. Data 

for making these estimates is often scarce during the design process. However, designers also frequently 

have the option to acquire more information by expending resources. Designers thus face the dual 

questions of how to update their estimates and whether it is valuable to collect additional information. 

Various statistical updating methods exist and can be used in reliability estimation, including precise 

Bayesian updating and methods based on imprecise probabilities. In this paper, we explore the 

management of information collection using these two approaches.  These ideas combine elements from 

sensitivity analysis, value of information calculations, and uncertainty measures.  Rather than dealing 

with abstract measures of total of uncertainty for a particular distribution or set of distributions, we 

explore the relationships between variance-based sensitivity analysis of the prior and posterior estimates 

of the mean and variance over all possible results of a particular test.  The goal is to gain insight into the 

many tradeoffs that occur when comparing different information collection actions, especially when the 

exact outcome of the action is uncertain.  These tradeoffs are explored using the example reliability 

modeling of a simple parallel-series system with three components. 

Keywords: reliability assessment, imprecise probabilities, information management 

1. Introduction 

Modeling uncertainty is an increasingly important activity in engineering applications. As engineers 

progress from deterministic approaches to nondeterministic approaches, the question of how to model the 

uncertainty in the nondeterministic approaches must be answered. Researchers have proposed various 

methods for modeling and propagating uncertainty. A great deal of literature has been devoted to 

developing and applying individual methods, and others are devoted to philosophical debates of the 

appropriateness of different measures. More recently, there is a growing interest in practical comparisons 
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of the methods (Oberkampf et al., 2001; Nikolaidis et al., 2004; Soundappan et al., 2004; Aughenbaugh 

and Paredis, 2006; Hall, 2006; Kokkolaras et al., 2006; Aughenbaugh and Herrmann, 2007). 

 Most of this work has focused on what we will call the problem solution stage of engineering 

decisions. In this stage, the engineer makes a decision about a product’s design. For example, the engineer 

determines the dimensions of a component or chooses a particular architecture for the system. This stage 

follows and is distinct from the problem formulation phase, which includes tasks such as identifying 

design alternatives, eliciting stakeholder preferences, and modeling the state of the world. One step of this 

formulation phase is information management. In this step, the engineers make decisions about what 

information to collect, how to collect it, and how to process it. For example, the design of experiments 

falls into this stage. The focus of this paper is on how to model uncertainty in order to best support 

information management decisions. In particular, we consider the problem of system reliability 

assessment, as discussed in Section 2. 

 Managing information collection activities during engineering design is clearly related to the concept 

of the value of information. This concept has been used in the context of engineering design for 

incorporating the cost of decision making (Gupta, 1992), for model selection (Radhakrishnan and 

McAdams, 2005), and for catalog design (Bradley and Agogino, 1994). Some recent work to improve 

engineering design processes has considered this problem from a frequentist updating perspective (Ling et 

al., 2006) and developed a method for managing multiple sources of information in engineering design 

using imprecise probabilities (Schlosser and Paredis, 2007). This work used the principles of information 

economics (Howard, 1966; Matheson, 1968; Marschak, 1974; Lawrence, 1999). At a basic level, these 

principles state that one should explicitly consider the expected net value of information, which is the 

expected benefit of the information minus the cost of acquiring that information.  

 In this paper, we focus on a Bayesian updating problem and consider problem-independent measures 

of the value of the information. Ideally, the value of information would be measured in terms of the value 

of the final product and the cost of the design process. However, such value and cost models are not 

always available, particularly early in the design process when the design is only very vaguely defined 

(Malak et al., 2007). It is thus important to have some statistical metrics for guiding information 

collection that are independent of the value context of the problem, while still adequately accounting for 

the information state and the known structure of the system being designed. 

 Section 2 presents the example problem. Section 3 reviews the precise and imprecise Bayesian 

statistical models. Section 4 presents the uncertainty metrics that we will use. Experimental results are 

presented and discussed in Section 5. Section 6 gives a general discussion, and Section 7 concludes the 

paper. 
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2. Example problem description 

 We consider the case where a designer is considering additional testing of some key components in a 

system in order to get better estimates of the system reliability. From a reliability perspective, the example 

system can be modeled as a parallel-series system, as shown in Figure 1. We assume that the failures of 

each component are independent events. The designer has some prior information about the reliability of 

each component and thus can create an estimate of the system reliability. However, the engineer hopes 

that additional testing will refine the estimate. 

 
Figure 1. Reliability Block Diagram for the System. 

 

 It will be convenient to frame things in terms of failure probability instead of reliability. If component 

i has a reliability of iR , then the corresponding failure probability of component i is 1i iP R  . Let   be 

the failure probability of the system, which is the parameter of interest. Ideally, in order to determine this, 

the designer would have enough data to make a precise assessment of AP , BP , and CP , such as ―

0.05AP  .‖ However, there are practical reasons why the designer cannot or is unwilling to make a 

precise assessment despite holding some initial beliefs about the failure probability (Malak et al., 2007).  

 We consider the case in which only component testing is feasible. No system-level tests are possible. 

The designer will use the results of additional testing to update his beliefs about the components’ failure 

probabilities, which will yield an updated estimate of the system failure probability. In particular, the 

engineer is interested in knowing which component should be tested. Since testing requires resources, it is 

not reasonable to test every component a large number of times. In this work we consider the number of 

tests as a surrogate for the cost of testing, which is reasonable if all tests require roughly the same amount 

of resources. 

 The failure probabilities AP , BP , and CP  are modeled as independent random variables with a beta 

distribution. If ~ ( , )A A AP beta   , then  

   /A A A AE P     ; 

A

B

C
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 The mathematical model for the reliability of the system shown in Figure 1 follows. 

  1 (1 )(1 )sys A B CR R R R     (1) 

 sys A B C A B CP P P P P P P      (2) 
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 2 2[ ] [ ] ( [ ])V E E     (5) 

3. Formalisms for modeling uncertainty 

In this paper we will compare two different approaches for updating reliability assessments: the precise 

Bayesian and the imprecise beta model, which is useful for both the robust Bayesian approach and the 

imprecise probability approach. Some introductory material is provided here. For a more complete 

discussion, see the cited references and the discussion in Aughenbaugh and Herrmann (2007). 

3.1.  PRECISE BAYESIAN 

The Bayesian approach (e.g. Box and Tiao, 1973; Berger, 1985) provides a way to combine existing 

knowledge and new knowledge into a single estimate by using Bayes’s Theorem. One of the requirements 

of Bayesian analysis is a prior distribution that will be updated. The objective selection of a prior 

distribution in the absence of relevant prior information is a topic of extensive research and debate. The 

approaches proposed include the use of non-informative priors (Jeffreys, 1961; Zellner, 1977; Berger and 

Bernardo, 1992), maximum-entropy priors (Fougere, 1990), and data-dependent empirical Bayes 

approaches (Maritz and Lewin, 1989). Still, whether a single prior distribution, especially the uniform 

prior, can reflect all of the uncertainty is an open question to some observers. However, in many 

engineering problems, designers do have some prior information, such as data and experience from 

similar systems, and the Bayesian approach allows this information to be included in the analysis. 
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 To support analytical solutions, the form of the prior is often restricted to conjugate distributions with 

respect to the measurement model, in which case the posterior distribution that results from the update has 

the same type as the prior. For the problem considered in this paper, in which the number of failures in a 

given number of tests is a binomial random variable, it is convenient to model the prior distribution of a 

component’s failure probability as a beta distribution with parameters   and  . If the prior distribution 

is 0 0( , )Beta    and one observes m  failures out of n  trials, then the posterior distribution is 

0 0( , )Beta m n m    . Consequently, the update involves simple addition and subtraction, an 

enormous improvement in efficiency over the general case.  

3.2.  ROBUST BAYESIAN AND IMPRECISE PROBABILITIES APPROACHES 

Two alternatives to a precise Bayesian approach are the robust Bayesian and imprecise probabilities 

approaches. The two approaches are mathematically similar, but differ in motivation.  

 The robust Bayesian approach addresses the problem of lack of confidence in the prior (Berger, 1984; 

Berger, 1985; Berger, 1993; Insua and Ruggeri, 2000). The core idea of the approach is to perform a 

―what-if‖ analysis by changing the prior. The analyst considers several reasonable prior distributions and 

performs the update on each to get a set of posterior distributions. After additional data is collected, each 

candidate prior is updated, resulting in a set of posterior distributions. This set of posterior distributions 

yields a range of point estimates and a set of credible intervals. If there is no significant change in the 

conclusion across this set of posteriors, then the conclusion is robust to the selection of the prior.  

 This analysis is not possible with a single prior. For example, if the designer is unsure about the 

failure probability, one precise Bayesian approach for dealing with this lack of confidence in the estimate 

is to increase the variance of the prior model, thus reflecting more uncertainty of some kind. Taken to the 

extreme, a complete lack of information generally leads to a uniform distribution. Unfortunately, the use 

of a uniform distribution confounds two cases: first, that nothing is known; second, that all failure 

probabilities between 0 and 1 are equally likely, which is actually substantial information.  

 In the context of a large engineering project in which there are many individuals, this is an important 

distinction. For example, one engineer’s complete lack of knowledge about some aspect of the system 

may be offset by another engineer’s expertise or by additional experimentation. However, if substantial 

analysis has already led to the conclusion that certain outcomes are equally likely, then it would be 

inefficient to expend additional resources examining those probabilities. A precise approach confounds 

these two scenarios, therefore adding confusion to information management decisions. The robust 

Bayesian approach allows one to consider the different scenarios independently rather than aggregating 

them together. This affords the design team the opportunity to make different, more appropriate decisions 

under the two scenarios. 
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 The theory of imprecise probabilities, formalized by Walley (1991), has previously been considered 

in design decisions and set-based design (Aughenbaugh and Paredis, 2006; Rekuc et al., 2006) and in 

reliability analysis (Coolen, 1994; Coolen, 2004; Utkin, 2004a; Utkin, 2004b). The theory of imprecise 

probabilities uses the same fundamental notion of rationality as de Finetti’s work (1974). However, the 

theory allows a range of indeterminacy—prices at which a decision-maker will not enter a gamble as 

either a buyer or a seller. These in turn correspond to ranges of probabilities. For the problem of updating 

beliefs, imprecise probability theory essentially allows prior and posterior beliefs to be expressed as sets 

of density functions.  

 The imprecise model captures two aspects of uncertainty: the imprecision in the prior beliefs (whether 

inherent or due to incomplete elicitation) and the probabilistic uncertainty in the parameter value. The 

distinction between these two types of uncertainty is not always obvious, but the distinction can be 

valuable in practice (Winkler, 1996). 

 The consideration of imprecision is the primary difference between the motivation for imprecise 

probabilities and the motivation for a robust Bayesian approach. Whereas the imprecise probability view 

is that the analyst’s beliefs can be imprecise, the robust Bayesian view is that there exists a single prior 

that captures the analyst’s beliefs perfectly, although it may be hard to identify this distribution in 

practice. Either motivation leads to the consideration of sets of priors and posteriors. 

 For the robust updating approach, it is convenient to use the imprecise beta model and to re-

parameterize the beta so that the density of ( , )beta s t  is as given in Equation (6) (Walley, 1991; Walley et 

al., 1996). 

 1 (1 ) 1
, ( ) (1 )st s t

s t        (6) 

 Compared to the standard parameterization of ( , )beta   , this means that s t    and (1 )s t     

or equivalently that s     and /( )t     . The convenience of this parameterization is that t  is 

the mean of the distribution, which has an easily grasped meaning for both the prior assessment and the 

posterior analysis. The model is updated as follows: if the prior parameters are 0s  and 0t , then, after n  

trials with m  failures, the posterior parameters are 0ns s n   and 0 0 0( ) /( )nt s t m s n   . Since 

0ns s n  , 0s  can be interpreted to be a virtual sample size of the prior information; it captures how 

much weight to place on the prior compared to the observed data. Selecting this parameter therefore 

depends on the available information. Following Walley (1991), the parameters t and s can be imprecise 

and expressed as intervals 00 ,t t   and 00 ,s s  . That is, the priors are the set of beta distributions with 

0 0 0s t   and  0 0 01s t    such that 0 00t t t   and 0 00s s s  . When the test results are collected, 

each prior in the set is updated as described above. 
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4. Metrics of uncertainty  

When considering measures of uncertainty in context of planning additional tests to reduce uncertainty, it 

is important to keep the following points in mind. 

 First, if one is modeling the system performance (e.g., system failure probability) as a precise 

probability distribution, then the mean, variance, and other statistics about that distribution are specific 

numbers for the prior distribution. If n identical tests are conducted, and each test result is a pass or fail, 

then there are 1n   possible test results. Thus, there are 1n   possible posterior distributions and 1n   

possible means, variances, and other statistics. Characterizing the quality a test plan (which has uncertain 

outcomes) is a classic problem in decision-making. Decision-makers have different attitudes towards such 

situations. For example, some decision-makers will want to know the complete distribution of outcomes, 

some will want the worst-case, and others will want the ―average‖ value of a statistic. 

 Modeling the system performance as an imprecise probability distribution introduces an additional 

complexity: the mean, variance, and other statistics about that distribution are imprecise; that is, there is a 

set of means for the prior distribution. If n identical tests are conducted, and each test result is a pass or 

fail, then there are 1n   possible imprecise posterior distributions, with 1n   possible sets of means, 

variances, and other statistics. Characterizing any specific result requires some way to describe the set, 

either by selecting a subset of the distributions or finding the range of values for that result. After that, 

one still has the problem of uncertain outcomes, as discussed above. 

 This paper presents and demonstrates approaches for evaluating information gathering plans using 

metrics of uncertainty. In addition, we will compare the types of results that these different approaches 

give. These results can be used as the input to existing approaches for decision-making under uncertainty, 

including those for determining the economic value of information. The integration with such approaches 

we leave for future work. Therefore, we will focus on the required methods and demonstrating 

them with metrics that display the range of results. 

 For the precise Bayesian approach, we will use a variance-based sensitivity analysis and the 

dispersion of the mean and variance of the posterior distributions of system failure probability. For the 

imprecise beta model, we will consider an imprecise variance-based sensitivity analysis (Hall, 2006), the 

imprecision in the mean before and after additional tests are conducted, and the range of the mean and 

variance of the prior and posterior distributions of system failure probability. 

4.1. METRICS FOR PRECISE DISTRIBUTIONS 

For both precise and imprecise priors, we will consider two different strategies. The first is a variance-

based sensitivity analysis of the prior distribution, which allows one to ignore the possible test results. 

The second strategy considers the possible outcomes of a test plan. 
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4.1.1. Variance-based sensitivity analysis 

One can avoid the problem of considering a large number of possible test results by ignoring them 

entirely and focusing on the current state of information. One such approach is variance-based sensitivity 

analysis, which calculates the total variance of the system performance and determines how each input 

variable contributes to this (Sobol, 1993; Chan et al., 2000). The sensitivity of the system performance to 

an input variable iX  is described by the sensitivity index iSV . The sensitivity index is the ratio of the 

variance of the conditional expectation to the total variance.  

 For test planning, a large sensitivity index indicates that reducing the variance of that variable can 

reduce the system performance variance. This suggests that, in order to reduce system performance 

variance, a test plan should focus on reducing that input variable’s variance. A small sensitivity index for 

an input variable suggests that reducing that variable’s variance should be a low priority for testing. 

 In the case considered here, the failure probabilities of the three components ( AP , BP , and CP ) are 

the input random variables, and the failure probability of the system is the system performance (or output 

random variable). In particular, we can calculate the sensitivity indices for our example system as 

follows: 
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 (7) 

4.1.2. Observing Mean and Variance for different results 

The variance of the probability distribution is a measure of uncertainty about the parameter that the 

probability distribution models. In general, a distribution with smaller variance means that there is less 

uncertainty about the parameter. For the problem of test planning, we may hope to conduct tests that will 

yield a posterior distribution with a variance that is smaller than some threshold.  

 Pham-Gia and Turkann (1992) derived lower bounds on the number of additional samples needed to 

satisfy an upper bound on the posterior variance for a random probability modeled with a beta 

distribution. Unfortunately this result is not directly applicable to reducing the variance of the system 

failure probability by testing only the components. 
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 In the case considered here, a test plan conducts An  tests of component A, Bn  tests of component B, 

and Cn  tests of component C. The test plan can be summarized as { , , }A B CT n n n . If there Ax  failures 

of component A, Bx  failures of component B, and Cx  failures of component C, then the posterior 

distributions of the component failure probabilities are as follows: ~ ( , )A A A A A AP beta x n x    , 

~ ( , )B B B B B BP beta x n x    , and ~ ( , )C C C C C CP beta x n x    . From these posterior 

distributions, one can calculate the mean and variance of the system failure probability as discussed in 

Section 2. Of course, this must be repeated for each of the      1 1 1A B Cn n n      possible test 

results. 

4.2. METRICS OF UNCERTAINTY FOR IMPRECISE DISTRIBUTIONS 

As we did with the precise priors, we will consider two different strategies. The first is a variance-based 

sensitivity analysis of the prior distribution, which allows one to ignore the possible test results. The 

second strategy considers the possible outcomes of a test plan. 

 One of the motivations for using imprecise probabilities instead of precise probabilities is that they 

allow the total uncertainty to be captured more adequately, by separating imprecision and probability. If 

the variance generally captures the variability, the natural question follows: how can imprecision be 

measured? Or more generally, how can we measure the total uncertainty? 

 This issue has been pursued by various authors (see (Klir and Smith, 2001) for an overview). In short, 

the search for a single, useful measure of total uncertainty has been largely unsuccessful. We begin our 

examination of the problem by considering the extension of precise measures to the imprecise case. 

4.2.1. Imprecise variance-based sensitivity analysis 

Hall (2006) presented an approach to extend variance-based sensitivity analysis to imprecise probability 

distributions. The generalization from the precise case is to consider the minimum and maximum 

sensitivity indices across the set of input distributions. Let F  be the set of input distributions (jointly 

across all inputs). Let ,i pSV  be the sensitivity to input i  given the input distribution p . Then the bounds 

are given by the following: 
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 The difficulty in calculating these is the need to optimize these indices over the set F. In the case 

considered here, each input distribution p  is a joint distribution over the component failure probabilities. 

Each marginal distribution comes from the imprecise prior distribution for that component.  
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 We will use a numerical approach that selects distributions from the set F  in the following way. 

First, we select a parameter eN  that determines the number of intermediate values for each parameter. 

For parameter As , we calculate the following set of values: 

     0 0 0 00 0 0 0 0 0 0

1 2
, , , , ,

1 1 1

e
A A A AA A A A A A A

e e e

N
s s s s s s s s s s s

N N N

 
      

   
  

 This yields 2eN   values for this parameter. We repeat for the other five parameters. We then take 

all of the combinations, which yields  
6

2eN   joint prior distributions. We choose 3eN  , which was 

determined to be adequate for this problem. More complex systems will require a more complex 

parameter sampling scheme. 

4.2.2. Dispersion of mean and variance 

In Section 4.1.2, the dispersion of the mean and variance were considered for a precise prior. Given an 

imprecise prior, a specific test result will yield an imprecise posterior distribution, which has a range of 

means and a range of variances, as discussed above. The dispersion of the mean and variance (over the 

possible test results) is no longer a sequence of points, as in the precise case; it is instead a sequence of 

sets of mean-variance pairs. 

 In the case considered here, given imprecise priors for the failure probabilities of the three 

components, we can compare different test plans (e.g. test just Component A or test just Component B) 

and determine how they affect the dispersion of the mean and variance. 

 As before, let F be the entire set of prior joint distributions for the component failure probabilities, 

and consider a test plan that conducts An  tests of component A, Bn  tests of component B, and Cn  tests of 

component C. If there Ax  failures of component A, Bx  failures of component B, and Cx  failures of 

component C, then this result yields a set  , , , , ,A B C A B CF x x x n n n  of posterior distributions. There is a 

different 'F  for every test result. Each posterior distribution  , , , , ,A B C A B Cp F x x x n n n   is determined 

by updating a prior distribution p F  as described in Section 4.1.2. From the posterior distribution, one 

can calculate the mean and variance of the system failure probability as discussed in Section 2.  We will 

select distributions from F using the procedure described in Section 4.2.1. 

4.2.3. Imprecision in the mean 

A fundamental measure of imprecision is the range of the mean value across the set of probability 

distributions. For the imprecise beta model, this measure is simply t t . We can measure this range for 

the prior distribution and for each imprecise posterior distribution that results from a specific test result. 

Each result has a particular posterior imprecision (of the mean) associated with it. Ideally, the analyst 
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would like this posterior imprecision to be as small as possible over all results, so we consider the 

maximum imprecision that results across all results. 

 In the case considered here, given the range of means for the failure probabilities of the three 

components, it is easy to see that the minimal failure probability of the system is determined by the 

components’ minimal failure probabilities. Likewise, the maximal failure probability of the system is 

determined by the components’ maximal failure probabilities. Therefore, the prior imprecision in the 

system failure probability can be calculated as follows: 
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Each possible result of a test plan that conducts a total of n tests will yield a set F   of posterior 

distributions. The posterior imprecision in the system failure probability (given this result) can be 

determined as follows: 
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The maximum posterior imprecision over all possible F   (that is, over all possible results for this test 

plan, 0 A Ax n  0 B Bx n  0 C Cx n  ) can be denoted as follows: 

     max ,max n F
F

 


    (11) 

 One can also consider the average mean over the results for a given prior. For each prior and possible 

test result, that prior is used to determine the probability of that test result and the posterior mean given 

that result. Here, let  0, , ( )x n p   be the posterior mean, which depends upon the prior 0 ( )p   and the test 

result. These posterior means and prior probabilities of each result are then used to calculate an average 

mean for that prior:  
0 ( ) 0( , , )p p xE x n p  . Across a set of priors 0p F , one can find the minimum 

and maximum of 
0p . 

4.2.4. Imprecision in the variance 

Just as the mean of the posterior depends on both the priors and the experimental results, so does the 

variance. The variance is a traditional measure of uncertainty in precise formulations of probability. Even 

in an imprecise approach, the analyst would like the variance to be as small as possible. However, the 

variance is no longer a precise measure, but rather an interval for each possible result. Strictly speaking, if 
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the analyst requires a posterior variance below some threshold, then he must consider the maximum 

variance across all combinations of prior distributions and possible experimental results.  

 As we did with the mean, the analyst could calculate the expected posterior variance across all results 

given the prior. When the prior is precise, this yields a single number. When the prior is imprecise, this 

also results in an interval. The motivation for such as approach is that although the experimental results 

may not match the prior mean estimate, the analyst believes (by definition) that the priors are a reasonably 

accurate model of the results. For example, assume the prior mean is the range [0.05,0.10] . Then if one 

performs 20 experiments, it is highly unlikely that one will observe 20 failures. Thus, this result is 

discounted by its improbability, unlike the maximum variance approach that would consider this extreme 

case on an equal footing with all others. 

 One can also consider measuring the imprecision using the range of the variance across the set of 

probability distributions. The imprecision in the variance reflects how well the variance is known.  

Ideally, an analyst would pick a test design that will result in a posterior variance that tends to be low and 

well known.  The prior imprecision in the variance, the posterior imprecision in the variance given a 

particular result, and the maximum imprecision over all results are shown in Equations (12)–(14) 

respectively.  

  0 max min
p Fp F

V V p V p 


          (12) 

  , max minn F
p Fp F

V V p V p 
   

           (13) 

     max ,max n F
F

V V


    (14) 

 To estimate these measures, we will select distributions for each F   by updating the distributions 

from F that are generated using the procedure described in Section 4.2.1.  

5. Results 

 As mentioned above, in this paper we are primarily concerned with determining which component 

should receive more tests. To illustrate the approaches to evaluating test plans, we will consider the 

example of Section 2 using both precise priors and imprecise priors about the failure probabilities of the 

three components. We consider two scenarios for each approach. 

5.1. SCENARIO 1 

In the first scenario, the priors for the failure probability distributions are precise beta distributions. The 

parameters are shown in Table 1. The high prior mean for Component C is chosen for illustrative 
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purposes; it is unlikely that any real system would have a component with such a high mean estimate of 

probability of failure.  For the distribution of the system failure probability, the prior mean equals 0.2201, 

and the prior variance equals 0.0203. 

 

Table 1. Priors for Scenario 1 
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5.1.1. Scenario 1: Variance-based Sensitivity Analysis 

The variance-based sensitivity analysis gives the following values: 

0.4814

0.4583

0.0181

A

B

C

SV

SV

SV







 

 These values indicate that the output variance is similarly dependent on the variance of the failure 

probabilities for Components A and B. It is highly insensitive to component C. This suggests that testing 

be focused on Components A and B, but it does not suggest the appropriate allocation between them. 

5.1.2. Scenario 1: Observing Mean and Variance for different results 

Figure 1 shows the dispersion of the mean and variance for seven test plans: (1) 12 tests of Component A, 

(2) 12 tests of Component B, (3) 12 tests of Component C, (4) 4 tests of each component, (5) 6 tests of 

Components A and B, (6) 6 tests of Components A and C, and (7) 6 tests of Components B and C. The 

multiple points for each test plan correspond to the set of possible outcomes of the test.  

 Figure 1 reveals that the test plan makes a significant difference in the mean and variance of the 

possible posterior distributions. Because  CE P  is near 0.5 and the 0 10s  , test plan 3 can change 

 CE P  very little for any test result. When Component C fails, Component B becomes serially connected 

to Component A and its influence on the system failure is greatly increased.  
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 Test plans 1 and 2, on the other hand, can change the mean a great deal, from a low near 0.15 to a 

max near 0.65, and can substantially reduce  V  . Test plans 4, 5, 6, and 7 likewise have a large range of 

possible posterior means. Test plans 4, 6, and 7 have generally larger posterior variance than test plan 5, 

which tests only the two components with the largest sensitivity indices. In this scenario, it seems that 

testing the components with the largest sensitivity indices is a worthwhile plan because this testing can 

reduce the variance of the corresponding component failure probability distributions, which has a large 

impact on the variance of the system failure probability distribution. 

5.1.3. Posterior variance 

Table 2 shows the minimum and maximum variance of  V  , the posterior system failure probability 

distribution, for each of the seven test plans (taken over the possible results for each plan). Test plans 1 

and 2 test the components with the largest sensitivity indices and reduce variance significantly. Test plan 

5 can significantly reduce variance, as it has a significantly lower minimum variance. Its maximum 

variance is moderate, as poor test results for both Components A and B would increase the  AV P  and 

 BV P , increasing  V  . Test plan 4 has similar performance. Test plan 3 has the largest minimum and 

 
Figure 1. Dispersion of the mean and variance of the system failure probability for different test 

plans for Scenario 1. 
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maximum posterior variance. Reducing the variance of Component C’s failure probability distribution 

cannot reduce  V   much, but poor test results could increase  CE P  greatly, which in this case 

increases  V   by making it more sensitive to the highly uncertain performance of Component B as in 

Equation (7). 

Table 2. Posterior variance for scenario 1 

Test Plan 

#:

{ , , }A B Cn n n  

Posterior Variance Across Test Results 

Min Max 

1:{12,0,0}  0.0110 0.0151 

2:{0,12,0}  0.0117 0.0175 

3:{0,0,12}  0.0131 0.0291 

4:{4,4,4}  0.0071 0.0195 

5:{6,6,0}  0.0059 0.0181 

6:{6,0,6}  0.0094 0.0228 

7:{0,6,6}  0.0117 0.0177 

5.2. SCENARIO 2 

In the second scenario, as in the first, the priors for the failure probability distributions are precise beta 

distributions. The parameters are shown in Table 3. The difference from Scenario 1 is that Component C 

now has the same distribution as Component A. For the distribution of the system failure probability, the 

mean equals 0.1691, and the variance equals 0.0116. 

Table 3. Priors for Scenario 2 
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5.2.1. Scenario 2: Variance-based Sensitivity Analysis 

The variance-based sensitivity analysis gives the following values: 

0.8982

0.0560

0.0153
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The important position of Component A yields a large sensitivity index. Compared to Scenario 1,  CE P  

is now much smaller, which reduces BSV , as suggested by Equation (7). These values suggest that 

reducing  AV P  by testing Component A should reduce  V   significantly. 

5.2.2. Scenario 2: Observing Mean and Variance for different results 

 Figure 2 shows the dispersion of the mean and variance of the posterior mean and variance of the 

system failure probability distribution for seven different test plans (the same test plans used in Scenario 

1). Although the prior distributions for the failure probabilities for Components A and C are the same, 

testing Component A (which is essential for system operation and has a much greater sensitivity index) 

makes a bigger change in  E   and  V  . In this scenario, the mean-variance dispersion confirms the 

suggestion made by the variance-based sensitivity analysis: testing Component A appears to be the best 

strategy. 

 
Figure 2. Dispersion of the mean and variance of the system failure probability for different test 

plans for Scenario 2. 
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 Components B and C have the same position in the system, but Component B has a smaller s 

parameter and a higher variance. Therefore, testing Component B makes a bigger change in  BE P  and 

 BV P  than the same number of tests of Component C would make in  CE P  and  CV P . Moreover, 

the fact that B CSV SV  suggests that this impact will be larger on  V   than on  E  , which we see by 

comparing test plans 2 and 3 and then comparing test plans 5 and 6. Testing Component B reduces  V   

more than testing Component C. 

 If we look at the possible results of test plan 2, which tests Component B, we see an interesting 

―hook‖ pattern that occurs because the test results with a small number of failures tend to confirm the 

prior, which reduces  BV P . However, results with more failures increase both  BE P  and  BV P , 

which increase  E   and  V  . 

5.2.3. Posterior variance 

Table 4 shows the minimum and maximum variance of  V  , the posterior system failure probability 

distribution, for each of the seven test plans (taken over the possible results for each plan). Test plans 1, 4, 

5, and 6 all have low minimum  V   because all test Component A and can lower  AV P , which make a 

large impact, as we know because Component A has the largest sensitivity index. Test plan 1 also has a 

low maximum  V  , which makes this test plan particularly desirable. As in Scenario 1, test plan 3 has 

the largest minimum and maximum posterior variance. Reducing the variance of Component C’s failure 

probability distribution cannot reduce  V  , but poor test results could increase  CE P  greatly, which in 

this case increases  V   because the large variance  BV P  becomes more important, as in Equation (7). 

Table 4. Posterior variance for scenario 2 

Test Plan 

#:

{ , , }A B Cn n n  

Posterior Variance Across Test Results 

Min Max 

1:{12,0,0}  0.0042 0.0109 

2:{0,12,0}  0.0115 0.0155 

3:{0,0,12}  0.0116 0.0218 

4:{4,4,4}  0.0064 0.0158 

5:{6,6,0}  0.0051 0.0145 

6:{6,0,6}  0.0054 0.0160 

7:{0,6,6}  0.0115 0.0145 

5.3. SCENARIO 3 

In the third scenario, prior distributions are imprecise (we use the imprecise beta model parameterized by 

t and s). Table 5 lists the parameters for each component’s failure probability distribution. We assume that 
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less is known about Component B than the other components, as indicated by the small values for s  and 

the large range for t . The estimated probability of failure of Component C is assumed to be quite large; 

while these values may not make sense in a real system, they are illustrative of interesting information 

management behavior. Note that the precise priors given for the first scenario (Table 1) are included in 

these sets. For selecting priors for the numerical results, as discussed in Section 4.2.1, we use 3eN  . 

Table 5. Imprecise priors for Scenario 3 

Component A B C 

Imprecise  

beta  

parameters 

0

0

0

0

0.15

0.20

10

12

t

t

s

s









 

0

0

0

0

0.15 

0.55

2

5

t

t

s

s









 

0

0

0

0

0.55

0.60

10

12

t

t

s

s









 

 

The mean of the system failure probability distribution ranges from 0.2201 to 0.4640, which is an 

imprecision of 0.2439. The variance ranges from 0.0136 to 0.0332, which has an imprecision of 0.0196. 

5.3.1. Scenario 3: Variance-based sensitivity analysis 

The imprecise variance-based sensitivity analysis yields the results shown in Table 2. These results 

suggest that it is similarly important to test A and B (using the upper bounds), and it is much less 

important to test component C. The maximum for component C is about the same as the minimum for 

Component B, so the values strongly suggest that testing B is more valuable than testing C. 

Table 6. Imprecise variance-based sensitivity analysis Scenario 3 

Component i A B C 

 min ijSV  0.1363 0.2406 0.0116 

 max ijSV  0.7204 0.6960 0.2512 

5.3.2. Scenario 3: Dispersion of mean and variance 

We will consider the same seven test plans used in Scenarios 1 and 2. Based on the sensitivity indices, it 

appears that test plans 1 (12, 0, 0), 2 (0, 12, 0), and 5 (6, 6, 0) should have the most potential to reduce 

 V  . We begin by examining the dispersion of the mean and variance estimates across all possible 

experimental results for these three test plans, as shown in Figure 3. In general, a figure showing all of 

these points gets very difficult to display and view due to overlap. Consequently, we generally will 

display just the convex hull of each result of each test plan, as shown in Figure 4, which are clearer when 
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viewed in color. While these sets of points are not always convex, this approximation is reasonable for the 

qualitative analysis performed with them.  

 All three test plans (1, 2, and 5) can significantly change  E  . The impact of test plan 2 (0, 12, 0) is 

mitigated by the system structure, in which Component B is parallel to Component C. The maximum 

 V   of test plan 1 (12, 0, 0) is much greater than the other two test plans. The significant imprecision in 

the priors, especially when combined, leads to large imprecision for any test result, especially in test plan 

1 (12, 0, 0). Because the s parameters for Component B are smaller than those for Component A, testing 

Component B reduces  BV P  more than testing Component A reduces  AV P . Of course, testing both 

components (as in test plan 5) can reduce both component variances, which is quite effective at reducing 

 V   while still being responsive to the mean. 

 Figure 5 shows the convex hulls for the results of test plans 3 (0, 0, 12), 6 (6, 0, 6), and 7 (0, 6, 6). 

Test plan 6 leads to results that have a wide range of means and variances. Test plan 3 also has results 

with large variance, though not as large a range as test plan 6. The results for test plan 7 are similar to 

those of test plan 5 (shown in Figure 4), but the variance is not as small. As suggested by the sensitivity 

indices, testing A has more impact than testing C. 

 Figure 6 includes the convex hulls for the results of test plan 4 (4, 4, 4), as well as the promising plans 

of 2, 5, and 7. Plan 4 yields results that are quite close to those of test plan 5. Because it tests all three 

components and can change all three mean values, the max  E   is larger in the results of test plan 4. 

The extreme results of test plan 5 were limited by no change in  CE P . 

 
 

Figure 3. Sample results for test plans 1, 2, and 

5 for Scenario 3. 

Figure 4. Convex hull for each result of test 

plans 1, 2, and 5 for Scenario 3. 
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Figure 5. Convex hull for each result of test 

plans 3, 6, and 7 for Scenario 3. 

Figure 6. Convex hull for each result of test 

plans 2, 4, 5, and 7 for Scenario 3. 

 

5.3.3. Scenario 3: Imprecision in the mean 

Table 7 describes the imprecision of the  E   that can result from the various test plans. In each row, the 

first column is the test plan. The second column (―Minimum minimum‖) is the minimum possible mean 

over all possible distributions and test results. The third column (―Maximum maximum‖) is the maximum 

possible mean over all possible distributions and test results. The fourth column (―Minimum average‖) is 

the minimum average mean (see Section 4.2.3). The fifth column (―Maximum average‖) is the maximum 

average mean over all the priors. The sixth and seventh columns are different. Here, the imprecision in 

 E   is calculated for each possible test result using Equation (10), and the minimum and maximum are 

taken over the possible test results. 

 In these results, test plan 4 (4, 4, 4) stands out for its low minimum minimum, low minimum average, 

and low maximum average. This occurs because this test plan is more likely to have zero failures (than 

other test plans that run more tests of a component) and it includes the possibility of zero failures of all 

three components. Either result would significantly reduce the components’ means and thus  E  . Such a 

result would also leave little imprecision in  E  , as indicated in its very low minimum imprecision. Test 

plans 2, 4, 5, and 7 have a maximum imprecision that is less than the imprecision in the prior. All of these 

plans test Component B and reduce the large imprecision in  BE P , which reduces the imprecision in 

 E  . Note that testing Component A (as in test plans 1 or 6) does not reduce the imprecision 

significantly, suggesting that the sensitivity indices are not good predictors of which tests will do well on 

this measure. Similarly, the suggestion to not test Component C based on the sensitivity indices is 

contradicted. 
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Table 7. Posterior mean analysis for scenario 3 

Test Design 

#:

{ , , }A B Cn n n  

 E   Imprecision in  E   

Minimum 

minimum 

Maximum 

maximum 

Minimum 

average 

Maximum 

average 
Minimum Maximum 

Prior 0.2201 0.4640 n.a. n.a. 0.2439 

1:{12,0,0}  0.1451 0.7564 0.2143 0.4680 0.1463 0.2519 

2:{0,12,0}  0.1600 0.6491 0.2113 0.4766 0.1085 0.1486 

3:{0,0,12}  0.1819 0.5600 0.2192 0.4678 0.1501 0.3112 

4:{4,4,4}  0.1119 0.6367 0.1644 0.2916 0.0709 0.1817 

5:{6,6,0}  0.1124 0.7662 0.2116 0.4778 0.1172 0.1952 

6:{6,0,6}  0.1405 0.7063 0.2153 0.4690 0.1474 0.3019 

7:{0,6,6}  0.1610 0.7325 0.2151 0.4773 0.1126 0.2174 

5.3.4. Scenario 3: Imprecision in the variance 

Table 8 describes the imprecision of  V   that can result from the various test plans. The table structure 

and results shown are similar to those of Table 7. In these results, test plans 4 and 5 (which test both 

Components A and B) are notable for their low values on all of the measures. Both plans reduce the 

variance associated with these components’ failure probability distributions, which can significantly 

reduce  V  , as the sensitivity indices indicate. 

 As mentioned above, because the s parameters for Component B are smaller than those for 

Component A, testing Component B reduces  BV P  more than testing Component A reduces  AV P . 

Table 8. Posterior variance analysis for scenario 3 

Test Design 

#:

{ , , }A B Cn n n  

 V   Imprecision in  V   

Minimum 

minimum 

Maximum 

maximum 

Minimum 

average 

Maximum 

average 
Minimum Maximum 

Prior 0.0136 0.0332 n.a. n.a. 0.0196 

1:{12,0,0}  0.0075 0.0344 0.0094 0.0304 0.0046 0.0259 

2:{0,12,0}  0.0099 0.0181 0.0103 0.0153 0.0035 0.0051 

3:{0,0,12}  0.0103 0.0465 0.0134 0.0310 0.0070 0.0293 

4:{4,4,4}  0.0059 0.0162 0.0075 0.0118 0.0020 0.0054 

5:{6,6,0}  0.0056 0.0189 0.0083 0.0150 0.0022 0.0063 

6:{6,0,6}  0.0068 0.0458 0.0107 0.0295 0.0041 0.0309 

7:{0,6,6}  0.0100 0.0183 0.0109 0.0183 0.0026 0.0060 
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Consequently, when comparing plans that test Component B to those that test Component A, we see that 

test plan 2 reduces  V   and the imprecision in  V   more than test plan 1, and test plan 7 reduces these 

measures more than test plan 6. The exceptions are the minimum-minimum and minimum average 

because test plans 1 and 6 include the possibility of dramatically reducing  AV P  and  V   if no failures 

are observed. 

 These results are more consistent with the sensitivity indices. Testing just Component C leads to the 

worst performance (according to most metrics). However, test 4, in which all three components are tested, 

performs very well, even though it includes testing C. This is because testing A and B change the actual 

sensitivities. This is related to the difference between batch testing and sequential (i.e. one-at-a-time) 

testing.  

5.4. SCENARIO 4 

For the fourth scenario, consider the imprecise prior distributions given in Table 9. The difference from 

Scenario 3 is only in component C: we now assume the probability of failure is believed to be much lower 

and more realistic. Note that the precise priors given for the first scenario are included in these sets. For 

selecting priors for the numerical results, as discussed in Section 4.2.1, we use 3eN  . 

Table 9. Imprecise priors for Scenario 4 
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 The mean of the system failure probability distribution ranges from 0.1691to 0.2880, which is an 

imprecision of 0.1189. The variance ranges from 0.0100 to 0.0173, which is an imprecision of 0.0073. 

5.4.1. Scenario 4: Variance-based sensitivity analysis 

 The imprecise variance-based sensitivity analysis yields the results shown in Table 10. ASV  and CSV  

have remained roughly the same. Compared to Scenario 3, BSV  has dropped due to the drop in  CE P . 

These results suggest that testing Component A and reducing its variance will have the most impact on 

reducing  V  .  
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Table 10. Imprecise variance-based sensitivity analysis Scenario 4 

Component i A B C 

 min ijSV  0.5438 0.0210 0.0095 

 max ijSV  0.9590 0.1819 0.2515 

 

5.4.2. Scenario 4: Dispersion of mean and variance 

We will consider the same seven test plans used in the previous scenarios. Based on the sensitivity 

indices, it appears that test plan 1 (12, 0, 0) should have the most potential to reduce  V  . Because 

testing Component B can reduce the large imprecision in  BE P , we expect that test plans that include 

Component B will reduce the imprecision in  E  . Figure 7–Figure 9 show the convex hull of each 

result of each test plan. 

  

 
 

Figure 7. Convex hull of each result for 

Scenario 4, test plans 1, 2, and 5. 

Figure 8. Convex hull of each result for 

Scenario 4, test plans 3, 6, and 7. 
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Figure 9. Convex hull of each result for Scenario 4, Tests 1, 4 and 7 

 

 Test plan 1 has the greatest range of  E  , which reflects the critical location of Component A in the 

system. Moreover, this plan reduces  V   significantly, as the sensitivity index suggested. Test plan 5 

has a slightly smaller range of  E   and does not reduce  V   as much, though it does more than test 

plan 2. In the results of test plan 2, we see again the behavior noted in Scenario 2 (the ―hook‖ in Figure 

2), but now multiplied for a number of priors. The entire convex hull follows this trajectory. For a given 

prior, when the test results confirm the prior, testing Component B reduces  BV P . However, poor test 

results increase both  BE P  and  BV P , which increase  E   and  V  . 

 Testing Component C (test plan 3) is not helpful. Test results that confirm the prior tend to shrink the 

range of  E   compared to the prior. However, poor test results increase both  CE P  and  CV P , which 

increase  E   and  V  . Test plan 6 can also give high-variance results because it does not reduce 

 BV P , which is relatively large, and poor results can increase both  AV P  and  CV P . Test plan 7 can 

reduce both  BV P  and  CV P , but, as the sensivity indices suggest, this cannot reduce  V   as much 

as reducing  AV P . Test plan 4 can reduce all three component-level variances, but the limited number of 

test results means that the  AV P  is not reduced as much as it is in test plan 1, which limits the reduction 

of  V  . 

5.4.3. Scenario 4: Imprecision in the mean 

Table 11 describes the imprecision of  E   that can result from the various test plans. The table structure 

and the types of results shown are identical to those of Table 7. Test plan 1 yields the most extreme values 

of minimum-minimum and maximum- maximum because no failures (or all failures) significantly affects 

 AE P , which has a large impact on  E   due Component A’s position in the system. 
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 Most of the test plans have the same minimum average and maximum average, which are close to the 

minimum and maximum prior  E  . This is not surprising since extreme test results (and large changes 

from a prior to its posterior) such as observing all failures are unlikely when the number of tests is large 

enough.  

 As in Scenario 3, the test plans that include Component B reduce the large imprecision in  BE P , 

which reduces the imprecision in  E  . Test plans 3 and 6, which don’t include Component B, not only 

fail to reduce the large imprecision in  BE P  but also add imprecision when a large number of failures for 

Component C add imprecision to  CE P . Similarly, though not to the same degree, test plan 4 can add 

imprecision. As noted in the results of Scenario 3, testing just Component A (as in test plans 1) does not 

significantly reduce the imprecision, suggesting that the sensitivity index is not a good predictor of which 

tests will do well on this measure. The greatest potential reduction in imprecision can occur when A and 

B are tested equally in test plan 5. 

Table 11. Posterior mean analysis for scenario 4 

Test Design 

#:{ , , }A B Cn n n  

 E   Imprecision in  E   

Minimum 

minimum 

Maximum 

maximum 

Minimum 

average 

Maximum 

average 
Minimum Maximum 

Prior 0.1691 0.2880 n.a. n.a. 0.1189 

1:{12,0,0}  0.0891 0.6764 0.1643 0.2934 0.0918 0.1099 

2:{0,12,0}  0.1527 0.3497 0. 1671 0. 2916 0.0732 0.1041 

3:{0,0,12}  0.1587 0.4800 0.1682 0.2912 0.0853 0.2567 

4:{4,4,4}  0.1120 0.6367 0.1656 0.2918 0.0709 0.1817 

5:{6,6,0}  0.0988 0.5888 0.1647 0.2955 0.0685 0.1100 

6:{6,0,6}  0.1065 0.6375 0.1644 0.2926 0.0809 0.2190 

7:{0,6,6}  0.1530 0.5550 0.1667 0.2936 0.0737 0.1790 

 

5.4.4. Scenario 4: Imprecision in the variance 

Table 12 describes the imprecision of  V   that can result from the various test plans. The table structure 

and types of results shown are identical to those of Table 8. In these results, test plan 1 is notable for its 

low values on almost all of the measures (the only exception being the maximum imprecision). This plan 

can substantially reduce  AV P , which reduces  V  , as the sensitivity indices indicate. As we saw in 

Scenario 2, poor test results for Component C can greatly increase  V  , and we see that here in the 

maximum maximum for test plan 3. 
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 Unlike the results for the mean in Table 11, here we see that testing Component A, as test plans 1, 5, 

and 6 do, can reduce the minimum average and maximum average (compared to the prior) because they 

substantially reduce  AV P , which reduces  V  , as the sensitivity indices indicate. The other test plans 

have less impact because the sensitivity indices of the other components are smaller. All of the test plans 

except test plans 3 and 6 (which can greatly increase  V  ) reduce the imprecision in  V  . 

Table 12. Posterior variance analysis for scenario 4 

Test Design 

#:{ , , }A B Cn n n  

 V   Imprecision in  V   

Minimum 

minimum 

Maximum 

maximum 

Minimum 

average 

Maximum 

average 
Minimum Maximum 

Prior 0.0100 0.0173 n.a. n.a. 0.0073 

1:{12,0,0}  0.0034 0.0117 0.0053 0.0110 0.0015 0.0068 

2:{0,12,0}  0.0097 0.0181 0.0098 0.0155 0.0045 0.0061 

3:{0,0,12}  0.0098 0.0325 0.0100 0.0160 0.0048 0.0189 

4:{4,4,4}  0.0059 0.0162 0.0074 0.0117 0.0020 0.0054 

5:{6,6,0}  0.0048 0.0146 0.0067 0.0116 0.0019 0.0062 

6:{6,0,6}  0.0049 0.0243 0.0068 0.0119 0.0024 0.0165 

7:{0,6,6}  0.0097 0.0155 0.0098 0.0145 0.0028 0.0050 

6. Discussion 

The above results, though for specific scenarios and a specific system design, demonstrate some 

principles that we believe are generally applicable to problems of this type. 

 First, examining the dispersion of the mean and variance is a useful way to determine the possible 

outcomes of a test plan. Comparing different dispersions can identify which plans are most likely to 

reduce system-level variance and have a large impact on system-level mean. 

 Next, the variance-based sensitivity analysis is not a substitute for looking at the dispersion of the 

mean and variance, especially in the imprecise scenarios. It does give some prediction into which 

components should be tested. Because it is computationally less expensive to calculate the sensitivity 

indices than the potential posteriors across all results, this is important. In particular, testing a component 

with a high sensitivity index can reduce system-level variance substantially if the number of tests is large 

enough relative to the s parameter (a small number of tests won’t change the component-level variance 

enough if the s parameter is large). However, testing a component with a small sensitivity index may 

greatly increase system-level variance; only examining the dispersion of the mean and variance can reveal 

that. 
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 However, the sensitivity indices do not give adequate insight into joint testing—that is, testing 

multiple components. In Scenario 3, the sensitivity indices clearly suggested that testing Component C 

was much less important than testing A or B. However, the smallest maximum-maximum and second 

smallest minimum-minimum posterior variances actually occur with test plan 4, which tests all three 

components equally (see Table 8). This test plan also yields the smallest maximum imprecision in the 

variance, which means that its worst case result leads to the most information about the variance than any 

other test’s worst case. This is ideal in that not only does the variance have the smallest maximum, but it 

will be known accurately, whatever the actual result. It should be noted that one could also consider joint 

sensitivity indices, an analysis that was not performed in this study and should be considered in future 

work. 

  A sensitivity index does not give much insight into how testing that component will affect the 

imprecision of the system-level mean. While expected, since they deal with the variance and not the 

mean, the results confirm this result. The adjustment from the precise sensitivity indices to the imprecise 

ones is necessary when using imprecise probabilities, but it does not sufficiently capture all important 

aspects of the imprecision. For example, in Scenario 4, the sensitivity indices clearly suggest that testing 

Component A is most important, and from a variance perspective, it is. However, the best reduction in the 

imprecision of the mean actually occurs in test plan 5, when both A and B are tested. Similarly, in 

Scenario 3, the best reduction in imprecision in the mean goes from either testing just A or testing all 

three equally (Table 7), although the sensitivity indices clearly suggested that testing C was unimportant, 

and were relatively inconclusive between A and B. 

 Testing a component with large imprecision in its mean failure probability is useful because it reduces 

the component-level imprecision, which reduces the system-level imprecision. However, if the 

component-level imprecision is low, testing that component may increase imprecision of the system-level 

mean and variance if the results contradict the prior information. Again, the dispersion plot will show this 

potential. 

 The minimum and maximum average measures (for system-level mean and variance) are not very 

useful. In Scenario 4, they change very little from the values for the prior. In Scenario 3, they can change 

significantly, but the dispersion plot will show this as well. Additionally, the minimum-minimum and 

maximum-maximum metrics yield similar rankings to those from the minimum-average and maximum-

average respectively. Theoretically, the average metrics give a more accurate insight into the actual 

posterior means and variances that would result from test plans, but as far as choosing a test plan, it is 

only the ranking that matters. Additionally, the average values are computationally more expensive to 

compute. 

 In this example, many posterior statistics were analytically computable, as shown in Equations (1)-(5) 

and Equation (7). In general, the posterior system distribution would need to be calculating using a 
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double-loop Monte Carlo simulation, or a more advanced method (for a summary, see Bruns and Paredis, 

2006). This greatly increases the computational costs over this example. However, having an estimate of 

the posterior distribution allows one to use other uncertainty metrics, such as the entropy, the Aggregate 

Uncertainty (Klir and Smith, 2001), or imprecise posterior breadth measures (Ferson and Tucker, 2006).  

Consideration of these metrics is left for future work. 

7. Summary 

This paper has presented and compared different strategies for measuring the uncertainty of precise and 

imprecise distributions for use in making test planning decisions. In this paper we have not considered 

specific approaches for making decisions in the presence of uncertainty or estimating the economic value 

of the information, since these depend on the problem context and the preferences of the decision-maker.  

 Instead, we considered the variance and imprecision of the posterior distributions more directly. In 

some cases, this will be sufficient to make a decision. Future work will need to consider how to integrate 

the approaches presented here with approaches in information economics, decision analysis, and 

optimization to help one select the best test plan. 
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Abstract: In many engineering disciplines the interesting model parameters are estimated from a large 

number of heterogeneous and redundant observations by a least-squares adjustment. The significance of 

the model parameters and the model selection itself are checked with statistical hypothesis tests. After 

formulating a null hypothesis, the test decision is based on the comparison of a test value with a quantile 

value. The acceptance and the rejection of the null hypothesis are strongly related with two types of 

errors. A type I error occurs if the null hypothesis is rejected, although it is true. A type II error occurs if 

the null hypothesis is accepted, although it is false. This procedure is well known in case of only random 

errors for the observations.  

 If the uncertainty budget of the observations is assumed to comprise both random variability 

(probabilistic errors) and imprecision (interval errors), the classical test strategies have to be extended 

accordingly. In this study we focus on the relation of imprecision and the probability of type I and type II 

errors. These steps are based on newly developed one- and multidimensional hypothesis tests in case of 

imprecise data. The applied procedure is outlined in detail showing both theory and one numerical 

example for the parameterization of a geodetic monitoring network. Its main benefit is an improved 

interpretation of the influence of imprecision in model selection and significance tests. In addition the 

well known sensitivity analysis in parameter estimation can now generally be treated in terms of 

imprecise data. 

 

Keywords: hypothesis testing, imprecision, probability, type I/II error 

 

 

 

1. Introduction  

 

Hypothesis tests are of wide interest for many applications in engineering and mathematical science. 

Different approaches to hypothesis testing exist, which are due to different methods for the description of 

the occurring uncertainties, e. g., in the performed measurements and the prior knowledge about the 

model formulation (for further data processing) and in model selection. The probably most popular 

approaches are statistical tests in parameter estimation, where interesting model parameters are estimated 

from a large number of heterogeneous and redundant observations by a least-squares adjustment. The 

uncertainties are assessed in a stochastic framework: measurement and system errors are modeled using 

random variables and probability distributions. However, the quantification of the uncertainty budget of 
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empirical measurements is often too optimistic due to, e.g., the ignorance of non-stochastic errors in the 

analysis process (Ferson et al., 2007). For this reason in this paper a more general formulation is 

presented which may be closer to the situation in real-world applications. 

 The paper is organized as follows: first, the main steps in uncertainty modeling with respect to non-

stochastic measurement errors are briefly reviewed, see, e. g. (Kutterer, 2004; Neumann et al., 2006). 

Second, two linear hypotheses are introduced as a general approach to imprecise hypothesis testing. The 

main part of the paper deals with the relation of imprecision and the probability of type I and type II 

errors in imprecise hypothesis testing. The applied procedure is outlined in detail showing both theory 

and numerical examples for the parameterization of a geodetic monitoring network. 

 

2. Hypothesis testing in parameter estimation under interval-/fuzzy-uncertainty  

 

2.1.  MODELING OF UNCERTAINTY 

 

In this paper uncertainty is treated in terms of fuzzy-intervals (e. g., Bandemer and Näther 1992), see 

Fig. 1. With a fuzzy-interval A  it is possible to describe uncertain quantities by their membership 

function ( )
A

m x  over the set   of real numbers with a membership degree between 0 and 1: 

 : ( , ( ))
A

A x m x x 
        with     : 0,1

A
m   .                           (1) 

The membership function of a fuzzy interval can be described by its left (L) and right (R) reference 

functions (see also Fig. 1)  
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with mx  denoting the midpoint, r  the radius, and ,l rc c  the spread parameters of the monotonously 

decreasing reference functions (convex fuzzy intervals).  

 
 

Figure 1. Fuzzy interval and its  -cut 
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The - cut  of a fuzzy-interval A  is defined by: 

 : ( )
A

A x X m x   
 ,                                                                                          (3) 

with [0,1] . Each - cut  represents in case of monotonously decreasing reference functions a clas-

sical interval. The lower bound ,minA
  and upper bound ,maxA

  of an - cut  are obtained as:  

  ,minA min A   ,                                                                                                      (4) 

  ,maxA max A   .                                                                                                     (5) 

Throughout the paper we assume symmetric fuzzy intervals. Hence, an equivalent representation of 

symmetric - cuts  can be found by the midpoint 
mA  and radius ,rA

  representation: 

 ,min ,m rA A A    ,                                                                                                      (6) 

 ,max ,m rA A A    .                                                                                                     (7) 

The integral over all - cuts  equals the membership function: 

 
1

0

( ) ( )
A A

m x m x d


   .                                                                                                 (8) 

Furthermore, basic operations on fuzzy intervals are the intersection and the complement; they are defined 

through the following membership functions: 

      :      ( ) min ( ), ( )   x  
BA B A

Intersection C A B m x m x m x


       
              (9_a) 

          :         ( ) 1 ( )                x  C

C

AA
Complement C A m x m x     

              (9_b) 

Fuzzy intervals serve as basic quantities: Random variability is introduced through the fuzzy-interval 

midpoint which is modeled as a random variable and hence treated by methods of stochastics. Here 

random variability is superposed by imprecision which is due to non-stochastic errors of the 

measurements and the physical model with respect to reality. The standard deviation x  is the carrier of 

the stochastic uncertainty, and the spread of the fuzzy-intervals describes the range of imprecision. 

For the modeling of imprecision it is important to know that the original measurement results are 

typically preprocessed before they are used in the further calculations. These preprocessing steps 

comprise several factors p  influencing the observations (see also Fig. 2):  

 Physical parameters (model constants) for the reduction and correction steps from the original to 

the reduced measurements  

 Sensor parameters (e. g., remaining error sources that cannot be modeled)  

 Additional information (e. g., temperature and pressure measurements for the reduction steps of a 

distance measurement) 
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Most of these influence factors are uncertain realisations of random variables; their imprecision is 

meaningful by many reasons: 

 The model constants are only partially representative for the given situation (e. g., the model 

constants for the refraction index for distance measurements). 

 The number of additional information (measurements) may be too small to estimate reliable 

distributions.  

 Displayed measurement results are affected by rounding errors. 

 Other non-stochastic errors of the reduced observations occur due to neglected correction and 

reduction steps and for effects that cannot be modeled.  

Figure 2 shows the interaction between the observation and analysis model and their influence factors. 

While correction and reduction steps are systematic, the imprecision of the influence parameters is directly 

transferred to the measurements, which are now carrier of random variability and imprecision.  

 

Figure 2. Interaction between the observation/analysis model and their influence factors 

The non-stochastic part of the influence factors is described by fuzzy-intervals. This step is based on expert 

knowledge and on error models concerning the deterministic behavior of these parameters. The propagation 

of uncertainty is then separated into two parts. The stochastic part is treated with the law of variance-

covariance propagation. Based on the assumption that imprecision is small in comparison with the measured 

values, we derive the data imprecision by means of a sensitivity analysis of the mostly sophisticated 

observation models (Neumann et al., 2006). 
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2.2.  GENERAL FORM OF A LINEAR HYPOTHESIS IN IMPRECISE HYPOTHESIS TESTING 

 

2.2.1.  The pure stochastic case    

 

In this subsection a general approach to imprecise hypothesis testing in parameter estimation is presented. 

We focus on the standard case where the vector y  is assumed to be normal distributed with expectation 

vector    

   yE y  ,           (10_a) 

and (positive definite) variance-covariance matrix yy  (vcm)  

   2

yy 0 yyD   y Q ,                     (10_b) 

where 2

0  denotes the variance of the unit weight and yyQ  the associated cofactor matrix. Such a random 

vector may either be an observable quantity or a derivable quantity such as the parameters estimated by 

means of a least-squares (LS) adjustment. The next steps of these well-known test procedure leads to a 

quadratic form, which may be given by 

 2  ( , )T f -1

yyy Σ y  .             (11) 

In general, the quadratic form follows a non-central chi-square distribution with f rank( ) yyΣ  degrees of 

freedom and the non-centrality parameter  . In the following, the vector y is assumed as the vector of 

reduced observations  0y l - a  within a least-squares adjustment, with the random vector of observations 

l  and the deterministic vector of approximate observations 
0a . Then the estimated parameters x̂  of a 

least-squares adjustment (Gauß-Markov model) are given by the following equation: 

 0 0 0
ˆ ( ) ( ) ( )   T T
x l,x x A PA A P l - af ,                                                                (12) 

with the n u  column regular design matrix A , the 1n  vector of approximate values 0x  of the 

parameters x , the n n  regular weight matrix 
1

yy

P Q . The number of observations is n  and the 

number of parameters is u . In geodetic networks the normal equations matrix T
A PA  can be rank-

deficient due to an incomplete definition of the coordinate frame through the configuration. If for example 

such a network is composed of distance observations only, it is not possible to estimate coordinates which 

are required in practice. This problem can be overcome if the pseudo-inverse matrix ( )T
A PA  is used; 

see, e. g., (Koch, 1999) which is a standard reference in geodetic literature on parameter estimation (and 

hypotheses tests). Finally, the imprecise vector of estimated parameters x̂  is constructed, based on a 

sufficient number of - cuts : 

  ,min 0 ,
ˆ ( ) r 

  T T
x x A PA A Py F p  ,                                                             (13_a) 

  ,max 0 ,
ˆ ( ) r 

  T T
x x A PA A Py F p  ,                                                            (13_b) 
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1

ˆ ˆ

0

( ) ( )m x m x d


 x x         and        ,min ,maxˆ
ˆ ˆ,m


 

 
 x
x x
  ,                                     (13_c) 

with the matrix of partial derivatives 





x
F

p
 and   denoting the element-by-element absolute value of 

the matrix. 

 

2.2.2.  A linear hypothesis for the standard model in parameter estimation   

 

The standard model in parameter estimation is given by 

 E( ) y Ax ,                                                                                                               (14) 

where the expected value of the reduced observations E( )y  equals Ax . The null hypothesis of a  linear 

hypothesis is then introduced as: 

 0 :     H Cx w ,                                                                                                    (15_a) 

provided that Cx  must be a testable hypothesis, cf. (Koch, 1999) for details concerning the matrix C  and 

the vector w . The null hypothesis must be compared with the alternative hypothesis 

 :     AH  Cx w w .                                                                                            (15_b) 

This leads after a few calculation steps to a quadratic form: 

   2

0
ˆ ˆ( ) ( )  ( ,0)  under  HTT h


   

  
T T

Cx w C A PA C Cx w   ,                       (16) 

that follows under the null hypothesis a central chi-square distribution ( 0  ) with 

 rankh
 

  
T T

C A PA C  degrees of  freedom. In order to avoid overestimation in imprecise hypothesis 

testing, the general form of a linear hypothesis has to be converted to a quadratic form of imprecise 

influence parameters p ; it is obtained as: 

 ,min min

T

m mT

     
     

      
           

T T T T T T

T T T

Δp F K DKF F K DK F K D Δp

y K DKF K DK K D y

w DKF DK D w


 ,                     (17_a) 

 ,max max

T

m mT

     
     

      
           

T T T T T T

T T T

Δp F K DKF F K DK F K D Δp

y K DKF K DK K D y

w DKF DK D w


 ,                    (17_b) 

 
1

0

( ) ( )
T T

m x m x d


          and        ,min ,max,
T

m T T


 
   
  .                                      (17_c) 
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with ,min m ,max m,       Δp p p p p p   ,  


 T T T
K C A PA A P ,  


 

  
T T

D C A PA C  and 
my  the 

midpoint of the reduced observations.  

 

2.2.3.  A linear hypothesis for an extended model in parameter estimation   

 

The presented strategy from Section 2.2.2 has some shortcomings concerning the computational 

complexity. If additional parameters z , e. g., in model selection and outlier detection shall be tested in the 

given enviroment, the model from Equation (15) has to be reformulated and must be fully analyzed 

(including the inversion of the normal equations). This problem can be overcome by an extended model 

in parameter estimation: 

 E( )  y Ax Bz .                                                                                                      (18) 

The linear hypothesis may then be given by: 

 0 :     H
 

 
 

x
C w

z
     versus     :     AH

 
  

 

x
C w w

z
.                                           (19) 

Starting with the extended normal equations (Koch, 1999) 

  0

0

ˆ ( )

ˆ ( )

    
     

    

TT T

TT T

x A P l - aA PA A PB

z B P l - aB PA B PB
,                                                                    (20) 

this procedure leads after a few calculation steps to a modified quadratic form: 

 
2

0

ˆ ˆ
( ) ( ) ( ,0)  under  H

ˆ ˆ

TT j


     

       
      

T T

T

T T

x xA PA A PB
C w C C C w

z zB PA B PB
  . (21) 

This quadratic form follows under the null hypothesis a central chi-square distribution ( 0  ) with 

rankj

  
   
   

T T

T

T T

A PA A PB
C C

B PA B PB
 degrees of  freedom. If only the additional parameters z  have to be 

tested, the null hypothesis 0H  can be reformulated as follows: 

    0

2

:     H
      

          
       

1 2 2

0x x x
C C C 0 C w

wz z z
,                                       (22) 

 and the quadratic form is now easy to handle (Koch, 1999): 

    2

0
ˆ ˆ ( ,0)  under  HT j   

  

+
-1

T T T + T T

2 2 2 2 2 2(C z w ) C B P - PA(A PA) A P B C (C z w )   . (23) 
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According to Section 2.2.2 this quadratic form from Equation (23) has to be converted to a quadratic form 

of imprecise influence parameters p . With  ˆ ˆ ˆ ˆ 0
ˆ ( )

-1
T T

vv vvz B PQ PB B PQ P l - a  and 

 1

ˆ ˆ

 T + T

vvQ P - A(A PA) A ,  ˆ ˆ ˆ ˆ
-1

T T

vv 2 vvJ B PQ PB C B PQ P  and  ˆ ˆ



 
  

-1
T T

2 vv 2M C B PQ PB C  we obtain: 

 ,min min

T

m mT

     
     

      
           

T T T T T T

T T T

2 2

Δp F J MJF F J MJ F J M Δp

y J MJF J MJ J M y

w MJF MJ M w


 ,                        (24_a) 

 ,max max

T

m mT

     
     

      
           

T T T T T T

T T T

2 2

Δp F J MJF F J MJ F J M Δp

y J MJF J MJ J M y

w MJF MJ M w


 ,                       (24_b) 

 
1

0

( ) ( )
T T

m x m x d


          and        ,min ,max,
T

m T T


 
   
  .                                      (24_c) 

The quadratic form from the Equations (23) and (24) is computable from the residuals without a new 

parameter estimation. Therefore the computational complexity is significant reduced.   

 

2.2.4.  Final Test decision based on the card criterion 

 

The fuzzy evaluation of the quadratic forms from the Equations (17) and (24) is based on Zadeh’s 

extension principle (Zadeh 1965), which can be equivalently replaced by the min-max operator of an 

optimization algorithm, cf. (Dubois and Prade, 1980, p. 37) for the theoretical concept and (Möller and 

Beer, 2004) for applications in civil engineering. The optimization problem can be solved, e. g., with a 

standard Newton algorithm, cf. (Coleman and Li, 1996). Figure 3 shows a constructed test value T  and 

the comparison of the imprecise test value with the imprecise regions of acceptance A  and rejection R  

(Neumann et al., 2006). 
 

 
Figure 3. Comparison of the constructed test value T  with the regions of acceptance A  and rejection R  
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Whereas the influence of imprecision on the test decision for a smaller number of observations is 

unimportant, it gets more important for a larger number of observations. This is in full accordance to the 

theoretical concept, because the goodness of fit for the stochastic uncertainty of the parameters increases 

with the number of observations. 

The final test decision is based on the set-theoretical comparison of the imprecise test value (constructed 

using an - cut optimization algorithm) with the region of acceptance A  and the region of rejection R  

(see Fig. 3), cf. (Kutterer 2004) and (Neumann et al. 2006) for detailed explanations. The hypotheses are 

defined by  

 2 ( , ) ;mT k    
0

A

 0         H  the null hypothesis,

 0         H the alternative hypothesis, 

 



                              (25) 

with the non-centrality parameter  . The midpoint of the test value follows under the null hypothesis a 

central chi-square distribution with  {  , }k h j  degrees of freedom. The regions of acceptance A  and 

rejection CR A   are defined as fuzzy intervals. The degree of the rejectability ( )R T   of the null 

hypothesis 0H  under the condition of T  is computed based on the degree of agreement of the test value 

with the region of rejection ( )
R

T 
  and the degree of disagreement of the test value with the region of 

acceptance ( )
A

T 
 . We use the card criterion, because it allows a more suitable description of the degree 

of agreement between two fuzzy intervals. This leads to the equations given below (see also Fig. 3): 

 
 
 

( )
R

card T R
T

card T





 



     and     

 
 

( ) 1
A

card T A
T

card T



 





                                 (26_a)  

  ( ) min ( ), ( )
R R A

T T T    
                                                                                   (26_b) 

For the final test decision, the degree of rejectability ( )
R

T 
  of the null hypothesis has to be compared 

with a suitable critical value [0,1]crit  : 

     0

critR
0

Do not reject H
0,1

Reject H
T

  
     

  


                                                     (27) 

The test is only rejected, if the test value agrees with the region of rejection and disagrees with the region 

of acceptance. This is in full accordance with the theoretical expectations, where observation imprecision 

is an additive term of uncertainty during the measurement process. The choice of crit  depends on the 

particular application and must be based on expert knowledge. For outlier detection we propose to choose 

1crit   and for safety-relevant measures 0crit  . 
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3. Probability of type I errors in imprecise hypothesis testing 

 

In this subsection we focus on the relation of imprecision and the probability of a type I error. The 

probability impr  of a type I error in the imprecise case is defined by:  

   0 impr critR
P T H    

 .                     (28) 

The index „impr“ denotes the case of imprecision. Equation (28) can be reformulated as follows 

  0 f ( )impr m critP T H    ,                     (29) 

with the degree of rejectability ( )
R

T 
  of the null hypothesis under the condition of T as a function f  of 

the midpoint 
mT  of the imprecise test value T .  

  -1
impr crit m 0 P f ( ) T H    .                     (30) 

This leads with respect to Equation (30) after a few calculation steps to the quantile value 
impr

2
1  of the 

chi-square distribution ( k  degrees of freedom) in the imprecise case 

 2 -1
1 ( ,0)  f ( )

impr critk   ,                     (31) 

with -1f  denoting the inverse function of f . In order to illustrate the theoretical concept, an example will 

be shown in Section 5. See (Kutterer, 2004) for a close mathematical formulation in case of classical 

regions of acceptance and rejection in the one-dimensional case. Based on the quadratic form from 

Equation (24), the influence of imprecision on the tests decision is analyzed for different positions for the 

midpoint mT  of the test value (see figure 4).  

 
 

Figure 4. Calculation of the probability of a type I error in the imprecise case (for 0.9crit  ) 
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The calculation of the probability of a type I error is then easy to handle and can be solved by the 

followings steps:  
 

 Step 1: Choose an adequate value for crit  (see Section 2.2.4). 

 Step 2: Compute -1f ( )crit  2
1 ( ,0)

impr
k . 

        Step 3:  Find impr  in such a way that Equation (31) is fulfilled within a negligible threshold.     

 

4. Probability of type II errors in imprecise hypothesis testing 

 

The probability impr  of a type II error in the imprecise case can be derived by 

   crit AR
 P Himpr T    

 .                               (32) 

According to the probability of a type I error, Equation (32) can be reformulated as follows 

   f( )impr m crit AP T H   ,                                             (33) 

with the degree of rejectability ( )
R

T 
  of the null hypothesis under the condition of T as a function f  of 

the midpoint 
mT  of the imprecise test value T . In order to analyze Equation (33), either the non-centrality 

parameter impr  in the imprecise case or the probability impr  of a type II error in the imprecise case must 

be set in advance. This leads after a few calculation steps to the comparison of two chi-square 

distributions (with k  degrees of freedom). The first central chi-square distribution is related to the 

probability of a type I error in the imprecise case and the second one (with the non-centrality parameter 

impr  in the imprecise case) is related to the probability of a type II error.     

 2 2
1 ( ,0) ( , )

impr impr imprk k     .                                             (34) 

The calculation of the probability of a type II error and of the non-centrality parameter in the imprecise 

case can be seen as the following search problem (see figure 5a and 5b):  
 

1. Calculation of the type II error in imprecise hypothesis testing: 
 

 Step 1: Compute the probability of a type I error in the imprecise case (see Section 3). 

 Step 2: Choose an adequate value for impr . 

 Step 3: Find impr  in such a way that Equation (34) is fulfilled within a negligible threshold.   
 

2. Calculation of the non-centrality parameter in imprecise hypothesis testing:  
 

 Step 1: Compute the probability of a type I error in the imprecise case (see Section 3). 

 Step 2: Choose an adequate value for impr . 

 Step 3: Find impr  in such a way that Equation (34) is fulfilled within a negligible threshold.   
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a. Calculation of a type II error 
( constimpr  ) 

 
 

b. Calculation of the non-centrality parameter 

( constimpr  ) 
 

Figure 5. Calculation of the probability of a type II error (a) and the non-centrality parameter (b) in the imprecise case 

 

5. Example for the parameterization of a geodetic monitoring network 

 

In order to illustrate the theoretical concept, three exemplary applications in the parameterization of a 

geodetic monitoring network are presented. The aim of the geodetic monitoring network is to detect 

significant changes of a lock due to changing water levels inside the lock. Figure 6 shows the lock and the 

geodetic monitoring network, which consist of four object points on top of the lock (101-104) and eight 

control points around the lock; see (Neumann et al., 2006) for a detailed description about the geodetic 

monitoring network.  
 

            

Figure 6 – The lock and the geodetic monitoring network 

The coordinates of the object points are estimated within a least-squares adjustment. Therefore special 

geodetic measurements like horizontal directions (a), zenith angles (b) and distances (c) were carried out 
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between the object and control points. The measurements are affected by different types of uncertainty 

(see Table 1 and Section 2.1). The non-stochastic uncertainties are analyzed within a sensitivity analysis 

(see Table 1). 
 

 

Influence factors 
p  

Interval radii 

( 0  ) 

(imprecision) 

Affected 

measurements 

Temperature 1.0 °C  (c) 

Pressure 1.0 hPa  (c) 

Visual axis error 0.1 mgon  (a) 

Collimation 

error 
0.1 mgon  (a) 

Vertical axis 

error 
0.2 mgon  (a) and (b) 

 

a. Main influence factors for the observations 

 

Observations 

Interval radii 

( 0  ) 

(imprecision) 

Standard 

deviation 

Horizontal direction 0.1 mgon  0.5 mgon  

Zenith angle 0.5 mgon  1.5 mgon  

Distance 0.5 mm  3 mm  
 

b. Uncertainties of the observations 

 

Table 1. Influence factors and uncertainties of the observations 
 

First we focus on a single and multiple outlier test. Then a congruence test is evaluated in terms of 

imprecision. For a straightforward comparison to the pure stochastic case, the region of acceptance is 

given by a classical interval with a significance level of 5%  . All computations are based on 11 

different .cuts  
 

5.1.  EXAMPLES IN OUTLIER DETECTION 
 

5.1.1.  Testing procedure for a single measurement 

 

The first example shows an outlier test for a distance measurement. The construction of the test value T  

is based on the imprecise evaluation of the quadratic form in Equation (24) with an cut  optimization 

method.  
 

 
Figure 7 – The degree of rejectability ( )

R
T
  of a single outlier test as a function of the midpoint 

mT  of the test value T  
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Figure 7 shows the degree of rejectability ( )
R

T 
  of the null hypothesis 

0H  under the condition of T as a 

function f  of the midpoint 
mT  of the imprecise test value T . Obviously, in this example the observation 

imprecision is small in comparison to the stochastic uncertainty. For this reason, the test value is tight and 

close to symmetric. 

The probability of a type I error in the imprecise case impr  is strongly related to the choice of the critical 

value 
crit  for the test decision, see Equation (31). Figure 8 shows the probability of a type I error in 

relationship to the choice of 
crit .   

 

Figure 8 – Probability of a type I error in the imprecise case for a single outlier test (depending on the choice of 
crit ) 

 

Figure 9 – Variation of the probability of a type I error in the imprecise case (depending on the choice of crit  and the order of 

magnitude of imprecision) 
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The choice of 
crit  depends on the particular application and must be based on expert knowledge. For 

outlier detection we propose to choose 1crit   and for safety-relevant measures 0crit  . The 

variation of a type I error in the imprecise case impr  depends also on the order of magnitude of 

imprecision. If imprecision is more important in comparison to the stochastic uncertainty, the variation of 

a type I error in the imprecise case increases. Figure 9 shows an example with strong imprecision (twice 

of the imprecision of Table 1), normal imprecision and small imprecision (half of the imprecision of 

Table 1): 

 

5.1.2.  Testing procedure for multiple measurements 

 

The second example shows a multiple outlier test due to an assumed centering error of the instrument, 

while measuring a set of distances at station 102. The construction of the test value T  is based on the 

imprecise evaluation of the quadratic form in Equation (24) with the cut  optimization method. In this 

example, the number of tested observations is four ( 4j  ). Figure 10 shows the probability of a type I 

error in the imprecise case impr .  

 

Figure 10 – Probability of a type I error in the imprecise case for a multiple outlier test (depending on the choice of crit ) 

 

Figure 11 – The non-centrality parameter in the imprecise case (depending on the choice of 
crit  and impr ) 
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To study the influence of imprecision on the probability impr  of a type II error and the non-centrality 

parameter impr  in the imprecise case, it is more meaningful to hold the probability of a type II error 

constant. We focus on three standard cases with 0.1impr  , 0.2impr   and 0.3impr  . The non-

centrality parameter is obtained by the search problem described in Section 4 (see Figure 11). For 

0.5crit   the non-centrality parameter in the imprecise case is greater than in the precise case. This leads 

to a reduced sensitivity regarding the rejection of the null hypothesis.  

 

5.2.  EXAMPLE FOR A CONGRUENCE TEST (EPOCH COMPARISON) 

 

The third example demonstrates an epoch comparison between the years 1999 and 2004. Both epochs are 

estimated within a partially constrained trace minimization with respect to the same six network points. 

The construction of the test value T  is based on the imprecise evaluation of the quadratic form from 

Equation (17). Figure 12 shows the numerical test situation with the probability of a type I error in the 

imprecise case and Table 2 some specifications about the two epochs and the geodetic monitoring 

network. Please note that the configurations in both epochs are different from each other. 

Specification Epoch 1999 Epoch 2004 

Observations n  317 144 

Parameters u  60 39 

Table 2. Specifications about the geodetic monitoring network in the epochs 1999 and 2004 

 

Figure 12 – Probability of a type I error in the imprecise case for a congruence test (depending on the choice of crit ) 

The significant imprecision of the test value in this example is caused by the strong effects of remaining 

systematics in epoch comparison of a geodetic monitoring network. The influence of imprecision on the 

given test situation depends also on the geometric configuration of the geodetic monitoring network. 

Whereas a weak configuration leads to a wider expansion of the test value, a strong configuration 
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decreases the influence of imprecision in the test situation. The strong imprecision leads to a wide 

variation of the probability of a type I error in the imprecise case. In case of 0crit   the null hypothesis 

will be rejected in any rate. For this reason, the probability of a type I error in the imprecise case (for 

0crit  ) is equal to one. 

 

6. Conclusions 

 

In this paper, we show a joint treatment of stochastic and interval/fuzzy uncertainty (imprecision) in 

hypothesis testing in parameter estimation. Imprecision is considered as an additive term of uncertainty 

what leads to a more reluctant rejection of the null hypothesis in case of outlier detection and to an earlier 

rejection of the null hypothesis in case of safety-relevant applications. If imprecision is absent, the results 

of the pure stochastic case are obtained. We focus on the probability of a type I and type II error and the 

non-centrality parameter in the imprecise case. In case of outlier detection the probability of a type I error 

in the imprecise case is lower than in the pure stochastic case and the non-centrality parameter in the 

imprecise case is greater than in the pure stochastic case. In order to detect the same changes than in the 

pure stochastic case, e. g., in a risk analysis, more precise measurements have to be carried out. 

However, the quantification of the uncertainty budget of empirical measurements is often too 

optimistic due to, e.g., the ignorance of non-stochastic errors in the analysis process (Ferson et al., 2007). 

For this reason the above mentioned results in this paper are in our opinion closer to the situation in real-

world applications. In addition, the well known sensitivity analysis in parameter estimation can now 

generally be treated in terms of imprecise data to decide about a suitable model for the collected data. 

Further work has to deal with a significant reduction of the computational complexity of the 

numerical solutions. In addition, it seems to be very promising, that for special types of reference 

functions analytic solutions for type I and type II errors in the imprecise case can be found.  
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Abstract.  A structure is subjected to numerous alterations and modifications during its lifetime. The 

entirety of the modifications of structures constitutes the process of modifications. Numerical monitoring 

of a structure during its lifetime close to reality requires considering the complete load and modification 

processes simultaneously. Both processes run discontinuously. They cause time dependent, discontinuous 

result values. The parameters of the load and modification process are usually uncertain parameters. Due 

to their predominantly informal and lexical uncertainty, they are described as fuzzy processes, 

respectively fuzzy functions. Taking account of this uncertainty in the nume-rical simulation of the load 

and modification process requires a fuzzy structural analysis in the time domain. The fuzzy variables and 

the fuzzy functions are mapped on the fuzzy result variables with the aid of a crisp or uncertain analysis 

algorithm. The numerical simulation is based on an optimization procedure. This procedure searches for 

special points in the input space of the fuzzy variables. Each point of the input space represents a deter-

ministic parameter data set, which is introduced in a deterministic fundamental solution. In this paper the 

geometrically and physically nonlinear analysis of plane rein-forced concrete, prestressed concrete, textile 

concrete, and steel bar structures is chosen as deterministic fundamental solution. The algorithms are 

demonstrated by way of examples. 

 

Keywords: uncertainty modeling, numerical monitoring, nonlinear numerical analysis 

 

1.  Numerical Monitoring of Structures – Conceptual Idea 

 
Numerical monitoring of structures is the numerical simulation of the behaviour of structures during the 

lifetime. A structure is subject to numerous alterations during its lifetime. These modifications may result 

from: 

 

 Sequence of different states during construction 

 Changes in material, e.g., the change of material behavior due to physical or chemical processes 

 Structural alteration resulting from, e.g., refurbishing, bonding of prestressing elements, strengthening 

 Changes in load, described by a loading process 
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   For structural alterations and the sequence of different states during construction the term "system 

modification" is adopted. The system modification comprises cross section modifi-cation, modification 

of structural members, and modification of support conditions [Bartzsch, Graf, Möller & Sickert 2004]. 

The change of prestressing forces may also be understood as system modification. The entirety of the 

system modifications constitutes the modification process. Analyzing a structure during the lifetime close 

to reality requires considering the complete load and modification processes simultaneously. Both 

processes run discontinuous-ly. These processes must be described by means of suitable mechanical 

models. They cause time dependent, discontinuous result values z(t): 

 

pz( t ) f (g( t ),p( t ),F ( t ),T( t ),A( t ), I ( t ),E( t ))           (1) 

 
with 

 

 z  vector of structural responses (e.g., displacements and internal forces) 

 g(t) dead load 

 p(t) statically and dynamic external loads 

 Fp(t)      prestressing forces (internal and external prestressing) 

 T(t) parameters of temperature 

 A(t), I(t)           parameters of geometry representing time dependent values in the modi- 

  fication process (e.g., cross sections, dimensions of the system, location 

   of the reinforcement, and the prestressing elements) 

 E(t) material parameters 

 t = (θ, τ, φ)  spatial coordinates θ = θ1, θ2, θ3, time τ,  

  further parameters φ, e.g. temperature 

 

   The parameters of the load and modification process are usually uncertain parameters. The following 

mathematical models are available to describe uncertainty (see also Figure 1): 



 Randomness  

 Fuzziness 

 Fuzzy randomness 

 

whereas fuzziness and randomness are considered as special cases of the general model fuzzy randomness 

[Möller & Beer 2004]. The choice of the model depends on the available data. 
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Figure 1.   Mathematical models of uncertainty 

 
   If sufficient statistical data exist for a parameter the parameter may be described stochastically. Thereby 

the choice of the type of the probability distribution function affects the result considerably. Often 

statistically not ensured samples exist for a parameter. Then the description by the uncertainty model 

fuzziness is recommended. The model comprehends both objective and subjective information. The 

uncertain parameters are characterized by aid of a membership function μ(x), see eq. (1). The membership 

function assesses the gradual membership of elements to a set [Möller & Beer 2004]. 

 

x xx={(x;μ (x)) | x }; μ (x) 0 xX X                    (2) 

 

The uncertainty model fuzzy randomness is a superordinate model that both stochastic and non-

stochastic properties of parameters enclose. Fuzzy random variables are used if, e.g., reproduction 

conditions vary during the period of observation, or if expert knowledge complements the statistical 

material. A fuzzy random variable is the fuzzy set of their originals, see eq. (3). The originals are 

probability functions of random variables. 

 

ff (x) {(f (x); (f (x))) | f };f    

               (3) 

f (f (x)) 0 f    f           

      

   Due to the predominantly informal and lexical fuzziness of the parameters of the load and modification 

process the uncertain parameters are described by the mathematical model fuzziness. As the parameters 

are time dependent they are considered as fuzzy functions x( t ) x( , , )        or fuzzy processes x( )  .  
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2.  Formal Description of Uncertain Discontinuous Processes 

 

A fuzzy vector x  describes uncertain parameters at discrete points. A fuzzy function x( t ) enables the 

formal description of at least piecewise continuous uncertain parameters in 
1
, 

2
, or 

3
. The following 

definition of fuzzy functions is introduced. Given are 

 

 the fundamental sets T   and X   

 the set F(T) of all fuzzy variables t on the fundamental set T 

 the set F(X) of all fuzzy variables x  on the fundamental set X. 

 

   An uncertain mapping of F(T) to F(X) that assigns exactly one x   F(X) to each t   F(T), 

respectively, is referred to as a fuzzy function denoted by 
 

x( t ) : F(T)   F(X)             (4) 

 

fx( t ) {(x x( t ) t | t ( )}    F T                (5) 

 

In system modification the fundamental set T may contain both the uncertain time coordinate   and 

the crisp spatial coordinate θ. In this case the assigned fuzzy function is denoted by x( t ) x( , )      with 

t ( , )    . The fuzzy function x( , )    enables the modeling of processes with uncertain time points. 

This is of interest if the system is modified at non-precise known points in time. If the time points are 

crisp, the special case 
 

tx( , ) x( t ) {(x x( t )) t | t )}      T                (6) 

 

is obtained [Möller & Beer 2004]. Figure 2 shows a fuzzy process jx( , )   for a specific point with the 

coordinate θj. 

   For the numerical simulation of system modifications the bunch parameter representation of a fuzzy 

function is applied. 

tx(s, t ) {(x x(s, t )) t | t ( )}    F T             (7) 

 

For each crisp bunch parameter vector s s  with the assigned membership value μ(s) a crisp function 

x( t ) (x(s, t )) x( t )    with (x( t )) (s)   is obtained. The fuzzy function x( t )  may thus be 

represented by the fuzzy set of all real valued functions x( t ) x( t )   with (x( t )) (x(s, t )) (s)    
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x(s, t ) {(x( t ), (x( t ))) | x( t ) x(s, t )};             (8) 

(x( t )) (s) s | s s               

 

which may be generated from all possible real vectors s s  . For every t  T takes values which are 

simultaneously contained in the associated fuzzy functional values x( t ) . The real functions x(t) of 

x( t ) are defined for all t  T. These are referred to as trajectories. 

   Numerical processing of fuzzy functions x( t ) (x(s, t ))   demands the discretization of their 

arguments t in space and time. 

 

 

 

 

 

 

 
Figure 2.   Fuzzy  process 

 

 

3  Numerical Processing of Uncertain Discontinuous Processes 

 
In deterministic structural analysis crisp structural input vectors x containing parameters, for example, for 

loads, geometrical and material properties are mapped with the aid of a computational model to structural 

responses such as stresses, internal forces, and displace-ments. This mapping may be denoted as 

 

x z                (9) 

 

in which the arrow indicates the computational model as the mapping model. This deterministic com-

putational model is subsequently referred to as deterministic fundamental solution within the framework 

of an uncertain analysis.  

   If the structural parameters possess uncertainty in the form of fuzziness, eq. (9) may be rewritten as  

 

x z                          (10) 

 

representing a fuzzy structural analysis. The input vectors x  are then formed by fuzzy structural 

parameters ix ; and the fuzzy structural response vectors jz (..., z , ...)   are determined on the basis of 

fuzzy set operations. For processing fuzzy quantities through structural computations in a general and 
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numerically efficient manner a global optimization scheme referred to as α-level optimization has been 

developed [Möller, Graf & Beer 2000]. This includes a modified evolution strategy as the kernel solution 

technique. 

The concept of α-discretization is applied to numerically represent the fuzzy structural parameters 
ix  

as a set of α-level sets for a sufficiently high umber of α-levels. All fuzzy input parameters are discretized 

using the same number of α-levels αk, k = 1 … r. With the aid of the deterministic fundamental solution 

(mapping model) crisp elements from the fuzzy input vectors, x x  , are processed to obtain crisp 

elements of the fuzzy structural response vectors, z z  . In terms of α-level optimization this means the 

mapping of kx X to kz Z , in which kX and kZ  are crisp input and result subspaces, 

respectively, for each α-level. The mapping of all elements of kX  yields the crisp subspace kZ . Once 

the largest element 
rj, kz   and the smallest element 

lj, kz   of the dimension j of the crisp subspace kZ  

have been found, two points of the membership function j(z )  of the fuzzy result zj are known. The 

search for these extreme elements 
rj, kz   and 

lj, kz  on each α-level represents an optimization problem and 

is referred to as α-level optimization, see Figure 3. For the detection of 
rj, kz  and 

lj, kz  with a high 

probability in general cases with no restrictions regarding the properties of the mapping model, which 

represents the objective function in the optimization procedure, the modified evolution strategy according 

to [Möller, Graf & Beer 2000] is employed. This procedure possesses a simple structure, exhibits a 

reasonable robustness with regard to numerical noise in the mapping model, and can be applied very 

flexibly in dependence on the problem by adjusting several effective control parameters. The 

computational costs of the modified evolution strategy increases approximately linearly with the number 

of dimensions of the problem. For a further improvement of the performance of the procedure a post-

computation is carried out after the completion of all optimizations for all α-levels. This includes a 

recheck of all 
rj, kz  and 

lj, kz  with the aid all information gathered during all individual optimizations and 

a re-optimization of those results, which are identified as being not yet optimum. The features robustness, 

numerical efficiency, and general applicability of the modified evolution strategy enable an application of 

α-level optimization in combination with arbitrary nonlinear algorithms as mapping models for structural 

analysis. 
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Figure 3a.   α-level optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3b.   α-level optimization 
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The deterministic fundamental solution represents the respective analysis algorithm and is selectable. 

In this paper the geometrically and physically nonlinear analysis of plane reinforced concrete, prestressed 

concrete, and steel bar structures [Bartzsch 2006] is chosen as deterministic fundamental solution. The 

bars are subdivided into integration sections, the cross sections are subdivided into layers. On this basis 

an incrementally formulated system of second order differential equations for the straight or imperfectly 

straight bar is obtained. The slip at the bond joint is regarded as an additional degree of freedom s. 

 

 

 

 

                         (11) 

 

 

with 

 [k]    counter of iteration steps          

 (n)       counter of increments 

 θ1     bar coordinate 

 Δ         increment 

 z     vector of structural response,  z = {z1; z2} = {u w  s; N Q M Ns} 

 A     matrix of coefficients (constant within the increment) 

 b     "right hand side" of the system of differential equations with loads and varying parts 

resulting from geometrically nonlinearities, with physically nonlinear correction forces, 

as well as with forces from unbonded prestressing 

 d      damping matrix 

m      mass matrix 

 

   The implicit nonlinear system of differential equations for the differential bar sections is linearized by 

increments. All geometrically and physically nonlinear components in the Δb-vector are recalculated after 

every iteration step, and the A-, d-, and m-matrix are recalculated after the completion of the iteration 

within the increment. The solution of the system of differential equations by a Runge-Kutta integration 

results in the system of differential equations of the unknown incremental displacements Δv, velocities 

v , and accelerations v  of the nodes. 

 

                  (12) 

 
   Due to the system modification components of the systems of differential equations (11) and (12) is 

changes. A special modification increment is adopted for the numerical processing of these changes. 

Layers of cross sections or structural members which are added to the system within a system 

modification are inserted stress-free and strain-free into the system. This is numerically processed by 

[k]

[k] [k 1]1
1 (n 1) 1 (n) 1 (n)

1 (n)

[k] [k]

1 (n 1) 1 1 (n) 1 (n 1) 1 1 (n)

d z( )
A( , z) z( ) b( , z)

d

... d( , z) z ( ) m( , z) z ( )





 

  
        

 

        

[k]o
[k] [k] [k]

(n)T(n 1) (n) (n 1) (n) (n) (n) (n 1)K v D v M v P F F           
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modifications of the corresponding components of eqs. (11) and (12). If additionally layers of cross 

sections or structural members are removed from the structure, the stresses of those components are 

transferred to the residual system.  

 

4.  Examples 

 

4.1   STEEL CONCRETE STRUCTURE 

 
For the steel-concrete-composite beam that is displayed in Figure 4, the process of manufacturing and 

loading is analyzed numerically.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.   Cross section, system 

 

   In the states of manufacturing first the span region of the composite beam are concreted, after it the 

support region. According this in the numerical analysis first the fresh concrete load is considered and 

afterwards the respectively concrete layers are taken into consideration within a specific system 

modification increment. Finally the traffic load of p = 400 kN/m (about 60% of the ultimate load) is 

applied. 

 

concrete C35/45  fctm= 3,2 N/mm²   

fcm,cyl = 43 N/mm² 

construction steel S355 fy = 360 N/mm
2   

  

fu = 510 N/mm
2    

 

reinforcement steel  fy = 500 N/mm
2 
   

fu = 550 N/mm
2
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   Between concrete and steel a nonlinear shear stress slip dependency is regarded, see continuous lines in 

Figure 5. It is considered as fuzzy function with the likewise in Figure 5 displayed bunch parameter. In 

comparison the structure is analyzed additionally with a linear shear stress slip dependency with the same 

initial stiffness (dashed lines) and with a rigid bond (dotted line). The linear shear stress slip dependency 

is also considered as fuzzy function with the bunch parameter in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.   Fuzzy functions of shear stress slip dependency, bunch parameter s 

 
The alteration of the vertical displacement of the girder in the span region at the longitudinal bar 

coordinate 4.25 m is a selected fuzzy result. The fuzzy displacement is shown in Figure 6 for the three 

cases of shear stress slip dependencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.   Fuzzy vertical displacements 
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4.2   NATURAL STONE ARCH BRIDGE 

 
The second example regards the Syratal bridge in Plauen (Germany) built 1903, world wide the widest 

span natural stone arch bridge at that time. The span is ninety meters, see Figure 7.  

Seven years ago (in 2000) the bridge was reconstructed and the masonry was grouted. The main parts 

of the bridge are the arch and the lateral masonry.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.   System, see [Schmiedel & Setzpfand 1999] 

 

   The system takes into consideration the interaction between the arch and the masonry on the right and 

left side of the arch. The horizontal displacements of the arch activate the stiffness of the lateral masonry. 

This effect is modeled by nonlinear node springs, see Figure 8. 
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Figure 8.   Computational model 

 
   In Figure 9 is shown the nonlinear force displacement dependency for the nodes springs and the fuzzy 

stiffness factor fKF.  

displacement
u   [mm]

4 8 12 16 20 24

force PF [kN]

1000

2000

3000

K f 1 = 510 5 kN/m

K f 2 = 10 5 kN/m

K f 3 = 10 4 kN/m
 

fK F

0.9 1.0 1.3

1

a) b)

 
 

Figure 9.   Uncertain force displacement dependency as fuzzy function 

 
   The system modification is caused by grouting of masonry. The modification process has a 

discontinuity as consequence of the rehabilitation. A representative load process is shown in Figure 10. 
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Figure10.   Load and modification process 

 

   The masonry rehabilitation causes a modification of the constitutive relationship. The curve I in Figure 

11 stands for the original constitutive law. The curve III shows the modified constitutive law, and the 

curve II is a specific sigma-epsilon-path for the modification. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11.   Trend functions of constitutive laws 
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    The failure load factor is computed. That characterizes the ultimate traffic load, and leads to   

system failure. The ultimate traffic load is equal given live load multiplied by failure load factor 

η. In Figure 12 is given the fuzzy failure load factor η. Case I investigates the arch without 

system modification, case II with the unrehabilitated and rehabilitated masonry strength for the 

system modification process. Case III leads to overestimation of the load bearing capacity. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 12.   Fuzzy failure factor 

 

In Figure 13 are results of the numerical monitoring, the fuzzy results for the vertical displacement of 

the crown of the arch (node 33) at the internal time points A, B, and C. 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 13.   Fuzzy vertical displacements 
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Conclusions 

 
Analyzing a structure close to reality requires consider the complete load and modification process. The 

parameters of the load and modification process are generally uncertain. They may be described by fuzzy 

processes for a numerical monitoring. 
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Abstract: Early in the engineering design cycle, it is difficult to quantify product reliability due to 

insufficient data or information to model uncertainties. Probability theory can not be therefore, used. 

Design decisions are usually based on fuzzy information which is imprecise and incomplete. Various 

design methods such as Possibility-Based Design Optimization (PBDO) and Evidence-Based Design 

Optimization (EBDO) have been developed to systematically treat design with non-probabilistic 

uncertainties. In practical engineering applications, information regarding the uncertain variables and 

parameters may exist in the form of sample points, and uncertainties with sufficient and insufficient 

information may exist simultaneously. Most of the existing optimal design methods under uncertainty can 

not handle this form of incomplete information. They have to either discard some valuable information or 

postulate the existence of additional information. In this paper, a design optimization method is proposed 

based on evidence theory, which can handle a mixture of epistemic and random uncertainties. Instead of 

using “expert” opinions to form the basic probability assignment, a Bayesian approach is used with a 

limited number of sample points. A pressure vessel example demonstrates the merit of the proposed 

design optimization method. The results are compared with those from existing design methodologies 

under uncertainty. 

 

 

1. INTRODUCTION 

 

Engineering design under uncertainty has recently gained a lot of attention. Uncertainties are usually 

modeled using probability theory. In Reliability-Based Design Optimization (RBDO), variations are 

represented by standard deviations which are typically assumed constant, and a mean performance is 

optimized subject to probabilistic constraints [1-5]. In general, probability theory is very effective when 

sufficient data is available to quantify uncertainty using probability distributions. However, when 

sufficient data is not available or there is lack of information due to ignorance, the classical probability 

methodology may not be appropriate. For example, during the early stages of product development, 

quantification of the product’s reliability or compliance to performance targets is practically very difficult 

due to insufficient data for modeling the uncertainties. A similar problem exists when the reliability of a 

complex system is assessed in the presence of incomplete information on the variability of certain design 

variables, parameters, operating conditions, boundary conditions etc.  
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 Uncertainties can be classified in two general types; aleatory (stochastic or random) and epistemic 

(subjective) [6-10]. Aleatory or irreducible uncertainty is related to inherent variability and is efficiently 

modeled using probability theory. However, when data is scarce or there is lack of information, the 

probability theory is not useful because the needed probability distributions cannot be accurately 

constructed. In this case, epistemic uncertainty, which describes subjectivity, ignorance or lack of 

information, can be used. Epistemic uncertainty is also called reducible because it can be reduced with 

increased state of knowledge or collection of more data.  

 Formal theories to handle uncertainty have been proposed in the literature including evidence theory 

(or Dempster – Shafer theory) [9, 10], possibility theory [11] and interval analysis [12]. Two large classes 

of fuzzy measures, called belief and plausibility measures, respectively, characterize the mathematical 

theory of evidence. They are mutually dual in the sense that one of them can be uniquely determined from 

the other. Evidence theory uses plausibility and belief (upper and lower bounds of probability) to measure 

the likelihood of events. When the plausibility and belief measures are equal, the general evidence theory 

reduces to the classical probability theory. Therefore, the classical probability theory is a special case of 

evidence theory. 

Possibility theory handles epistemic uncertainty if there is no conflicting evidence among experts [9]. It 

uses a special subclass of dual plausibility and belief measures, called possibility and necessity measures, 

respectively. In possibility theory, a fuzzy set approach is common, where membership functions 

characterize the input uncertainty [13]. Even if a probability distribution is not available due to limited 

information, lower and upper bounds (intervals) on uncertain design variables are usually known. In this 

case, interval analysis [12, 14, 15] and fuzzy set theory [13] have been extensively used to characterize 

and propagate input uncertainty in order to calculate the interval of the uncertain output. An efficient 

method for reliability estimation with a combination of random and interval variables is presented in [16]. 

However, it is not implemented in a design optimization framework. A few design optimization studies 

have been also reported, where some or all of the uncertain design variables are in interval form [17-19]. 

 Optimization with input ranges has also been studied under the term anti-optimization [20, 21]. Anti-

optimization is used to describe the task of finding the “worst-case” scenario for a given problem. It 

solves a two-level (usually nested) optimization problem. The outer level performs the design 

optimization while the inner level performs the anti-optimization. The latter seeks the worst condition 

under the interval uncertainty [21]. A decoupled approach is suggested in [21] where the design 

optimization alternates with the anti-optimization rather than nesting the two. It was mentioned that this 

method takes longer to converge and may not even converge at all if there is strong coupling between the 

interval design variables and the rest of the design variables. A “worst-case” scenario approach using 

interval variables has also been considered in multidisciplinary systems design [19, 22].  

 Very recently, possibility-based design algorithms have been proposed [23-25] where a mean 

performance is optimized subject to possibilistic constraints. It was shown that more conservative results 

are obtained compared with the probability-based RBDO. A comprehensive comparison of probability 

and possibility theories is given in [26] for design under uncertainty. 

 Evidence theory is more general than probability and possibility theories, even though the 

methodologies of uncertainty propagation are completely different [27, 28]. It can be used in design under 
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uncertainty if limited, and even conflicting, information is provided from experts. Furthermore, the basic 

axioms of evidence theory allow to combine aleatory (random) and epistemic uncertainty in a 

straightforward way without any assumptions [28]. Evidence theory however, has been barely explored in 

engineering design. One of the reasons may be its high computational cost due mainly to the 

discontinuous nature of uncertainty quantification. Evidence-based methods have been only recently used 

to propagate epistemic uncertainty [28, 29] in large-scale engineering systems. Although a 

computationally efficient method is proposed in [28, 29], the design issue is not addressed. We are aware 

of only one study which propagates epistemic uncertainty using evidence theory and also performs a 

design optimization [30]. The optimum design is calculated for multidisciplinary systems under 

uncertainty using a trust region sequential approximate optimization method with surrogate models 

representing the uncertain measures as continuous functions. 

In engineering design, information regarding the uncertain quantities is usually available in the form 

of a set of finite samples, either from historical data or from actual measurements. These samples are not 

enough to infer a probability distribution. However, if we collapse them into intervals, we discard 

valuable information. Collecting more samples is often not possible due to the cost or time limitations. So 

RBDO, PBDO (Possibility-Based Design Optimization) [23, 24], and EBDO (Evidence-Based Design 

Optimization) [31] may not satisfactorily address the presence of incomplete information. We must utilize 

Bayesian inference to estimate design reliability with incomplete information. 

Bayesian inference is an approach to statistics in which all forms of uncertainty are expressed in 

terms of probability. A Bayesian approach starts with the formulation of a model to describe the situation 

of interest. A prior distribution is formulated over the unknown parameters of the model, which is meant 

to capture the belief about the situation before seeing the data. Using available data, we apply Bayesian's 

rule to obtain a posterior distribution for these unknowns, which accounts for both the prior and the new 

data.  

In this paper, a Bayesian approach is used to account for uncertainty in the design when limited 

information is provided by a limited number of sample points. A Bayesian approach is proposed using the 

extreme value distribution of the smallest value. The approach can handle both a mixture of epistemic and 

random uncertainties or pure epistemic uncertainties. The accuracy of predictions improves with the use 

of more sample points. Previous research, such as in [32-34] illustrate how to use a Bayesian approach in 

design utilizing the confidence percentile concept. In this paper, the available methodologies are 

improved by using the extreme value distribution of the smallest value instead of the conventional beta 

distribution. The extreme value distribution approach is necessary because we have only a small set of 

sample points which are different at each experiment. A Bayesian approach to design optimization 

(BADO) using the extreme value distribution is proposed. We show that the optimal design is 

conservative.  

The proposed BADO approach can handle epistemic uncertainties or a mixture of aleatory and 

epistemic uncertainties. Also if only the number of sample points within a certain range is known instead 

of the exact distribution of the sample points, we propose a design methodology which combines the 

evidence theory and the Bayesian approach.  
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The difference between Possibility-Based Design Optimization (PBDO) and Bayesian-Based Design 

Optimization (BADO) is in the format of uncertain variables. Possibilistic variables are in the form of 

intervals and Bayesian uncertain variables are in the form of sample points. The latter provide more 

information compared with the possibilistic variables. Both of them are based on the confidence 

percentile concept. In PBDO, a membership function is constructed for each possibilistic variables. The 

PBDO approach provides a worst-case design because there is a minimal amount of information in the 

form of intervals. However, more information is available for the Bayesian uncertain variables in the form 

of sample points. For this reason, we will show that the BADO design is less conservative than the PBDO 

design. 

 The paper is organized as follows. Section 2 gives an introduction to the fundamentals of evidence 

theory. Section 3 presents an overview of an Evidence-Based Design Optimization (EBDO) algorithm. 

Section 4 presents the proposed Bayesian-Based Design Optimization (BADO) procedure and a 

methodology to estimate the BPA structure from limited available data using Bayesian statistics. The 

concepts in section 4 are demonstrated with a pressure vessel example. Comparisons among RBDO, 

EBDO, PBDO and BADO are also provided in order to demonstrate the value of added information in 

design. Finally, a summary and conclusions are given in section 5. 

 

 

2. FUNDAMENTALS OF EVIDENCE THEORY 

 

This section gives the fundamentals of evidence theory, how it can be used in design optimization and an 

introduction to fuzzy measures. Detailed information is provided in [8, 9, 11, 31, 35]. The role of fuzzy 

measures and the axiomatic definition of evidence theory are explained.  

Evidence theory is based on the belief (Bel) and Plausibility (Pl) fuzzy measures. Fuzzy measures 

provide the foundation of fuzzy set theory. Before we introduce the basics of fuzzy measures, it is helpful 

to review the used notation on set representation. A universe X represents the entire collection of elements 

having the same characteristics. The individual elements in the universe X are denoted by x, and are 

usually called singletons. A set A is a collection of some elements of X. All possible sets of X constitute a 

special set called the power set (X). 

A fuzzy measure is defined by a function g: (X)  [0,1] which assigns to each crisp subset of X a 

number in the unit interval [0,1]. The assigned number in the unit interval for a subset A(X), denoted 

by g(A), represents the degree of available evidence or belief  that a given element of X belongs to the 

subset A.  

In order to qualify as a fuzzy measure, the function g must have certain properties. These properties 

are defined by axioms that are weaker than the probability theory axioms [8, 9]. Every fuzzy measure 

obeys the following three axioms:  

 Axiom 1 (boundary conditions): g( )=0 and g(X)=1. 

 Axiom 2 (monotonicity): For every A, B(X), if AB, then g(A)    g(B). 
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          Axiom 3 (continuity): For every sequence ( iA (X), i=1,2,…) of subsets of  (X),   

                                                 if either 1A  iA … or 1A  2A   … (i.e., the sequence is   

                                                 monotonic),  then  )lim()(lim i
i

i
i

AgAg


 . 

A belief measure is a function Bel: (X) ]1,0[ which satisfies the three axioms of fuzzy measures 

and the following additional axiom [9]:  

                                212121 )()( AABelABelABelAABel    .                                      (1)                              

The axiom (1) can be expanded for more than two sets. For  XA , Bel(A) is interpreted as the 

degree of belief, based on available evidence, that a given element of X belongs to the set A.  

A plausibility measure is a function 

 

                                                             1,0:  XPl                             (2) 

 

which satisfies the three axioms of fuzzy measures and the following additional axiom [9] 

   212121 )()( AAPlAPlAPlAAPl                                    (3) 

Every belief measure and its dual plausibility measure can be expressed with respect to the non-negative 

function 

                                                           1,0:  Xm                                        (4)  

such that m( ) = 0 and 

                                                            
 

1
 XA

Am .                                                 (5) 

The function m is called Basic Probability Assignment (BPA) due to the resemblance of Eq. (5) with a 

similar equation for probability distributions. The basic probability assignment m(A) is interpreted either 

as the degree of evidence supporting the claim that a specific element of X belongs to the set A or as the 

degree to which we believe that such a claim is warranted. Every set  XA  for which m(A)>0 is 

called a focal element of m. Focal elements are subsets of X on which the available evidence focuses; i.e. 

available evidence exists. 

Given a BPA m, a belief measure and a plausibility measure are uniquely determined by 

                                                              



AB

BmABel                         (6) 

and 

                                                              



0AB

BmAPl .                       (7) 

which are applicable for all  XA .  

In Eq. (6), Bel(A) represents the total evidence or belief that the element belongs to A as well as to 

various subsets of A. The Pl(A) in Eq. (7) represents not only the total evidence or belief that the element 
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in question belongs to set A or to any of its subsets but also the additional evidence or belief associated 

with sets that overlap with A. Therefore, 

                                                              ABelAPl  .                        (8) 

It should be noted that belief and plausibility are complementary in the sense that one of them can be 

uniquely derived from the other. 

Probability theory is a subcase of evidence theory. When the additional axiom of belief measures (see 

Eq. (1)) is replaced with the stronger axiom 

                       )()()( BBelABelBABel   where BA ,                             (9)                

we obtain a special type of belief measures which are the classical probability measures. In this case, the 

right hand sides of Eq. (6) and (7) become equal and therefore, 

                                                  



AxAx

xpxmAPlABel                      (10) 

for all  XA , where p(x) is the probability distribution function (PDF). Note that the BPA m(x) is 

equal to p(x). Therefore with evidence theory, we can simultaneously handle a mixture of input 

parameters. Some of the inputs can be described probabilistically (random uncertainty) and some can be 

described through expert opinions (epistemic uncertainty with incomplete data). In the first case, the 

range of each input parameter will be discretized using a finite number of intervals. The BPA value for 

each interval must be equal to the PDF area within the interval. 

Evidence obtained from independent sources or experts must be combined. If the BPA’s  1m  and 2m  

express evidence from two experts, the combined evidence m can be calculated by the following 

Dempster’s rule of combining [36] 

                                           
   

K

CmBm

Am ACB







1

21

  for  0A         (11) 

where 

                                                     



0

21

CB

CmBmK            (12) 

represents the conflict between the two independent experts. Dempster’s rule filters out any conflict, or 

contradiction among the provided evidence, by normalizing with the complementary degree of conflict. It 

is usually appropriate for relatively small amounts of conflict where there is some consistency or 

sufficient agreement among the opinions of the experts. Yager [10] has proposed an alternative rule of 

combination where all degrees of contradiction are attributed to total ignorance. Other rules of combining 

can be found in [36]. 

 

2.1. ASSESSING BELIEF AND PLAUSIBILITY WITH DEMPSTER-SHAFER THEORY 
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The previous section described a methodology to quantify epistemic uncertainty, even when the experts 

provide conflicting evidence. This section shows how to propagate epistemic uncertainty through a given 

model (transfer function). We will illustrate that, using the following simple transfer function 

                                                                bafy ,          (13) 

where BbAa  , are two independent input parameters and y is the output. The combined BPA’s for 

both a and b are obtained from Dempster’s rule of combining of Eq. (11) if multiple experts have 

provided evidence for either a or b. With combined information for each input parameter, we define a 

vector  cjci bac , , needed to calculate the output y as 

                                          BbAabacBAC cjcicjci  ,,,        (14) 

where subscript c stands for “combined” and i,j  indicate focal elements.  

Taking advantage of assumed parameter independency, the BPA for c is 

                                           cjciijc bmamhm             (15) 

 

  Figure 1. Representative BPA structure for two parameters a and b. 

 

where   cjciij bah ,  and cia , cjb  denote intervals such that ciaa  and cjbb . Eq. (15) can be used to 

calculate the combined BPA structure for the entire domain C. For every   Cccba , , needed to 

evaluate the output y, the combined BPA cm  is used. A representative combined BPA structure is shown 

in Figure 1. 

The Cartesian product C of Eq. (14) is also called frame of discernment (FD) in the literature. It 

consists of all focal elements (rectangles in Figure 1 with nonzero combined BPA) and can be viewed as 

the finite sample space in probability theory. 

If a domain F is defined as  

S

a

b

BPA

S

a

b

S

a

b
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                                          CbaccbaybafggF cc  ,,,,0,: 0       (16) 

where 0y  is a specified value, Bel(F) and Pl(F) can be calculated from Eqs (6) and (7) where set F 

replaces set A. According to evidence theory, Bel(F) and Pl(F) bracket the true probability 

 0 gPp f  [9,27]; i.e. 

                                                              FPlpFBel f  .        (17) 

The Bel (F) and Pl (F) are calculated using Eqs (6) and (7) where set A is equal to set F of Eq. (16) 

and B is a rectangular domain (focal element) such that AB   for Eq. (6) and 0 AB  for Eq. (7). In 

other words, AB   means that the focal element must be entirely within the domain g>0 and 

0 AB  means that the focal element must be entirely or partially within the domain g>0 (see Fig. 2). 

In general, in order to identify if a focal element B satisfies AB   or 0 AB , the following 

minimum and maximum values of g must be calculated  

                XX
XX

gggg max,min, maxmin         (18) 

for 
UL

XXX  where  UL
XX ,  defines the focal element domain. For monotonic functions, the 

vertex method [37] can be used to calculate the minimum and maximum values in Eq. (18) by simply 

identifying the minimum and maximum values among all vertices of the focal element domain. If for a 

focal element, ming  and maxg  are both positive, the focal element will contribute to the calculation of 

belief and plausibility according to Eqs (6) and (7). On the other hand, if ming  and maxg  are both 

negative, the focal element will not contribute to the calculation of belief or plausibility. If however, ming  

is negative and maxg  is positive, the focal element will not contribute to the belief but it will contribute to 

the plausibility calculation. This is shown schematically in Figure 2. 

 

 
Figure 2. Schematic illustration of focal element contribution to belief and 

plausibility measures. 
 

In summary the following tasks are performed in order to calculate the belief and plausibility of the 

failure region: 

ming

maxg
0g 

0g 
0g 

ming

maxg

0g 

0g  0g 

ming

maxg
0g 

0g 

0g 
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1) For each input parameter, combine the evidence from the experts by combining the individual 

BPA’s from each expert using Dempster’s rule of combining (Eq. (11)). 

2) Construct the BPA structure for the m-dimensional frame of discernment, where m is the number 

of input parameters. Assuming independent input parameters, Eq. (15) is used. 

3) Identify the failure region space (set F of Eq. (16)). 

4) Use Eqs (6) and (7) to calculate the belief and plausibility measures of the failure region. The 

failure region must be identified only within the frame of discernment. The true probability of 

failure is bracketed according to Eq. (17). 

 

 

3. EVIDENCE-BASED DESIGN OPTIMIZATION (EBDO) 

 

In deterministic design optimization, an objective function is minimized subject to satisfying each 

constraint. In Reliability-Based Design Optimization (RBDO), where all design variables are 

characterized probabilistically, an objective function is usually minimized subject to the probability of 

satisfying each constraint, being greater than a specified high reliability level. In this section, a 

methodology is presented on how to use evidence theory in design. We will show that the evidence 

theory-based design is conservative compared with all RBDO designs obtained with different probability 

distributions.  

If feasibility of a constraint g is expressed with the non-negative null form 0g , we have shown in 

the previous section that  0gP  is bracketed by the belief  0gBel  and plausibility  0gPl ; i.e. 

   0)0(0  gPlgPgBel . Therefore,  

    fpgP  0  is satisfied if   fpgPl  0          (19) 

where fp  is the probability of failure which is usually a small prescribed value. The above statement is 

equivalent to 

    RgP  0  is satisfied if   RgBel  0          (20) 

where fpR 1  is the corresponding reliability level. 

An evidence theory-based design optimization (EBDO) problem can be formulated as 

                                                             NNf
N

P,Xd,
Xd,

min         

                           s.t.     
ifi pgPl  0,, PXd , ni ,...,1                             (21) 

                                                            UL ddd    

                                                            
N

U

NN

L XXX      
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where 
kRd is the vector of deterministic design variables, 

mRX is the vector of uncertain design 

variables, 
qRP is the vector of uncertain design parameters,  f  is the objective function and n, k, m 

and q are the number of constraints, deterministic design variables, uncertain design variables and 

uncertain design parameters, respectively. According to the used notation, a bold letter indicates a vector, 

an upper case letter indicates an uncertain variable or parameter and a lower case letter indicates a 

realization of the uncertain variable. The superscript “N” in Problem (21) indicates nominal value of each 

uncertain design variable or design parameter. The uncertainty is provided by expert opinions. 

It should be noted that the plausibility measure is used instead of the equivalent belief measure, in 

Problem (21). The reason is that at the optimum, the failure domain for each active constraint is usually 

much smaller than the safe domain over the frame of discernment (FD). As a result, the computation of 

the plausibility of failure is much more efficient than the computation of the belief of safe region.  

 

3.1. IMPLEMENTATION OF THE EBDO ALGORITHM 

This section describes a computationally efficient solution of Problem (21). As a geometrical 

interpretation of Problem (21), we can view the design point (d,X) moving within the feasible domain so 

that the objective f is minimized. If the entire FD is in the feasible domain, the constraints are satisfied 

and are inactive. A constraint becomes active if part of the FD is in the “failure” region so that the 

plausibility of constraint violation is equal to fp . In general, Problem (21) represents movement of a 

hyper-cube (FD) within the feasible domain. 

In order to save computational effort, the bulk of the FD movement, from the initial design point to 

the vicinity of the optimal point (point B of Figure 3), can be achieved by moving a hyper-ellipse which 

contains the FD. The center of the hyper-ellipse is the “approximate” design point and each axis is 

arbitrarily taken equal to three times the standard deviation of a hypothetical normal distribution. This 

assumes that each dimension of the FD hyper-cube is equal to six times the standard deviation of the 

hypothetical normal distribution. The hyper-ellipse can be easily moved in the design space by solving a 

Reliability-Based Design Optimization (RBDO) problem. The RBDO optimum (point B of Figure 3) is in 

the vicinity of the 
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Figure 3. Geometrical interpretation of the EBDO algorithm. 

 

solution of Problem (21) (EBDO optimum). The RBDO solution also identifies all active constraints and 

their corresponding most probable points (MPP’s). The maximal possibility search algorithm [38] can 

also be used to move the FD hyper-cube in the feasible domain. It should be noted that the 3-sigma axes 

hyper-ellipse is arbitrary. The size of the hyper-ellipse is not however, crucial to the user because it is 

only used to calculate the initial point (point B of Figure 3) of the EBDO algorithm. The latter calculates 

the true EBDO optimum accurately. From our experience, 3 to 4-sigma size works fine. 

At this point, we generate a local response surface of each active constraint around its MPP. In this 

work, the Cross-Validated Moving Least Squares (CVMLS) [39] method is used based on an Optimum 

Symmetric Latin Hypercube (OSLH) [40] “space-filling” sampling. 

A derivative-free optimizer calculates the EBDO optimum. It uses as initial point the previously 

calculated RBDO optimum which is close to the EBDO optimum. Problem (21) is solved, considering 

only the identified active constraints. For the calculation of the plausibility of failure  0gPl  of each 

active constraint, the algorithm of next section is used. The algorithm identifies all focal elements which 

contribute to the plausibility of failure. The computational effort is significantly reduced because accurate 

local response surfaces are used for the active constraints. The cost can be much higher if the optimization 
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algorithm evaluates the actual active constraints instead of their efficient surrogates (response surfaces). It 

should be noted that a derivative-free optimizer is needed due to the discontinuous nature of the combined 

BPA structure. The DIRECT (DIvisions of RECTangles) derivative-free, global optimizer is used in this 

work. DIRECT is a modification of the standard Lipschitzian approach that eliminates the need to specify 

a Lipschitz constant [41]. 

 

3.1. CALCULATION OF PLAUSIBILITY OF FAILURE 

In Problem (21), the plausibility of failure or equivalently the plausibility of constraint violation, 

 0gPl , must be calculated every time the optimizer evaluates a constraint. The algorithm is given 

below. 

Step 1. Initialize sets C = {FD} and F = {0} and counter m = 1 

Step 2. Consider all sets  CEE kk :  or CEk   

 Initialize counter n = 0 

 Empty set C; i.e. C = {0} 

 For k = 1 to m 

  Partition kE  into 
1

kE  and 
2

kE  

  For j = 1 to 2 

   Calculate  jkEgmin  

   If   0min j

kEg  then 

    Calculate  j

kEgmax  

    If  j

kEgmax >0 then 
j

kECC   and n = n+1 

    If   0max j

kEg  then 
j

kEFF   

   End if (for the loop of   0min j

kEg ) 

  End if (for the loop of j = 1 to 2) 

 End if (for the loop k = 1 to m) 

 Set counter m = n 

 If C can be partitioned, go to step 2. 

 If C can not be partitioned, stop and calculate plausibility of failure from Eq. (22) 

        
 


FB CB

BmBmgPl 0          (22) 

as the sum of BPA values of all focal elements B which belong to sets F and C. 

A set C which is initially equal to the entire frame of discernment FD (see step 1) is partitioned into 

sets 
1E  and 

2E . The partitioning sequence is explained at the end of this section. The minimum and 

maximum values of g in the 
1E  and 

2E  domains are calculated; i.e. 
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    2,1,,minmin  iEgEg ii XX  and     2,1,,maxmax  iEgEg ii XX  (see step 2). If 

  0min iEg   and    0max iEg  , 
iE  is placed in set C. If    0min iEg   and    0max iEg  , 

iE  is 

placed in set F. Otherwise, 
iE  is not considered further. For a subsequent iteration k in step 2, each set 

which has been placed in C (denoted by kE ) is further partitioned into sets 
1

kE  and 
2

kE , and the process 

continues. If all sets put in C represent focal elements and therefore, can not be partitioned further, the 

algorithm stops and Eq. (22) is used to calculate the plausibility of failure. 

The above algorithm is demonstrated with a hypothetical example. Figure 4 shows the location of the 

FD relative to the limit state g=0 for a particular iteration. A hypothetical BPA structure is also shown. 

Each “rectangle” represents a focal element. In this case, we have 20 focal elements denoted by im , 

i=1,2,…,20. A set which is initially equal to FD, is partitioned into sets 
1E  and  

Figure 4. A hypothetical two-dimensional BPA structure. 

 

 
2E  such that 17,16,12,11,7,6,2,1,1  imE i

i

   and   20,19,18,15,14,13,10,9,8,5,4,3,2  imE i
i

  

. Subsequently, the minimum and maximum values of g in the 
1E  and 

2E  domains (  iEgmin  and 

 iEgmax , i=1,2) are calculated. Because    01

min Eg   and    01

max Eg  , 
1E  is placed in C. 

However,    02

min Eg   and therefore, 
2E  is not considered further. This is the end of the first iteration. 

The second iteration starts by partitioning C which is equal to 
1E  of the first iteration, into  

17,16,12,11,11  imE i
i

  and 7,6,2,1,12  imE i
i

  . Similarly to the first iteration, 
11E  is 

discarded and 
12E  is placed in C which is now composed of 

12E  only. Note that at the end of the second 

iteration, set F is empty. At the third iteration, C or equivalently 
12E , is partitioned into 

0g0g
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6,1,121  imE i
i

   and 7,2,122  imE i
i

  which are both placed in C. At the fourth iteration, 
121E  

is partitioned into 1

1211 mE   and 6

1212 mE   and 
122E  is partitioned into  2

1221 mE    and 7

1222 mE  . 

Now 
1211E  is placed in F and 

1212E , 
1221E  and 

1222E  are placed in C. Because all previous sets consist of 

one focal element each, they can not be partitioned further. Therefore, the algorithm stops. Finally, 

1mF    and 7,6,2,  imC i
i

 . Eq. (22) is used to calculate the plausibility of g<0 as the sum of 

BPA values of all focal elements in F and C; i.e.         
 


FB CB

BmBmgPl 0 . 

The described algorithm uses the following partitioning scheme for an n-dimensional hyper-rectangle 

representing the FD which corresponds to n uncertain variables and parameters. For the k
th
 iteration (k = 

1,…,n), the hyper-rectangle is partitioned into two parts with an (n-1)-dimensional hyper-plane 

perpendicular to the k
th
 dimension. Each part has roughly the same number of focal elements. For iteration 

k > n, the (n-1)-dimensional hyper-plane is perpendicular to the (k-n)
th
 dimension. 

 

4. BAYESIAN RELIABILITY-BASED DESIGN OPTIMIZATION 

 

It has been mentioned that if we only know the bounds within which an uncertain variable varies, interval 

analysis or possibility theory can be used to quantify and propagate uncertainty. If additional information 

is available in terms of expert opinions for example, the evidence theory can be used. It is common 

however, in engineering design, to know the bounds of the uncertain variables and also have additional 

information in the form of a discrete but limited number of sample points based on historic data or 

experiment data. In this case, we can not infer a probabilistic distribution because of the limited number 

of sample points. However, a Bayesian approach [32, 33] can be used to estimate the probability 

distribution. If more information is obtained later in the form of additional sample points, a more accurate 

estimation of the probability distribution can be obtained. The next subsections provide the basics of 

Bayesian approach as well as the introduction of the extreme value distribution in the Bayesian approach 

in order to account for the fact that we only have a small set of sample points which are different at each 

experiment. 

 

4.1. BAYESIAN RELIABILITY ESTIMATION  

Let us denote available data by D and the probability of success by  . We wish to improve our 

knowledge about the unknown quantity   by utilizing the known information in the available data D. To 

make inferences about  , we build a conditional probability distribution P( |D) that describes how we 

believe   is distributed considering the existence of data D. Using the Bayesian rule, it can be shown that  
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with α, and β being the Beta distribution parameters. As expected, the posterior distribution is also a Beta 

distribution because Beta is a conjugate family of distributions.  

It should be noted that initially there is no prior information about   and any values between 0 and 1 

may be assumed equally probable. In this case, a uniform prior P( )=U(0,1) is used which is equivalent 

to Beta(1,1).  

If we have 0r  successes out of 0N  sample points, then the probability distribution )|( 0rP   is 

proportional to Beta ( 0r +1, 0N - 0r +1). If additional 1N  data is obtained later, where 1r  is the number of 

successes, then the total number of success is 0r + 1r  and the total number of failures is 0N + 1N - 0r - 1r . In 

this case, the probability distribution )|( 10 rrp   is proportional to Beta ( 0r + 1r +1, 0N + 1N - 0r - 1r +1). 

Note that if we use the constraint function g to divide the design space into feasible and infeasible 

domains, then a feasible realization of g is considered a success and an infeasible realization is considered 

a failure.  

Let us define two vectors R = [Y, Z] and U = [X, P] where Y and Z denote the random variables and 

parameters whose PDFs are known and X and P denote the uncertain variables and parameters whose 

PDFs are not known. If R is not empty, each realization of U = [X, P] results in a distribution of g values. 

In this case, we can calculate the probability Pr [g (Y, Z) > 0 | (X, P)] that a sample point [Y, Z] will result 

in a feasible realization given the sample point [X, P]. This conditional probability is the expected feasible 

realization of one sample. 

Using a limited number of sample points we obtain therefore, a probability distribution instead of a 

single probability value. Because there are few sample points and the samples are random, the Beta 

distribution may not be accurately representing the actual distribution. In order to increase our confidence 

of the predicted probability, we propose to use the extreme distribution of the smallest value using the 

Beta distribution as the basic distribution. If X is a Beta distributed uncertain variable and there are n 

available sample points of X, the CDF of the extreme minimum value 1Y  (i.e. 1Y = ),...,,min( 21 nXXX ) 

is given by  

                                           
n

XY yFyF )](1[1)(
1

 .                                                             (25) 

 

4.2. CONSTRUCTION OF THE EXTREME SMALLEST VALUE DISTRIBUTION 
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Because we have a limited number of sample points [X, P] the probability Pr [g (Y, Z) > 0 | (X, P)] is 

approximated by the Beta distribution. To increase our confidence of constraint satisfaction (reliability) 

exceeding a specified target reliability R , we express each probabilistic constraint in terms of a 

confidence percentile [42]. For the i
th
 constraint, this is expressed as 

                              dDP R), g( P
t
fp

ii )|(0
1

PXZY,d, ,                 (26) 

where   is a specified confidence percentile,  i
t

f Rp  1  is the target probability of failure for the 

i
th
 constraint, and   denotes the confidence percentile. The latter is calculated based on the extreme 

value distribution. It provides a conservative distribution of the probability of constraint satisfaction 

which is not a scalar. It should be noted that the extreme value distribution provides a much smaller 

confidence percentile compared with the Beta distribution for the same reliability. This means that it is 

much safer (or more conservative) to use the extreme value distribution in design optimization.  

For a confidence percentile  , let us denote by BP  and 'BP  the probability corresponding to   

based on the extreme value and Beta distributions, respectively. Also, let us assume that the number of 

available sample points is N. For the extreme value distribution N

BX PF )](1[11  , resulting in 

]1[1 N
XB FP    where X ~ Beta (a, b). Similarly for the Beta distribution )]'(1[11 BX PF , or 

]1[' 1  

XB FP  where X ~ Beta (a, b). It is easy to see that if N=1, BP = 'BP . However because  N  

or   11 N , BP  is less than 'BP , if N is larger than 1. For this reason, the extreme value 

distribution based confidence percentile provides a more conservative (smaller) probability compared 

with the Beta distribution. 

 

4.3. EVALUATION OF BAYESIAN TARGET RELIABILITY 

 

In design optimization, the target reliability must be predefined. Because we do not have however, 

enough data, it is not practical to set the target reliability very high (e.g. 3 ). If the predefined target 

reliability is high, the confidence percentile will be low. In this section, we will calculate the maximum 

target reliability based on an existing sample size N.  

If we have N sample points, the safest Beta distribution is Beta(N+1,1). The maximum Bayesian 

target reliability is therefore, equal to ]1[1 N
XB FP  

 where X ~ Beta(N+1, 1), and   is the 

confidence percentile. The larger the N, the higher the maximum target reliability is. However, the latter 

must be always lower than the allowable maximum reliability.  For example, if we have 50 sample points, 

the maximum target reliability with confidence percentile 0.8 must be lower than 90%. 

A Bayesian-based design optimization process entails the following steps: 

1. Construct Beta distribution based on existing sample data. 

2. Construct an extreme smallest value distribution using the above Beta distribution as the basic 

distribution. 
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3. Calculate the maximum target reliability for a specified confidence percentile.  

4. Solve the design optimization problem using reliabilities which are based on the   

    extreme smallest value distribution with a specified confidence percentile. 

 

4.4. A BAYESIAN APPROACH TO DESIGN OPTIMIZATION 

 

Reliability-based design optimization (RBDO) provides optimum designs in the presence of only random 

(or aleatory) uncertainty.  A typical RBDO problem is formulated 

                                             ZY
Yμd,

μ,μd,fmin        

                                   s.t.      
ifii pRgP  10,, ZYd ,   ni ,...,1                  (27) 

                                            
UL

ddd   , 
UL

Y YY μμμ      

where 
RY  is the vector of random design variables and 

rRZ  is the vector of random design 

parameters. 

For a variety of practical applications, the uncertain information may be provided as a mixture of 

sample points and probability distributions. In this case, a Bayesian approach can be used based on the 

confidence percentile concept. A Bayesian Approach Design Optimization (BADO) problem with a 

combination of random and Bayesian uncertain variables can be formulated as   

                                           NN

Y
N

min p,xμμd, ZY
μxd,

,,f
,

                                            (28) 

                               s.t.           R) g( P ii  0,, PXd ,   ni ,...,1                      

                                          UL ddd   , 
UL

YYY μμμ    

                                          U

N

L xxx      

where 
kRd is the vector of deterministic design variables, 

mRX  is the vector of Bayesian uncertain 

design variables, 
qRP is the vector of Bayesian uncertain design parameters, 

RY  is the vector of 

random design variables, 
rRZ  is the vector of random design parameters, iR  is the target reliability, 

  is the confidence percentile factor, and   is the confidence function.  

All constraints in Problem (28) are expressed using a confidence percentile because the predicted 

probability is distributed based on the extreme value distribution instead of having a single value. We 

need the confidence percentile in order to calculate a single probability value. It should be noted that the 

described formulation represents a double-loop optimization sequence. The design optimization of the 

outer loop calls a series of Bayesian uncertain constraints. Each Bayesian uncertain constraint is in 

general, a global optimization problem.  

It should be noted that the double-loop optimization structure of Problem (28) is different from the 

double-loop RBDO structure. In the outer loop, the deterministic variables d, the mean values Yμ  of 
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random variables and the normal points 
N

x  of Bayesian uncertain variables are used as design variables. 

In the inner loop, based on the distributions of some of the input design variables and the available sample 

points for the remaining design variables, an extreme value distribution is constructed using the Bayesian 

approach. Subsequently, we calculate the reliability of the constraint using the confidence percentile 

principle. Because the Bayesian uncertain variables are represented using discrete sample points, we can 

not use a gradient-based local optimizer to calculate the optima. Instead, we must use a global optimizer. 

 

4.4.1. A PRESSURE VESSEL EXAMPLE 

 

This example considers the design of a thin-walled pressure vessel [43] which has hemispherical ends as 

shown in Figure 5. The design objective is to calculate the radius R, mid-section length L and wall 

thickness t in order to maximize the volume while avoiding  yielding  of  the  material in both the 

circumferential and radial directions under an internal pressure P. Geometric constraints are also 

considered. The material yield strength is Y. A safety factor SF = 2 is used. 

 
Figure 5. Thin-walled pressure vessel. 

 

The BADO problem is stated as  

                           NNN LRRmax 23

t,L,R 3

4
f

NNN

                                                              (29) 

        s.t.      1,...,5j ,  R) g( P ii  0X   
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There are three design variables (R, L, t) and two design parameters (P, Y) where P is the internal pressure 

and Y is the material yielding strength. The design variable R is considered a Bayesian uncertain variable. 

To compare results with RBDO, we sample 50 points based on the PDF of a normal distribution N 

(
NR ,1.5) The design variables L and t and the design parameters P and Y are normally distributed random 

Table 1. Comparison of BADO and PBDO optima for the pressure vessel example. 

 

 

Design Variables Objective 

NR  
NL  

Nt  f(X) 

Det. Opt. 11.75 36 0.25 22400 

Reliability 

Optimum 

(p=0.85/β=1.036) 

10.1926 34.7147 0.25 15757 

Bayesian Uncertainty (N=50) 

σ=0.6, p=0.85 9.50 33.2099 0.4306 13100 

σ=0.6, p=0.75 10.2778 34.4444 0.2639 15970 

     

σ=0.8, p=0.85 9.50 31.4815 0.4853 12511 

σ=0.8, p=0.75 10.50 31.4815 0.3750 15745 

     

Possibilistic Uncertainty 

σ=0.6, p=0.85 8.9464 33.0912 0.25 11314 

σ=0.6, p=0.75 8.9825 34.1069 0.25 11676 

     

σ=0.8, p=0.85 8.0464 33.0912 0.25 8908 

σ=0.8, p=0.75 8.0825 34.1069 0.25 9207 
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variables with standard deviations equal to 3, 0.1, 50 and 13000, respectively. The mean values of P and 

Y are equal to 1,000 and 260,000. 

For the vessel example with a combination of Bayesian and random variables, Table 1 gives the 

BADO results based on different target reliabilities and confidence percentiles. When the confidence 

percentile is σ=0.8, and the target probability is p=0.85, the BADO and RBDO results are 12511 and 

15757, respectively. Because RBDO uses probabilistic distribution information, it utilizes more 

information compared with BADO which uses only a limited number of sample points. Thus, the BADO 

result should be more conservative. Because the objective is maximized in this example, the BADO result 

is less than the RBDO result. For the same confidence percentile of σ=0.8, if the target probability is 0.75, 

the BADO objective is 15745. If the target probability is 0.85, then the objective is equal to 12511. The 

higher the confidence percentile is, the lower the objective becomes. It should be noted that the uncertain 

variables in BADO are characterized only by a limited number of sample points, while only the bounds 

are known for the uncertain variables in PBDO. Therefore, the latter represent the least amount of 

information. For this reason, the PBDO design has the smallest objective value of 8908 which is obtained 

for a confidence percentile of σ=0.8 and a target probability of p= 0.85. 

 

 

4.5. A COMBINED BAYESIAN AND EBDO APPROACH 

 

For the above Bayesian approach, we know the range of the uncertain variables and parameters and also 

have a limited number of sample points. In actual engineering design however, assuming that this range is 

partitioned into a number of segments, we only know how many sample points are within a certain 

segment. In this case, we do not have an exact distribution of those sample points within the segment and 

we can not use therefore, the BADO methodology of section 4.4 to construct the probability distribution 

function of the constraint. Also, since the total number of sample points is limited, we can not assume that 

the probability of being within a segment is equal to the number of samples in the segment divided by the 

total number of samples in the whole range.  

In this case, in order to utilize the existing information, we can use evidence theory to calculate the 

Basic Probability Assignment (BPA) for a segment of each Bayesian variable. In summary, the following 

tasks are performed in order to calculate the belief and plausibility of the failure region: 

1) For each Bayesian input variable and parameter, construct a Beta distribution using the available 

data, and then form the extreme value distribution. Calculate the BPA structure for each variable 

and parameter using a predefined confidence percentile and the extreme value distribution. 

2) Construct the BPA structure for the m-dimensional frame of discernment, where m is the number 

of input variables and parameters. Assume independent input variables and parameters. 

3) Identify the failure region space based on the limit state functions (constraints). 

4) Calculate the belief and plausibility measures of the failure region. The failure region must be 

identified only within the frame of discernment. The true probability of failure is bracketed by the 

belief and plausibility measures. 
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5) If more information becomes available, we can obtain a more accurate estimate of the BPA 

structure using an assumed confidence percentile. 

This process is illustrated with an example in the following subsection. 

 

4.5.1. THE PRESSURE VESSEL EXAMPLE 

 

The same pressure vessel example of section 4.4.1 is considered here. We initially assume that we 

have only 100 sample points. Based on this limited available information, we only know the number of 

sample points within specified segments (bins) as is for example, indicated in Table 2 and shown in 

Figure 6 for NR . However, we do not know the exact distribution of the sample points within each 

segment. 

 

 

According to Figure 6, there are three sample points of NR  within the [ NR - 4.5, NR - 3] segment. We 

cannot assume that the probability of having samples in that segment is equal to 3/100=0.03, because 

there are not enough sample points. However, we know that the extreme probability distribution for the 

smallest value will be 100)](1[1)(
1

pFpF XY  , where p denotes probability and X ~ Beta (3+1, 100-3+1) 

=Beta (4, 98). If we use a predefined confidence percentile of σ=0.8, then Pr( NR - 4.5< R < NR - 3 | 

Figure 6. Histogram of sample points. 
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Figure 6. Histogram of sample points. 
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σ=0.8) = ]8.01[ 1001  
XFp =0.0054, which is smaller than the real CDF (approximately equal to 

3/50=0.06). Similarly, Pr( NR - 3.0< R < NR  | σ=0.8) = 0.3155, which is also smaller than 45/100=0.45. 

Because of the existing uncertainty, if the confidence percentile is large enough, the values of the BPA 

structure calculated using the Bayesian approach of section 4.2 will be smaller than the actual values. 

 

If we have more sample points, the BPA structure can be estimated more accurately. In Tables 3 and 

4, we utilize 300 and 1000 sample points, respectively. For the same confidence percentile of σ=0.8, for 

300 samples, the estimated probability is Pr( NR - 3.0< R < NR  | σ=0.8) = ]8.01[ 3001  

XFp =0.393. 

For 1000 samples, the estimated probability is equal to 0.4457, which is very close to the CDF of normal 

distribution 0.475. It should be noted that for 100 sample points, the same probability is equal to 0.3155. 

Using the calculated BPA structure, we can use steps 2 to 5 of section 4.5 to determine the optimal design 

using the EBDO algorithm. The more accurate the BPA structure is, the less conservative (smaller 

objective in this example) the optimum design will be. At the limit, the design approaches the RBDO 

design. 

 

Table 3. BPA structure for Bayesian Variable R (300 sample points). 

 

R 
# of Sample 

Points 

BPA(Extreme 

Value) 

[ NR - 6.0 , NR - 4.5] 2 0.00057 

[ NR - 4.5 , NR - 3.0] 6 0.0048 

[ NR - 3.0 ,  NR ] 145 0.393 

[ NR , NR + 3.0] 138 0.371 

[ NR + 3.0 , NR + 4.5] 8 0.0078 

[ NR + 4.5 , NR + 6.0] 1 0.00013 

[ NR - 6.0 , NR + 6.0] --- 0.2228 

 

Table 2. BPA structure for Bayesian Variable R (100 sample points). 

 

R 
# of Sample 

Points 

BPA(Extreme 

Value) 

[ NR - 6.0 , NR - 4.5] 0 2.2e-5 

[ NR - 4.5 ,  NR - 3.0] 3 0.0054 

[ NR - 3.0 ,   NR ] 45 0.3155 

[ NR , NR + 3.0] 49 0.3523 

[ NR + 3.0 , NR + 4.5] 2 0.0025 

[ NR + 4.5 , NR + 6.0] 1 0.00068 

[ NR - 6.0 , NR + 6.0] --- 0.3236 
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Based on the evidence theory the sum of all BPA values should be equal to one. However in Tables 2, 

3 and 4, the sums of BPA are 0.6764, 0.7772 and 0.8564, respectively. The difference is due to 

unavailable information because of the limited number of sample points. It represents the uncertain belief 

of being somewhere between NR - 6.0 and NR + 6.0 without knowing the exact segment. Figure 7 shows 

the BPA values based on 100 samples. The uncertain belief is equal to 1-0.6764=0.3236 for the 100 

sample point case, equal to 1-0.7772=0.2228 for the 300 sample point case, and equal to 1-0.8564=0.1436 

for the 1000 sample point case. The uncertain belief will contribute to the belief measure (see section 3.1) 

if the range [ NR - 6.0, NR + 6.0] is within the feasible area. 

 

 
Figure 7. BPA of R for 100 sample points. 

 

Considering the information from the above example, Table 5 compares the results between the 

Bayesian approach, EBDO and RBDO for a reliability index of 385.0  ( fp =0.35) and a confidence 

Table 4. BPA structure for Bayesian Variable R (1000 Sample points). 

 

R 
# of Sample 

Points 

BPA(Extreme 

Value) 

[ NR - 6.0 , NR - 4.5] 7 0.00157 

[ NR - 4.5 , NR - 3.0] 22 0.00985 

[ NR - 3.0 ,  NR ] 501 0.4457 

[ NR , NR + 3.0] 445 0.3906 

[ NR + 3.0 , NR + 4.5] 16 0.0062 

[ NR + 4.5 , NR + 6.0] 9 0.00244 

[ NR - 6.0 , NR + 6.0] --- 0.1436 

 

2.2e-5

6RN  5.4RN  3RN  NR 3NR 4.5RN  6RN 

0.0054 0.3155 0.3523 0.0025 0.00068

0.3236

2.2e-5

6RN  5.4RN  3RN  NR 3NR 4.5RN  6RN 

0.0054 0.3155 0.3523 0.0025 0.00068

0.3236
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percentile of σ=0.8. The EBDO results are based on the assumption that a very large number of sample 

points is available from which the BPA structure is calculated. According to Table 5, the Bayesian 

approach (BADO of section 4.4) provides the most conservative result (smallest objective of 15098 for 

fp =0.35) compared with the EBDO and RBDO optima of 16802 and 19610, respectively, because it 

utilizes the least amount of information among the three approaches. For comparison purposes the PBDO 

optimum of 7269 is also shown in Table 5 for the zero  -cut (worst-case design) as well as the Bayesian 

Evidence optimum of 9805. As expected, the Bayesian Evidence optimum is better than the PBDO 

optimum because it uses more information. However, the Bayesian Evidence optimum of 9805 is smaller 

than the Bayesian optimum of 15098 because the BPA structure of the former is more conservative than 

the extreme value distribution of the latter. It should also be noted that although the Bayesian Evidence 

approach is the most conservative compared with the RBDO, EBDO and BADO approaches, it is less 

conservative than the worst-case scenario of PBDO, as expected. Table 5 also compares results for 

fp =0.45 with similar trends observed. 

 
Table 5. Comparison of design optimization approaches. 

 

 

Reliability 

Optimum 

(RBDO) 

Bayesian  Optimum 

(BADO) 

Bayesian Evidence 

Optimum 
Possibility Optimum 

(PBDO) 

Evidence Optimum 

(EBDO) 

Design 

Variables 

fp =0.35, 

(  =0.385) 
fp =0.45 

fp =0.35 
fp =0.45 

fp =0.35 
a=0, 

fp =0.45 

a =0, 

fp =0.35 fp =0.45 
fp =0.35 

NR  11.153 10.574 10.166 
8.654 8.481 

7.346 7.211 10.778 10.555 

NL  35.330 33.539 32.963 
34.032 32.098 

34.905 34.905 33.703 33.950 

Nt  0.264 0.300 0.291 
0.254 0.254 

0.25 0.25 0.263 0.263 

Objective          

 NN LRf ,  19610 16725 15098 10718 9805 7574 7269 17535 16802 

 

 

                                                                                                                                                      

5. SUMMARY AND CONCLUSIONS 

 

If only the bounds are available within which an uncertain variable varies, interval analysis or possibility 

theory can be used to quantify and propagate uncertainty. If additional information is known in terms of 

expert opinions for example, the evidence theory can be used. If in addition to the bounds of the uncertain 

variables, there is information in the form of a discrete but limited number of sample points, we can not 

infer a probabilistic distribution because of the limited number of sample points. However, a Bayesian 
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approach can be used to estimate the probability distribution which can be subsequently, utilized in a 

Reliability-Based Design Optimization algorithm.  

This paper has presented a method called Bayesian Approach Design Optimization (BADO) to solve 

design problems with uncertain variables in the form of both finite sample points and probability 

distributions. Also, a Bayesian approach was proposed to estimate the Basic Probability Assignment 

(BPA) for a specified confidence percentile, using only the number of available sample points within 

ranges. Subsequently, the evidence theory was used to obtain the optimal design.  

A pressure vessel example was used to demonstrate the proposed Bayesian approach in design 

optimization and compare the results with known design methods such as reliability-based, possibility-

based and evidence-based (RBDO, PBDO and EBDO) design optimization. It was clearly demonstrated 

that reducing the amount of available information in quantifying uncertainty, results in a more 

conservative design. We showed that the proposed Bayesian approach as well as the existing RBDO, 

PBDO and EBDO methods can quantify the tradeoff between available information and less optimal 

design (loss of optimality). 
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Abstract. In the past, communications were much slower than computations. As a result, re-
searchers and practitioners collected different data into huge databases located at a single location
such as NASA and US Geological Survey. At present, communications are so much faster that it
is possible to keep different databases at different locations, and automatically select, transform,
and collect relevant data when necessary. The corresponding cyberinfrastructure is actively used in
many applications. It drastically enhances scientists’ ability to discover, reuse and combine a large
number of resources, e.g., data and services.

Because of this importance, it is desirable to be able to gauge the the uncertainty of the results
obtained by using cyberinfrastructure. This problem is made more urgent by the fact that the level
of uncertainty associated with cyberinfrastructure resources can vary greatly – and that scientists
have much less control over the quality of different resources than in the centralized database. Thus,
with the cyberinfrastructure promise comes the need to analyze how data uncertainty propagates
via this cyberinfrastructure.

When the resulting accuracy is too low, it is desirable to produce the provenance of this inac-
curacy: to find out which data points contributed most to it, and how an improved accuracy of
these data points will improve the accuracy of the result. In this paper, we describe algorithms for
propagating uncertainty and for finding the provenance for this uncertainty.

Keywords: cyberinfrastructure, uncertainty, interval uncertainty, probabilistic uncertainty, prove-
nance

1. Cyberinfrastructure: A Brief Overview

Practical problem: need to combine geographically separate computational resources.
In different knowledge domains in science and engineering, there is a large amount of data stored
in different locations, and there are many software tools for processing this data, also implemented
at different locations. Users may be interested in different information about this domain.

Sometimes, the information required by the user is already stored in one of the databases. For
example, if we want to know the geological structure of a certain region in Texas, we can get this
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information from the geological map stored in Austin. In this case, all we need to do to get an
appropriate response from the query is to get this data from the corresponding database.

In other cases, different pieces of the information requested by the user are stored at different
locations. For example, if we are interested in the geological structure of the Rio Grande Region,
then we need to combine data from the geological maps of Texas, New Mexico, and the Mexican
state of Chihuahua. In such situations, a correct response to the user’s query requires that we access
these pieces of information from different databases located at different geographic locations.

In many other situations, the appropriate answer to the user’s request requires that we not
only collect the relevant data x1, . . . , xn, but that we also use some data processing algorithms
f(x1, . . . , xn) to process this data. For example, if we are interested in the large-scale geological
structure of a geographical region, we may also use the gravity measurements from the gravity
databases. For that, we need special algorithms to transform the values of gravity at different
locations into a map that describes how the density changes with location. The corresponding
data processing programs often require a lot of computational resources; as a result, many such
programs reside on computers located at supercomputer centers, i.e., on computers which are
physically separated from the places where the data is stored.

The need to combine computational resources (data and programs) located at different geo-
graphic locations seriously complicates research.

Centralization of computational resources – traditional approach to combining com-
putational resources; its advantages and limitations. Traditionally, a widely used way to
make these computational resources more accessible was to move all these resources to a central
location. For example, in the geosciences, the US Geological Survey (USGS) was trying to become
a central repository of all relevant geophysical data. However, this centralization requires a large
amount of efforts: data is presented in different formats, the existing programs use specific formats,
etc. To make the central data repository efficient, it is necessary:

− to reformat all the data,

− to rewrite all the data processing programs – so that they become fully compatible with the
selected formats and with each other, etc.

The amount of work that is needed for this reformatting and rewriting is so large that none of these
central repositories really succeeded in becoming an easy-to-use centralized database.

Cyberinfrastructure – a more efficient approach to combining computational resources.
Cyberinfrastructure technique is a new approach that provides the users with the efficient way
to submit requests without worrying about the geographic locations of different computational
resources – and at the same time avoid centralization with its excessive workloads. The main idea
behind this approach is that we keep all (or at least most) the computational resources

− at their current locations,

− in their current formats.

To expedite the use of these resources:
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− we supplement the local computational resources with the “metadata”, i.e., with the informa-
tion about the formats, algorithms, etc.,

− we “wrap up” the programs and databases with auxiliary programs that provide data compat-
ibility into web services,

and, in general, we provide a cyberinfrastructure that uses the metadata to automatically combine
different computational resources.

For example, if a user is interested in using the gravity data to uncover the geological structure
of the Rio Grande region, then the system should automatically:

− get the gravity data from the UTEP and USGS gravity databases,

− convert them to a single format (if necessary),

− forward this data to the program located at San Diego Supercomputer Center, and

− move the results back to the user.

This example is exactly what we have been designing under the NSF-sponsored Cyberinfrastructure
for the Geosciences (GEON) project; see, e.g., (Aguiar et al., 2004; Aldouri et al., 2004; Averill et
al., 2005; Ceberio et al., 2006; Ceberio et al., 2005; Keller et al., 2006; Platon et al., 2005; Schiek
et al., 2007; Sinha, 2006; Torres et al., 2004; Wen et al., 2001; Xie et al., 2003), and what we
are currently doing under the NSF-sponsored Cyber-Share project. This is similar to what other
cyberinfrastructure projects are trying to achieve.

Technical advantages of cyberinfrastructure: a brief summary. In different knowledge
domains, there is a large amount of data stored in different locations; algorithms for processing
this data are also implemented at different locations. Web services – and, more generally, cy-
berinfrastructure – provide the users with an efficient way to submit requests without worrying
about the geographic locations of different computational resources (databases and programs) –
and avoid centralization with its excessive workloads (Gates at el., 2006). Web services enable the
user to receive the desired data x1, . . . , xn and the results y = f(x1, . . . , xn) of processing this data.

Main advantage of cyberinfrastructure: the official NSF viewpoint. Up to now, we con-
centrated on the technical advantages of cyberinfrastructure. However, its advantages (real and
potential) go beyond technical. According to the final report of the National Science Foundation
(NSF) Blue Ribbon Advisory Panel on Cyberinfrastructure, “a new age has dawned in scientific and
engineering research, pushed by continuing progress in computing, information, and communication
technology, and pulled by the expanding complexity, scope, and scale of today’s challenges. The
capacity of this technology has crossed thresholds that now make possible a comprehensive ‘cyber-
infrastructure’ on which to build new types of scientific and engineering knowledge environments
and organizations and to pursue research in new ways and with increased efficacy.

Such environments and organizations, enabled by cyberinfrastructure, are increasingly required
to address national and global priorities, such as understanding global climate change, protecting
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our natural environment, applying genomics-proteomics to human health, maintaining national
security, mastering the world of nanotechnology, and predicting and protecting against natural and
human disasters, as well as to address some of our most fundamental intellectual questions such as
the formation of the universe and the fundamental character of matter.”

Main advantage of cyberinfrastructure: in short. Cyberinfrastructure greatly enhances the
ability of scientists to discover, reuse and combine a large number of resources, including data and
services.

2. Data Processing vs. Data Fusion

Practically important situation: it is difficult to directly measure the desired quantity
with a given accuracy. In practice, we are often interested in a quantity y which is difficult (or
even impossible) to directly measure with the desired accuracy.

In this situation, there are two ways to estimate the value of the desired quantity y with the
desired accuracy:

− measuring other (related) easier-to-measure quantities and then extracting the value y from
these measurements; this is called data processing; and

− measuring the same quantity y many times and combining the results of these measurements;
this is called data fusion.

Important terminological comment. To avoid confusion, we would like to emphasize that sometimes,
the term “data processing” refers to all possible processing of data by computers. In this more
general sense, data fusion can be viewed as a particular case of data processing. In this paper, we
limit ourselves to the narrow sense of the term “data processing”.

First idea: data processing. One possible way of estimating the desired quantity y with a given
accuracy is to look for easier-to-measure quantities x1, . . . , xn which are related to the desired y by
a known dependence y = f(x1, . . . , xn). Based on the results x̃1, . . . , x̃n of measuring these auxiliary
quantities, we can then compute an estimate ỹ = f(x̃1, . . . , x̃n) for the quantity y.

The entire process of measurement followed by estimation is called an indirect measurement of
y; see, e.g., (Rabinovich, 2005). The actual computation of ỹ = f(x̃1, . . . , x̃n) is known as data
processing.

Comment. Data processing is one of the main reasons why computers were invented in the first
place, and it is still one of the major uses of computers.

Data processing: example from the geosciences. In geosciences, we want to know the structure
at different depth. To determine this structure, we need to know the density y of the material at
different depths. It is very difficult (and very expensive) to directly measure this density. Therefore,
geoscientists measure this density indirectly.

For example, during an earthquake, geoscientists record the seismic waves at sensors located
at different points on the Earth surface. As a result, we obtain the travel times x1, . . . , xn of the
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seismic signal from the earthquake location to the sensor location. Based on these travel times, we
determine the structure of the Earth along the paths of the corresponding seismic waves.

The main limitations of this analysis is that earthquakes are unpredictable, they occur only
at some locations and as a result, several important areas of the earth are not well covered by
the corresponding paths. Thus, in addition to such passive (earthquake-related) seismic analysis,
geoscientists also perform active seismic experiments, in which they start small-scale explosions
in specially allocated areas and measure the travel times of the generated seismic waves. Based
on these travel times, we can also determine the desired Earth structure, i.e., to be more precise,
the values of the density at different depths and different locations; see, e.g., (Averill, 2007; Hole,
1992; Parker, 1994).

Specifics of data processing in cyberinfrastructure. In traditional data processing, when we
want to know the value of a difficult-to-measure quantity y, and we know the relation between this
quantity and easier-to-measure quantities xi, we then measure the values xi and use the results x̃i

of these measurements to compute the estimate ỹ = f(x̃1, . . . , x̃n) for the desired quantity y.
As we have mentioned earlier, the main idea of a cyberinfrastructure is to keep all the existing

measurement results readily available. Thus, with cyberinfrastructure in place, first we look for the
results x̃i of measuring xi in the existing databases. Only when we do not find these results x̃i – or
when these results are not accurate enough – only then we actually start measuring.

Specifics of data processing in cyberinfrastructure: example from the geosciences. For
example, if we want to know the geophysical structure in a certain area, instead of performing active
seismic experiments we first try to combine all the known results of active seismic experiments which
are related to this area. If this information is not sufficient, then we will, of course, have to perform
new experiments.

Second idea: data fusion. The second idea is also very straightforward: since we cannot achieve
the desired accuracy in the desired quantity y by a single measurement, we perform several indepen-
dent measurements of this same quantity, and then combine (“fuse”) the resulting (less accurate)
values ỹ1, . . . , ỹn into a single (more accurate) estimate ỹ for y.

This combination can be as simple as taking an arithmetic average ỹ =
1
n
· (ỹ1 + . . . + ỹn), or it

can be more complicated: e.g., taking a weighted average or applying some non-linear combination
technique. Several such techniques will be described and analyzed later in this paper.

Data fusion: examples. Data fusion is, in effect, a standard procedure that is routinely done in
engineering and scientific practice (see, e.g., (Rabinovich, 2005)):

− the super-precise time is obtained by using three (or more) independent precise clocks and
combining the results of these measurements;

− in medical practice, important quantities such as high blood pressure are often performed at
least twice, etc.

Specifics of data processing in cyberinfrastructure. In the traditional engineering and scien-
tific practice, we actually measure the desired quantity y several times. With cyberinfrastructure in
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place, we first look for the existing results of measuring the desired quantity, and try to fuse them
into a single estimate.

Only if the accuracy of the resulting estimate is not good enough, then we perform additional
measurements.

Combination of data processing and data fusion. In real life, to achieve the desired accuracy,
it is often necessary both to use multiple measurement and to perform indirect measurements. In
other words, in many situations, we need to combine data processing and data fusion.

For example, for many geological regions, we already have several density distributions obtained
by processing different seismic data. To get a more accurate picture, it is reasonable to combine
(fuse) the resulting approximate values of density, i.e., to fuse the existing data processing results.

3. Need for Uncertainty Propagation, and for Provenance of Uncertainty

Need for uncertainty propagation. As we have mentioned, one of the main reasons why we
need data processing (i.e., indirect measurements) and data fusion (i.e., multiple measurements)
in the first place is that the accuracy of the original direct measurement is not high enough. It is
therefore important to make sure that after the proposed data processing and/or data fusion, we
get the desired accuracy. In other words, we must find out how the uncertainty (inaccuracy) of the
direct measurement results propagates via the infrastructure.

The need for uncertainty propagation is enhanced by the fact that the level of uncertainty
associated with cyberinfrastructure resources can vary greatly – as well as the level of uncer-
tainty of any response derived from such resources. Also, in contrast to the centralized platform,
in cyberinfrastructure, scientists have less control about the quality of different resources. Thus,
the cyberinfrastructure promise comes along with the need to support the associated uncertainty
analysis uncertainty propagation.

Need for the provenance of uncertainty. When the resulting accuracy is sufficient, we get the
desired estimate ỹ. However, sometimes, the resulting accuracy is still too low. In this situation, it
is desirable to produce the provenance of this inaccuracy: to find out which data points contributed
most to it, and how an improved accuracy of these data points will improve the accuracy of the
result.

Comment. In this paper, we mainly deal with the provenance of uncertainty. It is worth mentioning
that in general, other aspects of provenance are also very important: e.g., to be able to adequately
gauge the reliability of different measurement results (and thus, to form a decision on how much we
trust these results), we must take into account the provenance of these results – i.e., which team
performed these measurements, what auxiliary data was used in pre-processing these measurement
results, etc.
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4. Uncertainty of the Results of Direct Measurements: Probabilistic and Interval
Approaches

Measurement uncertainty: general description. To find out how the inaccuracies ∆xi = x̃i−xi

of direct measurements (= measurement errors) propagate through the cyberinfrastructure, we need
to recall how these inaccuracies ∆xi are usually described.

The manufacturer of the measuring instrument must supply us with an upper bound ∆i on the
measurement error. If no such upper bound is supplied, this means that no accuracy is guaranteed,
and the corresponding “measuring instrument” is practically useless. In this case, once we performed
a measurement and got a measurement result x̃i, we know that the actual (unknown) value xi of
the measured quantity belongs to the interval xi = [xi, xi], where xi = x̃i −∆i and xi = x̃i + ∆i.

Probabilistic uncertainty. In many practical situations, we not only know the interval [−∆i,∆i]
of possible values of the measurement error; we also know the probability of different values ∆xi

within this interval. This knowledge underlies the traditional engineering approach to estimating
the error of indirect measurement, in which we assume that we know the probability distributions
for measurement errors ∆xi.

These probabilities are often described by a normal distribution, so in standard engineering
textbook on measurement, it is usually assumed that the distribution of ∆xi is normal, with 0
average and known standard deviation σi; see, e.g. (Fuller, 1987; Rabinovich, 2005).

In general, we can determine the desired probabilities of different values of ∆xi by comparing
the results of measuring with this instrument with the results of measuring the same quantity by
a standard (much more accurate) measuring instrument. Since the standard measuring instrument
is much more accurate than the one use, the difference between these two measurement results
is practically equal to the measurement error; thus, the empirical distribution of this difference is
close to the desired probability distribution for measurement error.

Interval uncertainty. There are two cases, however, when in practice, we do not determine the
probabilities:

− First is the case of cutting-edge measurements, e.g., measurements in fundamental science.
When a Hubble telescope detects the light from a distant galaxy, there is no “standard” (much
more accurate) telescope floating nearby that we can use to calibrate the Hubble: the Hubble
telescope is the best we have.

− The second case is the case of measurements on the shop floor. In this case, in principle, every
sensor can be thoroughly calibrated, but sensor calibration is so costly – usually costing ten
times more than the sensor itself – that manufacturers rarely do it.

In both cases, we have no information about the probabilities of ∆xi; the only information we have
is the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement result x̃i, the only
information that we have about the actual value xi of the measured quantity is that it belongs to
the interval xi = [x̃i −∆i, x̃i + ∆i].

What we consider in this paper. For each of the 2 techniques for improving accuracy (data
processing and data fusion), we must therefore consider 2 possible situations:
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− when we know the probabilities of inaccuracies of direct measurements, and

− when we only know upper bounds (intervals) for these inaccuracies.

So, we have 2×2 = 4 possible situations. In this paper, we will consider all four situations. We start
with data processing under probabilistic and interval uncertainty, and then we cover data fusion
under both types of uncertainty.

For three of these four situations, the answer is reasonably straightforward; for the fourth one,
we will come up with new formulas.

5. Typical Situation: Measurement Errors are Reasonably Small

Before we start analyzing different situations, let us mention that in this paper, we will only
consider a typical situation in which the direct measurements are accurate enough, so that the
resulting approximation errors ∆xi are small, and terms which are quadratic (or of higher order) in
∆xi can be safely neglected. In such situations, for data processing, the dependence of the desired
value y = f(x1, . . . , xn) = f(x̃1 −∆x1, . . . , x̃n −∆xn) on ∆xi can be safely assumed to be linear.

When approximation errors are small, we can simplify the expression for ∆y = ỹ − y =
f(x̃1, . . . , x̃n)−f(x1, . . . , xn), if we expand the function f in Taylor series around the point (x̃1, . . . , x̃n)
and restrict ourselves only to linear terms in this expansion. As a result, we get the expression

∆y = c1 ·∆x1 + . . . + cn ·∆xn,

where by ci we denoted the value of the partial derivative
∂f

∂xi
at the point (x̃1, . . . , x̃n).

In the linear approximation, for small h > 0, we have f(x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n) ≈
f(x̃1, . . . , x̃i−1, x̃i, x̃i+1, . . . , x̃n) + ci · h, hence we can determine ci as

ci =
1
h
· (f(x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ).

Comment. There are practical situations when the accuracy of the direct measurements is not
high enough, and hence, quadratic terms cannot be safely neglected (see, e.g., (Jaulin, 2001) and
references therein). In this case, the problem of error estimation for indirect measurements becomes
computationally difficult (NP-hard) even when the function f(x1, . . . , xn) is quadratic (Kreinovich
et al., 1998; Vavasis, 1991). However, in most real-life situations, the possibility to ignore quadratic
terms is a reasonable assumption, because, e.g., for an error of 1% its square is a negligible 0.01%.

6. Case of Data Processing

Propagation of uncertainty through data processing: case of probabilistic uncertainty.
In the statistical setting, the desired measurement error ∆y is a linear combination of independent
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Gaussian variables ∆xi. Therefore, ∆y is also normally distributed, with 0 average and the standard
deviation

σ =
√

c2
1 · σ2

1 + . . . + c2
n · σ2

n.

Comment. A similar formula holds if we do not assume that ∆xi are normally distributed: it
is sufficient to assume that they are independent variables with 0 average and known standard
deviations σi.

Uncertainty provenance in data processing: case of probabilistic uncertainty. The above
formula not only describes the propagation of uncertainty, it also describes the provenance of

uncertainty. Indeed, for every i, since σ2 =
n∑

i=1
c2
i · σ2

i , we know which component of the resulting

variance σ2 comes from the inaccuracy σi of the i-th measurement. We can therefore easily predict
how replacing the i-th measurement with a more accurate one (with σnew

i ¿ σi) will affect the
resulting variance σ2.

Propagation of uncertainty through data processing: case of interval uncertainty. In
the interval setting, we do not know the probability of different errors ∆xi; instead, we only know

that |∆xi| ≤ ∆i. In this case, the sum
n∑

i=1
ci · ∆xi attains its largest possible value if each term

ci ·∆xi in this sum attains the largest possible value:

− If ci ≥ 0, then this term is a monotonically non-decreasing function of ∆xi, so it attains its
largest value at the largest possible value ∆xi = ∆i; the corresponding largest value of this
term is ci ·∆i.

− If ci < 0, then this term is a decreasing function of ∆xi, so it attains its largest value at the
smallest possible value ∆xi = −∆i; the corresponding largest value of this term is −ci ·∆i =
|ci| ·∆i.

In both cases, the largest possible value of this term is |ci| ·∆i, so, the largest possible value of the
sum ∆y is

∆ = |c1| ·∆1 + . . . + |cn| ·∆n.

Similarly, the smallest possible value of ∆y is −∆.
Hence, the interval of possible values of ∆y is [−∆,∆], and the interval of possible values of the

actual value y is [ỹ −∆, ỹ + ∆].

Uncertainty provenance in data processing: case of interval uncertainty. The above
formula not only describes the propagation of uncertainty, it also describes the provenance of

uncertainty. Indeed, for every i, since ∆ =
n∑

i=1
|ci| ·∆i, we know which component of the resulting

approximation error ∆ comes from the inaccuracy ∆i of the i-th measurement. We can therefore
easily predict how replacing the i-th measurement with a more accurate one (with ∆new

i ¿ ∆i)
will affect the resulting approximation error ∆.
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7. Case of Data Fusion

Propagation of uncertainty through data fusion: case of probabilistic uncertainty. In
data fusion, we know several results ỹ1, . . . , ỹn of measuring the same quantity y. Under probabilistic
uncertainty, we assume that the corresponding n measurements errors are independent normally
distributed random variables with 0 mean and known standard deviations σi. In this case, for each
possible value y, the probability density ρi of getting ỹi is equal to

ρi(y) =
1√

2π · σi

· exp

(
−(y − ỹi)2

2σ2
i

)
,

and thus, the probability density ρ(y) of having the given n measurements is equal to

ρ(y) = ρ1(y) · . . . · ρn(y) = const · exp

(
−

n∑

i=1

(y − ỹi)2

2σ2
i

)
.

As a resulting estimate ỹ for the desired (unknown) quantity y, it is then reasonable to select the
most probable value, i.e., the value for which the probability density ρ(y) is the largest.

Maximizing ρ(y) is equivalent to minimizing the quadratic function − ln(ρ(y)); differentiating
this quadratic expression with respect to y and equating the derivative to 0, we conclude that

ỹ =
1

n∑
i=1

1
σ2

i

·
n∑

i=1

ỹi

σ2
i

.

This estimate is a linear combination of normally distributed estimates ỹi with mean y and standard

deviation σi, with coefficients ci = σ−1
i /

(
n∑

j=1
σ−2

j

)
. Thus, ỹ is also normally distributed, with the

same mean y and the standard deviation σ2 =
n∑

i=1
c2
i · σ2

i , i.e., with standard deviation

σ2 =
1

n∑
i=1

1
σ2

i

.

This formula can also be rewritten as
1
σ2

=
n∑

i=1

1
σ2

i

.

Uncertainty provenance in data fusion: case of probabilistic uncertainty. The above
formula not only describes the propagation of uncertainty, it also describes the provenance of

uncertainty. Indeed, for every i, since σ−2 =
n∑

i=1
σ−2

i , we know which component of the resulting

variance σ2 comes from the inaccuracy σi of the i-th measurement.
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We can therefore easily predict how replacing the i-th measurement with a more accurate one
(with σnew

i ¿ σi) will affect the resulting variance σ2. Good news is we can predict this accuracy
beforehand, without actually performing the measurements – since the resulting accuracy σ depends
only on the accuracies σi of individual measurements and not on the results of these measurements.

Case of unknown probabilistic uncertainty. Sometimes, we do not know the accuracy of the
fused measurements. In this case, we can use the differences between the measurement results
ỹ1, . . . , ỹn to estimate the standard deviation σ1 = . . . = σn of the corresponding measurements by

using the usual statistical formula σ2
1 =

1
n− 1

·
n∑

i=1

(∆yi − E)2, where E
def=

1
n
·

n∑

i=1

∆yi.

Propagation of uncertainty through data fusion: case of interval uncertainty. Under
interval uncertainty, we know n results ỹ1, . . . , ỹn of measuring the same quantity y, and we know
the accuracy ∆i of each measurement. Thus, for each i, we know that the actual (unknown) value
y of the desired quantity must belong to the interval yi

def= [ỹi −∆i, ỹi + ∆i].
Fusion here is straightforward: the set of all the values y which belong to all n intervals is equal to

the intersection y = [y, y] = y1∩ . . .∩yn of these intervals. Here, y = max(ỹ1−∆y1, . . . , ỹn−∆yn),

y = min(ỹ1 + ∆y1, . . . , ỹn + ∆yn), and the accuracy ∆ =
y − y

2
of the fused estimate can be

computed as

∆ =
1
2
· (min(ỹ1 + ∆y1, . . . , ỹn + ∆yn)−max(ỹ1 −∆y1, . . . , ỹn −∆yn)).

Case of unknown interval uncertainty: a reasonable approach. Sometimes, we do not know
the accuracy ∆i of the fused measurements. In this case, it is reasonable to get a single estimate
for ∆1 = . . . = ∆n for all these measurements. We know that the intervals [ỹi −∆1, ỹ1 + ∆1] must
intersect – since they all contain the actual (unknown) value of the desired quantity y.

For the intersection to be non-empty, every lower bound ỹi −∆1 must be smaller than or equal
to every upper bound ∆yj + ∆1. Thus, we must have ỹi − ỹj ≤ 2∆1. So, we can conclude that

∆1 ≥ 1
2
· (max

i
∆yi −min

i
∆yi).

Case of unknown interval uncertainty: seemingly reasonable proposal and its limita-
tions. The actual value ∆1 can be larger than this half-difference, but as a first approximation, it

may be reasonable to take ∆1 ≈ 1
2
· (max

i
∆yi −min

i
∆yi). This particular choice may not be the

most adequate, since in this case, the intersection of the corresponding intervals [ỹi −∆1, ỹ1 + ∆1]

consists of a single point – the midpoint ymid
def=

1
2
·(max

i
∆yi+min

i
∆yi). This conclusion is somewhat

misleading because it erroneously suggests that we know the exact value of the estimated quantity.
In the following text, we will return to this problem and show how to get a somewhat more

adequate estimate.

Uncertainty provenance in data fusion: case of interval uncertainty. The above formula
describes the propagation of uncertainty. From the viewpoint of uncertainty propagation, this for-
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mula is even simpler than in the probabilistic case. So, from the computational viewpoint, we can
say that as far as propagation of uncertainty is concerned, the situation with interval uncertainty
is easier-to-handle than the situation with probabilistic uncertainty.

With provenance, however, the situation is exactly opposite. For probabilistic uncertainty, we
can predict the resulting accuracy beforehand, without actually performing the measurements –
since the resulting accuracy σ depends only on the accuracies σi of individual measurements and
not on the results of these measurements. In contrast, for the interval uncertainty, for the same
accuracies ∆1, . . . , ∆n of the individual measurements, we can get different accuracy ∆ of the fusion
result – depending on the actual measurement results.

Let us illustrate this problem on the simplest example, when the actual (unknown) value is
y = 0, and we fuse two measurements with the exact same accuracy ∆1 = ∆2 = 1. All we know
about the results of these two measurements is that the resulting intervals contain the actual value
y. Since this is the only restriction, we can two radically different extreme situations:

− It is possible that in both measurements, we get the same interval [−1, 1] containing 0. In this
case, the intersection is exactly the same interval, so the resulting accuracy is ∆ = 1, the same
accuracy with which we started.

− It is also possible that in the first measurement, we get the interval [−1, 0] and in the second
measurement, we get the interval [0, 1]. In this case, as a result of data fusion, we get the exact
value of the measured quantity, with ∆ = 0.

We can also have all possible values in between. In general, if we have n measurements with
accuracies ∆1, . . . ,∆n, then the half-width ∆ of the intersection of the corresponding intervals can
take any values from 0 to min(∆1, . . . , ∆n).

Planning data fusion under interval uncertainty: formulation of the problem. If the
accuracy of the result of data fusion is not sufficient, we should then supplement the existing
measurements with one or several more accurate ones. How accurate should these new measurement
be? how many of these more accurate measurements should we make? It is desirable to have some
answers to these questions before we go into the time- and resources-consuming process of actually
buying the corresponding sensors and performing the measurements – because if we do not get the
desired accuracy again, this time-consuming process will be mostly wasting time.

In other words, it is desirable to produce an estimate for the accuracy ∆ of the result of fusing
measurements with accuracies ∆1, . . . , ∆n, an estimate that we can obtain before we start the
actual measurements. How can we solve this problem?

Planning data fusion under interval uncertainty: main idea. Our main idea of solving the
above problem is as follows. We know that the i-th measurement has accuracy ∆i. This means that
the only information that we have about the possible values of the i-th measurement error ∆yi is
that this error belongs to the interval [−∆i, ∆i].

We have no information about the probabilities of different values of ∆yi within this interval.
According to Laplace’s principle of indifference, in this situation, it is reasonable to assume that all
possible values have the same probability, i.e., that the distribution of ∆yi on the interval [−∆i,∆i]
is uniform.
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For each combinations of choices of ∆yi, we get different measurement results ỹi = y + ∆yi

and thus, different intersections y = [y, y] = y1 ∩ . . . ∩ yn of the corresponding intervals yi =
[ỹi −∆i, ỹi + ∆i] = [y + ∆yi −∆i, y + ∆yi + ∆i].

We are interested in the accuracy of the fused results. This accuracy can be gauged by the
largest possible absolute value ∆ of the different between the actual value y and values from the
fused interval y.

As we have mentioned, in principle, this accuracy ∆ can be as small as large as min(∆1, . . . , ∆n).
However, the probability of such a large inaccuracy ∆ is reasonably small; in our estimates of ∆, we
would like to ignore small-probability events. In other words, we would like to select an allowable
small probability p0 of mis-estimation, and estimate ∆ as the smallest value for which the probability
to have y ≤ y + ∆ is at least 1− p0 and the probability to have y ≥ y −∆ is also ≥ 1− p0.

Thus, we arrive at the following precise problem.

Planning data fusion under interval uncertainty: precise formulation of the problem.
Let p0 > 0 be a fixed real number. We start with an arbitrary value y. Let ∆y1, . . . ,∆yn be n
independent random variables such that each variable ∆yi is uniformly distributed on the interval
[−∆i, ∆i]. By ∆, we mean that smallest value for which the probability that for the intersection
y = [y, y] = y1 ∩ . . . ∩ yn of the intervals yi = [ỹi −∆i, ỹi + ∆i], where ỹi = y + ∆yi, the following
two properties hold:

− the probability to have y ≤ y + ∆ is at least 1− p0, and

− the probability to have y ≥ y −∆ is also ≥ 1− p0.

Towards an estimate for ∆. The condition that y ≤ y + ∆ means that

min(y + ∆y1 + ∆1, . . . , y + ∆yn + ∆n) ≤ y + ∆.

Which number is smaller and which is larger does not change when we shift all these numbers by
the same shift y. Thus, min(y + ∆y1 + ∆1, . . . , y + ∆yn + ∆n) = y + min(∆y1 + ∆1, . . . ,∆yn + ∆n)
and hence, the above inequality takes the form

min(∆y1 + ∆1, . . . , ∆yn + ∆n) ≤ ∆.

The probability popp for the opposite inequality

min(∆y1 + ∆1, . . . ,∆yn + ∆n) > ∆

should be ≤ p0.
The minimum of several sums is > ∆ if and only if each of these sums is > ∆. Thus, the

above opposite inequality holds if all n inequalities ∆yi + ∆i > ∆ hold. Since the variables ∆yi

are independent, we thus conclude that popp = p1 · . . . · pn, where pi
def= Prob(∆yi + ∆i > ∆) =

Prob(∆yi > ∆−∆i). Since ∆yi is uniformly distributed on the interval [−∆i,∆i], the probability
pi is equal to the ratio of

− the size of the set (∆−∆i, ∆i] where the corresponding inequality holds to
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− the size of the overall set [−∆i,∆i] on which the distribution is defined,

i.e., to pi =
∆i − (∆−∆i)

2∆i
=

2∆i −∆
2∆i

= 1− ∆
2∆i

. Thus,

popp =
n∏

i=1

(
1− ∆

2∆i

)
.

This product decreases with ∆; thus, the smallest possible value ∆ for which popp ≤ p0 can be

determined from the condition popp = p0, i.e.,
n∏

i=1

(
1− ∆

2∆i

)
= p0.

Taking logarithms of both sides, we get
n∑

i=1

ln
(

1− ∆
2∆i

)
= ln(p0).

We are interested in the case when data fusion is efficient, i.e., when ∆ ¿ ∆i. In this case,
∆

2∆i
¿ 1,

and we can use an approximate linearized formula ln(1− x) ≈ −x which is true for small x. This

formula leads to
n∑

i=1

∆
∆i

= 2| ln(p0)|, i.e., to ∆ ·
(

n∑
i=1

1
∆i

)
= 2| ln(p0)| and

∆ =
const
n∑

i=1

1
∆i

,

or, equivalently,
1
∆

= const ·
n∑

i=1

1
∆i

.

The second inequality leads to the exact same formula for ∆.

Data fusion under interval uncertainty: result. When we fuse n measurement results with
accuracies ∆i, the accuracy ∆ of the fused estimate can be estimated based on the formula

1
∆

= const ·
n∑

i=1

1
∆i

,

in which the constant const = 2| ln(p0)| depends on the allowed probability p0 that the actual
inaccuracy of the fused value is higher than this estimate.

Case of unknown interval uncertainty: revisited. Let us recall that in the case of data fusion
under unknown interval uncertainty, a reasonable choice for the accuracy ∆1 = . . . = ∆n of the
fused measurements is the smallest value ∆1 for which the corresponding intervals [ỹi−∆1, ỹi +∆1]
intersect. The problem with this approach is that for this smallest value, the intersection consists
of a single point ymid – making it sound as if we knew the exact value of the estimated quantity y.

To avoid this erroneous impression, a reasonable idea is to estimate the accuracy ∆ of the fused
result – for ∆1 = . . . = ∆n we get ∆ = ∆1/n – and “add” this accuracy ∆ to this point, i.e., return
the interval [ymid −∆, ymid + ∆] as the interval estimate for the desired quantity y.
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Comparison between data fusion under probabilistic and interval uncertainty. The above

formula for ∆ is similar to the formula
1
σ2

= const ·
n∑

i=1

1
σ2

i

which describes the accuracy σ of data

fusion under probabilistic uncertainty. The main difference is that instead of the variances σ2
i and

σ2 we now have upper bounds ∆i and ∆.
In practical terms, this formal difference can be described as follows.

− If we apply data fusion to n results known with the same probabilistic uncertainty σ1 = . . . =
σn, then we result of data fusion is known with the uncertainty σ =

σi√
n

.

− On the other hand, if we we apply data fusion to n results known with the same interval
uncertainty ∆1 = . . . = ∆n, then we result of data fusion is known with the uncertainty
∆ =

σi

n
.

Thus, with interval uncertainty, we get a much faster (∼ 1/n) decrease in approximation error than
for the probabilistic uncertainty (∼ 1/

√
n). This fact is in line with similar estimates from (Walster,

1988; Walster and Kreinovich, 1996).

Comment. It is worth mentioning that there is a similar difference for data processing: in the interval

case, we have ∆ =
n∑

i=1
|ci| ·∆i, whereas in the probabilistic case, we have σ2 =

n∑
i=1

|ci|2 · σ2
i .

The difference between the formulas for data fusion and data processing is similar to the formulas
for the resistance R of of an electric circuit consisting of resistances R1, . . . , Rn: when the resistances
are placed sequentially, we get R = R1 + . . . + Rn (as for data processing); when the resistance are

placed in parallel to each other, we get
1
R

=
1

R1
+ . . . +

1
Rn

(as for data fusion).

8. Propagation of Uncertainty When We Have Both Data Processing and Data
Fusion

Motivations. As we have mentioned earlier, in many real-life situations, to get the desired accuracy,
we must apply both data fusion and data processing.

Example. For example, we can fuse several values y1, . . . , yn each of which is obtained by data
processing.

Main idea. In this case, to find the accuracy of the final result, we propagate the uncertainty
through all these data fusion/data processing steps.

Example. In the above example,

− we first use the formulas for propagating uncertainty under data processing to come up with
accuracy values (∆i or σi) for yi, and then

− we use the formulas for uncertainty propagation under data fusion to combine these values ∆i

(correspondingly, σi) into a single estimate ∆ (corr., σ).
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9. Towards Optimal Data Processing and Data Fusion

Motivations. Up to now, we concentrated on the analysis of given data processing and data fusion
scenarios. However, since we have explicit (and simple) formulas for the propagation of uncertainty
under data processing and data fusion, we can actually solve the problem of finding the least
expensive way to guarantee the given accuracy.

To perform this optimization, we must know how the cost of measuring related quantities with
different accuracies.

Towards optimal data fusion: preliminary description. For data fusion, let cprob(σ) denote
the cost of measuring the desired quantity with standard deviation σ, and let cint(∆) denote the
cost of measuring the desired quantity with the guaranteed upper bound ∆ on the measurement

error. Typically, cprob(σ) =
C

σα
and cint(∆) =

C

∆α
for some constants C and α > 0; see, e.g.,

(Nguyen et al., 2008; Nguyen and Kreinovich, 2008) and references therein.

Towards optimal data fusion: probabilistic case. In the probabilistic case, we must find the

values σi for which
n∑

i=1
cprob(σi) → min under the constraint that the sum

n∑
i=1

σ−2
i is equal to the

given value σ−2. By applying Lagrange multiplier method to this constraint optimization problem,

we get an unconstraint optimization problem
n∑

i=1
cprob(σi) + λ ·

n∑
i=1

σ−2
i → min. Differentiating

w.r.t. σi and equating the derivative to 0, we conclude that c′(σi) · σ3
i = const = 2λ.

For a function cprob(σ) =
C

σα
, the expression c′(σi) ·σ3

i is monotonic in σi and thus, the equality
occurs only for one value σi – hence in the optimal plan, σ1 = . . . = σn. To get the desired value σ,
we must have σi =

√
n · σ.

Towards optimal data fusion: interval case. Similarly, in the interval case, the problem of

minimizing
n∑

i=1
cint(∆i) under the constraint

n∑
i=1

∆−1
i = ∆−1 leads to the equation c′(∆i) · ∆2

i =

const = λ.
For a function cint(∆) =

C

∆α
, the expression c′(∆i) ·∆2

i is monotonic in ∆i and thus, the equality
occurs only for one value ∆i – hence in the optimal plan, ∆1 = . . . = ∆n. To get the desired value
∆, we must have ∆i = n ·∆.

Towards optimal data processing: preliminary description. For data processing, let cprob
i (σi)

denote the cost of measuring the i-th quantity with standard deviation σi, and let cint
i (∆i) denote

the cost of measuring the i-th quantity with the guaranteed upper bound ∆i on the measurement

error. Just like in the case data fusion, typically, we have cprob
i (σi) =

Ci

σαi
i

and cint
i (∆i) =

Ci

∆αi
for

some constants Ci and αi.

Towards optimal data processing: probabilistic case. In the probabilistic case, the problem

of minimizing
n∑

i=1
cprob
i (σi) under the constraint

n∑
i=1

c2
i · σ2

i = σ2 leads to the equation
c′(σi)
c2
i · σi

=

const = −2λ.
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For cprob
i (σi) =

Ci

σαi
i

, we get σi =

(
αi · Ci

2λ · c2
i

)1/(2+αi)

, where λ can be determined from the equation

n∑

i=1

c2
i ·

(
αi · Ci

2λ · c2
i

)2/(2+αi)

= σ2.

Towards optimal data processing: interval case. In the interval case, the problem of mini-

mizing
n∑

i=1
cint
i (∆i) under the constraint

n∑
i=1

|ci| · ∆i = ∆ leads to the equation
c′(∆i)
|ci| = const =

−λ.

For cint
i (∆i) =

Ci

∆αi
i

, we get ∆i =
(

αi · Ci

λ · |ci|
)1/(1+αi)

, where λ can be determined from the equation

n∑

i=1

|ci| ·
(

αi · Ci

λ · |ci|
)2/(2+αi)

= ∆.

10. Combining Probabilistic and Interval Uncertainty

Motivations. In the previous sections, we assumed that in data processing an in data fusion, either
all measurement results are known with probabilistic uncertainty, or all measurement results are
known with interval uncertainty.

In practice, some measurement results are known with probabilistic uncertainty (i.e., we know
the probabilities of the corresponding measurement errors), and some are only known with interval
uncertainty (i.e., we only know the upper bounds on the corresponding measurement errors). In
this case, how can we estimate the accuracy of the result of data processing or data fusion?

Case of data processing. For data processing, it is possible to provide an answer to the above
question. Indeed, suppose that we produce an estimate ỹ = f(x̃1, . . . , x̃n) for the desired quantity
y which is based on the results x̃i of directly measuring n related quantities x1, . . . , xn.

We are interested in situations in which some of the measurement errors are known with proba-
bilistic uncertainty, and some with interval uncertainty. Without losing generality, we can assume
that the values x1, . . . , xk are known with probabilistic uncertainty and the values xk+1, . . . , xn are
known with interval uncertainty. In other words, we know the standard deviations σ1, . . . , σk of
the first k measurements, and we know the upper bounds ∆k+1, . . . , ∆n of the others. In this case,

the above linearized formula ∆y =
n∑

i=1
ci · ∆xi can be rewritten as ∆y = ∆yprob + ∆yint, where

∆yprob =
k∑

i=1
ci ·∆xi and ∆yint =

n∑
i=k+1

ci ·∆xi.
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As we already know, ∆yprob is a normally distributed random variable with 0 mean and standard

deviation σ =

√
k∑

i=1
c2
i · σ2

i and ∆yint is a variable about which we only know that it belongs to the

interval [−∆, ∆], where ∆ =
n∑

i=k+1
|ci| ·∆i.

So, we conclude that the approximation error ∆y is the sum of two error components: a random
one with a known σ and an interval one with a known ∆.

The resulting two-component description of measurement and approximation error is
in line with the measurement practice. The above two-component description of an approx-
imation error is in line with the standard practice in measurement theory (see, e.g., (Rabinovich,
2005)), where a measurement error ∆x is often described by its two component:

− a random error component ∆rx
def= ∆x − E[∆x] with 0 mean (E[∆rx] = 0), for which we

usually know the standard deviation σ, and

− a systematic error component ∆sx
def= E[∆x] for which we only know the upper bound ∆ on

its absolute value.

The situation in which we only know the upper bound ∆ on the (absolute value of) the total
measurement error can be viewed as a degenerate case of this two-component description, with
σ = 0.

Data processing: case when we have a two-component description of all the measure-
ment errors. In view of the prevalence of the two-component error description in measurement
practice, it is reasonable to consider the following situation.

We want to estimate the value of the desired difficult-to-measure quantity y. We know the
relation y = f(x1, . . . , xn) between this quantity y and easier-to-measure quantities x1, . . . , xn. For
each of these auxiliary quantities xi, we know the measurement result x̃i and we know that the
corresponding measurement error ∆xi

def= x̃i − xi can be represented as a sum of two components
∆xi = ∆sxi + ∆rxi, where:

− the component ∆sxi is a random variable with 0 mean and known standard deviation σi;

− about the component ∆rxi, we only know the upper bound ∆i on the (absolute value of the)
measurement error, i.e., we know that |∆rxi| ≤ ∆i.

Based on the measurement results x̃1, . . . , x̃n, we compute an estimate ỹ = f(x̃1, . . . , x̃n) for y.
What can we say about the approximation error ∆y

def= ỹ − y of this estimate?

In the linearization case, we can conclude that ∆y =
n∑

i=1
ci ·∆xi. Since ∆xi = ∆sxi + ∆rxi, we

can conclude that ∆y = ∆sy + ∆ry, where ∆ry =
n∑

i=1
ci ·∆rxi and ∆sy =

n∑
i=1

ci ·∆sxi. We already

know how to handle each of these two sums, so we conclude that the approximation error ∆y also
consists of two components:
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− the component ∆sy is a random variable with 0 mean and known standard deviation

σ =

√√√√
n∑

i=1

c2
i · σ2

i ;

− about the component ∆ry, we only know the upper bound ∆ =
n∑

i=1
|ci| ·∆i on the (absolute

value of the) measurement error, i.e., we know that |∆ry| ≤ ∆.

Case of data fusion. In data fusion, we have n results ỹ1, . . . , ỹn of measuring the same quantity
y. In the previous sections, we assume that either all of these measurement errors are known with
probabilistic uncertainty, or that all of them are know with interval uncertainty.

Let us now consider the case when some of the measurement errors are known with probabilistic
uncertainty, and some with interval uncertainty. Without losing generality, we can assume that the
values y1, . . . , yk are known with probabilistic uncertainty and the values yk+1, . . . , yn are known
with interval uncertainty. In other words, we know the standard deviations σ1, . . . , σk of the first k
measurements, and we know the upper bounds ∆k+1, . . . ,∆n of the others. In this case,

− we can use the data fusion formula for the probabilistic uncertainty to fuse the measurement
ỹ1, . . . , ỹk into a single result ỹ with a standard deviation σ, and

− we can fuse the interval-valued measurements by taking the intersection

[y, y] def= [ỹk+1 −∆k+1, ỹk+1 + ∆k+1] ∩ . . . ∩ [ỹn −∆n, ỹn + ∆n]

of the corresponding intervals.

It is therefore important to fuse the interval estimate with accuracy ∆ and the probabilistic estimate
with the accuracy σ The result of the fusion depends on the relation between ∆ and σ:

− If ∆ À σ, this means that the interval estimate is much much wider than what we can simply
conclude based on the probabilistic information. Thus, in this case, the fused information
consists simply of the probabilistic estimate.

− If σ À ∆, this means that the probabilistic estimate is much worse than the interval one. In
this case, the fused information consists simply of the interval estimate.

− If the estimates σ and ∆ are approximately of the same order, this means that we can keep
either one of them.

Comment. Our recommendation for the case when the estimates σ and ∆ are approximately of the
same order is somewhat vague. For this case, it would be nice to come up with a better answer to
the fusion question.
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11. Adding Reliability and Trust: Results and Open Problems

Formulation of the problem. In the previous sections, we concentrated on the measurement
uncertainty, i.e., on the difference between the measurement result and the actual value of the
corresponding quantity. We also assumed that these differences are relatively small.

This smallness assumption holds in many practical situations. However, sometimes, we have
values which are completely off: a measuring instrument can malfunction, a computer may have
misread this information, etc. Such values are often called outliers. In short, in addition to being not
100% accurate, the measurement results are also not 100% reliable. How can we take this possible
unreliability into account in data processing and data fusion?

How we can describe the reliability of different measurement results. A natural way to
describe the reliability of different measurement results is to provide the probability pi that the
i-th measurement result is an outlier. It is usually assumed that in terms of reliability, different
measurement results are independent – so that, e.g., the probability that both the i-th and the j-th
results are outliers is equal to the product pi · pj .

These probabilities can be gauged, e.g., based on our knowledge of what team performed these
measurements, what is the track records of this particular team, what auxiliary values have been
used in pre-processing these results, etc. In other words, these probabilities can be gauged based
on the provenance of the corresponding measurement results.

Based on these probabilities, we need to estimate the reliability p of the results of data processing
and data fusion.

Case of data processing. Let us first consider the case of data processing, when we transform n
measurement results x̃1, . . . , x̃n of n auxiliary quantities into an estimate ỹ = f(x̃1, . . . , x̃n) of the
desired quantity y.

For this estimate to be valid, all n measurement results must be valid (i.e., none of them is an
outlier). The probability that the i-th measurement result is not an outlier is equal to 1− pi. Since
we assumed independence, the probability 1− p that all n measurement results are not outliers is
equal to the product

1− p =
n∏

i=1

(1− pi).

Hence,

p = 1−
n∏

i=1

(1− pi).

If all the probability pi are small, we can ignore quadratic and higher order terms in this formula

and conclude that 1− p ≈ 1−
n∑

i=1
pi, i.e., that

p ≈
n∑

i=1

pi.
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Comment. Since pi > 0, we have 1− p < 1− pi for all i and hence, p > pi. It is worth mentioning
that for data processing, the un-reliability p of the result of data processing is larger than each
individual probability pi. Thus, if one of the input measurement results is highly unreliable, the
result of data processing is highly unreliable as well.

In particular, if we process n values with the same un-reliability p1 = . . . = pn, then the
un-reliability p of the result of data processing is n times larger: p ≈ n · p1 À p1.

Case of data fusion. The above-described data fusion techniques assume that we use all n results
ỹ1, . . . ỹn of measuring the desired quantity y. Thus, for these techniques, the reliability p of the
resulting estimate ỹ can be estimated by using a similar formula

p = 1−
n∏

i=1

(1− pi).

For small pi, we can use a linearized version of this formula p ≈
n∑

i=1
pi.

So here, just like for data processing, the un-reliability p of the result of data fusion is (much)
higher than the un-reliability of individual measurement results.

Case of interval uncertainty. Let us show that in the case of linear uncertainty, we can get much
better reliability values than in the general data fusion situation.

Indeed, in the case of interval uncertainty, we start with n intervals [y
i
, yi] which contain the

desired value y. In the “reliable” data fusion, we simply take the intersection of these n intervals,
i.e., we take the interval [y, y], where y = max(y

1
, . . . , y

n
) and y = min(y1, . . . , yn). The minimum

and the maximum are attained for some specific values i and j; thus, we always have y = y
i

for
some i and y = yj for some appropriate value j. Hence,

− the reliability for the lower endpoint y is simply equal to the reliability pi of the i-th measure-
ment, and

− the reliability of the upper endpoint y is equal to the reliability pj of the j-th measurement.

The corresponding values p = pi and p = pj are much better than in the general case when p À pi

for all i.

Data fusion can also improve reliability: towards an algorithm. Interval data fusion can
lead to even more reliable results: namely, an appropriate data fusion can drastically improve the
reliability of the result.

Indeed, let us assume that we have n interval measurements [y
1
, y1], . . . , [yn

, yn] with reliabilities
p1, . . . , pn. If these reliability are too high, how can we combine these values to get an estimate for
y for which the corresponding probability p does not exceed a given threshold p0?

Let us illustrate this possibility on the example of the upper endpoint y of the desired reliable
bound for y. For that, let us sort the values yi into an increasing sequence

y(1) ≤ y(2) ≤ . . . ≤ y(n).
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The corresponding probabilities will now be p(1), p(2), . . . , p(n). In the “reliable” data fusion, we
simply take the smallest value y(1) as the desired estimate y. For fusing possibly un-reliable data,
we can no longer do that.

Instead, let us choose, as y, the k-th value y(k) for some k. This estimate is not valid only in
one case: when all k estimates y(1), . . . , y(k) are un-reliable. Since we assumed independence, the
probability for this is equal to the product p(1) · . . . · p(k). Thus, ro guarantee reliability p ≤ p0, we
can select the first k for which p(1) · . . . · p(k) ≤ p0. Thus, we arrive at the following algorithm.

Data fusion which improves reliability of interval estimates: an algorithm. We start with
n intervals [y

i
, yi] with are reliable with probabilities pi. Our objective is to fuse them into a single

interval [y, y] which is the most accurate under the constraint that each of its endpoints y and y
has an un-reliability ≤ p0 for some given value p0.

To get the desired value y, we sort the upper endpoints yi into an increasing sequence y(1) ≤
y(2) ≤ . . . ≤ y(n), select the smallest k for which p(1) · . . . · p(k) ≤ p0, and take y = y(k).

Similarly, to get the desired value y, we sort the lower endpoints y
i

into a decreasing sequence
y

(1)
≥ y

(2)
≥ . . . ≥ y

(n)
, select the smallest k for which p(1) · . . . · p(k) ≤ p0, and take y = y

(k)
.

Comment. When all input intervals have the same reliability p1 = . . . = pn, the condition

p(1) · . . . · p(k) ≤ p0

takes the form pk
1 ≤ p0. The smallest k for which this inequality holds can be easily computed as

k =
⌈ | ln(p0)|
| ln(p1)|

⌉
.

It is worth mentioning that in this case, we do not need to spend O(n · log(n)) times on sorting
the bounds, since the k-th value in the ordered sequence can be computed in linear time; see, e.g.,
(Cormen et al., 2001).

12. Case Study: Seismic Inverse Problem in the Geosciences

12.1. Description of the Case Study

Seismic inverse problem in the geosciences: brief reminder. As a case study, we consider
the seismic inverse problem in the geosciences; see, e.g., (Averill, 2007; Hole, 1992; Parker, 1994).
In this problem, we measure the travel times x1, . . . , xn of the seismic signals and based on these
travel times, we reconstruct the velocity of sound y = f(x1, . . . , xn) at different points inside the
Earth. There exist several algorithms for reconstructing this velocity. In our research, we use one
of most widely used algorithms proposed by J. Hole (Hole, 1992).

Our objective is to estimate the uncertainty of the resulting velocity estimates.

What we plan to do. The problem of estimating uncertainty has been actively researched in
geosciences; see, e.g., (Averill et al., 2005; Averill et al., 2007; Doser et al., 1998; Maceira et al.,
2005). In this section, we will apply the above-described techniques to this problem, explain the
results and their limitations, and provide a heuristic method of overcoming these limitations, a
method which can be applied to other problems as well.
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Details of this application are presented in (Averill, 2007).

Case study: brief description. The data used for our analysis was obtained from the Potrillo
Volcanic Experiment (PVF), a large-scale active source seismology profile designed to investigate
the crustal structure across southern New Mexico and Far West Texas. This field experiment was
conducted in 2003.

The PVF experiment was composed of 8 shots of 1000–2000 lbs.; 793 seismic recorders (TEX-
ANS) were deployed at variable spacing of 100 m, 200 m and 600 m over 205 km. The location map
for the (PVF) experiment is give below. Stars show shot point locations. Small gray dots represent
receiver locations. Black box outlines model space for tomography.

The resulting velocity distribution is given presented in the following picture. Velocity model is
gridded at 1× 1 km spacing. Illuminated coloring shows location of ray coverage within the model.
Coverage model showing location and coverage density for rays traced within the model is presented
in the next picture.
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What is the accuracy with which we know these values of velocity?

Main source of direct measurement errors in the seismic inverse problem. The input to
the seismic inverse problem consists of travel times xi. Each travel time is the time that a seismic
wave takes to travel from the location of the explosion to the corresponding sensor. It is determined
as the first moment of time at which we detect the incoming seismic wave (on top of the noise). For
the low-energy artificial explosions which are used in seismic experiments, the signal-to-noise ratio
is rather small, especially for sensors located several dozens kilometers away from the experiment
location. As a result, we may miss the first peak of the seismic wave and erroneously identify the
second peak as the arrival time of the seismic wave.

This “picking error” is the main source of error in measuring travel time. A typical size of a
picking error is the time distance between the two peaks of the seismic wave, i.e., about 150 ms.

12.2. First Try: Probabilistic Approach

First try: probabilistic approach. As we have mentioned, traditionally in science and engineer-
ing, the probabilistic approach is used to estimate the uncertainty of the result of data processing. In
this approach, we assume that the errors of different direct measurements are independent random
variables, with 0 mean and known standard deviations σi.

This method have been successfully used in geosciences. In particular, it was used in the analysis
of the passive seismic inverse problem, when we use only the travel times of the seismic waves
generated by the earthquakes; see, e.g., (Maceira et al., 2005). For this problem, the independence
assumption makes sense since different earthquakes at different locations are indeed independent.

In view of these past successes, we decided to apply this technique to our active seismic inverse
problems.

In principle, we can use the above formula. In principle, to find the desired value σ, we

can use the above formula σ =

√
n∑

i=1
c2
i · σ2

i , where each partial derivative can be determined by

numerical differentiation, as ci =
1
h
· (f(x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ).

Limitations of directly using the above formula. The direct use of the above formula requires
that we call the program f (in our case, the program for solving the seismic inverse problem) n+1
times, where n is the total number of inputs: once to compute ỹ = f(x̃1, . . . , x̃n), and n more times
to compute the values c1, . . . , cn.

The problem with directly using the above formula is that the program f requires several hours
time to compute (e.g., in the geological applications, computing f may involve solving an inverse
problem), and the number n of inputs xi is in the thousands. Thus, calling the program f n + 1
times requires 1,000 times longer than several hours – i.e., several months.

Monte-Carlo simulations: main idea. In the probabilistic setting, we can use straightforward
(Monte-Carlo) simulation, and drastically save the computation time. In this approach, we use a
computer-based random number generator to simulate the normally distributed error. A standard
normal random number generator usually produces a normal distribution with 0 average and
standard deviation 1. So, to simulate a distribution ∆xi with a standard deviation σi, we multiply
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the result αi of the standard Gaussian random number generator by σi. In other words, we take
∆i = σi · αi, and we simulate xi as x̃i −∆xi.

As a result of N Monte-Carlo simulations, we get N values

∆y(1) = c1 ·∆x
(1)
1 + . . . + cn ·∆x(1)

n , . . . ,∆y(N) = c1 ·∆x
(N)
1 + . . . + cn ·∆x(N)

n

which are normally distributed with the desired standard deviation σ. So, we can determine σ by
using the standard statistical estimate

σ =

√√√√ 1
N − 1

·
N∑

k=1

(
∆y(k)

)2
. (1)

Computation time required for Monte-Carlo simulation. The relative error of the above
statistical estimate depends only on N (as ≈ 1/

√
N), and not on the number of variables n.

Therefore, the number Nf of calls to f that is needed to achieve a given accuracy does not depend
on the number of variables at all.

The error of the above algorithm is asymptotically normally distributed, with a standard devia-
tion σe ∼ σ/

√
2N . Thus, if we use a “two sigma” bound, we conclude that with probability 95%, this

algorithm leads to an estimate for σ which differs from the actual value of σ by ≤ 2σe = 2σ/
√

2N .
This is an error with which we estimate the error of indirect measurement; we do not need too

much accuracy in this estimation, because, e.g., in real life, we say that an error is ±10% or ±20%,
but not that the error is, say, ±11.8%. Therefore, in estimating the error of indirect measurements,
it is sufficient to estimate the characteristics of this error with a relative accuracy of, say, 20%.

For the above “two sigma” estimate, this means that we need to select the smallest N for which
2σe = 2σ/

√
2N ≤ 0.2 · σ, i.e., to select Nf = N = 50.

In many practical situations, it is sufficient to have a standard deviation of 20% (i.e., to have a
“two sigma” guarantee of 40%). In this case, we need only N = 13 calls to f .

On the other hand, if we want to guarantee 20% accuracy in 99.9% cases, which correspond
to “three sigma”, we must use N for which 3σe = 3 · σ/

√
2N ≤ 0.2 · σ, i.e., we must select

Nf = N = 113, etc.
For n ≈ 103, all these values of Nf are much smaller than Nf = n required for numerical

differentiation.

Additional advantage: parallelization. In Monte-Carlo algorithm, we need 50 calls to f . If each
call requires a minute, the resulting time takes about an hour, which may be too long for on-line
results. Fortunately, different calls to the function f are independent on each other, so we can run
all the simulations in parallel.

The more processors we have, the less time the resulting computation will take. If we have as
many processors as the required number of calls, then the time needed to estimate the error of
indirect measurement becomes equal to the time of a single call, i.e., to the time necessary to
compute the result ỹ of this indirect measurement. Thus, if we have enough processors working in
parallel, we can compute the result of the indirect measurement and estimate its error during the
same time that it normally takes just to compute the result.
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In particular, if the result ỹ of indirect measurement can be computed in real time, we can
estimate the error of this result in real time as well.

Probabilistic case: results. Following the above algorithm, we randomly perturbed the travel-
time data by a Gaussian distribution with a standard deviation equal to the “picking error” of 150
ms. The perturbed data was used to generate a new velocity model. This process was repeated
multiple times, and the resulting velocity models are used to calculate the RMS difference σ in
velocity.

The majority of the values are less than 0.01 km/s (see below).

From our experience of comparing different results, we know that the actual difference between
different estimates ỹ for the velocity is much higher. Thus, these results are misleadingly low.

Also, the results seem to be qualitatively misleading: the values of σ are the highest near the
shots (where the reconstruction is more accurate) and smaller elsewhere.

Comment. When instead of single value σi = 150 ms, we used more realistic different values at
different sensor locations (obtained by using a technique from (Zelt and Forsyth, 1994)), we got
similar results.

Comment. In addition to the Monte-Carlo approach, we also tried the jack-knife approach (see,
e.g., (Lees and Crosson, 1989; Tihelaar and Ruff, 1989)) in which the data is divided into two
sets (we divided into even and odd sensors). Each of these two data sets was inverted to generate
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the velocity distribution. The resulting distributions were compared to the result of processing the
combined data set; the differences are taken as an estimate for σ.

The resulting values σ are similar to the probabilistic case: the values σ are too low (generally
below 0.06 km/s), and qualitatively wrong: the highest values are located near the ends of the
profile, adjacent to the shot points and in regions of lower ray coverage.

12.3. Second Try: Interval Approach

Toward interval estimates. In our probabilistic estimates, we made a simplifying assumption
that the measurement errors of different measurements are independent random variable. Since this
assumption is false, this means that there is a correlation between these errors.

We do not know the value of this correlation. It is therefore reasonable to now try the more
general interval case, which makes no assumption about the correlations.

Interval approach: brief reminder. In this approach, we assume that we know the upper bounds
∆i on the measurement errors ∆xi, and we compute the upper bounds ∆ on the resulting error
∆y.

In our example, we take ∆i = 150 ms.

In principle, we can use the above explicit formula. In principle, to find the desired value

∆, we can use the above formula ∆ =
n∑

i=1
|ci| ·∆i, where each partial derivative can be determined

by numerical differentiation. However, similarly to the probabilistic case, this method requires that
we call f 4n + 1 times – which can lead to months of computations.

To avoid these computations, we use the Cauchy-based method described in (Kreinovich et al.,
2007; Kreinovich et al., 2004).

Mathematics behind the Cauchy method. In our simulations, we use Cauchy distribution

– i.e., probability distributions with the probability density ρ(z) =
∆

π · (z2 + ∆2)
; the value ∆ is

called the (scale) parameter of this distribution.
Cauchy distribution has the following property that we will use: if z1, . . . , zn are independent

random variables, and each of zi is distributed according to the Cauchy law with parameter ∆i,
then their linear combination z = c1 · z1 + . . . + cn · zn is also distributed according to a Cauchy
law, with a scale parameter ∆ = |c1| ·∆1 + . . . + |cn| ·∆n.

Therefore, if we take random variables δi which are Cauchy distributed with parameters ∆i,
then the value

δ
def= f(x̃1, . . . , x̃n)− f(x̃1 − δ1, . . . , x̃n − δn) = c1 · δ1 + . . . + cn · δn

is Cauchy distributed with the desired parameter ∆ =
n∑

i=1
|ci| ·∆i. So, repeating this experiment N

times, we get N values δ(1), . . . , δ(N) which are Cauchy distributed with the unknown parameter,
and from them we can estimate ∆.

The bigger N , the better estimates we get.
There are two questions to be solved:
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− how to simulate the Cauchy distribution;

− how to estimate the parameter ∆ of this distribution from a finite sample.

Simulation can be based on the functional transformation of uniformly distributed sample values:
δi = ∆i · tan(π · (ri − 0.5)), where ri is uniformly distributed on the interval [0, 1].

In order to estimate ∆, we can apply the Maximum Likelihood Method

ρ(δ(1)) · ρ(δ(2)) · . . . · ρ(δ(N)) → max,

where ρ(z) is a Cauchy distribution density with the unknown ∆. When we substitute the above-
given formula for ρ(z) and equate the derivative of the product with respect to ∆ to 0 (since it is
a maximum), we get an equation

1

1 +

(
δ(1)

∆

)2 + . . . +
1

1 +

(
δ(N)

∆

)2 =
N

2
. (2)

The left-hand side of (2) is an increasing function that is equal to 0(< N/2) for ∆ = 0 and > N/2
for ∆ = max

∣∣∣δ(k)
∣∣∣; therefore the solution to the equation (2) can be found by applying a bisection

method to the interval
[
0, max

∣∣∣δ(k)
∣∣∣
]
.

It is important to mention that we assumed that the function f is reasonably linear within the
box [x̃1−∆1, x̃1 + ∆1]× . . .× [x̃n−∆n, x̃n + ∆n]. However, the simulated values δi may be outside
the box. When we get such values, we do not use the function f for them, we use a normalized
function that is equal to f within the box, and that is extended linearly for all other values (we
will see, in the description of an algorithm, how this is done).

As a result, we arrive at the following algorithm.

Algorithm.

− Apply f to the results of direct measurements: ỹ := f(x̃1, . . . , x̃n);

− For k = 1, 2, . . . , N , repeat the following:

• use the standard random number generator to compute n numbers r
(k)
i , i = 1, 2, . . . , n,

that are uniformly distributed on the interval [0, 1];

• compute Cauchy distributed values c
(k)
i := tan(π · (r(k)

i − 0.5));

• compute the largest value of |c(k)
i | so that we will be able to normalize the simulated

measurement errors and apply f to the values that are within the box of possible values:
K := maxi |c(k)

i |;
• compute the simulated measurement errors δ

(k)
i := ∆i · c(k)

i /K;

• compute the simulated “actual values” x
(k)
i := x̃i − δ

(k)
i ;
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• apply the program f to the simulated “actual values” and compute the simulated error
of the indirect measurement:

δ(k) := K ·
(
ỹ − f

(
x

(k)
1 , . . . , x(k)

n

))
;

− Compute ∆ by applying the bisection method to solve the equation (2).

Comment. To avoid confusion, we should emphasize that, in contrast to the Monte-Carlo solution
for the probabilistic case, the use of Cauchy distribution in the interval case is a computational
trick and not a truthful simulation of the actual measurement error ∆xi: indeed, we know that
the actual value of ∆xi is always inside the interval [−∆i, ∆i], but a Cauchy distributed random
attains values outside this interval as well.

Interval case: results. The results (given below) show some interesting features which we can
use to qualitatively interpret the accuracy of the velocity values. In general, the values correspond
well to the density and geometry of ray coverage in the model (see an earlier picture). The lowest
values are in the upper part of the model and along paths of greatest ray coverage. The highest
values or regions of lowest resolution are deeper in the model, near the center of the model with
low ray coverage, and beneath the El Paso area (between shotpoints 5 and 6), where urban noise
has decreased the number of travel-time picks and their quality. Whereas theses values do provide
a good assessment of reliability for different regions of the model, they are clearly not useful in
absolute terms.
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Comment. When instead of single value ∆i = 150 ms, we used more realistic different values at
different sensor locations (Zelt and Forsyth, 1994), we got similarly over-large results.

Clarifying comment. The above negative result is easy to explain by the following back-of-the-
envelope calculations. Let us take two neighboring sensors at a distance d = 600 m from each
other. Let x1 be the time by which the seismic wave arrived at the first sensor, and let x2 be the
time by which this wave arrived at the second sensor. This means that this wave took time t2 − t1
to travel a distance d between the two sensors and thus, its velocity in this area can be estimated
as v = d/(x2 − x1).

The actual velocity near the surface is about v ≈ 2 km/s, so the actual time difference is
x2 − x1 = d/v ≈ 0.3 sec. The observed value x̃2 − x̃1 is thus 0.3 sec, and the upper bound on each
measurement error ∆x1 and ∆x2 is 0.15 sec. Thus, the upper bound on the error ∆x2 − ∆x1 is
0.3 sec. So, by using interval uncertainty, we conclude that the actual (unknown) value of x2 − x1

can take any value from 0 to 0.6 sec. When x2 − x1 is close to 0, for the corresponding velocity
v = d/(x2 − x1) we get meaningless thousands of km/s.

12.4. A New Heuristic Approach

Towards the main idea. The guaranteed bounds provided by the interval approach are too high.
How can we improve these bounds?

One possible solution comes from the following simple observation. For the normally distributed
random variable with 0 mean and standard deviation σ, the only guaranteed upper bound is ∞. In
practice, however, we can say that with confidence 90%, the actual value of this variable does not
exceed 2σ, with confidence 99.9%, it does not exceed 3σ, etc. To get a bound with 90% confidence,
we “cut-off” the top 10% of the normal distribution. To get the bound with 99.9% confidence, we
“cut-off” the top 0.1% of the normal distribution, etc.

Main idea. Since guaranteed bounds are too high, it is reasonable to restrict ourselves to bounds
guaranteed with a given confidence, e.g., bounds which are guaranteed with a confidence of 95%
and dismiss the top 5% of uncertainty values. To find such bounds in the Cauchy method, we
“cut-off” the top 5% of the corresponding Cauchy distribution. To be more precise, we find the
threshold value x0 for which the probability of exceeding this value is 5% (or any other desired
cut-off probability p0), and then replace values x for which x > x0 with x0 and for x < −x0 with
−x0. For the Cauchy distribution, we have found that a 95% confidence level is obtained for the
bounds of −12.706 ≤ x0 ≤ 12.706 (see Appendix).

So, to get more realistic estimates for ∆, in the Cauchy approach, we use the “cut-off” Cauchy
distribution instead of the original one.

Heuristic approach: results. The results of applying the Cauchy approach with 95% and 90%
confidence are presented on the next page. Good news is that, in contrast to the practically useless
interval-case values of uncertainty, here, velocity uncertainties ∆ are exactly as expected. At the
95% confidence, the values ∆ range from 0.01 to 0.3 km/s, and at a 90% confidence level, they
range from 0.005 to 0.23 km/s.
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On the qualitative level, the values ∆ are still as geophysically reasonable as the values computed
by the original interval-case method:

− the lowest values of ∆ are found near the shotpoints, and along paths of highest ray coverage;

− the highest uncertainties are near the center of the model with lowest ray coverage and beneath
the El Paso region between shotpoints 5 and 6.

Conclusions

In the past, communications were much slower than computations. As a result, researchers and
practitioners collected different data into huge databases located at a single location such as NASA
and US Geological Survey. At present, communications are so much faster that it is possible to keep
different databases at different locations, and automatically select, transform, and collect relevant
data when necessary. The corresponding cyberinfrastructure is actively used in many applications.
It drastically enhances scientists’ ability to discover, reuse and combine a large number of resources,
e.g., data and services.

Because of this importance, it is desirable to be able to gauge the the uncertainty of the results
obtained by using cyberinfrastructure. This problem is made more urgent by the fact that the level
of uncertainty associated with cyberinfrastructure resources can vary greatly – and that scientists
have much less control over the quality of different resources than in the centralized database. Thus,
with the cyberinfrastructure promise comes the need to analyze how data uncertainty propagates
via this cyberinfrastructure.

When the resulting accuracy is too low, it is desirable to produce the provenance of this inac-
curacy: to find out which data points contributed most to it, and how an improved accuracy of
these data points will improve the accuracy of the result. In this paper, we describe algorithms for
propagating uncertainty and for finding the provenance for this uncertainty.

The above results mainly deal either with the probabilistic situations, when we either know the
probability distributions of different measurement errors (and different errors are independent), or
with interval situations, when we only know the upper bounds on the measurement errors. Proba-
bilistic estimates tend to underestimate the resulting error – since in reality, different measurement
errors are correlated (e.g., they have the same systematic error components). Interval estimates
tend to overestimate because they are based on – often unrealistic – worst-case scenarios. It is
thus desirable to combine these estimates to get more realistic error bounds. We describe several
such combination methods, their mathematical justifications, and their successful use in processing
geospatial data.
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Appendix

The standard Cauchy distribution is characterized by the probability density function ρ(x) =
1
π
· 1
1 + x2

. We are given a small probability p0 (e.g., p0 = 5%), and we want to find the value x0

such that the probability that |x| ≥ x0 is exactly p0. In other words, we want the probability that
x ≥ x0 or x ≤ −x0 to be equal to p0. Since the Cauchy distribution is symmetric, the probability
that x ≤ −x0 is equal to the probability that x ≥ x0. Therefore, the probability that |x| ≥ x0 is
equal to twice the probability that x ≥ x0: p0 = Prob(|x| ≥ x0) = 2 · Prob(x > x0).

For the Cauchy distribution,

p0

2
= Prob(x > x0) =

1
π
·
∫ ∞

x0

1
1 + x2

=
1
π
· (arctan(∞)− arctan(x0)) =

1
π
·
(

π

2
− arctan(x0)

)
=

1
2
− 1

π
· arctan(x0).

Thus, we must take arctan(x0) =
π

2
· (1− p0) and

x0 = tan
(

π

2
· (1− p0)

)
. (3)

For small p0, we can get an even simpler formula. Indeed, in general, x0 = tan
(

π

2
− π

2
· p0

)
=

sin
(

π

2
− π

2
· p0

)

cos
(

π

2
− π

2
· p0

) . We know that sin
(

π

2
− α

)
= cos(α) and cos

(
π

2
− α

)
= sin(α), so x0 =

cos
(

π

2
· p0

)

sin
(

π

2
· p0

) . For small α, we have sin(α) ≈ α and cos(α) ≈ 1, hence for small p0, we get x0 ≈ 1
π

2
· p0

and
x0 ≈ 2

π · p0
. (4)
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Stochastic wave groups in weakly nonlinear random waves

Francesco Fedele
School of Civil & Environmental Engineering, Georgia Institute of Technology, Georgia USA

Abstract. A stochastic model of wave groups is presented to explain the occurrence of large
waves in nonlinear random seas. The model leads to the description of the non-Gaussian statistics
of oceanic waves and to a new asymptotic distribution of crest heights over large waves in a form
that generalizes the Tayfun model. Comparisons based on a first wave data set collected at the
Tern platform in the northern North Sea during an extreme storm, and a second set collected in the
southern North Sea ( WACSIS) show good agreement with the new theoretical wave distributions.
In particular, for broad band seas, the Tayfun model seems to fit the data, and thus it can be
regarded suitable for describing crest statistics for engineering applications.

Keywords: crest height; stochastic wave group; second order effects; probability of exceedance;
Gaussian sea; quasi-determinism, Slepian model.

1. INTRODUCTION

To the leading order of approximation, the free surface displacement η(t) is a Gaussian process of
time. Lindgren (1970,1972) showed that locally near a very high crest, the surface displacement
tends to assume the same shape as the covariance function ψ(T ) = hη(t)η(t+ T )i. This is the
Slepian model ( Kac & Slepian 1959) whose time-domain formulation was used by Tromans et al.
(1991) to analyze wave measurements.
An alternative view of the Slepian model was offered in the eighties by Boccotti (1989,2000).

His theory of quasi determinism revealed the mechanics of three dimensional wave groups and their
relation to the occurrence of extreme waves in a Gaussian sea and confirmed with field experiments
(Boccotti et al., 1993a,1993b, Phillips et al. 1993a, 1993b).
In Gaussian sea waves, both crest and trough distributions follow the same Rayleigh law for

narrow-band spectra (Longuet-Higgins, 1952). In the more general case of Gaussian waves with
finite-band spectra, the Rayleigh distribution serves as an upper bound for the exceedance proba-
bility of crest heights.
In reality, water waves are nonlinear, and the probability density function of the surface displace-

ment tends to deviate from the Gaussian form. In particular, due to second order nonlinearities the
water surface presents sharper crests and shallower rounded troughs. Thus, the skewness λ3 of sur-
face elevations is not zero (Longuet-Higgins 1963). The exact theoretical form of the corresponding
distribution of nonlinear wave crests is not known under general conditions. A series expansion based
on the Edgeworth’s form the Gram-Charlier distribution was proposed by Longuet-Higgins (1963),
but can lead to expressions that violate the non-negativity condition on probability densities. Crest
heights of large waves can be over predicted unrealistically in steep storm seas in deep or transitional

c° 2008 by authors. Printed in USA.
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water depths. Convenient and simple narrow-band approximation for deep-water waves was given
by Tayfun (1980, 1986a, 2006) in the early eighties based upon weakly second order wave theory.
As a corollary, Tayfun (1980) also derived an analytical distribution for the crest statistics and a
least-upper-bound (lub) distribution of crest heights ( Tayfun and Al-Humoud, 2002 ). Comparisons
of such models with various deep and shallow water second-order simulations have been carried out
by Forristall (2000) and Prevosto & Forristall (2002).
The recent experimental results of Onorato et al. (2006) and the numerical simulations of

Socquet-Juglard et al. (2005) both show that for the case of multidirectional random waves, the
nonlinear effects are due dominantly to bound waves and the Tayfun distribution explains very
well the crest statistics. Deviations from the Tayfun distribution may occur only in long-crested
narrow-band waves due to third order nonlinear effects, such as the Benjamin- Feir type modulation
instability ( Zakharov 1999, Janssen 2003) as shown by Onorato et al. (2006) and Socquet-Juglard
et al. (2005). Thus, for practical engineering applications where realistic oceanic conditions are
characterized by multidirectional spectra, the second order Stokes theory, and thus the Tayfun
model, still offers a valid theoretical framework for the wave statistics.
In this paper, we propose an alternative view of second order wave theory and a generalization

of the Tayfun model. We first present an extension of the theory of quasi-determinism of Boccotti
(1989,2000), defining a stochastic wave group that describes the dynamics of the wave surface
around a randomly chosen very large crest (Lindgren 1970,1972). The stochastic wave group can
be thought as a first order regression approximation according to Rychlik (1987) and Lindgren &
Rychlik (1991).
In the second part of the paper, we shall study the nonlinear evolution of the stochastic wave

group in the context of second order Stokes waves. This analysis will reveal the expected shape of
large nonlinear crests and their statistics. In particular, we prove that the distribution of second
order extreme crests is uniquely defined by the skewness λ3 of the nonlinear surface displacement.
This result is in perfect agreement with the narrow-band model of Tayfun (1980,1986a,2006), and
it is valid for waves at deep and transitional water depths in a manner free of any constraints
on their directionality or spectral bandwidth in agreement with the analytical results of Fedele
& Arena (2005). In addition, a generalization of the Tayfun model (1980, 1986a) is proposed.
Both the models are free of any bandwidth constraints and depends only on the global properties
of the spectrum available from wave hindcasts. We also consider the Weibull model of Forristall
(2000), and an exact closed form solution of the crest distribution based on the asymptotics for
the h-upcrossings in Gaussian multivariate processes derived by Breitung and Richter (1996) which
yields to the First Order Reliability Method (FORM).
Comparisons based on a first wave data set collected at the Tern platform in the northern North

Sea during an extreme storm, and a second set collected in the southern North Sea ( WACSIS) are
presented. In particular, for broad band seas, the new theoretical models do not improve upon the
Tayfun distribution (Tayfun 1980,1986, 2006), which thus can be regarded suitable for describing
crest statistics for engineering applications.
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2. Second order random waves

Consider weakly nonlinear random waves propagating in water of uniform depth d. The second
order sea surface displacement ζ from the mean sea level at a fixed point x is given by

ζ (x, t) = ζ1 (x, t) + ζ2 (x, t) (1)

where the first order linear Guassian component ζ1 is of the form

ζ1 (x, t) =
NX
i=1

zi cos (θi) (2)

and the second order correction ζ2 is given by

ζ2 (x, t) =
1

4

NX
i,j=1

zizj
h
A+ij cos (θi + θj) +A−ij cos (θi − θj)

i
, (3)

with
θi = ki · x− ωit+ εi = kix cosφi + kiy sinφi − ωit+ εi.

Here, A+ij and A
+
ij are second order interaction coefficients ( see e.g. Sharma & Dean 1979, Forristall

2000), ki are horizontal wave-number vectors, with ki = |ki|, the directional angles φi refer to the
x axis, x = (x, y) is the horizontal spatial vector coincident with the mean water surface, ωi is the
wave frequency related to ki through the dispersion relation ki tanh kid = ω2i

±
g. We assume that

frequencies ωi are different from each other, the number N is infinitely large and that the phase
angles εi are independent and uniformly distributed in [0, 2π]. The linear wave amplitudes zi are
related to the wave spectral density S(k) as

S(k)dk=S(k, φ)k δk δφ =
X
i

z2i
2
,

where the sum is over i’s for which (ki, φi) ∈ ([k, k + δk] , [φ, φ+ δφ]).

2.1. Basic definitions and assumptions

The jth order moment of the linear spectrum is

mj =

Z ∞
0

ωjS (k) dk.

The validity of the form assumed for ζ is measured by the smallness of the rms surface gradient
(Tayfun 1993)

μ1 =

rD
|∇ζ1|2

E
= m4/g

2 << 1 (4)
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where h·imeans time average. The spectral mean frequency ωm, the mean zero-upcrossing frequency
ω0 of the underlying linear process ζ1 and the bandwidth ν of the spectral density S (k) are defined
respectively as

ωm =
m1

m0
, ω0 =

r
m2

m0
, ν =

s
m0m2

m2
1

− 1. (5)

Moreover, EX+ = ω0/2π is the expected number per unit time of zero up-crossings of ζ, correct to
O(μ1). To the same order, the space-time covariance Ψ(X, T ) of ζ is given by

Ψ(X, T ) = hζ1 (X, t) ζ1 (X, t+ T )i =
Z
S (k) cos(k ·X− ωT )dk

where X =(X,Y ) and ψ(T ) = Ψ(0, T ) for brevity. Hereafter, the first absolute minimum of ψ(T )
occurs at time T = T ∗ and that ψ(T ) decreases monotonically between T = 0 (when the absolute
maximum is attained) and T = T ∗.
The first moment hζi = 0, and the higher order moments hζpi with p = 2, ..4 are given, correct

to O(μ1), by D
ζ2
E
= m0 +O

³
μ21

´
, (6)

D
ζ3
E
=
3

2

Z
S (k1)S (k2)

£
A+(k1,k2) +A−(k1,k2)

¤
dk1dk2 +O

³
μ21

´
,

D
ζ4
E
= 3m2

0 +O
³
μ21

´
,

where A±(ki,kj) = A±ij . The spectral mean frequency and the mean zero-upcrossing frequency of
the nonlinear process ζ are given by ωm and ω0 in Eq. (5) and they are correct to O (μ1).

3. Large crests in Gaussian seas

Assume for the moment that a large wave crest of amplitude h is observed at x = x0 = (x0, y0) and
t = t0. Boccotti (2000) and Fedele (2006b) showed that as h/σ →∞, with probability approaching
1, a well defined wave group passes through the point x = x0, with the apex of its development
stage occurring at time t = t0. As h/σ →∞, the surface displacement ζc around x = x0 and t = t0
is asymptotically described by the sum of a deterministic part ζdet of O(h) and a residual random
process Rζ of O(1), viz.

ζc(X, T ) = ζdet(X, T ) +Rζ(X, T ), (7)

where

ζdet(X, T ) = hζ1(X, T ) |ζ1(0, 0) = hi = h

σ2
Ψ(X, T ). (8)

Thus, ζc represents the conditional process ζ1(X, T ) |ζ1(0, 0) = h and ζdet is its conditional expec-
tation. As h/σ → ∞ in (7), the residual Rζ becomes negligible relative to the first term, leading
to

ζc(X, T ) = ζdet(X, T ) +O(h0). (9)
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Thus, a high local maximum also corresponds to a local wave crest since ζdet attains its absolute
maximum at (T = 0,X = 0). Moreover, ζc can be also interpreted as the wave surface around a
randomly chosen large crest (Lindgren 1970,1972; Boccotti 2000) if h is assumed to be a random
variable described by the Rayleigh probability density

pR(h) =
EX(h)

EX+
= exp

Ã
− h2

2σ2

!
h

σ2
, (10)

where EX(h)dh represents the expected number per unit time of local maxima of the surface
displacement recorded at X = 0 and T = 0, whose amplitudes lie between h and h + dh. This
model is the first order regression approximation of the wave process locally near a randomly
chosen large crest ( Rychlik 1987, Lindgren & Rychlik 1991). The random process (9) represents
a family of wave groups which evolves in space and time attaining the largest crest at X = 0 and
T = 0. Thus, ζc ≈ ζdet is asymptotically correct to O(h), and it either represents the wave field
locally to a given crest height h, or it defines the conditional process for the dynamics in space-time
around a randomly chosen crest if h is interpreted as a Rayleigh distributed random variable.
Our principal interest is in two-dimensional crests of the surface displacement, viz. the largest

maxima of a surface time series recorded at a fixed point. Therefore, h is Rayleigh distributed.
In general though, (9) can be also interpreted as a snapshot of the wave surface locally around a
three-dimensional crest at a particular instant of time. In this case, the variable h is not distributed
according to the Rayleigh law. In fact, in Gaussian processes the crest height follows the Rayleigh
distribution by virtue of the one-to-one correspondence between each h-upcrossing point and a
maximum of amplitudes greater than a large threshold h. In multi-dimensional Gaussian fields, this
one-to-one correspondence is lost since h-upcrossings are level curves. In this case, an appropriate
definition of a h-upcrossing is necessary, yielding an asymptotic form of the crest distribution
different from the Rayleigh law (Adler 1981, Adler & Hasofer 1976, Wilson & Adler 1982, Piterbarg
2003).

4. Stochastic wave groups

We now extend and generalize some results of Boccotti (1989) to wave groups with large crests.
Boccotti considers, as H/σ →∞, the conditional process

ζb(X, T ) = (ζ1(X, T ) |ζ1(X, 0) = H/2, ζ1(X, Tw) = −H/2)

where H represents the largest wave height in the group, and Tw = T ∗ + O(H−1) is the time-
lag between the crest of the wave and the following trough. In particular, Boccotti derives the
asymptotic form of the statistical distribution of H (Boccotti 1989, 2000, see also Tayfun & Fedele
2007b). Boccotti (2000) and later Fedele (2007b) both show that largest wave heights occur not
as waves reach the apex of a group, but just after they pass it. In the present case, we draw
upon Boccotti’s concepts but consider the largest crest which occurs at the apex of a wave group.
Specifically, we examine the conditional process ζc(X, T ) around a large crest, and analyse itsO(h0)-
random residual Rζ and thus devise a new formulation of wave groups in Gaussian seas. First, the
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Figure 1.

wave profile ηc(T ) at X = 0 is expressed in terms of an O(h) contribution ηdet(T ) = ζdet (0, T ) and
the random residual r(T ) = Rζ(0, T ) of O(h0) as

ηc(T ) = ηdet(T ) + r(T ) (11)

where

ηdet(T ) = ζdet(0, T ) = h
ψ(T )

σ2
.

We can now determine the effects of the residual r(T ) on ηc. Specifically, as h/σ → ∞, with
probability approaching 1, the surface profile locally near a large crest tends to assume the shape
given by ηdet(T ) (see Lindgren 1972, Boccotti 2000). The latter represents a wave profile with a
crest of amplitude h at time T = 0 followed by a local minimum of amplitude ηdet(T

∗) at T = T ∗,
with T ∗ being the abscissa of the first local minimum of ψ(T ) (point P in figure 1). Further, when
the absolute minimum of ψ(T ) occurs at T = T ∗, then ηdet(T ) represents a large wave with period
Th ≈ 2T ∗ and a crest-to-trough amplitude H given by

H = h

µ
1− ψ(T ∗)

σ2

¶
.

For large h, the wave trough of the profile ηc(T ) following the crest of amplitude h shall now occur
at time T = T ∗ + u, shown as point P 0 in figure 1, with u being random. To obtain an explicit
expression for u, we set the time derivative of the profile ηc equal to zero at T = T ∗ + u and use
the expansion

η̇c(T
∗ + u) = η̈det(T

∗)u+ ṙ(T ∗) +O(u2) = 0.
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Thus,

u = − ṙ(T ∗)
η̈det(T

∗)
+O(u2h−1). (12)

Note that u is of O(h−1) because the residual process ṙ(T ∗) is of O(h0) and η̈det(T
∗) is of O(h).

Thus, the residual terms in (12) are of O(h−3) and negligible. By expansion, the value of the surface
displacement ηc(T ) at T

∗ + u is then given by

ηc(T
∗ + u) = ηdet(T

∗) +
1

2
η̈det(T

∗)u2 + r(T ∗) +O(h−2). (13)

Because u is of O(h−1), it follows that

ηc(T
∗ + u) = ηdet(T

∗) +∆+O
³
h−1

´
,

where ∆ = r(T ∗) is the residual at T ∗ of O(h0). Correct to the same order, ηc(T ∗) = ηc(T
∗ + u).

Thus, as h/σ →∞, a crest of amplitude h that occurs at T = 0, is followed after a time lag T ∗+u
by a trough, and ηc(T ) and its first time derivative η̇c(T ) at T = T ∗ attain values given, correct to
O
¡
h0
¢
, by

ηc(T
∗) = ηdet(T

∗) +∆+O
³
h−1

´
, (14)

η̇c(T
∗) = −η̈det(T ∗)u+O

³
h−1

´
.

Conversely, if the conditions in (14) hold, then a crest of amplitude h at time T = 0 is followed by
a trough at time T = T ∗ + u.
Next, we describe ηc(T ) locally near a randomly chosen crest, using a regression approximation

(Rychlik 1987, Lindgren & Rychlik 1991). In particular, such an approximation must satisfy the
conditions in (14), viz. it must have a local maximum of amplitude h at time T = 0 followed by a
trough of amplitude η∗det +∆ at T = T ∗ + u. For linear Gaussian functions, an approximation to
ηc(T ) satisfying both conditions exactly is given by

ηc(T ) = Aψ(T ) +Bψ(T − T ∗ − u), (15)

where

A =
ψ(0)h− ψ(T ∗ + u) · (ψ(T ∗)h+∆)

ψ2(0)− ψ2(T ∗ + u)
, B =

ψ(0) · [ψ(T ∗)h+∆]− ψ(T ∗ + u)h

ψ2(0)− ψ2(T ∗ + u)
.

To O(h0), u drops out, and ηc(T ) becomes

ηc(T ) = ηdet(T ) +
∆

σ2
−ψ∗ψ(T ) + ψ(T − T ∗)

1− ψ∗2
+O(h−1), (16)

ignoring terms of O(h−1), and ψ∗ ≡ ψ(T ∗)/ψ(0). With the random residual r of O(1) explicitly
determined now, it can be differentiated from ηdet(T ) of O(h) in (11).
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The necessary conditions for the existence of a local maximum at T = 0, i.e. η̈c(0) < 0, and a
local minimum at T = T ∗, i.e. η̈c(T ∗ + u) > 0, yield the following inequality constraint:

h > ∆ min

Ã
ψ∗ + ψ̈

∗

1− ψ∗2
,
ψ∗ + 1/ψ̈

∗

1− ψ∗2

!
, (17)

where ψ̈
∗ ≡ ψ̈(T ∗)/

¯̄̄
ψ̈(0)

¯̄̄
. If the surface spectral density is defined over a compact support in the

frequency domain, then the moments mj for j > 3 are finite, and η (t) is differentiable at least
twice. Thus, the terms appearing in (17) are bounded, and since ∆ is of O(1), h can be chosen
sufficiently large to satisfy the above inequality, viz. ∆/h ∼ O(h−1).
It is straightforward to extend the above time formulation to the space-time domain obtaining

a new approximation of the stochastic wave group ζc in (7) in the form

ζc(X, T ) = ζdet(X, T ) +
∆

σ2
−ψ∗ Ψ(X, T ) +Ψ(X, T − T ∗)

1− ψ∗2
+O(h−1). (18)

Evidently, this is an improved expression of the wave surface locally around a large crest correct
to O(h0), where the random residual Rζ in (7) is explicitly determined as ∆/h→ 0, and terms of
O(h−1) have been neglected.
For a given h, ζc is the conditional processes locally around a given crest, i.e. ζ1(X, T ) |ζ1(0, 0) = h .

If we instead interpret h and ∆ as random, then ζc identifies a stochastic wave group, describing
the dynamics locally around a randomly chosen crest.
The joint pdf of the random variables h, ∆ and u, as h/σ →∞, is given by (Boccotti 1989)

p(h,∆, u) = h
exp

µ
− h2

2σ2 − ∆2

2σ2(1−ψ∗2) −
h2u2|ψ̈(0)|
2σ4γ2

¶
σ22π

r
σ2(1− ψ∗2) σ4γ2

h2|ψ̈(0)|
. (19)

The probability p(h,∆, u)dhd∆du can be interpreted as the fraction of realizations of linear ζ1 with
a large crest of amplitude h occurring at some t0, proceeded by a trough of amplitude η∗det +∆ at
T ∗ + u . As h/σ → ∞, each realization of ζ1 resembles a wave group evolving in accordance with
(18).
The joint probability density of h and ∆ follows from (19), with ξ →∞, as

pξ,∆̃(ξ, ∆̃) =

Z ∞
−∞

p(ξ, ∆̃, u)du = pξ(ξ)p∆̃(∆̃), (20)

where

pξ(ξ) = ξ exp

Ã
−ξ

2

2

!
, p∆̃(∆̃) =

exp
³
− ∆̃2

2(1−ψ∗2)
´

q
2π(1− ψ∗2)

, (21)

and ξ = h/σ and ∆̃ = ∆/σ are dimensionless variables. Thus, ξ and ∆̃ are independent. Note that
with h given in (18), averaging over ∆̃ yields the conditional mean

hζ1(X, T ) |ζ1(0, 0) = hi = hζc(X, T )i∆̃ = ζdet(X, T ),
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as expected.

5. Nonlinear stochastic groups and large crests

Herein, we examine the nonlinear evolution of the stochastic wave group ζc(X, T ) in second order
random seas, explaining how its linear structure is distorted by nonlinearities. We argue that, prior
to focussing, the nonlinear wave group tends to reflect the characteristics of a well defined Gaussian
group that can be defined by (18). Due to nonlinearities, the Gaussian group will nonlinearly evolve
forming an extreme crest with a different amplitude hnl > h, h being the linear crest height. The
relationship between h and hnl is given by the nonlinear conditional process ζnc = (ζ |ζ1 = ζc ). For
large waves, ζnc is equivalent to ζ(X, T ) |ζ1(0, 0) = h , drawing upon Fedele & Arena (2005). The
nonlinear mapping f(ζ1) between ζ1 and ζ is known from (1),(2) and (3), and it yields

ζnc = (ζ(X, T ) |ζ1(0, 0) = h) = f(ζc). (22)

We recall that h and ∆̃ are random variables with the joint pdf (20), and ζnc = f(ζc) is the
nonlinear stochastic group which describes the wave dynamics locally around a randomly chosen
crest. To compute f(ζc), we note that (1) along with (2) and (3) not only defines weakly nonlinear
random waves but also the general analytical solution for the second order surface displacement, if
the amplitudes ci and the phases θi are regarded as deterministic variables. Thus, if we set in (1)
the linear component ζ1 of the surface ζ equal to ζc in (18), it follows that

ζnc = f(ζc) = ζc +
h2

4σ4
F + h∆

2σ4
−ψ∗F + G
1− ψ∗2

+O
³
∆2
´
, (23)

where

F(X, T ) =

Z
S1S2

³
A+12 cos

³
β+12

´
+A−12 cos

³
β−12

´´
dk1dk2, (24)

G(X, T ) =

Z
S1S2

h
A+12 cos

³
β+12 + ω1T

∗´−A−12 cos
³
β−12 + ω1T

∗´i dk1dk2,
with the abbreviated notation Sj = S (kj), j = 1, 2, and

A±12 = A±(k1,k2), β±12 = (k1 ± k2) ·X− (ω1 ± ω2)T.

6. Crest Statistics from nonlinear groups

The highest crest of the nonlinear stochastic wave group ζnc also occurs atX = 0 and T = 0 correct
to O(μ1), with a dimensionless amplitude ξmax = hnl/σ given by

ξmax = ξ +
μ

2
ξ2 +

μK

2
∆̃ξ, (25)
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where

μ =
λ3
3
=


ζ(t)3

®
3σ3

, K = 2
−ψ∗ + κ1

1− ψ∗2
(26)

with

κ1 =
G(0, 0)
F(0, 0) =

hζ1(0,t)ζ2(0,t) ζ1(0,t+ T ∗)i
2μ

, (27)

and λ3 stands for the skewness coefficient of surface elevations correct to O (μ1).

6.1. Recovering the Tayfun model

As ξ →∞, and ignoring terms of O(∆̃) in (25) we obtain

ξmax = ξ +
μ

2
ξ2. (28)

Thus, the probability of exceedance for the nonlinear wave crest height ξmax readily follows from
the Rayleigh distribution of ξ as

Pr {ξmax > λ} = exp
Ã
−ξ(λ)

2

2
!
, (29)

where ξ follows from (28) with ξmax = λ. The result stated in (28) is valid for directional waves
in waters of finite depth irrespective of the spectral bandwidth. It also agrees with the original
narrow-band model of Tayfun (1980) appropriate to long-crested deep-water waves. In fact, Tayfun
proposed the same expression for the crest height ξc, replacing μ with

μm = m
1/2
0

ω2m
g
. (30)

This parameter is also a measure of steepness for unidirectional short-crested waves in deep water
if one neglects the frequency-difference contributions. If the latter are included, then the parameter
μ in (26) can be expressed explicitly for various theoretical spectra in the form

μ = μm(1− γν + ν2), (31)

where, for example, γ = 2/
√
3 = 1.1547 for rectangular spectra, and γ = 2/

√
π = 1.1284 for

Gaussian spectra. For oceanic applications we shall assume that γ = 1 and define for the deep-water
case

μa = μm(1− ν + ν2) (32)

both for unidirectional waves and as an approximate upper bound for directional waves. As an
alternative, Tayfun (2006) estimates μ from Forristall’s Weibull model (Forristall 2000) as

μFj = 16
α3j
βj
Γ

Ã
3

βj

!
− 1
4

r
π

2
, (33)
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where αj and βj represent the parameters of the Weibull distribution

Pr {ξmax > x} = exp
⎡⎣−Ã x

4αj

!βj
⎤⎦ (34)

used by Forristall to fit (34) to simulations of second order random seas, and j = 2 or 3 correspond-
ing to unidirectional (2D) or directional (3D) waves, respectively. Thus, not only for narrow-band
waves, but also for high crest amplitudes, i.e. as h/σ →∞ , crest heights are described by (28), with
μ defined as λ3/3 under the most general conditions. Moreover, all crest-height statistics depend
clearly on a few integral properties such as m0 (or σ), ωm, ν and/or λ3. These are easily estimated
from a surface time series.

6.2. Generalizing the Tayfun model

As ξ →∞, and when we retain all the terms in (25), then

Pr (ξmax > λ) =

Z ∞
−∞

Pr
n
ξ > ξ (λ,w)

¯̄̄
∆̃ = w

o
p∆̃(∆̃ = w)dw,

where ξ (λ,w) follows from (25) with ξmax = λ and

Pr
n
ξ > ξ (λ,w)

¯̄̄
∆̃ = w

o
= exp

"
−ξ (λ,w)

2

2

#
.

As λ→∞, an asymptotic solution to the preceding integral can be obtained, if we set

ξ
³
λ, ∆̃

´
= ξ0 (λ) + a (λ) ∆̃+O

³
∆̃2
´

(35)

where λ = ξ0 +
μ
2 ξ
2
0 and

a (λ) = −K
2

μ ξ0
1 + μ ξ0

. (36)

Because ξ and ∆̃ are statistically independent and by neglecting O(∆̃3), it follows after some algebra
that

Pr {ξmax > λ} =
exp

h
−1−β(λ)2 ξ20

i
r
1 +

³
1− ψ∗2

´
a(λ)2

, (37)

where λ >> 1 and

β(λ) =

³
1− ψ∗2

´
a(λ)2

1 +
³
1− ψ∗2

´
a(λ)2

.

We shall refer to this asymptotic result as the generalized Tayfun distribution. Evidently, it is not
normalized to unity at the origin since its intended range of validity is over large waves. In the
narrow-band limit as ν → 0, K → 0, and the Tayfun distribution is recovered. An exact expression
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for K in terms of spectral parameters can be obtained because the frequency-difference terms have
been ignored. Under this condition, we recall that α vanishes and K takes the form

K = K+ = − ψ̈
∗
+ ψ∗

1− ψ∗2
(38)

since κ1 =
³
ψ∗ − ψ̈

∗´
/2. Note further that in general, ψ∗ → −1+O(ν) and ψ̈

∗ → 1−O(ν). Thus,

if we include the frequency-difference terms, then |K| ≤ |K+|, and as ν → 0, K+ → K → 0.

7. Crest statistics from Breitung’s asymptotics

Recently, Baxevani et al. (2005) improved the asymptotic formula of h-upcrossings in Gaussian
multivariate processes derived by Breitung and Richter (1996). They presented a rigorous view of
the FORM (first order feliability method) and SORM (second order reliability method) used in
applications to compute crest exceedances. We restrict our attention to FORM, and consider the
hypersurface in the Euclidean space R2N defined by the second order surface displacement of Eq.(1)
written in terms of the column vectors p = (p1, p2, ..., pN ) and q = (q1, q2, ..., qN ), where {pn} and
{qn} represent the sets of the spectral components of the linear surface displacement ζ1 and its
Hilbert transform respectively (see Baxevani et al. 2005 for details), that is

λ = ζ1(p,q) + ζ2(p,q), (39)

with λ being a fixed threshold. Moreover the components of the vectors p,q are independent
Gaussian variables with zero mean and unit variance. Then the crest exceedance in FORM is given
by

Pr {ξmax > λ} = exp
"
−g(λ)

2

2

#
(40)

where g(λ) = kzmink is the minimal distance between the origin and the point Pmin ∈ R2N iden-
tified by the column vector zmin = [p̃, q̃] on the hypersurface Γ defined by (39). Here, kzmink =p
p̃T p̃+ q̃T q̃ is the classical Euclidean norm of the vector d ∈ R2N , and T signifies the transpose.

In this case, the solution for zmin can be obtained numerically by using standard optimization
techniques (Tromans and Vanderschuren, 2004). If we compare the crest exceedance distribution
of (29) with the FORM distribution of (40), it is seen that the vector entries (p̃, q̃) of the optimal
vector zmin for very large N , can be written, with a little abuse of notation, as

p̃ =

"
ξ0(λ)

p
2S(k1)dk

σ
, ..., ξ0(λ)

p
2S(kN )dk

σ

#
, q̃ = 0 (41)

where λ = ξ0+
μ
2 ξ
2
0. The Lagrange multiplier method and some algebra will show that Pmin ∈ R2N

pointed by the vector d̃ is indeed the point on the hypersurface (39) at minimal distance from the
origin, correct to O (μξ0).
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For simplicity, we shall prove the above statement for narrow-band waves only. In this case, the
wave surface is given by (Tayfun 1980)

ζ = ζ1 +
μ

2

³
ζ21 − ζ̂

2
1

´
where ζ̂1 is the Hilbert transform respect to time of ζ1. Thus, from (39)

ζ1(p,q) = z
Tp, ζ2(p,q) =

μ

2

³
pTzzTp− qTzzTq

´
where μ is the steepness of the waves, and the column vector z has entries given by the spectral
components (z)j =

q
2S(kj)dk /σ such that zTz = 1. Consider now the Lagrangian function

L = 1

2

³
pTp+ qTq

´
+ χ

µ
x− zTp− μ

2

³
pTzzTp− qTzzTq

´¶
where the Lagrange multiplier χ is introduced in order to minimize over the hypersurface Γ in (39).
Some nontrivial algebra shows that the gradients ∂L

∂p and
∂L
∂q vanish for the critical vectors (p̃, q̃)

given by
p̃ = ρξcz, q̃ = 0. (42)

where

ρ =
1

1 + μξ0
2

+

µ
1 +

μξ0
2

¶
μξ0
2
= 1 +

1

2
μ2ξ20 +O

³
μ3ξ30

´
.

Thus, the crest exceedance distribution is then given by

Pr {ξmax > λ} = exp
"
− p̃

T p̃+ q̃T q̃

2

#
= exp

"
−ξ

2
0

2
ρ2
#
. (43)

Also, one can show that the critical point (p̃, q̃) on the hypersurface Γ of Eq. (42) is at minimal
distance gmin(λ) = ρξ0 from the origin. Note finally that the Breitung distribution (43) coincides
with the Tayfun distribution (29) correct to O (μξ0).

8. Data Comparisons

In the following we shall present results of the analysis of two data sets. The first set comprises
9 hours of measurements gathered during a severe storm in January, 1993 with a Marex radar
from the Tern platform located in the northern North Sea in 167 m water depth. The second set
represents nearly 9 hours of measurements gathered in January, 1998 with a Baylor wave staff from
Meetpost Noordwijk in 18 m average water depth in the southern North Sea. Forristall elaborates
the nature of the first data, hereafter simply referred to as Tern. The second set is from Wave
Crest Sensor Intercomparison Study and we shall call it as WACSIS for brevity (Forristall et al.
2002). The spectral properties of Tern are characterized by σ = 3.02 m, ν = 0.629 and λ3 = 0.174
observed, and for WACSIS by σ = 0.981 m, ν = 0.490 and observed λ3 = 0.231.

REC 2008 - Francesco Fedele



248 Francesco Fedele

10-310-210-1100
0.95

1

1.05

1.1

1.15

1.2

1.25

E

y+  / 
r

TERN93 (9 h)  : observed & predicted ratios  y+ / r

 

 

ν = 0.629                                                                
σ = 3.02 m                                                         
3157 waves                                                                   
                                                                             
μ

a
=0.073                                                           

μ
F2

=0.079                                                          
μ

m
=0.096                                                           

μ=λ
3
/3=0.058  (observed)                                

Rayleigh
TERN
Tayfun μ

F2

Tayfun μ
a

Breitung μ
a

Breitung  μ
F2

Generalized Tayfun μ
F2

Generalized Tayfun μ
a

2D Forristall model
Tayfun μ

m

Figure 2.

REC 2008 - Francesco Fedele



Stochastic wave groups in weakly nonlinear random waves                                       249

10-310-210-1100
0.95

1

1.05

1.1

1.15

1.2

1.25

E

y+  / 
r

WACSIS (8.85 h)  : observed & predicted ratios  y+ / r

 

 

ν  = 0.490                                       
σ = 0.981 m                                
4796 waves                                           
                                                     
 μ

m
=0.090                                    

 μ
a
=0.068                                    

 μ
F2

=0.098                                 
μ = λ

 3
 /3 = 0.079  (observed)  

Rayleigh
WACSIS
Breitung μ

a

Breitung μ
F2

Tayfun  μ
a
 

Tayfun  μ
m

 

Tayfun  μ
F2

Generalized Tayfun  μ
F2

Generalized Tayfun  μ
a
 

2D Forristall model

Figure 3.

REC 2008 - Francesco Fedele



250 Francesco Fedele

In figure 2, the ratio y+/r of nonlinear crests y+ to the corresponding linear Rayleigh-distributed
crests defined as r = σ

√−2 lnP , is plotted for Tern and compared against the original Tayfun model
(μ ' μm = 0.096 from (30) ), the approximate model (β = 1 in (31) and μ ' μa = 0.073), the
2D Tayfun-Forristall model ( μ ' μF2 = 0.079, see (33) ), the 2D Weibull model of Forristall ( see
34, α2 = 0.3715, β2 = 1.8683), the generalized Tayfun models (K = 0.394) from (37) based on the
estimates μF2 and μa, respectively, and finally the Breitung’s approximation of (43). It is evident
that the 2D Tayfun-Forristall model describes the observed data extremely well, whereas the original
Tayfun model overestimates the observed crest heights, but it also serves as a somewhat conservative
upper bound to the distribution of crest heights over high waves. Evidently, the improvement of
the new distributions (Breitung and generalized Tayfun models) is essentially negligible. Similar
results also hold for WACSIS, as shown in figure 3.

9. CONCLUSIONS

We have presented a complete theory for second order random waves and their statistics based on
the concept of stochastic wave group. This theory provides a framework for predicting the expected
shape of large waves and the statistics of large wave crests quite accurately within the context of
second-order random wave theory and it can be extended to analyze the properties of third order
nonlinear random waves (Fedele 2006a,2006c). We have proposed a generalization of the Tayfun
model valid under general conditions in transitional or deep water depths, and that depends upon
spectral parameters easily estimated from wave hindcasts. Furthermore, we derive an exact closed
form solution for the crest distribution of FORM based on the Breitung’s asymptotics (Breitung
and Richter, 1996).
The generalized Tayfun model and the FORM model although compare well with oceanic

measurements gathered from the Tern platform in the northern North Sea (Tern) and with a
Baylor wave staff in the southern North Sea (WACSIS), do not really improve upon the original
model of Tayfun, which thus can be regarded suitable for describing crest statistics for engineering
applications.
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polynomial chaos expansion, and local regression method will result in a new simulation-based modeling 

technique that enables the accuracy of the structural integrity prediction. The proposed procedure can 

allow for realistic modeling of sophisticated statistical variations and facilitate in order to achieve 

improved reliability by eliminating unnecessary conservative approximations. An example problem is 

depicted to illustrate how the method is used to provide a quantitative basis for developing robust designs 

associated with the low probability of failure. 

 

Keywords: Polynomial Chaos Expansion, Moving Least-Squares, Local Regression, Low Failure 

Probability 

 

 

 

1. Introduction 

 

In recent years, the rapid development and improvement of novel design concepts, especially utilizing 

novel material systems, is a major request of the aerospace and automobile industry. In addition, new 

digital and information science technologies are creating the potential for new high-level design fields, 

such as micro-electro-mechanical systems (MEMS) and multi-scale engineering systems. However, 

introducing this state-of-the-art technology and new material systems is rapidly increasing the complexity 

of most engineered systems. There exist significant difficulties in anticipating, understanding, designing, 

and controlling both normal and abnormal behaviors of the complex systems. In addition, uncertainties in 

material properties, geometry, manufacturing processes, and operational environments of the complex 

engineered systems are clearly critical at all scales (nano-, micro-, meso-, and macro-scale). For example, 

the typical tolerances of geometric accuracy and surface finish are on the order of tenths of microns 

during the fabrication processes (Maluf, 2004), and the common microfabrication material (i.e. 

polycrystalline silicon) has 9~15% variation in its Young’s modulus and tensile strength (Sharpe, Turner, 

and Edwards, 1999).  
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To compensate the ignorance of uncertainties in input parameters, safety factors have traditionally 

been incorporated approximately in engineering designs. Generally, the factor of safety is understood to 

be the ratio of the expected strength to response to the expected load (Choi, Grandhi, and Canfield, 2006). 

In practice, both the strength and load are variables, the values of which are scattered about their 

respective mean values. When the scatter in the variables is considered, the factor of safety could 

potentially be less than unity, and the traditional factor of safety-based design would fail. More likely, the 

factor of safety is too conservative, leading to an overly expensive design for a given level of safety. 

Probabilistic methods are convenient tools to describe or model physical phenomena that are too complex 

to treat with the present level of scientific knowledge. The probabilistic method explicitly incorporates 

given statistical data into the design algorithms and provides safer designs at given cost, whereas 

conventional deterministic design with the safety factor discards such data. However, the probabilistic-

based approach often requires repeated evaluations of the probability of failure and it induces the 

computational challenge associated with the large number of computer simulations when the system 

requires extremely low failure probability, such as 10
-5

~10
-7

.  

 

A common approach to the computationally-expensive procedure of the probabilistic methods is to 

approximate the system response using relatively inexpensive surrogate modeling techniques. In the 

approximation of the response function, the accuracy depends on the choice of the basis function and the 

sampling method including the choice of the sampling region and the position of the sampling points. An 

effective choice of the basis function for the uncertainty analysis is the direct use of stochastic 

expansions, i.e. Polynomial Chaos Expansion (PCE) (Ghanem and Spanos, 1991), since the stochastic 

expansions provide analytically appealing convergence properties based on the concept of a random 

process. The PCE can reduce computational effort of uncertainty quantification in engineering design 

applications where the system response is computed implicitly. Choi et al. (2006) recently developed an 

uncertainty analysis framework which can account for nonlinear fluctuations of large-scale system 

responses by integrating the PCE, the Karhunen-Loeve (KL) transform, and Latin Hypercube Sampling 

(LHS). This research utilized the stochastic expansion and the dimension reduction procedure to generate 

the random field and showed the applicability of the method to the complex engineered systems. 

 

The objective of the current study is to provide the accurate estimation of the low failure probability 

of complex engineered systems by utilizing efficient probabilistic methods which can realistically model 

complicated statistical variations. To achieve a high quality surrogate model, a local regression method, 

namely Moving Least-Squares (MLS) method (Lancaster and Salkauskas, 1981), is integrated to a 

previously developed probabilistic decision support framework (Choi, Canfield, and Grandhi, 2006). The 

main advantage of the MLS method is that the regression coefficients are not constant, but rather 

parameter dependent. This quality allows the data analysis to not be constrained to a specific global 

function in order to fit a model to the data. Instead, the fitting segments spawn a local-global 

approximation allowing the data to acclimate to the function over a wide range of parameters. The 

stochastic modeling process repeats and recalibrates the PCE model with the local regression scheme until 

sufficient model adequacies are achieved. This will allow for an accurate estimation of the low probability 
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of failure with limited sampling points. The following sections provide a brief description and main ideas 

behind the local regression method and then focus on the technical details integrating the stochastic 

approximation procedure to provide the accuracy of the structural integrity prediction of complex 

engineered systems.  

 

 

 

2. Mathematical Basis for Solution Concept 

 

 

 

2.1.  LOCAL REGRESSION 

 

The efficacy of local regression schemes such as MLS method, lazy learning method, and locally 

weighted regression method have been successfully shown in recent engineering applications (Lancaster 

and Salkauskas, 1981; Stone, 1977; Cleveland, 1979; Katkovnik, 1979; Toropov, Scharamm, Sahai, 

Jones, and Zeguer, 2005). The basic idea of the local regression is to fit curves and surfaces to localized 

subsets of the data by a multivariate smoothing procedure with moving processes. The detailed steps of 

the MLS approximation are described in Figure 1. First, we define a local domain based on the domain 

influence factor or bandwidth, r. In the second step, we construct an approximation at a calculation point, 

xi. These procedures can be repeated to each different calculation point by moving the local domain. 

Therefore, the regression coefficients of the MLS are not constant but a function of the calculation 

position or location. The “moving” process is analogous to a weighted moving average method, which is 

a common method in a time series analysis. In fact, applying zero degree polynomials in the local 

regression yields a weighted moving average. The advantage of the local approximation compared to the 

classical global fitting methods is that the method does not require a global function of any form to fit a 

given model and can generate accurate and smooth fitting of nonlinear responses without significant 

distortions.  

 

Consider the linear regression model 

 

       )(...)()( 110 xpxpxy mm                          (1) 

where )(xp j , j = 0,1,2,…,m, are the basis polynomial of order m, j  are the regression coefficients, and 

 , the error of the model equation, is assumed to be normally distributed with mean zero and variance 
2

e .  
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Figure 1. Moving Least-Squares Approximation 

 

Equation (1) can be written in matrix notation for n sample values of x and y as 

 

     eXY  ̂               (2) 

where  
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Here, the simplest polynomial model is the monomials of x
m
, i.e., )(xpT

 = ],...,,,1[ 2 mxxx  and in 2D 

space, ],,...,,,,,,1[),( 22 mmT zxzxzxzxzxp  . 

 

The least-squares procedure results in obtaining the regression coefficients: 
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     YXXX TT 1)(ˆ             (3) 

 

The fitted model and the residuals are 

 

̂ˆ XY   and YYe ˆ              (4) 

 

In the method of the Moving Least-Squares (MLS) approximation, the regression coefficient vector, b(x), 

can be calculated as, 

 

YxWXXxWXxb TT )(])([)( 1        (5) 

where X is a n x p matrix of the levels of the regressor variables, Y is a n x 1 vector of the responses, and 

W(x) is a weight matrix and it is a none zero diagonal matrix: 
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Consequently, the model Y in Eq. (2) can be approximated by MLS approximants )(xu h
as follows 
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       (7) 

 

The weight matrix, Eq.(6), is a function of the location or position of x and there are several types of 

weighting functions: 

 

(a) Exponential weight function 
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(b) Conical weight function  
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(c) Spline weight function 
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where ii xxd   is the distance from the sample point xi to x, and the domain influence factor, ri, is 

directly related to the smoothing length; namely, the size of the support for the weight function. It is also 

called the bandwidth.  
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Figure 2. Weight Functions 

 

Figure 2 depicts the three types of the weight functions discussed in this section. It is important to note 

that the shape of the fitted curve is not critically sensitive to the precise selection of the weight function. 

However, the careful adjustment of the domain influence factor of the weight function is critical so that 

the interval should contain enough data points to obtain the regression coefficients. Otherwise, the 

regression procedure will envisage a singular matrix. The additional discussion on the effects of several 

weighting functions and the resulting local approximation can be found in Ref. (Dolbow and Belytschko, 

1998). 
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2.2.  STOCHASTIC APPROXIMATION 

 

The Polynomial Chaos Expansion (PCE) stemmed from both Wiener and Ito’s work on mathematical 

descriptions of irregularities (Wiener, 1938). A simple definition of the PCE for a Gaussian random 

response, )(u  , as a convergent series is as follows: 
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where 


1)}({ ii   is a set of Gaussian random variables, ),...,(
1 piip   is the generic element of a set of 

multidimensional Hermite polynomials, usually called homogeneous chaos of order p, 
pii aa ,...,

1
 are 

deterministic constants, and   represents an outcome in the space of possible outcomes of a random 

event.  

 

Equation (9) can be written more simply as 

 





P

i

iibu
0

))(()( 


          (10) 

where ib  and ))(( 


i are one-to-one correspondences between the coefficients 
pii aa ,......,

1
 and the 

functions ),......,(
1 piip  , respectively. If u is a function of a normally distributed random variable x, 

which has the known mean x  and variance 
2

x ,   is a normalized variable: xxx  /)(  . For 

example, the two-dimensional case of Eq. (9) can be expanded as: 

 

)()()( 21211100   aaau  

                  ),(),(),( 222221221211211   aaa  

                  ),,(),,(),,(),,( 2223222122322111232111113111   aaaa … 

           (11) 

 

Equation (11) can be recast in terms of [.]i  and ib  as follows: 
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     ...)( 554433221100  bbbbbbu       (12) 

 

Thus, the term ),( 11211 a  becomes 33b  for this two-dimensional case. 

 

     The general expression to obtain the multidimensional Hermite polynomials is given by (Ghanem, and 

Spanos, 1991) 
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where the vector  


 consists of n Gaussian random variables ),......,(
1 nii  . Generally, the one-

dimensional Hermite polynomials are defined by  
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where )()(  n
 is the n

th
 derivative of the normal density function, 

2/2

2/1)(   e . This is simply 

the single-variable version of Eq. (13). From Eq. (14), we can readily find 

 

     ,...}1510,36,3,1,,1{}{ 352432  i           (15) 

 

Thus, a second order, 2-D PCE is given by 

 

     )1)(()()()1)(()()()( 2

25214

2

1322110   bbbbbbu    (16) 

where )(1   and )(2  are two independent random variables. 

 

PCE can be used to represent the response of an uncertain system in the non-intrusive formulation (Pettit, 

Canfield, and Ghanem, 2002; Choi, Grandhi, Canfield, and Pettit, 2004). The basic idea of this approach 

is to project the response and stochastic system operator onto the stochastic space spanned by PCE with 

the projection coefficients, ib , being evaluated through an efficient sampling scheme. We first define the 

vector x  at a particular point (
m ,...,, 21

) of random variables 
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     )]()...()()()...()()()...()(1[ 212222111211 mpmmpp

Tx     

                                          (17) 

where p is the order of polynomial and )( ij   are PCE. The estimated response at this point is 

     ̂)( Txxy                                   (18) 

where ̂  is a set of undetermined coefficients of PCE and it can be obtained from Equation (5). 

 

2.3.  SOLUTION STRATEGIES 

 

For the utilization of the local regression method in practice, the selection of its basic components, such 

as the basis function, the weighting function, and the domain influence factor, r, is critical to provide the 

reliable model adequacy of the approximation. For instance, the domain influence factor has a significant 

effect on the fitted shape. Depending upon the size of the domain influence factor or the bandwidth, the 

user can adjust the closeness of fit, and this flexibility can also enable the user to achieve the same result 

of the interpolation and the global regression as shown in Figure 3b. Further discussions on the fixed 

bandwidth and nearest-neighbor bandwidth selection in the local regression are available in Refs. 

(Cleveland, 1979; Katkovnik, 1979). Figure 3a shows the fitted model for the same data by using the 

global regression method. In the case of the global regression, the data analysis is constrained to a specific 

global function to fit a model data. It is clear that the local regression method provides sufficient 

flexibility to achieve good model adequacy. However, when the size of the domain influence factor is 

small, the obtained response approximation can be unstable against the effects of random fluctuations, or 

noise phenomena. Therefore, it is important to develop criterions for the selection of the basic 

components of the local regression method.  

 

     In this study, the PCE is employed as a basis function. More satisfactory solutions can be expected 

because of the orthogonal property of the PCE. For the common polynomial regression model of the 

monomials of x
m
, the columns of X in Eq. (2) can sometimes be nearly collinear, which causes an ill-

conditioned problem, because negative values of x produce negative values for all odd powers, and 

positive values of x produce large positive values for all of the function. Hence, small changes in the basis 

function lead to relatively large changes in the regression coefficients. Another important issue with the 

polynomial regression is in determining an appropriate order of polynomials. By using a linear basis 

function (first-order polynomial) in the local regression often induces rapid changes in the slope. In the 

local regression method, increasing the degree of polynomials can typically enlarge the bandwidth 

without introducing intolerable bias; it eventually produces smoother fitting shapes compared to the linear 

basis (Lancaster and Salkauskas, 1981; Stone, 1977; Cleveland, 1979). In order to determine the 

appropriate degree of the polynomials and the size of the domain influence factor, several possible 

criterions, which involve R
2
, Cp statistics (Montgomery, 1997), and the graphical diagnostics, can be 

considered. The graphical diagnostics, such as the plot of residuals ε versus ŷ , or y  versus ŷ , can 



262 Seung-Kyum Choi 

REC 2008 – Seung-Kyum Choi 

provide a visual assessment of model effectiveness. The visual inspections of residuals are preferable to 

understand certain characteristics of the regression results because analysts can easily construct the plots 

and reveal useful information from the unorganized data. However, the visual inspection is a labor 

intensive process and it is difficult to automate. An advantage of the R
2
 and Cp statistics is that the 

procedure can be automated. It does not require labor intensive processes. Since the automated procedure 

can underestimate a peak in a surface and sometimes produces a poor solution, an ideal criterion can be a 

cross-validation by using both the graphical diagnostics and R
2
 or Cp statistics. 

 

 

 

 

 

 

 

(a) Global Regression                   (b) Local Regression with r = 0.2, r = 5.0, and r = 1.0 

 

Figure 3. Effect of Local Regression and Domain Influence Factor 

 

Figure 4 shows the flowchart of the solution strategies for determining the appropriate parameters of the 

basic components in the MLS approximation. In this procedure, the utilization of the stratified sampling 

technique known as LHS is expected to decrease the number of simulations needed. To determine the 

parameters for the MLS approximation, the R
2
 value has been checked along with the graphical 

diagnostics of the regression result as shown in Figure 4. The formula for R is defined by  
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         (19) 

where Cov(∙) is the measure of correlation of the fluctuations of the two different quantities; namely, 

covariance and 
1X  represents the standard deviations for X1.  
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Figure 4. Solution Strategies for Local Regression 

 

R
2
 can vary from 0.0 to 1.0, where a R

2
 value of 1.0 indicates the regression perfectly fits the data. R

2
 is a 

good measure to automate the determining procedure of the basic components for the MLS approximation 

using nonlinear optimization. However, when R
2
 is misused, the user can produce an undesirable 

interpolation with very high order polynomial models. The introduction of the graphical diagnostics step, 

such as the residual analysis, can detect this undesirable and uncontrollable result with little additional 

effort. For instance, the abnormality of the residual plots indicates that the selected model is inadequate or 

that an error exists in the analysis. There are no significant computational costs to obtain statistical 

properties of the responses after constructing the PCE representation of stochastic responses.  
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3. Structural Integrity Prediction 

 

 

 

3.1. THREE-BAR TRUSS EXAMPLE 

 

Reliability analysis evaluates various statistical properties and the probability of system failure by 

determining whether the limit-state functions are exceeded. Generally, the limit state indicates the margin 

of safety between the resistance and the load of structures. The limit state function, )(g , and probability 

of failure, fP , can be defined as 

 

     )()()( XSXRXg                                                              

     ]0)([  gPPf                                              (20) 

where R  is the resistance and S is the loading of the system. Both R(.) and S(.) are functions of the 

random variable X. The notation g(.) < 0 denotes the failure region. Likewise, g(.) = 0 and g(.) > 0 

indicate the failure surface and safe region, respectively.  

 

In this section, the estimation of the low failure probability will be discussed by comparisons of a 

sampling method and the proposed method. An indeterminate, asymmetric system of a three pin-

connected truss structure is illustrated in Figure 5. The unloaded length, Lm, and orientation, m , of each 

member are deterministic. Young’s modulus, Em, of each member is also assumed to be deterministic. 

The load has a random magnitude, P, and direction,  . The cross-sectional area A for all members is also 

random. The random quantities are initially considered normally distributed and uncorrelated: 

 

     A~N(1 in
2
, 0.1 in

2
) 

     P~N(1000 lb, 250 lb) 

      ~N(45
o
, 7.5

o
) 

where the symbol x ~ N( x , x ) denotes that the random variable x is treated as a normal distribution 

and has the mean of x  and standard deviation of x .  
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Figure 5. Pin-connected Three-bar Truss 

 

The principle of virtual work is used to calculate the displacement vector 
Tvu ],[  of the joint at which the 

load is applied and is given by the solution of the following system of equations: 
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The horizontal deflection of the structure should be u  < 0.0015 in. This restriction is considered as a 

limit state. To obtain the probability of failure, fP , one million simulations were conducted to obtain a 

converged result in MCS. 200 samples of LHS were used to obtain the surrogate model of the limit state 

by using the third-order PCE model with the exponential weight function of Eq. (8a). The plots of y 

versus ŷ  (Figure 6a) or residuals versus ŷ  (Figure 6b) provide a visual assessment of model 

effectiveness in regression analysis. Since the residual plot of Figure 6b exhibits white noise behavior 

which means there is no abnormality and the residual plot in Figure 6a yields points around the 45
o
 line, 

the estimated regression function shows accurate predictions of the values that are actually observed. 

Therefore, the selected PCE and the weight function model of MLS are sufficient for fitting the given 

data. After conducting the local regression, fP  is calculated using one million MCS simulations with the 

obtained PCE model.  
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versus ŷ    (b) Residual Plot: ŷ  versus Residual 

 

Figure 6. Residual Analysis 

 

 

 Table 1. Comparison of Methods for Reliability Analysis 

 

 fP  95% Confidence Interval 

MCS 4.70×10
-6

 [3.64×10
-6

, 5.76×10
-6

] 

PCE+MLS 4.34×10
-6

 [4.01×10
-6

, 4.67×10
-6

] 

 

 

The corresponding results of the current example are summarized in Table 1. The PCE result converged 

to fP = 4.34×10
-6

 and 95% confidence interval is also obtained. The confidence interval indicates a range 

of values that likely contains the analysis results. For this case, the user can be 95% confident that the true 

mean of fP  will be between 4.01×10
-6

 and 4.67×10
-6

. The confidence interval of MCS is larger than the 

result of PCE, but it has an overlapping region with the PCE’s. The interval can be reduces as the 

sampling size increases in the case of MCS. The obtained result exhibits that the use of PCE along with 

MLS is applicable to the estimation of the low failure probability.  

 

 

4. Summary 

 

A new framework is proposed for the accurate estimation of the low failure probability of common 

engineering problems by utilizing efficient probabilistic methods which can realistically model 

complicated statistical variations. A local regression method, MLS, is integrated to a previously 

developed probabilistic decision support framework which combines the PCE and LHS. The stochastic 

modeling process repeats and recalibrates the PCE model with the local regression scheme until sufficient 

model adequacies are achieved. This allows for an accurate estimation of the low probability of failure 

with limited sampling sets. This increased capability has the potential to provide significant robust 

designs with a minimal amount of computational cost. 
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Abstract: This study shows that the type of the analytical treatment that should be adopted for non-

probabilistic analysis of uncertainty depends upon the available experimental data. The main idea is based 

on the consideration that the maximum structural response predicted by the preferred theory ought be 

minimal, and the minimum structural response predicted by the preferred theory ought be maximal, to 

constitute a lower overestimation. Prior to the analysis the existing data ought be enclosed by the 

minimum volume hyper-rectangle V1 that contains all experimental data. The experimental data also have 

to be enclosed by the minimum volume ellipsoid V2. If V1 is smaller than V2 and the response calculated 

based on it R(V1) is smaller than R(V2), then one has to prefer interval analysis. However, if V1 is in excess 

of V2 and R(V1) is greater than R(V2), then the analyst ought to utilize convex modeling. If V1 equals V2 or 

these two quantities are in close vicinity, then two approaches can be utilized with nearly equal validity. 

Some numerical examples are given to illustrate the efficacy of the proposed methodology. 

 

Keywords: uncertainty description, convex modeling, interval analysis, ellipsoid, hyper-rectangle 

 

 

 

1. Introduction 

 

Probabilistic approaches are used by numerous analysts for the safety assessment of structures whose 

parameters or loadings on them are modeled as uncertain variables or functions. In recent decades, some 

alternatives of it have been suggested. Fuzzy-sets based approaches gain much popularity. There are 

many discussions on philosophical implications of each of these approaches. Whereas the probabilistic 

methodology requires the knowledge of probability densities, the fuzzy-sets based approaches demand the 

knowledge of membership functions. More recently, yet another alternative is embraced by the 

investigators, that is not based upon any specified measure, either probabilistic or fuzzy, of uncertain 

variables. It presupposes the knowledge only of bounds of uncertain quantities. These are then called as 

unknown-but-bounded or uncertain-but-bounded variables. This analysis is both old and new. It is old 

chronologically but new by its revived use. Apparently the first work on response of a single-degree-of-

freedom system under uncertain-but-bounded excitation was written by Bulgakov in 1946. He specially 

mentioned that the task is to calculate the upper bounds of structural response “under unfavorable 

circumstances”, when the “disturbing action yp(t)(p=1,2,…,r) satisfy the condition | yp(t)|≤lp(lpconstant) 
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but are otherwise arbitrary one-valued continuous functions of the time t possessing as many derivatives 

as necessary ”. This problem was dubbed by Bulgakov (1946) as the “problem of accumulation of 

disturbances” (see also his other paper, in 1940, which considers a special case). 

 There is a considerable literature in the Russian language on the Bulgakov’s problem. Independently, 

in late sixties, Schweppe (1968) developed an analogous thinking based on ellipsoidal modeling, 

representing the uncertain variables as belonging to an ellipsoid. 

 Recently, some researchers in uncertain mechanics are developing interval analysis whereas others 

follow convex modeling (Ben-Haim and Elishakoff, 1990; Rao and Berke, 1997; Lombardi, 1998; 

Pantelides and Ganzerli, 1998, 1999; Mullen and Muhanna, 1999; Manson, 2005; McWilliam, 2001; 

Moens and Vandepitte, 2007). The question arises if these analyses are interrelated specifically, should 

one perform both analyses, or one of them in preferable? This work tries to elucidate the possible reply to 

this question. Some researchers performed a comparison of results derived by both methods. Elishakoff, 

Li and Starnes (2001) derived a minimum volume ellipsoid that encloses the minimum volume 

parallelepiped for buckling analysis. Elishakoff, Cai and Starnes (1994) studied the buckling of elastic 

column on non-linear elastic foundation by interval analysis whereas Qiu, Ma and Wang (2006) dealt 

with the same problem via convex modeling. Qiu and Wang (2003) specially distinguished between these 

two non-probabilistic set theoretical models. 

 Although convex modeling and interval analysis have been used extensively, in practice, which of the 

non-probabilistic uncertain descriptions, convex modeling or interval analysis should be preferred? In this 

study, this problem will be answered. The experimental data are shown to be of the cardinal influence on 

which of these methods ought be given a preference. 

 Consider the case that due to high cost of the measurements the experimental points are too scant to 

determine their statistical information on uncertain parameters: if we choose non-probabilistic set-

theoretical convex methods, convex modeling or interval analysis, for uncertain modeling, then the 

precondition is to seek or determine the suitable set containing the limited experimental points. In fact, 

there is more than one set to be able to enclose the limited experimental points. However, too big set will 

produce over-conservative bounds on the structural responses. Of course, it is impossible for us to know 

the real bounds on uncertain parameters based on the limited experimental points. The enclosing set with 

minimal volume property may be a better selection, which will produce lower overestimation on the 

bounds of the structural responses. We can only act on what we know. 

 

 

2. Description of the Method by Zhu, Elishakoff and Starnes 

 

In this section, the description of the method by Zhu, Elishakoff and Starnes (1996), in which the smallest 

hyper-rectangle and the smallest ellipsoid containing the given experimental data are determined, is stated 

in brief. 

 Suppose that there are m uncertain parameters ( 1,2, , )ia i m   describing either the structural 

properties or the excitation. These parameters constitute an m-dimensional parameter space, namely, 
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1 2( , , , )ma a a a  . Suppose that we have limited information on these parameters, represented by M 

experimental points, 
( ) ( 1,2, , )ra r M   in this m-dimensional space. Convex modeling assumes that all 

these experimental points belong to an ellipsoid 

 0 0( ) ( ) 1Ta a W a a    (1) 

where 
0a  is the state vector of the central point of the ellipsoid, and W  is the weight matrix. Interval 

analysis assumes that all experimental points belong to a hyper-rectangle. 

 By using transformation matrix 1 2 1( , , , )m mT      given in Ref. Zhu et al.(1996), the above M 

points in the rotated coordinate system will have their new coordinates denoted by 
( ) ( 1,2, , )rb r M  . 

To obtain the smallest ellipsoid, let us first examine an m-dimensional box of the form 

 0b b d   (2) 

which contains all M points. The vector of semi-axes 1 2( , , , )T

md d d d   and the vector of central 

points 0 10 20 0( , , , )T

mb b b b   of the “box” in the rotated coordinate system are given by 
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1
max( ) min( ) ,

2

1
max( ) min( ) ,

2

r r

k k k
rr

r r

k k k
rr

d b b

b b b

 

 

    ( 1,2, , ; 1,2, , )r M k m    (3) 

 We now enclose this box by an ellipsoid 

 

2

0

2
1
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1

m
k k

k k
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g


  (4) 

where kg  are the semi-axes of the ellipsoid. There are infinite number of ellipsoids which contain the box 

given in Eq.(2). Clearly, the best choice is the one with minimum volume. The volume of an m-

dimensional ellipsoid is given by 

 
1

m

e m k

k

V C g


   (5) 

where mC  is a constant. 

 From the monograph by Elishakoff, Li and Starnes (2001) and paper by Qiu (2003), corresponding to 

the smallest ellipsoid, the semi-axes of the smallest ellipsoid should be 

 , ( 1,2, , )i ig md i m    (6) 

 Thus, once the size of the box Eq.(2) is known, the semi-axes of the minimum-volume ellipsoid 

enclosing the box of the experimental data are readily determined by utilizing Eq.(6). If there are no 

experimental points at the corner of the box, the size of such an ellipsoid may further be reduced until one 
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of the experimental points reaches the surface of the ellipsoid. The semi-axes of the ellipsoid in this case 

may be replaced by kg , where the factor is determined from the condition 

 
 

2
( )

0

2
1

max 1

r
m

k k

r
k k

b b

g





  ,   ( 1,2, , )r M   (7) 

 If there are some experimental points in the corner of the multidimensional box, the factor   equals 

unity. The ellipsoid (4) can be written in the form 

 0 0( ) ( ) 1Tb b D b b    (8) 

in which 
0b  is the vector of central points whose components are given by Eq.(3), and D  is a diagonal 

matrix 

  2 2 2

1 2( ) , ( ) , , ( )mD diag g g g       (9) 

 The volume of the ellipsoid now reads 

 
1

m
m

e m k

k

V C g


   (10) 

which is a function of a set of parameters ( 1,2, , 1)k k m   . Therefore, the best ellipsoid among 

these ellipsoids is the one which contains all given points and possesses the minimum volume, i.e., 

  
1 2 1

1 2 1
, , ,
min ( , , , )

m
e e mV V

  
  





  (11) 

 A possible approach to determine this ellipsoid is to search among all possible cases by increasing 

( 1,2, , 1)k k m    from 0 to /2 in sufficiently small increments k , and to compare the volumes of 

so obtained ellipsoids. Once one finds the ellipsoid with minimum volume in one direction, say 

0( 1,2, , 1)k k m   , the ellipsoid can be transformed back into the original coordinate system by 

applying the transformation matrix mT . Hence, the vector 0a  of central point and the weight matrix W  in 

Eq.(1) become 

 0 0

T

ma T b ,   
T

m mW T DT  (12) 

where 10 20 0( , , , )m m mT T     . So Eq.(12) constitutes the smallest ellipsoid containing all experimental 

points. The “box” corresponding to the smallest ellipsoid is the smallest hyper-rectangle. 

 

3. Convex Modeling and Interval Analysis for the Structural Response 

 

For convenience, in this section, convex modeling method and interval analysis method for the static 

response analysis of structures with uncertain parameters are reformulated (see Ref. Qiu (2003)). In fact, 

the presented concept in this study also can be applied to other linear elastic structural mechanics problem 

with uncertainty, such as the natural frequency analysis, the dynamic response analysis etc. 
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 The matrix equation of static equilibrium in the finite element method can be written as 

 ( ) ( ) ( )K a u a f a  (13) 

where )( ijkK   is the nn -dimensional stiffness matrix, )( iuu   is the n-dimensional nodal 

displacement vector and )( iff   is the n-dimensional external load vector; 1 2( , , , )T

ma a a a   is the 

structural parameters, such as the physical, material and geometric properties in structures. 

 Consider a realistic situation in which not enough information is available on the structural 

parameters to justify an assumption on their probabilistic characteristics. It is assumed that by use of Zhu, 

Elishakoff and Starnes’s method (1996), the derived smallest ellipsoid and the derived smallest hyper-

rectangle on the structural parameters can be obtained as, respectively, 

 
2

0 0( , ) { : ,( ) ( ) }m TZ W a a R a a W a a       (14) 

and 

 a a a   or 0 0a a a a a     (15) 

where 0 0( ) m

ia a R   is the nominal value vector of the structural parameter vector a , W  is a positive 

definite matrix and is called the weight matrix,   is a positive constant and is called the radius of the 

ellipsoid; a  and a  are the lower bound and upper bound of the hyper-rectangle, a  is the radius of the 

hyper-rectangle. 

 The structural parameter of a value slightly different from this nominal value can be denoted as 

 0a a a    or  0 , 1,2, ,i i ia a a i m     (16) 

where ( ) m

ia a R    is a small quantity. 

 By Taylor’s series expansion, the static displacement of the structure with uncertain parameter vector 

0a a a  , to first order in a , is 

 0
0 0

1

( )
( ) ( ) ( ) , 1,2, ,

m
i

i i i j

j j

u a
u a u a a u a a i n

a
 




    


   (17) 

 For convenience of notation, let us define 

 0 0 0 0 0 0

1 2 1 2

( ) ( ) ( )
, , , , , ,T i i i i i i

m m

u a u a u a u u u

a a a a a a


        
    

        
   (18) 

 By combination of Eq.(17) and Eq.(14), the most and least favourable response for convex modeling 

method can be obtained as (see Ref. Ben-Haim and Elishakoff (1990)) 

 
1

0

T

Cu u W      and  
1

0

T

Cu u W     (19) 

 By combination of Eq.(17) and Eq.(15), the most and least favourable responses for interval analysis 

method can be obtained as (see Ref. Qiu (2003)) 
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   and  0

0

1

m
i

iI i j

j j

u
u u a

a


  


  (20) 

 Thus, in the case that the smallest intervals or hyper-rectangle containing uncertain parameters are 

known, interval analysis method can be adopted to obtain the most and least favorable responses. In the 

case that the smallest ellipsoid containing uncertain parameters are known, convex modeling method can 

be adopted to obtain the most and least favorable responses. 

So, a question will arise. Which method is better? In other words, which method will give the tighter 

bounds on the structural responses? In the following, a 7-bar planar truss structure and a 60-bar space 

truss structure are used to reply to this quest. 

 

 

 

4. Seven-Bar Planar Truss Structure 
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Figure 1. A 7-bar planar truss structure 

 

Let us consider a 7-bar planar truss structure with linear elastic properties depicted in Figure 1. Here, 

5A   is the cross-sectional area, 200E   is Young’s modulus, 1F  is an external load at node No.2, 2F  

is an external load applied at node No.4. The parameters of the truss are given as dimensionless numbers, 

since the physical values are not relevant to our analysis. 

 This truss is the same as adopted by Skalna (2003) but here the loads 1F  and 2F  are considered to be 

uncertain, and the other properties of the truss, such as A  and E , are deterministic. Namely, the truss 

members have deterministic stiffness. 

 In the following, several sets of hypothesized data for uncertain parameters will be given. By use of 

the Zhu, Elishakoff and Starnes’s method (1996), the smallest ellipse and rectangle can be derived. Based 

on the derived ellipse and rectangle, the most and least favorable responses of the structure can be 

calculated by convex modeling method and interval analysis method, respectively. 



 Comparison of Interval and Convex Analyses     275 

REC 2008 - Isaac Elishakoff, Xiaojun Wang, and Zhiping Qiu 

 We will discuss this problem in the following two cases: one is that the principal axes of the derived 

ellipse and rectangle are parallel to the global coordinate system; the other is that the principal axes of the 

derived ellipse and rectangle are not parallel to the global coordinate system. 

 

4.1.  THE PRINCIPAL AXES OF THE DERIVED ELLIPSE AND RECTANGLE ARE PARALLEL TO THE GLOBAL 

COORDINATE SYSTEM 

 

Case I: Consider a set of hypothesized data for uncertain parameters as shown in Figure 2, and they are 

listed in Table 1. Here these hypothesized data are randomly generated in order to proceed to the 

numerical simulations, but in practice the samples for uncertain parameters can be generally obtained by 

the experiments. 

 

 
Figure 2. Rectangle and ellipse containing the data on uncertain parameters 1F  and 2F  

 

 The smallest rectangle obtained from the set of data by using of Zhu, Elishakoff and Starnes’s method 

(1996) is 

 1 [0.80,1.20]IF  ,  2 [0.90,1.10]IF   (21) 

 Based on Eq.(21), we conclude that the central values of 1F  and 2F  are, respectively, 

 1 2(0.80 1.20) / 2 1.0, (0.90 1.10) / 2 1.0c cF F       (22) 

and the values of radii 1F  and 2F  are, respectively, 
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 1 2(1.20 0.80) / 2 0.2, (1.10 0.90) / 2 0.1F F         (23) 

 Thus, one can analyze the system as subjected to an interval load vector with nominal values 

(1.0,1.0)  and scatter of (20%,10%) . 

 

Table 1. The values of uncertain parameter 
1F  and 

2F  

k 1 2 3 4 5 6 7 8 9 10 11 12 

F1 0.991 1.082 1.085 0.938 0.976 0.993 1.011 1.056 0.800 1.200 1.000 1.000 

F2 1.018 1.031 0.964 1.037 0.965 1.011 1.048 1.008 1.000 1.000 0.900 1.100 

 

 On the other hand, the smallest ellipse can be obtained from the set of data by using of Zhu, 

Elishakoff and Starnes’s method (1996). The optimal rotation angle 
10  obtained is 0

, so the 

transformation matrix 2T  is 

 2

1 0

0 1
T

 
  
 

 (24) 

 In the case of 10 0  
, the vector of semi-axes and the vector of central point of the “box” in the 

optimal rotated coordinate system are, respectively, 1 2( , ) (0.2, 0.1)T Td d d   and 

0 10 20( , ) (1.0,1.0)T Tb b b  . The semi-axes of the smallest ellipsoid are 1 12 0.2828g d   and 

2 22 0.1414g d  . The diagonal matrix D  is 

    2 2

1 2( ) , ( ) 25,100D diag g g diag     (25) 

where 2 / 2  . Thus, we can get 

 0 2 0 2 2

25 0
(1.0,1.0) ,

0 100

T T Ta T b W T DT
 

     
 

 (26) 

 It can be seen from Figure 2 that the derived rectangle contains the derived ellipse based on the 

hypothesized data listed in Table 1. 

 We can find that the higher-order derivatives of static responses of the 7-bar planar truss structure 

with respect to uncertain parameters are all zeros. Thus, Eq.(17) based on the first-order Taylor series for 

this example will be linear and exact, i.e. 

 

1 2 1 1 2 2

1 2 1 2

1 2

( , ) ( , )

( ) ( )
( , ) , 1,2, ,

i i c c

i c i c
i c c

u F F u F F F F

u F u F
u F F F F i n

F F

 

 

  

 
   

 


 (27) 

 This is the reason why only the external loads are taken as the uncertain parameters in this study. 
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 Taking the derivative of both sides of Eq.(13) yields 

 , 1,2
j j j

K u f
u K j

F F F

  
  

  
 (28) 

 Due to the vanishing of 
j

K

F




 for this problem, the sensitivity derivative of the structural response 

with respect to uncertain parameters becomes 

 
1 , 1,2

j j

u f
K j

F F

 
 

 
 (29) 

 Substitution of Eqs.(22), (23) and (29) into Eq.(20) yields the most and least favorable responses in y-

direction of node 3 of the 7-bar planar truss structure obtained from interval analysis method as follows 

 
3min 0.005803y

Iu  ,  
3max 0.007852y

Iu   (30) 

 Substitution of Eqs.(26) and (29) into Eq.(19) provides us with the most and least favorable responses 

in y-direction of node 3 of the 7-bar planar truss structure obtained from convex modeling method as 

follows 

 
3min 0.006064y

Cu  ,  
3max 0.007591y

Cu   (31) 

 The “” points on the derived rectangle in Figure 2 are the most and least favorable points for interval 

analysis method. The “+” points on the derived ellipse in Figure 2 are the most and least favorable points 

for convex modeling method. The two markers “” and “+” have the same meaning in sequel figures. 

 Thus, it can be seen from Eqs.(30) and (31) that interval analysis method gives tighter bounds of 

responses than convex modeling method in the case of data points listed in Table 1. 

 

Case II: Consider another set of hypothesized data for uncertain parameters as shown in Figure 3, and 

they are listed in Table 2. 
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Figure 3. Rectangle and ellipse containing the data on uncertain parameters 1F  and 2F  

 

Table 2. The values of uncertain parameter 1F  and 2F  

k 1 2 3 4 5 6 7 8 9 10 11 12 

F1 0.991 1.082 1.085 0.938 0.976 0.993 1.011 1.056 0.900 1.100 1.100 0.900 

F2 1.018 1.031 0.964 1.037 0.965 1.011 1.048 1.008 0.950 0.950 1.050 1.050 

 

 The smallest rectangle obtained from the set of data by using of Zhu, Elishakoff and Starnes’s method 

(1996) is 

 1 [0.90,1.10]IF  ,  2 [0.95,1.05]IF   (32) 

 Based on Eq.(32), we conclude that the central values and the values of radii of 1F  and 2F  are, 

respectively, 

 1 21.0, 1.0c cF F   and 1 20.1, 0.05F F     (33) 

 Thus, one can analyze the system as subjected to an interval load vector with nominal values (1,1)  

and scatter of (10%, 5%) . 

 On the other hand, the smallest ellipse can be obtained from the set of data by using of Zhu, 

Elishakoff and Starnes’s method (1996). The optimal rotation angle 10  obtained is 0
. Similar to 

Eqs.(24)~(26), the vector 0a  of central point and the weight matrix W  can be obtained as 
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 0 2 0 2 2

50 0
(1.0,1.0) ,

0 200

T T Ta T b W T DT
 

     
 

 (34) 

 It can be seen from Figure 3 that the derived ellipse contains the derived rectangle based on the 

hypothesized data listed in Table 2. 

 By substituting Eqs.(33) and (29) into Eq.(20) and substituting Eqs.(34) and (29) into Eq.(19), the 

most and least favorable responses in y-direction of node 3 of the 7-bar planar truss structure can be, 

respectively, obtained from interval analysis method and convex modeling method as follows 

 
3min 0.006316y

Iu  ,  
3max 0.007340y

Iu   (35) 

and 

 
3min 0.006288y

Cu  ,  
3max 0.007367y

Cu   (36) 

 Thus, it can be seen from Eqs.(35) and (36) that convex modeling method gives tighter bounds of 

responses than interval analysis method in the case of data points listed in Table 2. 

 Under this circumstance, an interesting phenomenon can be seen. For convex modeling method, the 

extreme value points on the ellipse in Figure 3 may be different based on different structural parameters. 

Namely, the locations of the extreme value points of convex modeling method will change by changing 

the structural parameters. In certain particular case, the extreme value points of convex modeling method 

and interval analysis method will coincide. 

 

4.2.  THE PRINCIPAL AXES OF THE DERIVED ELLIPSE AND RECTANGLE ARE NOT PARALLEL TO THE GLOBAL 

COORDINATE SYSTEM. 

 

Case I: Consider a set of hypothesized data for uncertain parameters as shown in Figure 4, and they are 

listed in Table 3. 

 The smallest rectangle obtained from the set of data by using of Zhu, Elishakoff and Starnes’s method 

(1996) is shown as Figure 4. The smallest ellipse can be obtained from the set of data by using of Zhu, 

Elishakoff and Starnes’s method (1996). The optimal rotation angle 10  obtained is 30
. Similarly, the 

vector 0a  of central point and the weight matrix W  can be obtained as 

 0 2 0 2 2

43.75 32.48
(0.366,1.366) ,

32.48 81.25

T T Ta T b W T DT
 

     
 

 (37) 

 As above mentioned, Eq.(17) based on the first-order Taylor series will be exact and linear for this 

example. Due to the convexity of the derived smallest rectangle, the most and least favorable responses in 

y-direction of node 3 of the 7-bar planar truss structure for interval analysis method will reach on the four 

vertexes of the smallest rectangle. By calculating and comparing the four responses, the most and least 

favorable responses or the minimum and maximum values of them are, respectively, 

 
3min 0.004855y

Iu  ,  
3max 0.006970y

Iu   (38) 
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Figure 4. Rectangle and ellipse containing the data on uncertain parameters 1F  and 2F  

 

Table 3. The values of uncertain parameter 1F  and 2F  

k 1 2 3 4 5 6 7 8 9 10 11 12 

F1 0.349 0.422 0.458 0.294 0.362 0.355 0.351 0.411 0.193 0.539 0.416 0.316 

F2 1.377 1.434 1.377 1.367 1.323 1.372 1.413 1.401 1.266 1.466 1.279 1.453 

 

 By substituting of Eqs.(37) and (29) into Eq.(19), we obtain the most and least favorable responses in 

y-direction of node 3 of the 7-bar planar truss structure obtained from convex modeling method as follows 

 
3min 0.004972y

Cu  ,  
3max 0.006854y

Cu   (39) 

 Thus, it can be seen from Eqs.(38) and (39) that interval analysis method gives tighter bounds of 

responses than convex modeling method in the case of data points listed in Table 3. 

 

Case II: Consider another set of hypothesized data for uncertain parameters as shown in Figure 5, and 

they are listed in Table 4. 

 The smallest rectangle obtained from the set of data by using of Zhu, Elishakoff and Starnes’s method 

(1996) is shown as Figure 5. The smallest ellipse can be obtained from the set of data by using of Zhu, 
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Elishakoff and Starnes’s method (1996). The optimal rotation angle 10  obtained is30
. Similarly, the 

vector 0a  of central point and the weight matrix W  can be obtained as 

 0 2 0 2 2

87.50 -64.95
(0.366,1.366) ,

-64.95 162.50

T T Ta T b W T DT
 

     
 

 (40) 

 In perfect analogy with Eq.(38), the most and least favorable responses in y-direction of node 3 of the 

7-bar planar truss structure for interval analysis method can be obtained as follows 

 
3min 0.005384y

Iu  ,  
3max 0.006441y

Iu   (41) 

 We substitute of Eqs.(40) and (29) into Eq.(19) to get the most and least favorable responses in y-

direction of node 3 of the 7-bar planar truss structure obtained from convex modeling method as follows 

 
3min 0.005247y

Cu  ,  
3max 0.006578y

Cu   (42) 

 

 

 
Figure 5. Rectangle and ellipse containing the data on uncertain parameters 1F  and 2F  

 

Table 4. The values of uncertain parameter 1F  and 2F  

k 1 2 3 4 5 6 7 8 9 10 11 12 

F1 0.349 0.422 0.458 0.294 0.362 0.355 0.351 0.411 0.304 0.478 0.428 0.254 

F2 1.377 1.434 1.377 1.367 1.323 1.372 1.413 1.401 1.273 1.373 1.459 1.359 
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 Thus, it can be seen from Eqs.(41) and (42) that convex modeling method gives tighter bounds of 

responses than interval analysis method in the case of data points listed in Table 4. Although only the 

displacement responses in y-direction of node 3 of the 7-bar planar truss structure are compared, the 

analysis will not change qualitatively if a different aspect of response of the truss structure were used to 

carry out the comparisons of convex modeling with interval analysis due to the linear elastic properties. 

 We can find from the above analysis that the choose for two methods, convex modeling or interval 

analysis, is decided by the distribution of sample data points on uncertain parameters. 

 

 

 

5. Sixty-Bar Space Truss Structure 
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Figure 6. A 60-bar space truss structure 

 

Consider a 60-bar space truss structure with linear elastic properties subject to two x-directional loads as 

shown in Figure 6. The external loads 1F  and 2F , respectively, act on nodes No.21 and No.22. Young’s 

moduli of the bars are 
112.1 10 ( 1,2 ,60)iE i    . The cross-sectional areas of the bars are 

31.0 10 ( 1,2 ,60)iA i    . 
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 Suppose that the external loads 1F  and 2F  are still considered to be uncertain, and the other 

properties of the truss, such as A  and E , are deterministic. Namely, the truss members have 

deterministic stiffness. 

 In previous section, the case that there exists the inclusion relation between the derived ellipse and 

rectangle is studied. In this section, we will consider the non-inclusion relation between them. 

 

Case I: Consider a set of hypothesized data for uncertain parameters as shown in Figure 7, and they are 

listed in Table 5. 

 
Figure 7. Rectangle and ellipse containing the data on uncertain parameters 1F  and 2F  

Table 5. The values of uncertain parameter 1F  and 2F  

k 1 2 3 4 5 6 7 8 9 10 11 12 

F1 0.349 0.422 0.458 0.294 0.362 0.355 0.351 0.411 0.330 0.452 0.443 0.289 

F2 1.377 1.434 1.377 1.367 1.323 1.372 1.413 1.401 1.288 1.358 1.433 1.299 

 

 The smallest rectangle obtained from the set of data by using of Zhu, Elishakoff and Starnes’s method 

(1996) is shown as Figure 7. The smallest ellipse can be obtained from the set of data by using of Zhu, 

Elishakoff and Starnes’s method (1996). The optimal rotation angle 10  obtained is 30
. Similarly, the 

vector 0a  of central point and the weight matrix W  can be obtained as 
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 0 2 0 2 2

119.71 -91.10
(0.3664,1.3653) ,

-91.10 224.91

T T Ta T b W T DT
 

     
 

 (43) 

 Similar to Eq.(38) and Eq.(41), the most and least favorable responses in x-direction of node 21 of the 

60-bar space truss structure for interval analysis method can be obtained as follows 

 
21min 1.6491E-7x

Iu  ,  
21max 3.0862E-7x

Iu   (44) 

 Substitution of Eqs.(43) and (29) into Eq.(19) yields the most and least favorable responses in x-

direction of node 21 of the 60-bar space truss structure obtained from convex modeling method as follows 

 
21min 1.6575E-7x

Cu  ,  
21max 3.0777E-7x

Cu   (45) 

 Thus, it can be seen from Eqs.(44) and (45) that convex modeling method gives tighter bounds of 

responses than interval analysis method in the case of data points listed in Table 5. 

 

Case II: Consider another set of hypothesized data for uncertain parameters as shown in Figure 8, and 

they are listed in Table 6. 

 

 
Figure 8. Rectangle and ellipse containing the data on uncertain parameters 1F  and 2F  

 

Table 6. The values of uncertain parameter 1F  and 2F  

k 1 2 3 4 5 6 7 8 9 10 11 12 

F1 0.7991 0.887 0.901 0.744 0.793 0.803 0.813 0.865 0.751 0.889 0.906 0.716 

F2 1.175 1.203 1.138 1.184 1.119 1.168 1.208 1.176 1.097 1.121 1.196 1.121 
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 The smallest rectangle obtained from the set of data by using of Zhu, Elishakoff and Starnes’s method 

(1996) is shown as Figure 8. The smallest ellipse is obtained from the set of data by using of Zhu, 

Elishakoff and Starnes’s method (1996). The optimal rotation angle 
10  obtained is 10

. Similarly, the 

vector 
0a  of central point and the weight matrix W  can be obtained as 

 0 2 0 2 2

73.46 -35.98
(0.8113,1.1576) ,

-35.98 271.17

T T Ta T b W T DT
 

     
 

 (46) 

 Similar to Eq.(38), the most and least favorable responses in x-direction of node 21 of the 60-bar 

space truss structure for interval analysis method can be obtained as follows 

 
21min 4.5511E-7x

Iu  ,  
21max 5.9339E-7x

Iu   (47) 

 Substitution of Eqs.(46) and (29) into Eq.(19) results in the most and least favorable responses in x-

direction of node 21 of the 60-bar space truss structure obtained from convex modeling method as follows 

 
21min 4.4628E-7x

Cu  ,  
21max 6.0222E-7x

Cu   (48) 

 Thus, it can be seen from Eqs.(47) and (48) that interval analysis method gives tighter bounds of 

responses than convex modeling method in the case of data points listed in Table 6. 

 From the analysis of this section, we still can find that the sample data points decide which of the 

non-probabilistic uncertainty descriptions, convex modeling or interval analysis, to be prefered. 

 

 

 

6. Conclusion 

 

In this study, through numerical examples convex modeling and interval analysis are extensively 

compared based on the same experimental points. Some explanations are given for the problem that 

which of the non-probabilistic uncertainty descriptions, convex modeling or interval analysis, ought be 

utilize. Given the experimental points, the smallest hyper-rectangle and the smallest ellipsoid containing 

them can be obtained. From these numerical examples it can be concluded that (1) If V1 is smaller than V2, 

then one has to prefer interval analysis; (2) If V1 is in excess of V2, then the analyst ought to utilize convex 

modeling; (3) If V1 equals V2 or these two quantities are in close vicinity, then two approaches can be 

utilized with nearly equal validity. Therefore, the type of the analytical treatment that should be adopted 

for non-probabilistic analysis of uncertainty depends upon the available experimental data. 

 Of course, the purpose of the paper is not to replace the probabilistic approach by the non-

probabilistic set-theoretic convex methods. The latter is a possible alternative or a supplementary way of 

the uncertainty analysis when scarce data is available to justify the probabilistic analysis. We conclude 

that the type of the analysis of uncertainty depends on the type and amount of available information. 
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How to Estimate, Take Into Account, and Improve Travel Time

Reliability in Transportation Networks
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Abstract. Many urban areas suffer from traffic congestion. Intuitively, it may seem that a road
expansion (e.g., the opening of a new road) should always improve the traffic conditions. However,
in reality, a new road can actually worsen traffic congestion. It is therefore extremely important
that before we start a road expansion project, we first predict the effect of this project on traffic
congestion.

Traditional approach to this prediction is based on the assumption that for any time of the day,
we know the exact amount of traffic that needs to go from each origin city zone A to every other
destination city zone B (these values form an OD-matrix), and that we know the exact capacity
of each road segment. Under this assumption, known efficient algorithms produce the equilibrium
traffic flows.

In reality, the road capacity may unpredictably change due to weather conditions, accidents,
etc. Drivers take this uncertainty into account when planning their trips: e.g., if a driver does not
want to be late, he or she may follow a slower route but with a guaranteed arrival time instead of a
(on average) faster but unpredictable one. We must therefore take this uncertainty into account in
traffic simulations. In this paper, we describe algorithms that take this uncertainty into account.

Keywords: transportation networks, traffic assignment, reliability, risk-taking behavior

1. Decreasing Traffic Congestion: Formulation of the Problem

Decreasing traffic congestion: a practical problem. Many urban areas suffer from traffic
congestion. It is therefore desirable to decrease this congestion: e.g., by building new roads, or by
adding new lanes to the existing roads.

Important difficulty: a new road can worsen traffic congestion. Intuitively, it may seem that
a road expansion (e.g., the opening of a new road) should always improve the traffic conditions.
However, in reality, a new road can actually worsen traffic congestion. Specifically, if too many
cars move to a new road, this road may become even more congested than the old roads initially
were, and so the traffic situation will actually decrease – prompting people to abandon this new
road. This possible negative effect of a new road on congestion is a very well known “paradox” of
transportation science, a paradox which explains the need for a detailed analysis in the planning
of the new road; see, e.g, (Ahuja et al., 1993; Sheffi, 1985). This paradox was first discovered by A.
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Doig (see (Appa, 1973)) and first published in (Braess, 1968; Charnes and Klingman, 1971; Szwarc,
1971).

Importance of the preliminary analysis of the results of road expansion. Our objective
is to decrease traffic congestion. We have just mentioned that an addition of a new road can
actually worsen the traffic congestion. It is therefore extremely important that before we start a
road expansion project, we first predict the effect of this project on traffic congestion.

Traditional approach to predicting the results of road expansion. Traditional approach to
predicting the results of road expansion is based on the assumption that for any time of the day,
we know the exact amount of traffic that needs to go from each origin city zone A to every other
destination city zone B (these values form an OD-matrix), and that we know the exact capacity
of each road segment. Under this assumption, known efficient algorithms produce the equilibrium
traffic flows; see, e.g., (Sheffi, 1985).

Limitations of the traditional approach to predicting the results of road expansion.
In reality, the road capacity may unpredictably change due to weather conditions, accidents, etc.
Drivers take this uncertainty into account when planning their trips: e.g., if a driver does not want
to be late, he or she may follow a slower route but with a guaranteed arrival time instead of a (on
average) faster but unpredictable one.

We must therefore take this uncertainty into account in traffic simulations.

What we do in this paper. In this paper, we describe algorithms that take the above uncertainty
into account.

Comment. Some of the results presented in this paper first appeared in our research report (Cheu
et al., 2007). This report also describes a software package that implements our algorithms.

2. Traffic Assignment: Brief Reminder

Road assignment problem: informal description. In order to select the best road expansion
project, we must be able to predict how different projects will affect road congestion. For that, we
need to be able, based on the traffic demand and on the road capacities, to predict the traffic on
different places of different roads at different times of the day. This prediction problem is called the
traffic assignment problem.

To describe this problem in precise terms, we need to describe how exactly the traffic demand is
described, how the road capacities are described, and what exactly assumptions do we make about
the drivers’ behavior.

Granulation. To describe traffic demand, we divide the urban area into zones and describe how
many drivers need to get from one zone to another.

Similarly, to describe road capacity, we divide all the roads into road segments (links), and
describe the capacity of each link.

The time of the day is similarly divided into time intervals.

Comment. How to select an appropriate size of a zone, of a road link, and of a time interval?
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− On the one hand, the finer the division, we more accurate is the resulting traffic picture.

− On the other hand, the finer the division, the more zones and links we need to consider and
hence, the more computations we need to perform.

Thus, the granularity of the traffic problem should be determined by the trade-off between accuracy
and computational complexity.

For example, for the city of El Paso with a population of 700,000, a standard road network
model consists of 681 zones and 4836 road links.

How to describe traffic demand? Once we divided the urban area into n zones, we must
describe, for every two zones i and j, the number of drivers dij who need to go from zone i to zone
j. The corresponding n× n matrix is called an origin-to-destination matrix, or an O-D matrix, for
short.

So, to the traffic demand is described by the O-D matrices corresponding to different times of
the day.

How to describe road capacity? For each road link, the road capacity is usually described by
the number c of cars per hour which can pass through this road link.

How to describe travel time along a road link? Every road link has a posted speed limit.
When there are few cars of this road, then these few cars can safely travel at the speed limit s. The
resulting travel time tf along this road link can be estimated as L/s, where L is the length of this
road link. This travel time tf is called a free flow travel time.

When the traffic volume v increases, congestions starts, the cars start slowing each other down.
As a result, the travel time t along the road link increases. The dependence of the travel time on
the volume is usually described by the Bureau of Public Roads (BPR) formula

t = tf ·
[
1 + a ·

(
v

c

)β
]

.

The parameters a and β are determined experimentally; usually, a ≈ 0.15 and β ≈ 4.

Equilibrium. When a new road is built, some traffic moves to this road to avoid congestion on
the other roads; this causes congestion on the new road, which, in its turn, leads drivers to go back
to their previous routes, etc. These changes continue until there are alternative routes in which the
overall travel time is larger.

Eventually, this process converges to an equilibrium, i.e., to a situation in which the travel time
along all used alternative routes is exactly the same – and the travel times along other un-used
routes is higher; see, e.g., (Sheffi, 1985).

There exist efficient algorithms which, given the traffic demand (i.e., the O-D matrices) and the
road capacity, computes the corresponding equilibrium (Sheffi, 1985). This algorithm computes the
traffic volume along each road link, the travel time between every two zones, etc.
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3. How We Can Use the Existing Traffic Assignment Algorithms to Solve Our
Problem: Analysis

Our main objective: reminder. Our main objective is to predict how different road projects
will affect future traffic congestion – so that we will be able to select a project which provides the
best congestion relief.

To be able to do that, we must predict the traffic congestion resulting from the implementation
of each of the road projects.

How we can predict the traffic congestion resulting from different road projects. As we
have mentioned, to apply the existing traffic assignment algorithms, we need to know the traffic
capacities and traffic demands.

The traffic capacities of the improved road network come directly from the road project – we
know which new road links we build, what is their capacity, and which existing links are expanded.
So, to solve our problem, we need to find the traffic demands.

Future traffic demands: what is known. There exist tools and techniques for predicting
population growth in different zones, and for describing how this population growth will affect
the overall traffic demand. Texas Department of Transportation (TxDOT) have been using the
resulting predictions of daily O-D matrices corresponding to different future times (such as the
year 2030).

Future traffic demands: what is lacking. To get a better understanding of the future traffic
patterns, we must be able to describe how this daily traffic is distributed over different time intervals,
in particular, how much of this traffic occurs during the critical time intervals corresponding to the
morning rush hour. In other words, we need to “decompose” the daily O-D matrix into O-D matrices
corresponding to different time intervals, e.g., 1 hour or 15 minute intervals.

How to find traffic demands corresponding to different times of the day: first approxi-
mation. In the first approximation, we can determine these O-D matrices by simply assuming that
the proportion of drivers starts their trip at different times (such as 7 to 7:15 am, 7:15 to 7:20 am,
etc.) as now. This first approximation is described in the next chapter.

Limitation of the first approximation predictions– and the need for better predictions.
the problem with this first approximation is that the existing traffic pattern is based on the current
traffic congestion. For example, if traveling from zone A to zone B takes a long time (say, 1 hour),
drivers who need to drive from A to B and reach B by 9 am leave early, at 8 am, so as to be at
their destination on time. As a result, in the existing traffic pattern, we have a lot of drivers leaving
from A to B at 8 am.

If we simply use the existing travel pattern, we will therefore predict that in the future, a similarly
big portion of drivers going from A to B also leaves at 8 am.

If we build a new road segment that eases this congestion, then there is no longer a need for
these drivers to leave earlier. As a result, the actual O-D value corresponding to leaving at 8 am
will be much smaller than according to our first approximation prediction.
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To provide a more accurate prediction of the future traffic demand, we must therefore take into
account the road improvements. In the following sections,w e describe how this can be taken into
account.

Taking uncertainty into account. Finally, as we mentioned earlier, we need to take into account
the uncertainty which which we can predict travel times. This is taken into account in the final
sections of this paper.

4. How to Predict Future Traffic Demand: First Approximation

Main idea behind the first approximation: reminder. To predict the effect of different road
projects on the future traffic congestion, we need to know future traffic demand, i.e., we need to
know how many drivers will go from every zone to every other zones at different moments of time.

We usually have daily predictions, i.e., predictions describing the overall daily traffic for every
origin-destination (O-D) pair. Based on these daily O-D matrices, we must predict O-D matrices
corresponding to different time intervals.

It is reasonable to assume that in the planned future, the distribution of departure times will
be approximately the same as at present. Under this assumption, we can estimate the O-D matrix
corresponding to a certain time interval by simply multiplying the (future) daily O-D matrix by the
corresponding K-factor – portion of traffic which occurs during this time interval. These K-factors
can be determined by an empirical analysis of the current traffic: a K-factor corresponding to a
certain time interval can be estimated as a ratio between

− the number of trips which start at this time interval, and

− the overall number of trips.

Use of empirical K-factors and linear interpolation. At present, the empirical values of the
K-factor are only available for hourly intervals. If we want to find the K-factors corresponding to
half-hours or 15 minute intervals, it is reasonable to use linear interpolation. Let us illustrate linear
interpolation on a simple example. Let us assume that we know K-factors corresponding to the
hourly traffic, in particular, we know that:

− at 7:00 am, the K-factor is 6.0%, meaning that at this moment of time, the traffic volume (in
terms of vehicles per hour) is equal to 6.0% of the daily traffic volume (in terms of vehicles per
day); and

− at 8:00 am, the K-factor is 8.0%, meaning that at this moment of time, the traffic volume (in
terms of vehicles per hour) is equal to 8.0% of the daily traffic volume (in terms of vehicles per
day).

For example, if for some O-D pair, the daily traffic volume is 1,000 vehicles per day, then:

− at 7:00 am, the traffic volume will be 6.0% · 1000 = 60 vehicles per hour, and
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− at 8:00 am, the traffic volume will be 8.0% · 1000 = 80 vehicles per hour.

If we are interested in half-hour intervals, then we need to also estimate the traffic volume at the
intermediate moment of time 7:30 am. Linear interpolation means that as such an estimate, we use
the value (6.0 + 8.0)/2 = 7%. So, we get the following K-factors for the half-hour time intervals:

− at 7:00 am, the K-factor is 6.0%;

− at 7:30 am, the K-factor is 7.0%;

− at 8:00 am, the K-factor is 8.0%.

Similarly, to extrapolate into 15 minute intervals, we use (6.0 + 7.0)/2 = 6.5% for 7:15 am and
(7.0 + 8.0)/2 = 7.5% for 7:45 am. So, we get the following K-factors for the 15 minute time
intervals:

− at 7:00 am, the K-factor is 6.0%;

− at 7:15 am, the K-factor is 6.5%;

− at 7:30 am, the K-factor is 7.0%;

− at 7:45 am, the K-factor is 7.5%;

− at 8:00 am, the K-factor is 8.0%.

In the above example, in which for some O-D pair the daily traffic volume is 1,000 vehicles per day:

− at 7:00 am the traffic volume is 6.0% · 1000 = 60 vehicles per hour,

− at 7:15 am the traffic volume is 6.5% · 1000 = 65 vehicles per hour,

− etc.

5. How to Take Departure Time Choice into Account

Need to take departure time choice into consideration. To understand how different road
projects will affect the future traffic, we need to estimate the O-D matrices for different time
intervals. At present, we usually only have estimates for the daily O-D matrices. In the previous
section, we described how to use the current K-factors to divide the daily O-D matrices into O-D
matrices for different time intervals.

The resulting O-D matrices are, however, only a first approximation to the actual O-D matrices.
Indeed, the existing O-D matrices and the existing values of the K-factor are based on the experience
of the drivers under current driving conditions. A driver selects his or her departure time based on
the time that the driver needs to reach the destination (e.g., the work-start time), and the expected
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travel time. For example, if the driver needs to be at work at 8:00am, and the travel time to his or
her destination is 30 minutes, then the driver leaves at 7:30 am.

Population changes and new roads will change expected travel time. For example, if due to the
increased population and the resulting increase road congestion the expected travel time increases
to 45 minutes, then the same driver leaves at 7:15 am instead of the previous 7:30 am. So, the
corresponding entry in O-D matrix corresponding to 7:30 am will decrease while a similar entry in
the O-D matrix corresponding to 7:15 am will increase.

Similarly, if a new freeway decreases the expected travel time to 15 minutes, then the driver will
leave at 7:45 am instead of the original 7:30 am. In this case, the corresponding entry in O-D matrix
corresponding to 7:30 am will decrease while a similar entry in the O-D matrix corresponding to
7:45 am will increase.

In general, the change in a transport network and/or the change in travel time will change the
departure time choice and thus, change the resulting O-D matrix. Let us describe how we can take
this departure time choice into consideration.

The use of logit model: general idea. In transportation engineering, the most widely used
model for describing the general choice (especially the choice in transportation-related situations)
is the logit model. In the logit model, the probability of departure in different time intervals is
determined by the utility of different departure times to the driver. According to this model, the
probability Pi that a driver will choose the i-th time interval is proportional to exp(ui), where ui

is the expected utility of selecting this time interval. The coefficient at exp(ui) must be chosen
from the requirement that the sum of these probabilities be equal to 1. So, the desired probability
has the form Pi = exp(ui)/s, where s

def= exp(u1) + . . . + exp(un). (Motivation for this model is
presented in Appendix A.)

To apply the logit model, we must be able to estimate the utilities of different departure time
choices. According to (Noland and Small, 1995; Noland et al., 1998), the utility ui of choosing the
i-th time interval is determined by the following formula:

ui = −0.1051 · E(T )− 0.0931 · E(SDE)− 0.1299 · E(SDL)− 1.3466 · PL − 0.3463 · S

E(T )
,

where E(T ) is the expected value of travel time T , E(SDE) is the expected value of the wait time
SDE when arriving early, E(SDL) is the expected value of the delay SDL when arriving late, PL is
the probability of arriving late, and S is the variance of the travel time. If we denote departure time
by td, and the desired arrival time by ta, then we can express SDE as SDE = max(ta−(td +T ), 0),
and SDL as SDL = max((td + T ) − ta, 0). So, to estimate the values of the utilities, we must be
able to estimate the values of all these auxiliary characteristics.

How to estimate the expected travel time, expected wait and delay times, and the
probability of arriving late. The first of these auxiliary values – the expected value E(T ) of the
traffic time T – is the most straightforward to compute: we can find it by simply applying a standard
traffic assignment procedure (e.g., the one implemented in the standard package TransCAD) to the
original O-D matrices.
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To estimate the expected value E(SDE) of the wait time SDE and the expected value E(SDL)
of the time delay SDL, in addition to the travel time, we must also know the departure time td
and the desired arrival time ta.

Let us start our analysis with the departure time td. For simplicity, for all the traffic originating
during a certain time interval, as a departure time, we take the midpoint of the corresponding time
interval. For example, for all the traffic originating between 7:00 am and 7:15 am, we take 7:07.5 am
as the departure time.

The analysis of the desired arrival time ta is slightly more complicated. The desired arrival time
depends on the time of the day. In the morning, the desired arrival time is the time when the drivers
need to be at work or in school. During the evening rush hour, the desired arrival time is the time
by which the drivers want to get back home, etc.

In terms of traffic congestion, the most crucial time interval is the morning rush hour, when for
most drivers, the desired arrival time is the work-start time. In view of this, in the following text,
we will refer to all desired arrival times as work-start times.

The work-start time usually depends on the destination zone. For example, in El Paso, most
zones have the same work-start time with the exception of a few zones such as:

− the Fort Bliss zones where the military workday starts earlier, and

− the University zone(s) where the school day usually starts somewhat later.

For every zone, we therefore usually know the (average) work-start time, i.e., the (average) desired
arrival time for all the trips with the destination in this zone.

Of course, the actual work-start time for different drivers arriving in the zone may somewhat
differ from the average work-start time for this zone. To take this difference into consideration,
we assume that the distribution of the actual works-start time follows a bell-shaped distribution
around the average. We only consider discrete time moments, e.g., time moments separated by 15
minute time intervals. It makes sense to assume that:

− for the 40% of the drivers, the actual work-start time is the average for this zone,

− for 20%, the work-start time is 15 minute later,

− for another 20%, the work-start time is 15 minutes earlier,

− for 10%, it is 30 minutes later, and

− for the remaining 10%, it is 30 minutes earlier.

For example, if the average work-start time for a zone is 8:00 am, then the assumed work-start
times are as follows

− for 10% of the drivers, the work-start time is 7:30 am;

− for 20% of the drivers, the work-start time is 7:45 am;

− for 40% of the drivers, the work-start time is 8:00 am;
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− for 20% of the drivers, the work-start time is 8:15 am; and, finally,

− for 10% of the drivers, the work-start time is 8:30 am.

For each of these 5 groups, we can estimate the corresponding value of SDE as SDE(ta) =
max(ta − (td + T ), 0). To get the desired value of the expected wait time E(SDE), we need to
combine these values SDE(ta) with the corresponding probabilities. For example, when the average
work-start time is 8:00 am, the expected value of SDE is equal to

E(SDE) = 0.1 ·SDE(7:30)+0.2 ·SDE(7:45)+0.4 ·SDE(8:00)+0.2 ·SDE(8:15)+0.1 ·SDE(8:15).

Similarly, we can estimate the expected value E(SDL) of the delay SDL. By adding the probabil-
ities corresponding to different work-start times, we can also estimate the probability PL of being
late.

How to estimate the variance of the travel time. In the previous paragraphs, we described
how to estimate the expected values E(T ), E(SDE), E(SDL), and the probability PL. To compute
the desired utility value, we only need one more characteristic: the variance S of the travel time.
Let us analyze how we can estimate the variance S.

In the deterministic traffic assignment model, once we know the capacities of all the road links
and the traffic flows (i.e., the values of the O-D matrix), we can uniquely determine the traffic
times for all O-D pairs. In practice, the travel time can change from day to day. Some changes in
travel time are caused by a change in weather, by special events, etc.; the resulting deviations from
travel time are usually minor. The only case when travel times change drastically is when there is
a serious road incident somewhere in the network. Since incidents are the major source of travel
time delays, it is reasonable to analyze incidents to estimate the variance S of the travel time.

For this analysis, we need to have a record of incidents which occurred during a certain period
of time (e.g., 90 days). The record of each incident typically includes the location and time of this
incident, and the number of lanes of the corresponding road which were closed because of this
incident. To estimate the variance S corresponding to a certain time interval (e.g., from 8:00 to
8:15 am), we should only consider the incidents which occurred during that time interval. Based on
the incident location, we can find the link on which this incident occurred. The incident decreases
the capacity of this link. This decrease can be estimated based on the original number of lanes and
on the number of lanes closed by this incident.

Comment. If all the lanes were closed by the incident, then the capacity of the link goes down to 0.
A reader should be cautioned that the TransCAD software tool does not allow us to enter 0 value
of a link capacity. To overcome this problem, we set the capacity to the smallest possible value
(such 1 vehicle per hour). For all practical purposes, this is equivalent to setting this capacity to 0.

Let us now provide heuristic arguments for estimating the decrease in capacity in situations
in which some lanes remain open. Let us start with the simplest case of a 1-lane road. In reality,
depending on the severity of an incident, the factor from 0 to 1 describing the decreased capacity
can take all possible values from the interval [0, 1]. In the incident record, we only mark whether
the incident actually led to the lane closure or not. In other words, instead of the actual value of
the capacity-decrease factor, we only keep, in effect, 0 or 1, with
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− 0 corresponding to the closed lane, and

− 1 corresponding to the open lane.

In yet another terms, we approximate the actual value of the factor by 0 or 1. It is reasonable to
assume that:

− factors 0.5 or higher get approximated by 1 (lane open), while

− factors below 0.5 are approximated by 0 (lane closed).

So, the incident records in which the lane remained open correspond to all possible values of the
capacity-decrease factor from the interval [0.5, 1]. As a reasonable average value of this factor for
the case when the lane remained open, we can therefore take the midpoint of this interval, i.e., the
value 0.75.

In multi-lane roads, an incident usually disrupts the traffic on all the lanes. It is therefore
reasonable to assume that if no lanes were closed, then the capacity of each lane was decreased
to 75% of its original value. Thus, for minor incidents in which no lanes were closed, we set the
resulting capacity to 3/4 of the original capacity of the link.

For a 2-lane road, if one lane is closed and another lane remain open, then we have one lane
with 0 capacity and one lane with 3/4 of the original capacity; the resulting capacity is 3/4 of the
capacity of a single lane, i.e., 3/8 of the original capacity of the 2-lane road.

For a 3-lane road, if one lane is closed this means that we retain only 2/3 of the incident-reduced
75% capacity, i.e., 1/2 of the original capacity. If two lanes are closed, this means that we retain
only 1/3 of the reduced capacity, i.e., 1/4 of the original capacity.

Similar values can be estimated for 4-lane roads and, if necessary, for roads with a larger number
of lanes.

For each recorded incident occurring at a given time interval, we replace the original capacity
in the incident-affected link by the correspondingly reduced value, and solve the traffic assignment
problem for thus reduced capacity. As a result, for each O-D pair, we get a new value of the travel
time.

− when the incident is far away from the route, this travel time may be the same as in the original
(no-incidents) traffic assignment;

− however, if the incident is close to the route (or on this route), this travel time is larger than
in the no-incidents case.

Thus, for each O-D pair and for each time interval, for each day d during the selected time period
P (e.g., 90 days), we have a value of the travel time t(d):

− if there was no incident on this day, the value of the travel time comes from the original traffic
assignment;

− for the days on which there was an incident during the given time interval, the travel time
comes from the analysis of the network with the correspondingly reduced capacity.
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Based on these values t(d), we compute the mean value E of the travel time as E =
1
P
·

P∑

d=1

t(d),

and then the desired variance S as S =
1
P
·

P∑

d=1

(t(d)−E)2.

How to take into account departure time choice when making traffic assignments: a
seemingly natural idea and its limitations. In the two previous text, we described how we
can compute the characteristics which are needed to estimate the utility related to each departure
time. Let us now assume that we know the original O-D matrices for each time interval i. For each
time interval i, we can use the corresponding O-D matrix and solve the traffic assignment problem
corresponding to this time interval. From the resulting traffic assignment, we can compute the values
of the desired auxiliary characteristics, and thus, estimate the expected utility ui of departing at
this time interval i. The logit formula Pi = exp(ui)/s, where s = exp(u1) + . . . + exp(un), enables
us to compute the probability Pi that the driver will actually select departure time interval i.

The probability Pi means that out of N drivers who travel from the given origin zone to the
given destination zone, N · Pi leave during the i-th time interval. The overall number of drivers
who leave from the given origin zone to the given destination zone can be computed by adding the
corresponding values in the original O-D matrices for all time intervals. Multiplying this sum by Pi,
we get the new value. These new values form the new O-D matrices for different time intervals i.

These new O-D matrices take into account the departure time choice. However, they are not
the ultimate O-D matrices. Indeed, since we have changed the O-D matrices, we thus changed the
traffic assignments at different moments of time; this will lead to different values of utilities ui and
probabilities Pi.

As an example, let us assume that there is an O-D pair for which the free-flow travel time is 30
minutes. Let us also assume that for the corresponding destination, everyone needs to be at work
at 8 am. Let us also assume that at present, there is not much traffic congestion between the origin
and destination zones, so everyone leaves around 7:30 am and gets to work on time. Since we are
estimating the distribution of traffic flow over time intervals based on the existing traffic, we will
thus conclude that

− in the O-D matrix corresponding to 7:30 am, we will have all the drivers, while

− in the O-D matrices corresponding to earlier time intervals, we will have no drivers at all.

Let us now apply these O-D matrices to the future traffic, when due to the population increase,
the traffic volume becomes much higher. Due to this higher traffic volume, the traffic time will
drastically exceed 30 minutes, so all the drivers leaving at 7:30 am will be, e.g., 15 minutes late.

On the other hand, drivers who happen to leave at 7:15 am encounter practically no traffic –
because there was no one needing to drive at this time in the original O-D matrix, so their travel
time is exactly 30 minutes, and they get to work by 7:45 am, 15 minutes earlier. As we have seen
in the above empirical formula (and in full accordance with common sense), the penalty for being
15 minutes late is much higher than the penalty of being 15 minutes early. As a result, the utility
corresponding to leaving at 7:15 am is higher than the probability of leaving at 7:30 am. Hence, in
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accordance with the logit formula, the probability that a driver will select to leave at 7:15 am is
much higher than the probability that this driver will leave at 7:30 am.

So, in the new O-D matrices, most drivers will leave at 7:15 am, and the values corresponding to
leaving at 7:30 am will be much lower. If the drivers really follow the pattern corresponding to the
new O-D matrix, then the traffic congestion corresponding to 7:30 am will be much lighter than
before, so the utility of leaving at 7:30 am will become higher and thus, the probability of leaving
at 7:30 am will increase again. It is reasonable to expect that if we repeat this procedure several
times, we will eventually reach the desired stable values of the O-D matrix.

Let us describe these ideas in precise term. In essence, we have described a procedure which
transforms the original set M of O-D matrices into a new set F (M) of O-D matrices, a set which
takes into account departure time choice based on the traffic assignments generated by the original
O-D matrices. To completely take into account the departure time choice means to find the O-D
matrices which already incorporate the departure time choice, i.e., the matrices M which do not
change after this transformation: F (M) = M .

At first glance, it seems reasonable to find these “stable” O-D matrices M by using a reasonable
iterative procedure:

− we start with the set of first-approximation O-D matrices M1 which are obtained by multiplying
the new O-D daily matrix by the original K-factors;

− then, we apply the transformation F again and again: M2 = F (M1), M3 = F (M2), . . . , until
the procedure converges, i.e., until the new set of matrices Mi+1 becomes close to the previous
set Mi.

This procedure seems even more reasonable if we recall that a similar iterative procedure is
successfully used in TransCAD to find the traffic assignment. However, we found out that this
seemingly reasonable procedure often does not converge.

This lack of convergence can be illustrated on a “toy” example in which we have a single origin,
single destination, and two possible departure times. Similarly to the above example, let us assume
that the work starts at 8 am, that the free-flow traffic time is 30 minutes, and that we consider two
possible departure times 7:30 am and 7:15 am. Again, just like in the above example, we assume
that the original O-D matrices are based on the existing low-congestion networks in which everyone
leaves at 7:30 am and nobody leaves at 7:15 am. In other words, we assume that the K-factor for
7:30 am is 1, and the K-factor for 7:15 am is 0. We also assume that there are high penalties for
being late and for spending too much time in traffic.

In accordance with the above iterative procedure, we start with the O-D matrices M1 in which
everyone leaves for work at 7:30 am, and nobody leaves for work at 7:15 am. The only difference
with the current situation is that we are applying the same K-factors to the future, more heavy
traffic.

− For those departing at 7:15 am, there is no traffic, so the travel time is equal to the free-flow
time of 30 minutes.

− The drivers departing at 7:30 am face a much heavier traffic, so we get a traffic congestion. As
a result of this congestion, the travel time increases to 45 minutes.
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So:

− drivers who leave at 7:15 am spend only 30 minutes in traffic and arrive 15 minutes early, while

− drivers who leave at 7:30 am spend 45 minutes on the road and are 15 minutes late.

Since we assumed that the penalties for being late are heavy, the expected utility of leaving at
7:15 am is much higher than the expected utility of leaving at 7:30 am. Thus, the probability of
leaving at 7:15 am is overwhelmingly higher than the probability of leaving at 7:30 am. As a result,
we arrive at the new O-D matrices M2 = F (M1) in which almost everyone leaves at 7:15 am and
practically no one leaves at 7:30 am.

For these new O-D matrices M2:

− for those departing at 7:30 am, there is no traffic, so the travel time is equal to the free-flow
time of 30 minutes;

− the drivers departing at 7:15 am face a much heavier traffic, so we get a traffic congestion; as
a result of this congestion, the travel time increases to 45 minutes.

So:

− drivers who leave at 7:30 am spend only 30 minutes in traffic and arrive on time, while

− drivers who leave at 7:15 am spend 45 minutes on the road.

Since we assumed that the penalties for spending extra time on the road are heavy, the expected
utility of leaving at 7:30 am is much higher than the expected utility of leaving at 7:15 am. Thus,
the probability of leaving at 7:30 am is overwhelmingly higher than the probability of leaving at
7:15 am. As a result, we arrive at the new O-D matrices M3 = F (M2) in which almost everyone
leaves at 7:30 am and practically no one leaves at 7:15 am.

In other words, we are back to the original O-D matrices M3 ≈ M1. These “flip-flop” changes
continue without any convergence. How can we modify the above idea so as to enhance convergence?

How to take into account departure time choice when making traffic assignments: a
more realistic approach. We started with the O-D matrices M1 which describe the existing
traffic behavior. We want to predict how a change in traffic volume and in road network will affect
the driver’s behavior. To do that, let us analyze

− how the actual drivers change their behavior if the road congestion and road conditions change,
and

− how we can simulate this behavior in a computer model so as to predict these changes.

At first, the drivers simply try to follow the same traffic patterns as before, i.e., depart at the same
times as before. In terms of the computer representation of the drivers’ behavior, this means that
the proportion of the drivers departing at different time intervals remains the same as in the original
traffic. In other words, this behavior corresponds to what we described as the first approximation
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M1 – when we take the new daily O-D matrix and multiply it by the K-factors corresponding to
the original traffic.

As we have mentioned, due to the change in traffic volume and in road capacity, this first-
approximation behavior may lead to congestions and delays. When drivers realize this, they will
change their departure time so as to avoid these new delays. The drivers will use the traffic patterns
and delays caused by M1 to decide on the new departure times. The resulting change in the O-D
matrix is what we described in the previous section as a transformation F . In other words, the
resulting O-D matrix is M2 = F (M1).

The change of departure times, as reflected by the move from the original O-D matrices M1 to
the new O-D matrices M2, will again change the traffic patterns and delay times, so again, there
will be a need to change the departure times based on the new traffic delays.

In these terms, the above iterative process Mi+1 = F (Mi) corresponds to the situation when
the drivers only use the experience of their most recent traffic behavior and ignore the rest of the
traffic history. Let us illustrate this idea on the above “toy” example.

In this example, the drivers used to go to work at 7:30 am. For the original traffic volume, this
was a reasonable departure time because it allowed them to be at work exactly at the desired time
8:00 am, and to spend as little time on the road as possible – exactly 30 minutes, the free-flow
traffic time.

When the traffic volume increases, in Day 1 of this new arrangement, the drivers follow the
same departure time as before, i.e., they all leave for work at 7:30 am. Since the traffic volume has
increased, this departure time no longer lead to the desired results – most of the drivers are 15
minutes late for work.

Since in the first day, most drivers were 15 minutes late, on the second day they leave 15 minutes
earlier, at 7:15 am, so as to be at work on time. They do reach work on time, but at the expense
of driving 15 minutes longer than they used to. A few drivers, however, still leave at 7:30 am. To
their pleasant surprise, they experience a smooth and fast ride and arrive at work exactly on time.

The other drivers learn about the negative experience of those who left at 7:15 am and of the
positive experience of those who left at 7:30 am. In our iterative model, we assume that when the
drivers decide on departure time at Day 3, they only take into account delays on the previous Day
2. Under this assumption, to select the departure time on Day 3, the drivers only use the Day 2
experience. On Day 2, departing at 7:30 am certainly led to much better results that leaving for
work at 7:15 am. So, under this assumption, on Day 3, most drivers will switch to 7:30 am departure
time. As a result, most of them will be again 15 minutes late for work, with the exception of those
who left home earlier, at 7:15 am. Since on Day 3, leaving at 7:15 am was clearly much preferable
than leaving for work at 7:30 am, on the next Day 4, most drivers will again leave at 7:15 am, etc.

In this analysis, we get the same non-converging fluctuations as we had in the previous section,
but this time, we understand the reason for these fluctuations: the fluctuations are caused by the
simplifying assumption that the drivers’ behavior is determined only by the previous moment of
time.

In reality, when the drivers choose departure times, they take into account not only the traffic
congestions on the day before, but also traffic congestions on several previous days. When a driver
adjusts to the new environment (e.g., to the new city), he or she takes into account not just a single
previous day, but rather all the previous days of driving in this new environment.
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It is reasonable to assume that all these previous days are weighted equally. Let us describe
this assumption in precise terms. We start with the set M1 of O-D matrices which describe the
number of drivers leaving at different time intervals on Day 1, when the drivers follow their original
departure times. Similarly to the above text, let us denote the set of O-D matrices describing the
drivers on Day i by Mi.

Suppose that we already know the O-D matrices M1, M2, . . . , Mi which describe the number
of drivers leaving at different time intervals at days 1, . . . , i. Since the drivers weigh all these
previous days equally, they estimate the expected traffic Ei as the average of the previous traffics:

Ei =
1
i
· (M1 + . . . + Mi).

The drivers use this expected traffic Ei to make their departure time choices. We have already
described the corresponding procedure, and we have denoted the resulting transformation of O-D
matrices by F . So, we can conclude that the O-D matrices Mi+1 corresponding to the new departure
times have the form Mi+1 = F (Ei).

Thus, we arrive at a new iterative procedure that takes into account departure time choice when
making traffic assignments. In this procedure,

− we start with the O-D matrices M1 which describe the original departure times; these O-D
matrices can be obtained if we multiply the daily O-D matrix by the original values of the
K-factors;

− then, for i = 2, 3, . . ., we repeat the following procedure: first, we compute the average Ei =
1
i
· (M1 + . . . + Mi), and then we compute Mi+1 = F (Ei);

− after the iterations stop, we use the resulting set of O-D matrices to describe the resulting
traffic assignments.

Our experiments on the “toy” road network and on the actual El Paso road network confirmed
that this procedure converges. An important question is when to stop iterations:

− The more iterations we perform, the closer we are to the desired “equilibrium” traffic assign-
ment.

− However, each iteration requires a reasonably large computation time on TransCAD, so it is
desirable to limit the number of iterations.

To find a reasonable stopping criterion, let us recall that the main objective of our task is to help
with traffic planning decisions. To help with these decisions, we must be able to predict future
consequences of different road improvement plans. Thus, the objective is to deal with the O-D
matrices which describe future drivers’ behavior. The only way to get such future matrices is by
prediction. Prediction cannot be very accurate. At best, we can predict the accuracy of the future
traffic with the accuracy of 10–15%. Thus, it makes sense to stop iterations when we have already
achieved this accuracy, i.e., when the difference between the O-D matrices Ei (based on which we
make the plans at moment i + 1) and the resulting matrices Mi+1 is smaller than (or equal to)
10–15% of the size of the matrices themselves.
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As a measure of the difference between the matrices Ei and Mi+1, it is reasonable to take the
root mean square difference, i.e., the value d(Ei,Mi+1) determined by the formula d2(Ei, Mi+1) =
1
N
·

N∑

j=1

(ej −mj)2, where N is the total number of components in the corresponding matrices (i.e.,

of all tuples consisting of a time interval and an O-D pair), and ej and mj are these components.
Similarly, as a measure of the size of a set E of matrices, it is reasonable to take its root mean

square value, i.e., the value v(E) determined by the formula v2(E) =
1
N
·

N∑

j=1

e2
j . To speed up

computations, we only compute the sizes v(M1) and v(M2) for the first two iterations, and use the
largest of the two resulting sizes as an estimate for the size in general. In other words, we stop when
d(Ei,Mi+1) ≤ 0.1 ·max(v(M1), v(M2)).

How to take into account departure time choice when making traffic assignments:
final idea and the resulting algorithm. In the previous text, we described the algorithm for
taking into account departure time choice when making traffic assignments. The advantage of this
algorithm is that it converges. However, from the computational viewpoint, this algorithm has a
serious limitation. To implement the above algorithm, we must store the sets of O-D matrices M1,
M2, . . . , Mi corresponding to different iterations. For a large city-wide road network, we need
to store information about many O-D pairs at several different time intervals. For example, the
standard El Paso network has 681 zones, so we need to store the information about each of the
681×681 O-D pairs at each of, say, 12 time intervals, and we most store as many different pieces of
this information as there are iterations – which may be in dozens. Storing, accessing, and processing
all this information requires a large amount of computation time.

It is therefore desirable to reformulate the above algorithm in such a way as to avoid this excessive
storage. We will show that such a simplification is indeed possible. The idea for this simplification

comes from the fact that once we know the previous average value Ei =
1
i
· (M1 + . . . + Mi), and

we have computed the new matrices Mi+1 = F (Ei), we do not need to repeat all the additions to

compute the new average Ei+1 =
1

i + 1
· (M1 + . . . + Mi + Mi+1).

Indeed, the expression for Ei+1 can be reformulated as follows:

Ei+1 =
1

i + 1
· ((M1 + . . . + Mi) + Mi+1),

and, by definition of Ei, we have M1 + . . . + Mi = i · Ei. Thus, to compute the new average Ei+1,
we can use the simplified formula

Ei+1 =
1

i + 1
· (i · Ei + Mi+1) = Ei ·

(
1− 1

i + 1

)
+ Mi+1 · 1

i + 1
.

Since Mi+1 = F (Ei), we can reformulate the iterative procedure in terms of the average matrices

Ei as follows: Ei+1 = Ei ·
(

1− 1
i + 1

)
+F (Ei) · 1

i + 1
. Taking into account that E1 = M1, we arrive

at the following algorithm:
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− we start with the O-D matrices E1 which describe the original departure times; these O-D
matrices can be obtained if we multiply the daily O-D matrix by the original values of the
K-factors;

− then, for i = 2, 3, . . ., we repeat the following procedure: first, we compute F (Ei), and then

Ei+1 = Ei ·
(

1− 1
i + 1

)
+ F (Ei) · 1

i + 1
;

− we stop when d(Ei, F (Ei)) ≤ 0.1 ·max(v(E1), v(E2)).

− after the iteration stop, we use the resulting set of O-D matrices Ei to describe the resulting
traffic assignments.

Comment. As we show in Appendix B, this iterative procedure is, in some reasonable sense, an
optimal algorithm for computing the fixed point of the mapping F .

6. Taking Uncertainty into Account

Need to consider uncertainty. In the previous text, we consider deterministic traffic models, in
which the link travel time is uniquely determined by the traffic volume. Real-life traffic, however,
is non-deterministic. To have more accurate predictions of travel times, we must take this non-
determinism into account and consider stochastic traffic models.

In a stochastic traffic model, the BPR formula only describes the average travel time t:

t = tf ·
[
1 + a ·

(
v

c

)β
]

.

The stochastic nature of traffic means the actual travel time t may differ from this average value t.
We must therefore describe not only how the average travel time t depends on tf , v, and c, but also
how the deviations t− t from this average depend on these parameters. For example, we may want
to describe how the standard deviation of the travel time t – or some other statistical characteristic
– depends on these parameters.

It turns out that several seemingly reasonable models of this dependence are faulty because the
predicted travel times drastically change when we simply subdivide the road links without making
any changes in the actual traffic.

In this text, we describe this phenomenon, and we describe how to set up this dependence in
such a way that a simple subdivision of a road link will no longer affect the resulting travel times.

We can have different subdivision into road links. Traffic networks in a big city are usually
very complicated, with lots of small roads. As a result, the fully detailed simulation of a traffic
network would require a large amount of computation time.

It is well known, however, that in practice, there is no need for such a detailed simulation: it is
well known that it is sufficient to divide the city into zones and consider only traffic between the
zones. The size of the zone depends on the amount and direction of traffic in this zone.
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Once we decided how to divide the city into zones, each major road is then naturally subdivided
into road links, i.e., pieces of this road within each zone.

In busy downtown areas, we may have a popular restaurant in one block and a big office in
a neighboring block, with completely different traffic patterns. So, in order to accurately predict
downtown-related traffic, we may need to have zones of the size of a few city blocks.

On the other hand, e.g., in a large residential area, we usually get the same pattern of traffic in
all its parts: traffic leaving to work in the morning and traffic coming back in the afternoon. As a
result, for such areas, it is sufficient to consider larger residential communities as single zones.

For deterministic traffic models, the resulting travel times do not change much if we
switch to a finer subdivision into zones: a known fact. Once we come up with zones which
provide a reasonable description of the traffic patterns, we can get reasonably good predictions of
the traffic volumes and travel times.

If we still have additional computational power, we can consider smaller-size zones. In this case,
the original road links are further subdivided into smaller-size links. If we use such a refined model,
we get an even more accurate prediction of the travel times.

However, we know that the estimates coming from the original model still provide a reasonably
accurate description of the travel times.

For deterministic traffic models, the resulting travel times do not change much if we
switch to a finer subdivision into zones: a mathematical explanation. For a deterministic
model, one of the reasons for this accuracy is that, because of the above formula for t, the travel
time t predicted by the model does not depend on how exactly we subdivide the road into road
links – as long as this subdivision remains reasonable in the sense that the traffic volume and the
traffic capacity does not change much within this link.

Indeed, let us assume that we start with a single link of length L in the original model and then
decided to subdivide it into several sublinks of length L1, . . . , Ln – for which L = L1 + . . . + Ln.
In the original model, the travel time t along this link is predicted directly – by using the above
formula

t = tf ·
[
1 + a ·

(
v

c

)β
]

.

In the new model, we predict individual travel times t1, . . . , tn along different sublinks and then
predict the resulting overall travel time as t1 + . . . + tn.

Let us show that in this case, the originally predicted travel time t is equal to the total travel
time t1 + . . . + tn predicted by the new model.

We assume that the traffic volume v and traffic capacity c are the same for all these sublinks,
the only think which is different is the free flow travel time. In other words, the predicted travel
times along sublinks take the form

ti = tfi ·
[
1 + a ·

(
v

c

)β
]

.

In general, the free flow travel time tf is determined by the length L of the road link and the speed

limit s along this link: tf =
L

s
. Similarly, for each sublink, we have tfi =

Li

s
.
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Since L = L1 + . . . + Ln, we conclude that tf = tf1 + . . . + tfn. Thus, we conclude that

t1 + . . . + tn = tf1 ·
[
1 + a ·

(
v

c

)β
]

+ . . . + tfn ·
[
1 + a ·

(
v

c

)β
]

=

(tf1 + . . . + tfn) ·
[
1 + a ·

(
v

c

)β
]

= tf ·
[
1 + a ·

(
v

c

)β
]

.

So, the originally predicted travel time t is indeed equal to the total travel time t1+. . .+tn predicted
by the new model.

Stochastic case: brief introduction. In the deterministic case, the driver selects a route for
which the expected travel time is the shortest.

According to decision theory, in the general situation with stochastic uncertainty case, prefer-
ences of a person can be described by a special utility function which assigns, to each possible result
x, a number U(x) describing the “utility” of this result for this person; a person then selects an
action for which the expect value of utility is the largest.

In transportation situations, the main parameter of interest to the drive is the overall travel
time, so the utility depends on the travel time t: U = U(t). To make the stochastic formulation of
the transportation problems similar to the deterministic ones (in which the objective is to minimize
travel time), researchers usually replace the problem of maximizing utility with an equivalent
problem of minimizing disutility u(t) which is defined as u(t) = −U(t). Usually, an exponential
disutility function is used u(t) = A · exp(α · t); see, e.g., (Mirchandani and Soroush, 1987; Tatineni,
1996; Tatineni et al., 1997). The justification for using such functions is given in Appendix C.

Random deviations ti− ti for different links are usually caused by different reasons; so tradition-
ally, the travel times ti on different links t1, . . . , tn along the path are assumed to be independent
random variables. Thus, the expected disutility of a path

u = E[exp(α · t)] = E[exp(α · (t1 + . . . + tn)] = E[exp(α · t1) · . . . · exp(α · tn)]

can be represented as a product

u = E[exp(α · t1)] · . . . · E[exp(α · tn)].

Minimizing the product is equivalent to minimizing its logarithm, i.e., the sum

s = ln(E[exp(α · t1)]) + . . . + ln(E[exp(α · tn)]).

In the deterministic case, E[exp(α · t)] = exp(α · t) hence ln(E[exp(α · t)]) = α · t. So, to make
the problem more similar to the deterministic one, we can divide each logarithm by α – dividing
the minimizing function by a positive function does not change where the minimum is attained.

Thus, selecting of a route can be described in a form which is very similar to selecting a

deterministic route, but with t̃i
def=

1
α
· ln(E[exp(α · t1)]) instead of the original travel times.

We know that the deviations t − t are usually relatively small. Thus, to simplify the above
expression, we can substitute t = t+(t− t) into the formula, expand the functions exp(z) and ln(z)
into Taylor series and keep only the few first (major) terms in the expansion. Specifically, we have

exp(α · t) = exp(α · t) · exp(α · (t− t)).
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Here, the first factor does not depend on the random variable at all, so from the viewpoint of taking
an expected value, it is simply a constant:

E[exp(α · t)] = exp(α · t) · E[exp(α · (t− t))].

We use the Taylor expansion of the exponential function:

exp(z) = 1 + z +
z2

2!
+ . . . = 1 + z +

z2

2
+ . . .

Thus,

exp(α · (t− t)) ≈ 1 + α · (t− t) +
α2 · (t− t)2

2
,

and

E[exp(α · (t− t))] ≈ 1 + α · E[t− t] +
α2 · E[t− t)2]

2
.

By definition, E[t− t] = t− t = 0, and E[(t− t)2] is the variance V . Thus, in our approximation,

E[exp(α · t)] = exp(α · t) ·
(

1 +
α2

2
· V

)
.

So,
1
α
· ln(E[exp(α · t)]) = t̃ +

1
α
· ln

(
1 +

α2

2
· V

)
.

Using the Taylor expansion of the logarithm function ln(1 + z) = z + . . ., we conclude that

1
α
· ln(E[exp(α · t)]) = t̃ +

α

2
· V.

Thus, minimizing the sum of these logarithmic expressions is equivalent to minimizing the sum of
the expressions

t̃ = t +
α

2
· V.

In other words, to make stochasticity into account, to each link’s travel time, we add its variance
(with an appropriate weight α/2).

A seemingly natural description. In the case of the free flow traffic, there is no uncertainty;
uncertainty occurs only if we have some volume on the road link – i.e., when the travel time t exceeds
the free flow travel time tf . Intuitively, the larger this excess t− tf , the larger this uncertainty.

At first glance, it may seem natural to pick a proportion r0 (e.g., 20%) and assume that for
every link, the actual value t− tf can deviate by about ±20% (or whatever r is) from the average.

In more precise terms, the standard deviation σ
def=
√

V of the travel time is equal to r0 · (t− tf ).
Since σ =

√
V = r0 · (t− tf ), we conclude that V = r2

0 · (t− tf )2.

Problem with seemingly natural assumption. Let us show that this seemingly natural as-
sumption leads to counter-intuitive conclusions. Indeed, let us assume that we have two one-link
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routes of equal quality leading from point A to point B, with the same free flow time tf , same
capacity c, and the same traffic volume v. In this case, for both links, we have the same expected
travel time t and hence, the same variance – so, the values of the resulting minimized function are
the same for both routes:

t̃(1) = t̃(2) = t +
α

2
· r2

0 · (t− tf )2.

Intuitively, if we subdivide one of the links into two equal sublinks of equal length (without
changing anything of substance) we should end up with exactly the same selection. In reality, if we

subdivide the first link, then for this link, we will have both t and tf divided by 2: t1 = t2 =
t

2
and

tf1 = tf2 =
tf

2
. Hence, the variance V (proportional to (t − tf )2) will divide by 4. As a result, for

each of these links, we get

t̃1 = t̃2 =
t

2
+

α

2
· r2

0 ·
(t− tf )2

4
.

By adding these two values, we get the minimized value t̃ = t̃1 + t̃2 for the whole two-link route:

t̃ = t +
α

2
· r2

0 ·
(t− tf )2

2
.

In this expression, the term proportional to the variance is twice smaller than for the second route,
so this route will be selected.

Alternatively, if we keep the first route whole but subdivide the second route, we get a clear
preference for the second route. Thus, the route selection depends on the exact subdivision into
links – hence our seemingly natural assumption is really counter-intuitive.

Proposed solution. Our objective is to find a reasonable expression for the term

t̃ =
1
α
· ln(E[exp(α · t)]).

In general, this expression can depend on the free flow time tf and on the average time t.
As we have mentioned, in the absence of the traffic flow, when the travel time consists 100% of

the free flow time tf , there is no stochasticity. The larger the proportion of the excess time, i.e.,

the larger the ratio r
def=

t− tf

tf
, the more stochasticity there is. Thus, it is reasonable to describe

the desired expression for t̃ in terms of tf and r.
By definition of r, we have t− tf = r · tf hence f = (1+ r) · tf ; so, once we know the dependence

of t̃ on tf and t, we can find its dependence on tf and r as well. Thus, it is reasonable to claim that
t̃ = F (tf , r) for some yet-to-be-determined function F .

The first desired property of the function F is that if the average time coincides with the free
flow time, then there is no stochasticity, and t̃ = t. In other words, we must have F (t, 0) = t for
all t.

The second desired property is that when we subdivide a link into two sublinks, without changing
the flow or capacity (and hence, without changing the ratio r), then the sum of the resulting values
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t̃1 + t̃2 should be equal to the original value t̃: F (tf1 , r) + F (tf2 , r) = F (tf1 + tf2 , r). For each r, we
get an equation F ′(a + b) = F ′(a) + F ′(b) for a monotonic function F ′(a) def= F (a, r) hence (Aczel,
2006) F ′(a) = k ·a for some constant k(r) which may depend on r. The fact that F (t, 0) = t means
that k(0) = 1.

In other words, we conclude that t̃ = F (tf , r) = tf · k(r). We know that r = a ·
(

v

c

)β

, thus,

t̃ = tf · k
((

v

c

)β
)

.

Similarly to the above case, we can expand the dependence k(r) into Taylor series and keep the
first few terms in this expansion. Since k(0) = r, we conclude that k(r) = 1 + a1 · r + a2 · r2 + . . . ,
hence

t̃ = 1 + a1 · a ·
(

v

c

)β

+ a2 · a2 ·
(

v

c

)2β

.

Conclusion. The effect of stochasticity on the transportation problem can be described as follows:

− in the deterministic case, drivers select a route for which the overall travel time t = t1 + . . .+ tn

is the smallest, where ti = tfi ·
[
1 + a ·

(
vi

ci

)β
]

;

− in the stochastic case, drivers select a route for which the expression t̃ = t̃1 + . . . + t̃n is the

smallest, where t̃i = tfi ·
[
1 + a1 · a ·

(
vi

ci

)β

+ b ·
(

vi

ci

)2β
]

.

Thus, we can use the standard traffic assignment algorithms with a modified travel time function
to find the corresponding traffic assignment.

Comment. Our experiments show that a1 ≈ 1.4 and b · 0. So, to take the uncertainty into account,
it is sufficient to replace the original value a ≈ 0.15 in the BPR formula with the new value
a1 · a ≈ 0.21.
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Appendix

A. Logit Discrete Choice Model: Towards a New Justification

Traditional approach to decision making. In decision making theory, it is proven that under
certain reasonable assumption, a person’s preferences are defined by his or her utility function U(x)
which assigns to each possible outcome x a real number U(x) called utility; see, e.g., (Keeney and
Raiffa, 1976; Raiffa, 1970). In many real-life situations, a person’s choice s does not determine the
outcome uniquely, we may have different outcomes x1, . . . , xn with probabilities, correspondingly,
p1, . . . , pn.

For example, drivers usually select the path with the shortest travel time. However, when a
driver selects a path s, the travel time is often not uniquely determined: we may have different
travel times x1, . . . , xn with corresponding probabilities p1, . . . , pn.

For such a choice, we can describe the utility U(s) associated with this choice as the expected
value of the utility of outcomes: U(s) = E[U(x)] = p1 · U(x1) + . . . + pn · U(xn). Among several
possible choices, a user selects the one for which the utility is the largest: a possible choice s is
preferred to a possible choice s′ (denoted s > s′) if and only if U(s) > U(s′).

It is important to mention that the utility function is not uniquely determined by the preference
relation. Namely, for every two real numbers a > 0 and b, if we replace the original utility function
U(x) with the new one U ′(x) def= a · U(x) + b, then for each choice s, we will have

U ′(s) = E[a · U(x) + b] = a · E[U(x)] + b = a · U(s) + b

and thus, U ′(s) > U ′(s′) if and only if U(s) > U(s′).

Situations in which we can only predict probabilities of different decision. One important
application of decision making theory is predicting the user decisions. If we know the exact values
U(s) of the utilities, then we can predict the exact choice. For example, if the user has to choose
between alternatives s and s′, then the user chooses s if U(s) ≥ U(s′) and s′ if U(s) ≤ U(s′).

In practice, we do not know the exact values U(s) of the user’s utility, we only know the
approximate values V (s) ≈ U(s). Due to the difference between the observed (approximate) values
V (s) and the actual (unknown) values U(s), we are no longer able to uniquely predict the user’s
behavior: e.g., even when V (s) > V (s′), we may still have U(s) < U(s′), and thus, it is possible
that the user will prefer s.

If the differences V (s) − U(s) and V (s′) − U(s′) are small, then for V (s) À V (s′), we can be
reasonably sure that U(s) > U(s′) and thus, that the user will select s. Similarly, if V (s) ¿ V (s′),
we can be reasonably sure that U(s) < U(s′) and thus, that the user will select s′. However, when
the values V (s) and V (s′) are close, then there is a certain probability that U(s) > U(s′) and thus,
that the user will select s, and there is also a certain probability that U(s) < U(s′) and thus, that
the user will select s′.

In this situation, based on the (approximate) utility values V (s) and V (s′), we cannot exactly
predict whether the user will prefer s or s′ – because for the same values of V (s) and V (s′), the
user can prefer s and the user can also prefer s′. The best we can do in this situation is to predict
the probability P (s > s′) of selecting s over s′.
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Discrete choice: a formal description of the problem. Let us formulate the problem in precise
terms. We have n different alternatives s1, . . . , sn. For each of these alternative si, we know the
(approximate) utility value Vi

def= V (si). Based on these utility values V (s1), . . . , V (sn), we would
like to predict the probability pi that a user will select the alternative si.

Models used for such prediction are usually called discrete choice models (Train, 2003).

Invariance requirements in discrete choice models. As we have mentioned, the utility
function is not uniquely determined by the preference relation. Namely, whenever the original
utility function U(s) describes the user’s preference, then, for every a > 0 and b, the new function
U ′(s) = a · U(s) + b also describes the same preference. In other words, we can shift all the values
of the utility function u(s) → U(s) + b, and we can re-scale all the values U(s) → a · u(s), and the
resulting utility function will still describe the same preferences.

It is therefore reasonable to assume that if we shift the values of the approximate utility function,
i.e., if we replace the original values V (si) with the new values V ′(si) = V (si) + b, then we should
get the same preference probabilities:

pi(V (s1), V (s2) . . . , V (sn)) = pi(V (s1) + b, V (s2) + b, . . . , V (sn) + b).

In particular, if we take b = −V (s1), then we conclude that

pi(V (s1), V (s2) . . . , V (sn)) = pi(0, V (s2)− V (s1), . . . , V (sn)− V (s1)),

i.e., that the probabilities depend only on the differences between the utility values – but not on
the values themselves.

At first glance, it may seem reasonable to similarly require that the probability not change under
re-scaling. However, in this case, re-scaling does not make intuitive sense, because we have a natural
scale. For example, as a unit for such a scale, we can choose a standard deviation of the difference
U(s)−V (s) between the (unknown) actual utility U(s) and the (known) approximate value of this
utility V (s).

In line with this analysis, in discrete choice models, it is usually assumed that the probabilities
do not change with shift but it is not assumed that these probabilities are scale-invariant.

Logit: the most widely used discrete choice model. The most widely used discrete choice
model is a logit model in which

pi(V1, . . . , Vn) =
eβ·Vi

n∑
j=1

eβ·Vj

(1)

for some parameter β. This model was first proposes in (Luce, 1959).

Logit: original justification. In (Luce, 1959), this model was justified based on the assumption
of independence of irrelevant alternatives, according to which the relative probability of selecting
s1 or s2 should not change if we add a third alternative s3. In formal terms, this means that the
probability of selecting s1 out of two alternatives s1 and s2 should be equal to the conditional
probability of selecting s1 from three alternatives s1, s2, and s3 under the condition that either s1

or s2 are selected.
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It can be proven that under this assumption, the ratio pi/pj of the probabilities pi and pj should
only depend on Vi and Vj ; moreover, that we must have pi/pj = f(Vi)/f(Vj) for some function f(z).
The requirement that this ratio be shift-invariant then leads to the conclusion that f(z) = eβ·z for
some β – and thus, to the logit model.

Limitations of the original justification. At first glance, the above independence assumption
sounds reasonable (and it is often reasonable). However, there are reasonable situations where this
assumption is counter-intuitive; see, e.g., (Chipman, 1960; Debreu, 1960; Train, 2003).

For example, assume that in some cities, all the buses were originally blue. To get from point
A to point B, a user can choose between taking a taxi (s1) and taking a blue bus (s2). A taxi is
somewhat better to this user, so he selects a taxi with probability p1 = 0.6 and a blue bus with the
remaining probability p2 = 1− 0.6 = 0.4. In this case, the ratio p1/p2 is equal to 1.5.

Suppose now that the city decided to buy some new buses, and to paint them red. Let us also
suppose that the comfort of the travel did not change, the buses are exactly the same. From the
common sense viewpoint, it does not matter to the user whether buses are blue or red, so he should
still select a taxi with probability p1 = 0.6 and buses with probability 0.4. However, from the purely
mathematical viewpoint, we now have three options: taking a taxi (s1), taking a blue bus (s2), and
taking a red bus (s3). Here, the probability of taking a bus is now p2 + p3 = 0.4. Hence, p2 < 0.4
and so, the ratio p1/p2 is different from what we had before – contrary to the above independence
assumption.

Current justification. An alternative justification for logit started with the unpublished result
of Marley first cited in (Luce and Suppes, 1965). Marley has shown that if we assume that the
approximation errors ε(s) def= U(s) − V (s) are independent and identically distributed, and if this
distribution is the Gumbel distrubution, then the probability of selecting si indeed follows the logit
formula.

Gumbel distribution can be characterized by the cumulative distribution function F (ε) = e−e−ε
;

it is a known distribution of extreme values.
In 1974, McFadden (McFadden, 2001) showed that, vice versa, if we assumed that the ap-

proximation errors ε(s) are independent and identically distributed, and the choice probabilities
are described by the logit formula, then the errors ε(s) must follow the extreme value (Gumbel)
distribution.

This justification was one of the main achievements for which D. McFadden received a Nobel
prize in 2001 (McFadden, 2001).

Limitations of the current justification. The problem with this justification is that the logit
model is known to work well even in the cases when different approximation errors are differently
distributed; see, e.g., (Train, 2003).

For such situations, the only known alternative explanation is Luce’s original one. The main
limitation of this explanation was that it is based on the independence assumption. This is not so
critical if we have three or more alternatives. Indeed, in this case, the empirical logit formula (that
we are trying to explain) satisfies this assumption, so making this assumption in the situations
when the logit formula holds makes sense.
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This limitation, however, becomes crucial if we only consider the case of two alternatives. In this
case, the independence assumption cannot even be formulated and therefore, Luce’s justification
does not apply. So, we arrive at the following problem.

Formulation of the problem. We need to come up with a new distribution-free justification for
the logit formula, i.e., with a justification that does not depend on the assumption that approxi-
mation errors are independent and identically distributed. Such a justification is provided in this
paper.

Preliminary analysis. In accordance with the above formulation of the problem, we are interested
in the case of n = 2 alternatives s1 and s2. We know the approximate utility values V1 and V2,
and we know that the probability p1 of selecting the first alternative p1 should only depend on the
difference V1 − V2: p1 = F (V1 − V2) for some function F (z). Our objective is to find this function
F (z). Let us first describe reasonable properties of this function F (z).

When s2 is fixed (hence V2 is fixed) but the alternative s1 is improving (i.e., V1 is increasing),
then the probability of selecting s1 can only increase (or at least remain the same – e.g., if that
probability was already equal to 1, it cannot further increase). In other words, as the difference
V1 − V2 increases, the probability p1 = F (V1 − V2) should also increase (or at least remain the
same). Thus, it is reasonable to require that the function F (z) should be (non-strictly) increasing.

When s2 and V2 are fixed and s1 becomes better and better, i.e., V1 → +∞, then we should
select s1 with probability tending to 1. So, we must have F (z) → 1 as z → +∞.

Similarly, s2 and V2 are fixed, and s1 becomes worse and worse, i.e., V1 − V2 → −∞, then we
should prefer s2. So, we must have F (z) → 0 as z → −∞.

Since we only have two alternatives, the probability p1 = F (V1 − V2) and the probability p2 =
F (V2 − V1) must always add up to 1. Thus, we must have F (z) + F (−z) = 1 for all z.

So, we arrive at the following definition.

Definition 1. By a choice function, we mean a function F : R → [0, 1] which is (non-strictly)
increasing, and for which F (z) → 1 as z → +∞, F (z) → 0 as z → −∞, and F (z) + F (−z) = 1
for all z.

Main idea. Our main idea is as follows. Up to now, we have discussed how to describe the
user’s behavior, but often, the ultimate objective is how to modify this behavior. For example, in
transportation problems, the goal is often to use public transportation to relieve traffic congestion
and related pollution. In this case, the problem is not just to estimate the probability of people
using public transportation, but to find out how to increase this probability.

One way to increase this probability is to provide incentives. If we want to encourage people
to prefer alternative s1, then we can provide those who select this alternative with an additional
benefit of value v0. In this case, for alternatives si 6= s1, the corresponding utility Vi remains the
same, but for the alternative s1, we have a new value of utility V ′

1 = V1 + v0.
After this addition, the original probability

p1 = F (V1 − V2) (2)

of selecting the alternative s1 changes to a new value

p′1 = F (V ′
1 − V2) = F (V1 + v0 − V2). (3)
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These formulas can be simplified if we denote the difference V1−V2 between the approximate utility
values by ∆V . In these new notations, the original probability

p1 = F (∆V ) (4)

is replaced by the new probability
p′1 = F (∆V + v0). (5)

This change of probability can be described in general terms: we receive new information – that
there are now incentives. Based on this new information, we update our original probabilities pi of
selecting different alternatives si.

From the statistical viewpoint (see, e.g., (Jaynes and Bretthorst, 2003; Wadsworth, 1990)), when
we receive new information, the correct way of updating probabilities is by using the Bayes formula.
Specifically, if we have n incompatible hypotheses H1, . . . , Hn with initial probabilities

P0(H1), . . . , P0(Hn), (6)

then, after observations E, we update the initial probabilities to the new values:

P (Hi |E) =
P (E |Hi) · P0(Hi)

P (E |H1) · P0(H1) + . . . + P (E |Hn) · P0(Hn)
. (7)

Thus, we should require that the function F (z) be such for which the transition from the old
probability (4) to the new probability (5) can be described by the (fractionally linear) Bayes formula
(7).

From the main idea to the exact formulas. Let us formalize the above requirement. In the case
of two alternatives s1 and s2, we have two hypotheses: the hypothesis H1 that the user will prefer
s1 and the opposite hypothesis H2 that the user will prefer s2. Initially, we did now know about any
incentives, we only knew the approximate utility V1 of the first alternative and the approximate
utility V2 of the second alternative. Based on the information that we initially had, we concluded
that the probability of the hypothesis H1 is equal to p1 = p(H1) = F (∆V ) (where ∆V = V1 − V2),
and the probability of the opposite hypothesis H2 is equal to p2 = p(H2) = 1− p1.

Now, suppose that learn that there was no incentive to select alternative s2 and an incentive of
size v0 to select alternative s1. This new information E changes the probabilities of our hypotheses
H1 and H2. Namely, according to Bayes formula, after the new information E, the probability p1

should be updated to the following new value p′1 = P (H1 |E):

p′1 =
P (E |H1) · P (H1)

P (E |H1) · p1 + P (E |H2) · P (H2)
. (8)

The probability P (E |H1) is the conditional probability with which we can conclude that there
was an incentive of size v0 based on the fact that the user actually selected the alternative s1. This
conditional probability is, in general, different for different values v0. To take this dependence into
account, we will denote this conditional probability P (E |H1) by A(v0).

Similarly, the probability P (E |H2) is the conditional probability with which we can conclude
that there was an incentive of size v0 for alternative s1 based on the fact that the user actually
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selected the alternative s2. This conditional probability is also, in general, different for different val-
ues v0. To take this dependence into account, we will denote this conditional probability P (E |H2)
by B(v0).

If we substitute the expressions P (E |H1) = A(v0), P (E |H2) = B(v0), P (H1) = F (∆V ), and
P (H2) = 1− P (H1) = 1− F (∆V ) into the above formula (8), then we conclude that

p′1 =
A(v0) · F (∆V )

A(v0) · F (∆V ) + B(v0) · (1− F (∆V ))
. (9)

On the other hand, once we know that there was an incentive v0 to select the alternative s1

and no incentive for the alternative s2, then we have a better idea of the resulting utilities of
the user: namely, the new value of the approximate utility is V1 + v0 for alternative s1 and V2

for the alternative s2. In accordance with our expression for the choice probability based on the
approximate utility values, the new probability of selecting s1 should be equal to F ((V1 +v0)−V2),
i.e., to F (∆V + v0) (expression (4)).

If the probability update was done correctly, in full accordance with the Bayes formula, then
this new value (4) must be equal to the value (9) that comes from using the Bayes formula. So, we
arrive at the following definition:

Definition 2. A choice function F (z) is called Bayes correct if, for every v0, there exist values
A(v0) and B(v0) for which

F (∆V + v0) =
A(v0) · F (∆V )

A(v0) · F (∆V ) + B(v0) · (1− F (∆V ))
(10)

for all ∆V .

Comment. In other words, we require that the 2-parametric family of functions F =
{

A · F (∆V )
A · F (∆V ) + B

}

corresponding to Bayesian updates be shift-invariant under a shift ∆V → ∆V + v0.

Theorem 1. Every Bayes correct choice function F (z) has the form

F (∆V ) =
1

1 + e−β·∆V
(11)

for some real number β.

If we substitute ∆V = V1−V2 into this formula, and multiply the numerator and the denominator
of the resulting formula by eβ·V1 , then we conclude that for every Bayes correct choice function F (z),
we have

p1 = F (V1 − V2) =
eβ·V1

eβ·V1 + eβ·V2
. (12)

Thus, for the desired case of two alternatives, we indeed provide a new distribution-free justification
of the logit formula.

Proof. It is known that many formulas in probability theory can be simplified if instead of the
probability p, we consider the corresponding odds

O =
p

1− p
. (13)
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(If we know the odds O, then we can reconstruct the probability p as p = O/(1 + O).) The right-
hand side of the formula (10) can be represented in terms of odds O(∆V ), if we divide both the
numerator and the denominators by 1− F (∆V ). As a result, we get the following formula:

F (∆V + v0) =
A(v0) ·O(∆V )

A(v0) ·O(∆V ) + B(v0)
. (14)

Based on this formula, we can compute the corresponding odds O(∆V + v0): first, we compute the
value

1− F (∆V + v0) =
B(v0)

A(v0) ·O(∆V ) + B(v0)
, (15)

and then divide (14) by (15), resulting in:

O(∆V + v0) = c(v0) ·O(∆V ), (16)

where we denoted c(v0)
def= A(v0)/B(v0). It is known (see, e.g., (Aczel, 2006)) that all monotonic

solutions of the functional equation (16) are of the form O(∆V ) = C · eβ·∆V . Therefore, we can
reconstruct the probability F (∆V ) as

F (∆V ) =
O(∆V )

O(∆V ) + 1
=

C · eβ·∆V

C · eβ·∆V + 1
. (17)

The condition F (z)+F (−z) = 1 leads to C = 1. Dividing both the numerator and the denominator
of the right-hand side by eβ·∆V , we get the desired formula (11). Q.E.D.

B. Towards an Optimal Algorithm for Computing Fixed Points

Many practical situations eventually reach equilibrium. In many real-life situations, we have dy-
namical situations which eventually reach an equilibrium.

For example, in economics, when a situation changes, prices start changing (often fluctuating)
until they reach an equilibrium between supply and demand.

In transportation, as we have mentioned, when a new road is built, some traffic moves to this
road to avoid congestion on the other roads; this causes congestion on the new road, which, in its
turn, leads drivers to go back to their previous routes, etc. (Sheffi, 1985).

It is often desirable to predict the corresponding equilibrium. For the purposes of the long-
term planning, it is desirable to find the corresponding equilibrium. For example, for the purposes
of economic planning, it is desirable to know how, in the long run, oil prices will change if we start
exploring new oil fields in Alaska. For transportation planning, it is desirable to find out to what
extent the introduction of a new road will relieve the traffic congestion, etc.

In order to describe how we can solve this practically important problem, let us describe this
equilibrium prediction problem in precise terms.

Finding an equilibrium as a mathematical problem. To describe the problem of finding the
equilibrium state(s), we must first be able to describe all possible states. In this paper, we assume
that we already have such a description, i.e., that we know the set X of all possible states.
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We must also be able to describe the fact that many states x ∈ X are not equilibrium states. For
example, if the price of some commodity (like oil) is set up too high, it will become profitable to
explore difficult-to-extract oil fields; as a new result, the supply of oil will increase, and the prices
will drop.

Similarly, as we have mentioned in the main text, if too many cars move to a new road, this road
may become even more congested than the old roads initially were, and so the traffic situation will
actually decrease – prompting people to abandon this new road.

To describe this instability, we must be able to describe how, due to this instability, the original
state x gets transformed in the next moment of time. In other words, we assume that for every
state x ∈ X, we know the corresponding state f(x) at the next moment of time.

For non-equilibrium states x, the change is inevitable, so we have f(x) 6= x. The equilibrium
state x is the state which does not change, i.e., for which f(x) = x. Thus, we arrive at the following
problem: We are given a set X and a function f : X → X; we need to find an element x for which
f(x) = x.

In mathematical terms, an element x for which f(x) = x is called a fixed point of the mapping
f . So, there is a practical need to find fixed points.

The problem of computing fixed points. Since there is a practical need to compute the fixed
points, let us give a brief description of the existing algorithms for computing these fixed points.
Readers interested in more detailed description can look, e.g., in (Berinde, 2002).

Straightforward algorithm: Picard iterations. At first glance, the situation seems very simple
and straightforward. We know that if we start with a state x at some moment of time, then in
the next moment of time, we will get a state f(x). We also know that eventually, we will get an
equilibrium. So, a natural thing to do is to simulate how the actual equilibrium will be reached.

In other words, we start with an arbitrary (reasonable) state x0. After we know the state xk

at the moment k, we predict the state xk+1 at the next moment of time as xk+1 = f(xk). This
algorithm is called Picard iterations after a mathematician who started efficiently using it in the
19 century.

If the equilibrium is eventually achieved, i.e., if in real life the process converges to an equilibrium
point x, then Picard’s iterations are guaranteed to converge. Their convergence may be somewhat
slow – since they simulate all the fluctuations of the actual convergence – but eventually, we get
convergence.

Situations when Picard’s iterations do not converge. In some important practical situations,
Picard iterations do not converge.

The main reason is that in practice, we can have panicky fluctuations which prevent convergence.
Of course, one expects fluctuations. For example, if the price of oil is high, then it will become
profitable for companies to explore and exploit new oil fields. As a result, the supply of oil will
drastically increase, and the price of oil will go down. Since this is all done in a unplanned way, with
different companies making very rough predictions, it is highly probable that the resulting oil supply
will exceed the demand. As a result, prices will go down, oil production in difficult-to-produce oil
areas will become unprofitable, supply will go down, etc.

Such fluctuations have happened in economics in the past, and sometimes, not only they did
not lead to an equilibrium, they actually led to deep economic crises.
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As we have seen, similar situations happen in transportation as well.

How can we handle these situation: a natural practical solution. If the natural Picard
iterations do not converge, this means that in practice, there is too much of a fluctuation. When at
some moment k, the state xk is not an equilibrium, then at the next moment of time, we have a state
xk+1 = f(xk) 6= xk. However, this new state xk+1 is an not necessarily closer to the equilibrium: it
“over-compensates” by going too far to the other side of the desired equilibrium.

For example, we started with a price xk which was too high. At the next moment of time, instead
of having a price which is closer to the equilibrium, we may get a new price xk+1 which is too low
– and may even be further away from the equilibrium than the previous price.

In practical situations, such things do happen. In this case, to avoid such weird fluctuations and
to guarantee that we eventually converge to the equilibrium point, a natural thing is to “dampen”
these fluctuations: we know that a transition from xk to xk+1 has gone too far, so we should only
go “halfway” (or even smaller piece of the way) towards xk+1.

How can we describe it in natural terms? In many practical situations, there is a reasonable
linear structure on the set X on all the states, i.e., X is a linear space. In this case, going from
xk to f(xk) means adding, to the original state xk, a displacement f(xk) − xk. Going halfway
would then mean that we are only adding a half of this displacement, i.e., that we go from xk to

xk+1 = xk +
1
2
· (f(xk)− xk), i.e., to

xk+1 =
1
2
· xk +

1
2
· f(xk).

The corresponding iteration process is called Krasnoselskii iterations. In general, we can use a
different portions α 6= 1/2, and we can also use different portions αk on different moments of time.
In general, we thus go from xk to xk+1 = xk + αk · (f(xk)− xk), i.e., to

xk+1 = (1− αk) · xk + αk · f(xk).

These iterations are called Krasnoselski-Mann iterations.

Practical problem: the rate of convergence drastically depends on αi. The above con-
vergence results show that under certain conditions on the parameters αi, there is a convergence.
From the viewpoint of guaranteeing this convergence, we can select any sequence αi which satisfies
these conditions. However, in practice, different choice of αi often result in drastically different rate
of convergence.

To illustrate this difference, let us consider the simplest situation when already Picard iterations
xn+1 = f(xn) converge, and converge monotonically. Then, in principle, we can have the same
convergence if instead we use Krasnoselski-Mann iterations with αn = 0.01. Crudely speaking, this
means that we replace each original step xn → xn+1 = f(xn), which bring xn directly into xn+1, by
a hundred new smaller steps. Thus, while we still have convergence, we will need 100 times more
iterations than before – and thus, we require a hundred times more computation time.

Since different values αi lead to different rates of convergence, ranging from reasonably efficient
to very inefficient, it is important to make sure that we select optimal values of the parameters αi,
values which guarantee the fastest convergence.
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First idea: from the discrete iterations to the continuous dynamical system. In this
section, we will describe the values αi which are optimal in some reasonable sense. To describe this
sense, let us go back to our description of the dynamical situation. In the above text, we considered
observations made at discrete moments of time; this is why we talked about current moment of time,
next moment of time, etc. In precise terms, we considered moments t0, t1 = t0 + ∆t, t2 = t0 + 2∆t,
etc.

In principle, the selection of ∆t is rather arbitrary. For example, in terms of prices, we can
consider weekly prices (for which ∆t is one week), monthly prices, yearly prices, etc. Similarly, for
transportation, we can consider daily, hourly, etc. descriptions. The above discrete-time description
is, in effect, a discrete approximation to an actual continuous-time system.

Similarly, Krasnoselski-Mann iterations xk+1−xk = αk ·(f(xk)−xk) can be viewed as a discrete-
time approximations to a continuous dynamical system which leads to the desired equilibrium.

Specifically, the difference xk+1 − xk is a natural discrete analogue of the derivative
dx

dt
, the values

αk can be viewed as discretized values of an unknown function α(t), and so the corresponding
continuous system takes the form

dx

dt
= α(t) · (f(x)− x). (18)

A discrete-time system is usually a good approximation to the corresponding continuous-time
system. Thus, we can assume that, vice versa, the above continuous system is a good approximation
for Krasnoselski-Mann iterations.

In view of this fact, in the following text, we will look for an appropriate (optimal) continuous-
time system (18).

Scale invariance: natural requirement on a continuous-time system. In deriving the contin-
uous system (18) from the formula for Krasnoselski-Mann iterations, we assumed that the original
time interval ∆t between the two consecutive iterations is 1. This means, in effect, that to measure
time, we use a scale in which this interval ∆t is a unit interval.

As we have mentioned earlier, the choice of the time interval ∆t is rather arbitrary. If we make a
different choice of this discretization time interval ∆t′ 6= ∆t, then we would get a similar dynamical
system, but described in a different time scale, with a different time interval ∆t′ taken as a measuring
unit. As a result of “de-discretizing” this new system, we would get a different continuous system
of type (18) – a system which differs from the original one by a change in scale.

In the original scale, we identified the time interval ∆t with 1. Thus, the time t in the original
scale means physical time T = t ·∆t. In the new scale, this same physical time corresponds to the

time t′ =
T

∆t′
= t · ∆t

∆t′
.

If we denote by λ =
∆t′

∆t
the ratio of the corresponding units, then we conclude that the time t

in the original scale corresponds to the time t′ = t/λ in the new scale. Let us describe the system
(18) in terms of this new time coordinate t′. From the above formula, we conclude that t = λ · t′;
substituting t = λ · t′ and dt = λ · dt′ into the formula (18), we conclude that

1
λ
· dx

dt′
= α(λ · t′) · (f(x)− x),
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i.e., that
dx

dt′
= (λ · α(λ · t′)) · (f(x)− x). (19)

It is reasonable to require that the optimal system of type (18) should not depend on what
exactly time interval ∆t we used for discretization.

Conclusion: optimal Krasnoselski-Mann iterations correspond to αk = c/k. Since a change
of the time interval corresponds to re-scaling, this means the system (18) must be scale-invariant,
i.e., to be more precise, the system (19) must have exactly the same form as the system (18) but
with t′ instead of t, i.e., the form

dx

dt′
= α(t′) · (f(x)− x). (20)

By comparing the systems (19) and (20), we conclude that we must have

λ · α(λ · t′) = a(t′)

for all t′ and λ. In particular, if we take λ = 1/t′, then we get α(t′) =
α(1)
t′

, i.e., α(t′) = c/t′ for

some constant c (= α(1)).
With respect to the corresponding discretized system, this means that we take αk = α(k) = c/k.

Comment. The formula αk = c/k is not exact: it comes form approximating the actual continuous
dependence by a discrete one. This approximation makes asymptotic sense, but this formula cannot
be applied for k = 0. To make this formula applicable, we must start with k = 1 – or, equivalently,
start with k = 0 (since this is how most descriptions of iterations work), but use the expression
αk = c/(k + 1) instead.

Reasonable choice of the constant c and its interpretation. As we have mentioned, a
reasonable idea is to use Picard iterations. This is not always a good idea, because we may get wild
fluctuations. However, it makes some sense to start with the Picard iteration first, to get away from
the initial state.

Picard iterations correspond to αk = 1; so, if we want α0 = 1, i.e., c/(0 + 1) = 1, we must take
c = 1. The resulting iterations take the form

xk+1 =
(

1− 1
k + 1

)
· xk +

1
k + 1

· f(xk).

This formula (corresponding to c = 1) has a natural commonsense interpretation.
Namely, in Picard iterations, as a next iteration xk+1, we take f(xk). When there are wild

oscillations, these iterations do not converge. We expect, however, that these oscillations are going
on around the equilibrium point. So, while the values xi are oscillating and not converging at all,
their averages

x0 + . . . + xk

k + 1
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and the corresponding values
f(x0) + . . . + f(xk)

k + 1
will be getting closer and closer to the desired equilibrium. Thus, if we want to enhance convergence,
then, instead of taking f(xk) as the next iteration, it makes sense to take an average of the previous
values of f(xk):

xk+1 =
f(x0) + . . . + f(xk−1) + f(xk)

k + 1
.

Let us show that this idea leads exactly to our choice αk = 1/(k + 1). Indeed, from xk =
f(x0) + . . . + f(xk−1)

k
, we conclude that f(x0)+ . . .+f(xk−1) = k ·xk, hence f(x0)+ . . .+f(xk−1)+

f(xk) = k · xk + f(xk) and thus,

xk+1 =
f(x0) + . . . + f(xk−1) + f(xk)

k + 1
=

k · xk + f(xk)
k + 1

=
(

1− 1
k + 1

)
· xk +

1
k + 1

· f(xk).

This selection seems to work well. The choice ak = 1/k have been successfully used and
shown to be efficient. We have shown this on the example of our transportation problem. For other
examples, see, e.g., (Su and Qin, 2006) and references therein.

C. Exponential Disutility Functions in Transportation Modeling: Justification

Stochastic approach, and the need to use utility or disutility functions. In real life, travel
times are non-deterministic (stochastic): on each link, for the same capacity and flow, we may have
somewhat different travel times (Sheffi, 1985).

In other words, for each link, the travel time ti is no longer a uniquely determined real number,
it is a random variable whose characteristics may depend on the capacity and flow along this link.
As a result, the overall travel time t is also a random variable.

If we take this uncertainty into account, then it is no longer easy to predict which path will be
selected: if we have two alternative paths, then it often happens that with some probability, the
time along the first path is smaller, but with some other probability, the first path may turn out
to be longer. How can we describe decision making under such uncertainty?

In decision making theory, it is proven that under certain reasonable assumption, a person’s
preferences are defined by his or her utility function U(x) which assigns to each possible outcome
x a real number U(x) called utility; see, e.g., (Keeney and Raiffa, 1976; Raiffa, 1970). In many
real-life situations, a person’s choice s does not determine the outcome uniquely, we may have
different outcomes x1, . . . , xn with probabilities, correspondingly, p1, . . . , pn. For example, when a
driver selects a path s, the travel time is often not uniquely determined: we may have different travel
times x1, . . . , xn with corresponding probabilities p1, . . . , pn. For such a choice, we can describe the
utility U(s) associated with this choice as the expected value of the utility of outcomes: U(s) =
E[U(x)] = p1 · U(x1) + . . . + pn · U(xn). Among several possible choices, a user selects the one
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for which the utility is the largest: a possible choice s is preferred to a possible choice s′ (denoted
s > s′) if and only if U(s) > U(s′).

For the applications presented in this paper, it is important to emphasize that the utility function
is not uniquely determined by the preference relation. Namely, for every two real numbers a > 0
and b, if we replace the original utility function U(x) with the new one V (x) def= a · U(x) + b, then
for each choice s, we will have

V (s) = E[a · U(x) + b] = a · E[U(x)] + b = a · U(s) + b

and thus, V (s) > V (s′) if and only if U(s) > U(s′).
In transportation, the main concern is travel time t, so the utility depends on time: U = U(t).

Of course, all else being equal, the longer it takes to travel, the less preferable the choice of a path;
so, the utility function U(t) must be strictly increasing: if t < t′, then U(t) > U(t′).

In general, decision making is formulated in terms of maximizing a utility function U(x). In
traditional (deterministic) transportation problems, however, decision making is formulated in
terms of minimization: we select a route with the smallest possible travel time. Thus, when people
apply decision making theory in transportation problems, they reformulate these problems in terms
of a disutility function u(x) def= −U(x). Clearly, for every choice s, we have

u(s) def= E[u(x)] = E[−U(x)] = −E[U(x)] = −U(s).

So, selecting the route with the largest value of expected utility U(s) is equivalent to selecting the
route with the smallest value of expected disutility u(s). In line with this usage, in this paper, we
will talk about disutility functions.

Since a disutility function U(t) is strictly decreasing, the corresponding utility function u(t) =
−U(t) must be strictly increasing: if t < t′ then u(t) < u(t′).

Disutility functions traditionallly used in transportation: description and reasons. In
transportation, traditionally, three types of disutility functions are used; see, e.g., (Mirchandani
and Soroush, 1987; Tatineni, 1996; Tatineni et al., 1997).

First, we can use linear disutility functions u(t) = a · t + b, with a > 0. As we have mentioned,
multiplication by a constant a > 0 and addition of a constant b does not change the preferences,
so we can safely assume that the utility function simply conincides with the travel time u(t) = t.

Second, we can use risk-prone exponential disutility functions

u(t) = −a · exp(−c · t) + b

for some a > 0 and c > 0. This is equivalent to using u(t) = − exp(−c · t).
Third, we can use risk-averse exponential disutility functions

u(t) = a · exp(c · t) + b

for some a > 0 and c > 0. This is equivalent to using u(t) = exp(c · t).
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Several other possible disutility functions have been proposed, e.g., quadratic functions u(t) =
t + c · t2; see, e.g., (Mirchandani and Soroush, 1987).

In practice, mostly linear and exponential functions are used. Actually, a linear function can be
viewed as a limit of exponential functions:

t = lim
α→0

1
α
· (exp(α · t)− 1),

so we can say that mostly exponential functions are used.
The main reason for using exponential disutility functions is that these functions are in accor-

dance with common sense (Mirchandani and Soroush, 1987; Tatineni et al., 1997). Indeed:

− functions − exp(−c · t) indeed lead to risk-prone behavior, i.e., crudely speaking, a behavior
in which a person, when choosing between two paths, one with a deterministic time t1 and
another with a stochastic time t2, prefers the second path if there is a large enough probability
that t2 < t1 – even when the average time of the second path may be larger t̄2 > t1;

− functions exp(c · t) indeed lead to risk-averse behavior, i.e., crudely speaking, a behavior in
which a person, when choosing between two paths, one with a deterministic time t1 and another
with a stochastic time t2, prefers the first path if there is a reasonable probability that t2 > t1
– even when the average time of the second path may be smaller: t̄2 < t1.

This accordance, however, does not limit us to only exponential functions: e.g., quadratic functions
are also in reasonably good accordance with common sense.

However, there is another common sense requirements that leads to linear or exponential func-
tions.

A common sense assumption about the driver’s preferences. Let us assume that we have
several routes going from point A to point B, and a driver selected one of these routes as the best
for him/her. For example, A may be a place at the entrance to the driver’s department, and B is
a similar department at another university located in a nearby town.

Let us now imagine a similar situation, in which the driver is also interested in reaching the
point B, but this time, the driver starts at some prior point C. At this point C, there is only one
possible way, and it leads to the point A; after A, we still have several possible routes. We can also
assume that the time t0 that it takes to get from C to A is deterministic. For example, C may be
a place in the parking garage from where there is only one exit.
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s s s
C A B

It is reasonable to assume that if the road conditions did not change, then, after getting to the
point A, the driver will select the exact same route as last time, when this driver started at A.

Comment. Similarly, if two routes from A to B were equally preferable to the driver, then both
routes should be equally preferable after we add a deterministic link from C to A to both routes.

In the deterministic case, this assumption is automatically satisfied. In the deterministic
case, the travel time along each route is deterministic, and the driver selects a route with the
shortest travel time.

Let us assume when going from A to B, the drive prefers the first route because its travel time
t1 is smaller than the travel time t2 of the second route: t1 < t2. In this case, next time, when the
travel starts from the point C, we have time t1 + t0 along the first route and t2 + t0 along the second
route. Since we had t1 < t2, we thus have t1 + t0 < t2 + t0 – and therefore, the driver will still select
the first route.

s s s
C A B

t0
t1

t2

In the stochastic case, this assumption is not necessarily automatically satisfied. In the
stochastic case, when going from A to B, the driver selects the first route if E[u(t1)] < E[u(t2)],
where u(t) is the corresponding disutility function.

Next time, when the driver goes from C to B, the choice between the two routes depends on
comparing different expected values: E[u(t1 + t0)] and E[u(t2 + t0)], where t0 is the (deterministic)
time of traveling from C to A. In principle, it may be possible that E[u(t1)] < E[u(t2)] but

E[u(t1 + t0)] > E[u(t2 + t0)].

Let us describe a simple numerical example when this counter-intuitive phenomenon happens.
In this example, we will use a simple non-linear disutility function: namely, the quadratic function
u(t) = t2. Let us assume that the first route from A to B is deterministic, with t1 = 7, and the
second route from A to B is highly stochastic: with equal probability 0.5, we may have t2 = 1 and
t2 = 10. In this case, E[u(t1)] = t21 = 49 and

E[u(t2)] = E[t22] =
1
2
· 12 +

1
2
· 102 = 0.5 + 50 = 50.5.

Here, E[u(t1)] < E[u(t2)], so the driver will prefer the first route.
However, if we add the same constant time t0 = 1 for going from C to A to both routes,

then in the first route, we will have t1 + t0 = 7 + 1 = 8, while in the second route, we will have
t2 + t0 = 1 + 1 = 2 and t2 + t0 = 10 + 1 = 11 with equal probability 0.5. In this case,

E[u(t1 + t0)] = (t1 + t0)2 = 82 = 64,
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while
E[u(t2 + t0)] =

1
2
· 22 +

1
2
· 112 = 2 + 60.5 = 62.5.

We see that here, E[u(t2 + t0)] < E[u(t1 + t0)], i.e., the drive will select the second route instead of
the first one.

This counter-intuitive phenomenon does not happen for linear or exponential disutility
functions. Indeed, for a linear disutility function u(t) = t, we have u(t1 + t0) = t1 + t0 = u(t1)+ t0;
therefore, E[u(t1+t0)] = E[u(t1)]+t0 and similarly, E[u(t2+t0)] = E[u(t2)]+t0. Thus, if the driver
selected the first route, i.e., if E[u(t1)] < E[u(t2)], then by adding t0 to both sides of this inequality,
we can conclude that E[u(t1 + t0)] < E[u(t2 + t0)] – i.e., that, in accordance with common sense,
the same route will be selected if we start at the point C.

For the exponential disutility function u(t) = exp(α · t), we have u(t1 + t0) = exp(α · (t1 + t0)) =
exp(α · t1) · exp(α · t0) and therefore, u(t1 + t0) = u(t1) · exp(α · t0). Similarly, for the exponential
disutility function u(t) = − exp(α·t), we have u(t1+t0) = − exp(α·(t1+t0)) = − exp(α·t1)·exp(α·t0)
and thus, u(t1 + t0) = u(t1) · exp(α · t0);

For both types of exponential disutility function, we have E[u(t1 + t0)] = exp(α · t0) · E[u(t1)]
and similarly, E[u(t2 + t0)] = exp(α · t0) · E[u(t2)]. Thus, if the driver selected the first route,
i.e., if E[u(t1)] < E[u(t2)], then by multiplying both sides of this inequality by the same constant
exp(α·t0), we can conclude that E[u(t1+t0)] < E[u(t2+t0)] – i.e., that, in accordance with common
sense, the same route will be selected if we start at the point C.

Resulting justification of exponential utility fuinctions. It turns out linear and exponential
disutility functions are the only ones which are consistent with the above common sense requirement
– for every other disutility function, a paradoxical counter-intuitive situation like the one described
above is quite possible.

Let us describe this result in precise terms.

Definition 3. By a disutility function, we mean a strictly increasing function u(t) from non-
negative real numbers to real numbers.

Definition 4. We say that two disutility functions u(t) and v(t) are equivalent if there exist real
numbers a > 0 and b such that v(t) = a · u(t) + b for all t.

Definition 5. We say that a disutility function is consistent with common sense if it has the
following property: let t1 and t2 be random variables with non-negative values, and let t0 be an
arbitrary (deterministic) non-negative real number; then,

− if E[u(t1)] < E[u(t2)], then E[u(t1 + t0)] < E[u(t2 + t0)];

− if E[u(t1)] = E[u(t2)], then E[u(t1 + t0)] = E[u(t2 + t0)].

Theorem 2. A disutility function is consistent with common sense if and only if it is equivalent to
either the linear function u(t) = t, or to an exponential function u(t) = exp(c · t) or − exp(−c · t).
Proof. Under an additional conditions of differentiability of the function u(t), this result has been
proven in (Pratt, 1964). For reader’s convenience, we provide a new proof which does not require
differentiability.
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1◦. We already know that linear and exponential disutility functions are consistent with common
sense in the sense of Definition 5. It is therefore sufficient to prove that every disutility function
u(t) which is consistent with common sense is equivalent either to a linear one or to an exponential
one.

2◦. Let u(t) be a disutility function which is consistent with common sense. By definition of
computational simplicity, for every random variables t1, once we know the values u1 = E[u(t1)]
and t0, we can uniquely determine the value E[u(t1 + t0)]. Let us denote the value E[u(t1 + t0)]
corresponding to u1 and t0 by F (u1, t0).

3◦. Let t′1 be a non-negative number. For the case when t1 = t′1 with probability 1, we have
u′1 = E[u(t1)] = u(t′1). In this case, t1 + t0 = t′1 + t0 with probability 1, so E[u(t1 + t0)] = u(t′1 + t0).
Thus, in this case, u(t′1 + t0) = F (u′1, t0), where u′1 = u(t′1).

4◦. Let us now consider the case when t1 is equal to t′1 with some probability p′1 ∈ [0, 1], and to
some smaller value t′′1 < t′1 with the remaining probability p′′1 = 1− p′1. In this case,

u1 = E[u(t1)] = p′1 · u(t′1) + (1− p′1) · u(t′′1).

We have already denoted u(t′1) by u′1; so, if we denote u′′1
def= u(t′′1), we can rewrite the above

expression as
u1 = p′1 · u′1 + (1− p′1) · u′′1.

In this situation, t1 + t0 is equal to t′1 + t0 with probability p′1 and to t′′1 + t0 with probability 1−p′1.
Thus,

E[u(t1 + t0)] = p′1 · u(t′1 + t0) + (1− p′1) · u(t′′1 + t0).

We already know that u(t′1 + t0) = F (u′1, t0) and u(t′′1 + t0) = F (u′′1, t0). So, we can conclude that

E[u(t1 + t0)] = p′1 · F (u′1, t0) + (1− p′1) · F (u′′1, t0). (21)

On the other hand, by the definition of the function F as F (u1, t0) = E[u(t1 + t0)], we conclude
that

E[u(t1 + t0)] = F (u1, t0),

i.e.,
E[u(t1 + t0)] = F (p′1 · u′1 + (1− p′1) · u′′1, t0). (22)

Comparing the expressions (21) and (22) for E[u(t1 + t0)], we conclude that

F (p′1 · u′1 + (1− p′1) · u′′1, t0) = p′1 · F (u′1, t0) + (1− p′1) · F (u′′1, t0).

Let us analyze this formula. For every value u1 ∈ [u′′1, u′1], we can find the probability p′1 for which
u1 = p′1 · u′1 + (1 − p′1) · u′′1: namely, the desired equation means that u1 = p′1 · u′1 + u′′1 − p′1 · u′′1;
rearranging the terms, we get u1−u′′1 = p′1 ·(u′1−u′′1) and hence, the value p′1 =

u1 − u′′1
u′1 − u′′1

. Substituting

this expression into the above formula, we conclude that for a fixed t0, the function F (u1, t0) is a
linear function of u1:

F (u1, t0) = A(t0) · u1 + B(t0)
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for some constants A(t0) and B(t0) which, in general, depend on t0.

5◦. We have already shown, in Part 3 of this proof, that u(t′1 + t0) = F (u′1, t0). Thus, we conclude
that for every t′1 ≥ 0 and t0 ≥ 0, we have

u(t′1 + t0) = A(t0) · u(t′1) + B(t0).

6◦. For an arbitrary function u(t), by introducing an appropriate constant b = −u(0), we can always
find an equivalent function v(t) for which v(0) = 0. So, without losing generality, we can assume
that u(0) = 0 for our original disutility function u(t).

Since the disutility function is strictly increasing, we have u(t) > 0 for all t > 0.
For t′1 = 0, the above formula takes the form u(t0) = B(t0). Substituting this expression for

B(t0) into the above formula, we conclude that

u(t′1 + t0) = A(t0) · u(t′1) + u(t0).

7◦. The above property has to be true to arbitrary values of t′1 ≥ 0 and t0 ≥ 0. Swapping these
values, we conclude that

u(t0 + t′1) = A(t′1) · u(t0) + u(t′1).

Since t′1 + t0 = t0 + t′1, we have u(t′1 + t0) = u(t0 + t′1), hence

A(t0) · u(t′1) + u(t0) = A(t′1) · u(t0) + u(t′1).

Moving terms proportional to u(t′1) to the left hand side and terms proportional to u(t0) to the
right hand side, we conclude that

(A(t0)− 1) · u(t′1) = (A(t′1)− 1) · u(t0). (23)

In the following text, we will consider two possible situations:

− the first situation is when A(t0) = 1 for some t0 > 0;

− the second situation is when A(t0) 6= 1 for all t0 > 0.

In the first situation, A(t0) = 1 for some t0 > 0. For this t0, the equation (23) takes the form
(A(t′1)− 1) ·u(t0) = 0 for all t′1. Since u(t0) > 0 for t0 > 0, we conclude that A(t′1)− 1 = 0 for every
real number t′1 ≥ 0, i.e., that the function A(t) is identical to a constant function 1.

So, we have two possible situations:

− the first situation is when A(t0) = 1 for some t0 > 0; we have just shown that in this case,
A(t) = 1 for all t; in the following text, we will show that in this situation, the disutility
function u(t) is linear;

− the second situation is when A(t0) 6= 1 for all t0 > 0; we will show that in this situation, the
disutility function u(t) is exponential.
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8◦. Let us first consider the situation in which A(t) is always equal to 1. In this case, the above
equation takes the form

u(t0 + t′1) = u(t0) + u(t′1).

In other words, in this case,
u(t1 + t2) = u(t1) + u(t2)

for all possible values t1 > 0 and t2 > 0.
In particular, for every t0 > 0, we get:

− first, u(2t0) = u(t0) + u(t0) = 2u(t0),

− then u(3t0) = u(2t0) + u(t0) = 2u(t0) + u(t0) = 3u(t0), and,

− in general, u(k · t0) = k · u(t0) for all integers k.

For every integer n and for t0 = 1/n, we have u(n·t0) = u(1) = n·u(1/n), hence u(1/n) = u(1)/n.
Then, for an arbitrary non-negative rational number k/n, we get

u(k/n) = u(k · (1/n)) = k · u(1/n) = k · (1/n) · u(1) = k/n · u(1).

In other words, for every rational number r = k/n, we have u(r) = r · u(1).
Every real value t can be bounded, with arbitrary accuracy, by rational numbers kn/n and

(kn + 1)/n: kn/n ≤ t ≤ (kn + 1)/n, where kn/n → t and (kn + 1)/n → t as n → ∞. Since the
disutility function u(t) is strictly increasing, we conclude that u(kn/n) ≤ u(t) ≤ u((kn + 1)/n). We
already know that for rational values r, we have u(r) = r · u(1), so we have

kn/n · u(1) ≤ u(t) ≤ (kn + 1)/n · u(1).

In the limit n →∞, both sides of this inequality converge to t · u(1), hence u(t) = t · u(1).
So, in this case, we get a linear disutility function.

9◦. Let us now analyze the case when A(t) 6= 1 for all t > 0. Since the values u(t) are positive for
all t > 0, we can divide both sides of the equality

(A(t0)− 1) · u(t′1) = (A(t′1)− 1) · u(t0)

by u(t0) and u(t′1), and conclude that

A(t0)− 1
u(t0)

=
A(t′1)− 1

u(t′1)
.

The ratio
A(t)− 1

u(t)
has the same value for arbitrary two numbers t = t0 and t = t′1; thus, this ratio

is a constant. Let us denote this constant by k; then, A(t)−1 = k ·u(t) for all t > 0. Since A(t) 6= 1,
this constant k is different from 0.

Substituting the resulting expression A(t) = 1 + k · u(t) into the formula u(t′1 + t0) = A(t0) ·
u(t′1) + u(t0), we conclude that

u(t′1 + t0) = u(t0) + u(t′1) + k · u(t0) · u(t′1),
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i.e., that
u(t1 + t2) = u(t1) + u(t2) + k · u(t1) · u(t2)

for arbitrary numbers t1 > 0 and t2 > 0.

10◦. Let us now consider a re-scaled function v(t) def= 1 + k · u(t).
For this function v(t), from the above formula, we conclude that

v(t1 + t2) = 1 + k · u(t1 + t2) = 1 + k · (u(t1) + u(t2)) + k2 · u(t1) · u(t2).

On the other hand, we have

v(t1) · v(t2) = (1 + k · u(t1)) · (1 + k · u(t2)) =

1 + k · (u(t1) + u(t2)) + k2 · u(t1) · u(t2).

The expression for v(t1 + t2) and for v(t1) · v(t2) coincide, so we conclude that

v(t1 + t2) = v(t1) · v(t2)

for all possible values t1 > 0 and t2 > 0.

11◦. When k > 0, then the new function v(t) is an equivalent disutility function. We know that
u(0) = 0 hence v(0) = 1 + k · 0 = 1. Since v(t) is a strictly increasing function, we thus conclude
that v(t) ≥ v(0) > 0 for all t ≥ 0.

Thus, we can take a logarithm of all the values, and for the new function w(t) def= ln(v(t)), get
an equation

w(t1 + t2) = ln(v(t1 + t2)) = ln(v(t1) · v(t2)) = ln(v(t1)) + ln(v(t2)) = w(t1) + w(t2),

i.e., w(t1 + t2) = w(t1) + w(t2) for all t1 and t2. The function w(t) is increasing – as the logarithm
of an increasing function. Thus, as we have already shown, w(t) = c · t for some c > 0.

From the logarithm w(t) = ln(v(t)), we can reconstruct the original disutility function v(t) as
v(t) = exp(w(t)). Since w(t) = c · t, we conclude that the disuility function v(t) has the desired
risk-averse exponential form

v(t) = exp(c · t).

12◦. When k < 0, the new function is strictly decreasing (and is thus not a disutility function; its
opposite −v(t) is a disutility function).

For the function v(t), we cannot have v(t0) = 0 for any t0 – because otherwise we would have

v(t) = v(t0 + (t− t0)) = v(t0) · v(t− t0) = 0

for all t ≥ t0 which contradicts to our conclusion that the function v(t) should be strictly decreasing.
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13◦. For the function v(t), we cannot have v(t0) < 0 for any t0 > 0 – because otherwise, we would
have v(2t0) = v(t0)2 > 0 hence v(2t0) > v(t0) – which, since 2t0 > t0, also contradicts to our
conclusion that the function v(t) should be strictly decreasing.

We thus conclude that v(t) > 0 for all t.

14◦. Thus, we can take a logarithm of all the values, and for the new function w(t) def= ln(v(t)), get
the equation w(t1 + t2) = w(t1) + w(t2) for all t1 and t2. The function w(t) is decreasing – as the
logarithm of a decreasing function. Thus, w(t) = −c · t for some c > 0.

From the logarithm w(t) = ln(v(t)), we can reconstruct the original function v(t) as v(t) =
exp(w(t)) = exp(−c · t), and the disutility function u(t) as −v(t) = − exp(−c · t).

So, we conclude that the disuility function v(t) has the desired risk-prone exponential form
v(t) = − exp(−c · t).

The theorem is proven.
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Abstract. In the field of scientific computing, the exactitude of the calculation is of prime
importance. That leads to efforts made to increase the precision of the floating-point algorithms.
One of them is to increase the precision of the floating-point number to double or quadruple the
working precision. The building block of these efforts is the error-free transformations.

CELL processor is a microprocessor architecture jointly developed by a Sony, Toshiba, and IBM.
Although its first major commercial application of Cell was in Sony’s PlayStation 3 game console,
it can provide a great potential for scientific computing with a peak single precision performance
of 204.8 Gflop/s.

In this paper, we will do the study on how to implement the double working precision library,
named single-single, on the SPEs (Synergistic Processing Element), the workhorse processors of the
CELL. The methodology of this implementation is based on the paper of Yozo Hida, Xiaoye S. Li,
and David H. Bailey, titled ”Algorithms for quad-double precision floating point arithmetic”.

To improve the performance, the FPU of the SPE supports only the truncation rounding. So all
the floating point operations used in the implementation of the library can only use this rounding
mode, which requires to make some modifications to the algorithms. That increases the complexity
of the implementation. However by taking advantage of the characteristics of the SPE processor,
among which the most important are the fully pipelined set of instructions in single precision
and the FMA (Fused Multiplier-Add) function, we have managed to implement the error-free
transformations very effectively, even more quickly than the ones used in the paper (Hida et al.,
2001). With the SIMD characteristic, we can perform 4 operations at the same time. We also prove
the exactitude of our modified error-free transformation, and the precision of our floating-point
arithmetics by providing error bounds.

Even though the theoretical peak performance of the library is much less than the performance
of the real double precision of the machine, which is about 2.7 Gflop/s in comparison with the 14.4
Gflop/s of the real double precision, the results of our test show that it is not such that bad. In the
best case, the performance of our library and the performance of the real double are nearly equal.
With the same approach, in the future, we will promote our work to the quad-single precision,
which is very promising because the CELL processor does not support the quad precision.

Keywords: extended precision, rounding mode toward zero, CELL processor
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1. Introduction

The CELL processor jointly developed by Sony, Toshiba, and IBM provides a great power of
calculation with a peak performance in single precision of 204.8 Gflop/s. This performance is
obtained with a set of SIMD processors which use single precision floating point numbers with
rounding mode toward zero. The goal of our work is to develop extended precision libraries for this
architecture.

In this paper we will study how to implement the double working precision library named
single-single on the SPEs (Synergistic Processing Element) which are the workhorse processors of
the CELL. Our approach is similar to those used in (Hida et al., 2001) for the quad-double precision
arithmetic in the rounding mode to the nearest. The next CELL generation will provide powerfull
computing power in double precision with a rounding toward zero. Our library will be easily fit
into double-double library which will emulate the quad precision.

This paper begins with a brief introduction to the CELL processor, then we propose algorithms
for the operators (+,−,×, /) of extended precision based on the error-free transformations for the
rounding mode toward zero. The next section is devoted to the implementation of the single-single
library on the SPE by taking into account the advantages of the SIMD characteristics, among
which the most important are the fully pipelined single precision instructions set and the FMA
(Fused Multiply-Add). Finally, the numerical experiments and the test results showing the library
performance are presented.

2. Introduction to CELL processor

The CELL processor (Kahle et al., 2005; Williams et al., 2006) is composed of one “Power Processor
Element” (PPE) and eight “Synergistic Processing Elements” (SPE). The PPE and SPEs are linked
together by an internal high speed bus called “Element Interconnect Bus” (EIB).

The PPE is based on the Power Architecture. Despite its important computing power, in prac-
tical use, it only serves as a controller for the eight SPEs which perform most of the computational
workload.

The SPE is composed of an “Synergistic Processing Unit” (SPU) and a “Memory Flow Con-
troller” (MFC) which is devoted to the memory transfer via the DMA access. The SPE contains an
SIMD processor for single and double precision (Jacobi et al., 2005; Gschwind et al., 2006), which
can perform at the same time 4 operations in single precision or 2 operations in double precision.
It supports all the 4 rounding modes for the double precision and only the rounding mode toward
zero for the single precision.

The instruction set in single precision of the SPE is fully pipelined, one instruction can be issued
for each clock cycle. It is based on the FMA function, which calculates the term a ∗ b + c in one
operation and one rounding. So with a frequency of 3.2 GHz, each SPE can achieve the performance
of 2 × 4 × 3.2 = 25.6 GFLOPs on single precision numbers.

For the double precision, the instruction set is not fully pipelined. It is only possible to issue
one instruction for each 7 cycles. So the peak performance of each SPE for the double precision is:
2 × 2 × 3.2/7 = 1.8 GFLOPs.
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Each SPE has a “Local Storage” (LS) of 256 KB for both data and code. In the opposite of the
cache memory managment, there is no mechanism to load data in the LS. It is up to the programmer
to explicit data transfer via DMA function call. The SPE possess a large set of registers (128 128-bits
registers) which can be used directly by the program avoiding the load-and-store time.

3. Floating-point arithmetic and extended precision

In this section we briefly introduce the floating-point arithmetic and the methodology to extend
the precision. In this paper, due to the specific environment of the CELL processor, we work only
with the rounding mode toward zero.

In a computer, the set of floating-point numbers denoted F is the most frequently used to
represent real numbers. A binary floating-point number is described as follows:

x = (±) 1.x1 . . . xp−1︸ ︷︷ ︸
mantissa

×2e, xi ∈ {0, 1},

with p the precision and e the exponent of x. We use ε = 21−p as the machine precision, and
the value corresponding to the last bit of x is called unit in the last place, denoted ulp(x) and
ulp(x) = 2e−p+1.

Let x, y be two floating-point numbers, ◦ be a floating-point operation (◦ ∈ {+,−,×, /}). It
is clear that (x ◦ y) is a real number but in most cases it is not representable by a floating-point
number. Let fl(x◦y) be the representative floating-point number of (x◦y) obtained by a rounding.
The difference between (x ◦ y) and fl(x ◦ y) corresponds to the rounding error denoted err(x ◦ y).

Given a specific machine precision, the precision of calculation can be increased by software.
Instead of using a floating-point number, multiple floating-point numbers can be used to represent
multiple parts of a real number. This is the idea of the extended precision. In our case, a single-single
is defined as follows:

Definition 1. A single-single is a non-evaluated sum of 2 single precision floating-point numbers.
The single-single represents the exact sum of these two floating-point numbers:

a = ah + al.

There may be multiple couples of 2 floating-point numbers whose sums are equal. To ensure a
unique representation, ah and al should have the same sign and require to satisfy:

|al| < ulp(ah). (1)

To implement the extended precision we have to calculate the error produced by single precision
operations by using the error-free transformations presented below.
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3.1. The error-free transformations (EFT)

Let x, y be two floating-point numbers and ◦ be a floating-point operation. The error-free transfor-
mations are intended to calculate the rounding error caused by this operation. The EFTs transform
(x ◦ y) into a couple of two floating-point numbers (r, e) so that:

r ≈ x ◦ y and r + e = x ◦ y.

3.1.1. Accurate sum

There are two main algorithms for the accurate sum of two floating point numbers. For example
for the rounding mode to nearest, there is the algorithm proposed by Knuth (Knuth, 1998) which
uses 6 standard operations, or the algorithm proposed by Dekker (Dekker, 1971) which uses only
3 standard operations but with the assumption on the order between the absolute values of two
input numbers.

In this paper, our work focuses only on the rounding mode toward zero. So, it is necessary to
adapt these algorithms. Priest (Priest, 1992) has proposed an algorithm for an accurate sum using
a rounding mode toward zero. To better use the pipelines, we proposed another algorithm.

Algorithm 1. Error-free transformation for the sum with rounding toward zero.

Two−Sum−toward−zero2 (a , b)
i f ( | a | < | b | )

swap (a , b)
s = f l ( a + b)
d = f l ( s − a )
e = f l (b − d)
i f ( | 2 ∗ b | < | d | )

s = a , e = b
return ( s , e )

The exactitude of the newly proposed algorithm is provided in the following theorem.

Theorem 1. Let a, b be two floating-point numbers. The result of Two-Sum-toward-zero2 (s, e)
in applying on a, b satisfies:

s + e = a + b,

|e| < ulp(s).

The proof of all the theorems of this paper can be found in (Nguyen, 2007) (in french).

3.1.2. Accurate product

The calculation of the error-free transformation for the product is much more complicated than the
sum (Dekker, 1971). But if the processor has a FMA (Fused Multiply-Add) which calculates the
term a ∗ b + c in one operation then the classic algorithm for the product can be used.
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Algorithm 2. The error-free transformation for the product of two floating-point numbers.

Two−Product−FMA (a , b)
p = f l ( a ∗ b)
e = fma(a , b,−p)
return (p , e )

This algorithm is applicable for all the four rounding modes. The basic operation on the SIMD
unit of the SPE being a FMA, our libray implements this algorithm.

4. Basic operations of single-single

4.1. Renormalisation

Using the EFTs toward zero, we can implement the basic operations for the single-single. Most of the
algorithms described hereafter often produce an intermediate result of two overlapping floating point
numbers. To respect the definition of the normalisation (1), it is necessary to apply a renormalisation
step to transform these two floating-point numbers into a normalised single-single. The following
function is proposed:

1 Renormalise2−toward−zero ( a , b)
2 i f ( | a | < | b | )
3 swap (a , b)
4 s = f l ( a + b)
5 d = f l ( s − a )
6 e = f l (b − d)
7 return ( s , e )

It is interesting to note that the renormalisation is the same for the rounding mode toward zero
and to the nearest. But in the case of the rounding mode toward zero, it is not possible to give an
exact result. The following theorem provides an error bound for this algorithm.

Theorem 2. Let a, b be two floating-point numbers. The result returned by Renormalise2-toward-zero

is a couple of two floating-point numbers (s, e) which satisfies:

− s, e have the same sign and |e| < ulp(s),

− a + b = s + e + δ, where δ is error of normalisation and |δ| ≤ 1
2ε2|a + b|.

As we will see later, this error is much smaller than the errors produced by the following
algorithms. To describe them, we use the notations in figure 4.1.

4.1.1. Addition

The figure 2 represents the algorithm for the addition of two single-singles a, b. The source code is
as follows:
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Two-Sum Two-Product Quick-Two-Sum

Standard summation Standard product

Figure 1. Notations

bhah blal

Renormalisation

rh rl

Figure 2. Algorithm for the addition of two single-singles

1 add ds ds ( ah , al , bh , b l )
2 ( th , t l ) = Two−Sum−toward−zero ( ah , bh)
3 t l l = f l ( a l + b l )
4 t l = f l ( t l + t l l )
5 ( rh , r l ) = Renormalise2−toward−zero ( th , t l )
6 return ( rh , r l )

With two sums, a Two-Sum-toward-zero and a Renormalise2-toward-zero, the cost of the
add ds ds algorithm is 11 FLOPs. The following theorem provides an error bound for this algorithm.

Theorem 3. Let ah + al and bh + bl be two input single-singles and rh + rl be the result of
add ds ds. The error produced by this algorithm δ satisfies:

rh + rl = (ah + al) + (bh + bl) + δ,

|δ| < max(2−23 ∗ |al + bl|, 2−43 ∗ |ah + al + bh + bl|) + 2−45 ∗ |ah + al + bh + bl|.
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bhah bhal

bl

ah

Renormalisation

rh rl

Figure 3. Algorithm for the product of two single-singles

4.1.2. The subtraction

The subtraction of two single-singles a − b is implemented by a sum a + (−b). To compute the
opposite of a single-single, it is just necessary to get the opposite of the floating-point components.
Therefore, the algorithms for the addition and the subtraction are similar.

4.1.3. Product

The product between two single-singles a and b can be considered as the product of two sum ah +al

and bh + bl so the exact product has 4 components:

p = (ah + al) × (bh + bl)

= ah × bh + al × bh + ah × bl + al × bl.

Considering ah × bh as a term of order O(1), this product consists of 1 term O(1), 2 terms O(2)
and 1 term O(3). To decrease the complexity of the algorithm the terms of order below O(2) will
not be taken into account. Additionally, using the EFT for the product, ah× bh can be transformed
exactly into 2 floating-point numbers of orders O(1) and O(2) respectively. So the product of two
single-singles can be approximated by:

p ≈ fl(ah × bh)︸ ︷︷ ︸
O(1)

+ (err(ah × bl) + al × bh + ah × bl)︸ ︷︷ ︸
O(2)

.

This approximation can be easily translated into the following algorithm:

1 mul ds ds ( ah , al , bh , b l )
2 ( th , t l ) = Two−Product−FMA (ah , bh)
3 t l l = f l ( a l ∗ bh)
4 t l l = f l ( ah ∗ b l + t l l )
5 t l = f l ( t l + t l l )
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6 ( rh , r l ) = Renormalise2−toward−zero ( th , t l )
7 return ( rh , r l )

This algorithm is described in figure 3.
The error bound of the algorithm mul ds ds is provided by the following theorem.

Theorem 4. Let ah + al and bh + bl be two single-singles. Let rh + rl be the result returned
by the algorithm mul ds ds applying to ah + al and bh + bl. The error of this algorithm called δ

satisfies:

|(rh + rl)− (ah + al)× (bh + bl)| < 2−43 × |(ah + al)× (bh + bl)|+ 9× 2−68 × |(ah + al)× (bh + bl)|.

4.1.4. The division

The division of two single-singles is calculated by using the classic division algorithm.
Let a = (ah, al) and b = (bh, bl) be two single-singles. To calculate the division of a by b, at first

we calculate the approximate quotient by: qh = ah/bh.
Then we calculate the residual r = a− qh × b, which allows to calculate the correction term by:

ql = r/bh.
It can be written in detail as follows:

1 d i v d s d s ( a , b)
2 ph = f l ( ah / bh)
3 tmp1 = f l ( ah − qh ∗ bh)
4 tmp2 = f l ( a l − qh ∗ b l )
5 r = f l ( tmp1 + tmp2)
6 p1 = f l ( r / bh)
7 (qh , q l ) = Renormalise2−toward−zero (ph , p l )
8 return (qh , q l )

We also provide the following theorem to estimate the error of this algorithm.

Theorem 5. Let a = (ah, al) and b = (bh, bl) be two single-singles, ε the machine precision, and
ε1 the error bound for the single precision division with O(ε1) = O(ε). The error of the algorithm
div ds ds is bounded by:

|div ds ds(a, b)) − a/b| < [ε2 × (6.5 + 7 × ε1/ε + 2 × (ε1/ε)
2) + O(ε3))] × |a/b|.

In most of cases we have ε1 = ε. In this case, the error bound of this algorithm is:

|q − a/b| < [15.5 × ε2 + O(ε3)] × |a/b|.

This inequality means that our division algorithm of two single-singles is accurate to 42 bits
on a maximum of 48 bits. The accuracy of this algorithm can be increased by calculating another
correction term q2 but it has a great impact on the performance.
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hi1 lo1 hi2 lo2

︸ ︷︷ ︸
single−single 1

︸ ︷︷ ︸
single−single 2

Figure 4. A vector of 2 single-singles

5. Implementation

The SPE (Synergistic Processor Element) of CELL processor contains a 32-bit 4-way SIMD proces-
sor together with a large set of 128 128-bits registers. It can perform the operations on the vectors
of 16 char /unsigned char, 4 int/unsigned int, 4 float or 2 double.

The operations on scalars are implemented by using the vectorial operations. In this case,
only one operation is performed on the preferred slot instead of 4 on vectors. For this reason,
we implement only the vectorial operations for the single-singles.

5.1. Representation

A single-single is a couple of two floating-point numbers so each vector of 128 bits contains two
single-singles (figure 4). So, the 128 bits register containing two single-single numbers could be seen
as a vector of 4 floating points numbers.

5.2. Implementation of the error-free transformations

The EFT for the product is simply implemented by two instructions as follows:

1 Two−Prod−FMA (a , b)
2 p = spu mul ( a , b)
3 e = spu msub (a , b , p)
4 return (p , e )

The algorithm of the EFT for the sum begins with a test and a swap. This test limits the
possibility of parallelism. So, we have to first eliminate this test by the following procedure:

− evaluation of the condition. The result is a vector comp of type unsigned int, in which a value
of zero means the condition holds and a value of FFFFFFFF for the opposite case.

− computation of the values of the two branches val 1 (if the condition is satisfied) and val 2

(if not).

− selection of the right value according to the vector of condition by using bit selection function:

d = spu sel(val 2, val 1, comp).

For each bit in the 128-bit vector comp, the corresponding bit from either vector val2 or val1
is selected. If the bit is 0, the bit from val2 is selected; otherwise, the bit from val1 is selected.
The result is returned in vector d.
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a a1 a2 a3 a4

b b1 > a1 b2 < a2 b3 = a3 b4 > a4

comp = spu cmpabsgt(b, a)

FFFFFFFF 00000000 00000000 FFFFFFFF

hi = spu sel(a, b, comp)

b1 a2 a3 b4

lo = spu sel(b, a, comp)

a1 b2 b3 a4

Figure 5. Example of the exchange of two vectors

For example, the test and the swap can be coded as follows:

1 comp = spu cmpabsgt (b , a )
2 h i = spu s e l ( a , b , comp)
3 l o = spu s e l (b , a , comp)

Figure 5 gives a concrete example of this exchange.
Each spu cmpabsgt costs 2 clock cycles and the spu sel too. Moreover, since the instructions

of lines 2, 3 of this code are independent, they can be pipelined. So these 3 instructions cost only
5 clock cycles, which is less than a single precision operation (6 clock cycles for the FMA).

Applying the same procedure for the last conditional test of the algorithm Two-Sum-toward-zero2,
this algorithm can be rewritten as follows:

1 Two−Sum−toward−zero2 (a , b)
2 comp = spu cmpabsgt (b , a )
3 h i = spu s e l ( a , b , comp)
4 l o = spu s e l (b , a , comp)
5 s = spu add ( a , b)
6 d = spu sub ( s , h i )
7 e = spu sub ( l o , d)
8 tmp = spu mul (2 , l o )
9 comp = spu cmpabsgt (d , tmp)

10 s = spu s e l ( s , hi , comp)
11 e = spu s e l ( e , lo , comp)
12 return ( s , e )

Note that the addition of a and b does not change after the exchange. So we choose to use a + b

instead of hi + lo to avoid the instructions dependencies. More precisely the 3 first instructions for
the test and the exchange are independent of the instruction of line 5 which costs 6 cycles. So, they
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start

instr 2
2 cycles

instr 5
6 cycles

instr 3
2 cycles

instr 4
2 cycles

instr 6
6 cycles

instr 7
6 cycles

instr 8
6 cycles

instr 9
2 cycles

instr 11
2 cycles

instr 10
2 cycles

end

Figure 6. The dependencies between instructions of algorithm Two-Sum-toward-zero

can be executed in parallel1. The figure 6 emphasis the full independencies of instructions. This
algorithm costs 20 clock cycles, which is a little bit more than the execution time of 3 consecutive
double precision operations.

5.3. Renormalisation

The implementation of algorithm Renormalise2-toward-zero is similar to the Two-Sum-toward-zero2
algorithm but without the conditional test and the exchange at the end.

1 Renormalise2−toward−zero ( a , b)
2 s = spu add ( a , b)
3 comp = spu cmpabsgt (b , a )
4 h i = spu s e l ( a , b , comp)
5 l o = spu s e l (b , a , comp)
6 d = spu sub ( s , h i )
7 e = spu sub ( l o , d)
8 return ( s , e )

With the same analysis as Two-Sum-toward-zero2, Renormalise2-toward-zero costs only 18
clock cycles. Now we will use these two functions to implement the arithmetic operators of single-
singles.

5.4. Version 1

The natural version on single-single operations computes one operation on TWO single-singles. The
SIMD processor allows us to manipulate simultaneously four 32 bits floating point numbers at the
same time. When applying to vectors of single-singles, we can manipulate both the high and low
components of these single-singles.

1 On the SPE, there are 2 pipelines. The first one is devoted to numerical operations, the second one for control
and logical operations. The two pipelines can be used in parallel.
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Using the Two-Sum-toward-zero2 presented above we calculate the sums and the rounding
errors of two couples of high components and also of two couples of low components in the same
time. Note that the rounding errors of these two couples of low components is computed, but not
used by the algorithm.

Moreover, in the algorithms, it is necessary to compute operations between high and low com-
ponents. This requires some extra operations to shuffle those components. So the first version does
not take full advantage of the SIMD processor. We have implemented the first version for the sum
and the product of single-singles which are add ds ds 2, mul ds ds 2 and cost 50 cycles and 49
cycles respectively for two single-singles.

5.5. Version 2

The second version computes one operation on FOUR single-singles. It separates the high and the
low components into two separated vectors (see figure 7) by using the function spu shuffle of SPE
which costs 4 clock cycles. This solution makes it possible a better optimisation of the pipelined
instructions

merge1 vect 00 01 02 03 10 11 12 13 08 09 0a 0b 18 19 1a 1b

merge2 vect 04 05 06 07 14 15 16 17 0c 0d 0e 0f 1c 1d 1e 1f

a a1
hi a1

lo a2
hi a2

lo

b b1
hi b1

lo b2
hi b2

lo

a hi = spu shuffle(a, b, merge1 vect )

a1
hi b1

hi a2
hi b2

hi

a lo = spu shuffle(a, b, merge2 vect )

a1
lo b1

lo a2
lo ab2

lo

Figure 7. Merging of two vectors

Then, the operators can be implemented by applying directly the algorithms presented above
on four operands separated in four vectors.

The intermediate result of these algorithms is also two vectors which contain respectively the
four high parts and the four low parts of the result. At the end of the algorithm, the result vectors
should be built by shuffling the high and the low components.

For example, the version 2 for the sum of single-singles is written as follows2

1 add ds ds 4 ( vect a1 , vect a2 , vect b1 , vect b2 )
2 a h i = spu s hu f f l e ( vect a1 , vect a2 , merge1 vec t )
3 a l o = spu s hu f f l e ( vect a1 , vect a2 , merge2 vec t )
4 b h i = spu s hu f f l e ( vect b1 , vect b2 , merge1 vec t )
5 b l o = spu s hu f f l e ( vect b1 , vect b2 , merge2 vec t )
6 ( s , e ) = Two−Sum−toward−zero ( a h i , b h i )

2 The SIMD unit computes on 128-bits vectors. The 4 single-singles values of a and b are cut into two parts to
keep the register organisation.
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7 t1 = spu add ( a l o , b l o )
8 tmp = spu add ( t1 , e )
9 ( hi , l o ) = Renormalise2−toward−zero ( s , tmp)

10 vec t c1 = spu s hu f f l e ( hi , lo , merge1 vec t )
11 vec t c2 = spu s hu f f l e ( hi , lo , merge2 vec t )
12 return ( vect c1 , vec t c2 )

Figure 8 shows the dependencies between instructions of this function. By using the tool spu timing

of IBM, the execution time of this function is 64 clock cycles for four single-singles.

start

instr 2
4 cycles

instr 3
4 cycles

instr 4
4 cycles

instr 5
4 cycles

instr 6
23 cycles

instr 7
6 cycles

instr 8
6 cycles

instr 9
18 cycles

instr 10
4 cycles

instr 11
4 cycles

end

Figure 8. The dependencies between instructions of add ds ds 4

It is the same for the product of single-singles. We have successfully implemented the version 2
of the product of single-singles, called mul ds ds 4 with an execution time of 60 clock cycles for
four single-singles.

The implementation of the division is more complicated. As described in the previous section,
the division of single-singles div ds ds is based on the division in single precision, meanwhile the
CELL processor does not support this kind of operation. It provides only a function to estimate
the inverse of a floating-point number called spu re which allows us to obtain a result precise up
to 12 bits. So in order to implement the division of single-singles, we first have to implement the
division in single precision.

The procedure to calculate the division of two 32 bits floating-point numbers a and b is as
follows:

1. calculate the inverse of b,

2. multiply the inverse of b with a.

To improve the precision of the inversion we use the iterative Newton’s method with the formula:
invi+1 = invi + invi × (1− invi × b). We also use the Newton’s method for the multiplication with
a × inverse(b) being the initial value. The division in single precision can be written as follows:
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1 div ( a , b)
2 tmp0 = spu re (b)
3 r e r r = spu nmsub (tmp , b , 1)
4 inv = spu madd ( r e r r , tmp0 , tmp0)
5 r e r r = spu nmsub ( inv , b , 1)
6 e e r r = spu mul ( r e r r , inv )
7 tmp = spu mul ( e e r r , a )
8 q = spu madd ( a , inv , tmp)
9 return q

The precision of the algorithm div is provided by the following theorem.

Theorem 6. Let a, b be two floating-point numbers in single precision, ε being the machine
precision. The relative error of the algorithm div is bounded by:

|div(a, b) − a/b| < [ε + O(ε2)] × |a/b|.

Using the newly implemented single-precision division operator and the algorithm of division
of single-singles presented above, we have implemented the function div ds ds 4 which calculates
fours single-single divisions at the same time. This function costs 111 clock cycles for four single-
singles.

5.6. Optimised algorithms

The versions 2 of the single-single operators performs four operations at the same time, and they
have taken full advantage of the SIMD processor which provides an important performance of
calculation. But using the spu timing tool of IBM we recognized that there still left many non-used
clock cycles in the process of calculation of each operator.

We can use these non-used clock cycles by increasing the number of operations executed at the
same time.

With the restricted local storage (only 256 KB for both the code and data) we choose to
implement operations on EIGHT single-singles. This third version is considered as the optimal
version in our library. The third version of the sum, the product and the division are named
add ds ds 8, mul ds ds 8, div ds ds 8 and cost respectively 72 cycles, 63 cycles and 125 cycles

for eight single-singles. In comparison with the version 2 with only some supplementary clock cycles
(for example 8 cycles for the sum and 3 cycles for the product) we can execute 8 single-single
operations instead of 4. It means that we have achieved a coarse gain with the final version in
terms of performance.

Almost every clock cycles being used, there would be no gain to deal with sixteen single-singles.
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Table I. Theoretical results of the single-single library

Function Number of operations Execution time Performance

add ds ds 2 2 50 cycles 0.128 GFLOPs

add ds ds 4 4 64 cycles 0.2 GFLOPs

add ds ds 8 8 72 cycles 0.355 GFLOPs

mul ds ds 2 2 49 cycles 0.130 GFLOPs

mul ds ds 4 4 60 cycles 0.213 GFLOPs

mul ds ds 8 8 63 cycles 0.406 GFLOPs

div ds ds 4 4 111 cycles 0.115 GFLOPs

div ds ds 8 8 125 cycles 0.2048 GFLOPs

5.7. Theoretical results

On a CELL processor with a frequency of 3.2 GHz, its theoretical performances (without memory
access problem) of the single-single are presented in table I.

6. Numerical simulations

6.1. Experimental results

To test the performance of the single-single library, we created a program which performs the basic
operators on two large vectors of single-single and also on two large double precision vectors of the
same size. To achieve the peak performance of the library we use the third version of each operator.
Double-buffering is used to hide data transfer time.

This program is executed on a IBM CELL Blade based at CINES, Montpellier, France. The
CPU frequency is 3.2GHz. The results obtained are listed in the table II.

Figure 9 illustrates the performance of the addition on single-singles and on native double
precision. Both have the same memory size. They are very close. It is interesting to note that
the maximum performance with 64 bits floating point is not reached. In this case the program
measures mainly the memory transfer time. The native double operation are completely hidden.

For the single-singles, the computing time of one operation is on the same order as the transfer
memory necessary for one operation. This kind of program benefits for our library.

To have another comparison, another program is created which executes a large number of
basic operators on a small number of data generated within the SPE without any data transfer.
The execution time of the program is exactly the time of calculation. The results are presented
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Table II. Real performances of the library single-single

Functions Theoretical performance Experimental performance

add ds ds 8 355 MFLOPs 250.4 MFLOPs

mul ds ds 8 406 MFLOPs 287.2 MFLOPs

div ds ds 8 204 MFLOPs 166.4 MFLOPs

SPE number

MFLOPs

single-single

native double

1 2 4 81 2 4 8

336

559

932

1089

Figure 9. The performance of the library single-single: The addition

in table III. The peak performance for the multiplication on the CELL processor is achieved for
native double precision.

With the single-singles numbers, it is not possible to achieve the same performance than with
the native double precision. This is mainly due to two factors:

− the cost of the function call,

− the transfer from the local memory to the registers.

6.2. Exactitude

The exactitude of the library is tested by performing a large number of operations on random values
of single-single and their corresponding double precision values. With 224 comparisons, the results
are summarized in table IV.
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Table III. Performance of the single-single library and of the double precision of the machine, without data transfer

Theoretical Experimental Experimental

Functions performance performance performance

(1SPE) (1 SPE) (8 SPEs)

add ds ds 8 355 MFLOPs 266 MFLOPs 2133 MFLOPs

mul ds ds 8 406 MFLOPs 320 MFLOPs 2560 MFLOPs

div ds ds 8 204 MFLOPs 172 MFLOPs 1383 MFLOPs

sum in double precision 914 MFLOPs 914 MFLOPs 7314 MFLOPs

product in double precision 914 MFLOPs 914 MFLOPs 7314 MFLOPs

division in double precision (not supported) 86 MFLOPs 691 MFLOPs

Table IV. The exactitude of single-single library

Operation Max difference Mean difference

Sum 0.0e+00 0.00e+00

Product 2.964e-14 1.425e-16

Division 2.373e-14 1.758e-15

7. Conclusions and perspectives

This paper is based mostly on (Hida et al., 2001) with some adaptations to the rounding mode
toward zero and to the implementation environment of CELL processor. First we propose an
algorithm for the error-free transformation of the sum which is proved to be effectively implemented
on the CELL processor. Then, we introduce the methodology to develop the extended precision
of single-single with such basic operators that the sum, the product and the division. A large
part of this paper is dedicated to the implementation of this library in exploiting the specific
characteristics of CELL processor, among which the most important are the truncation rounding,
the SIMD processor and the fully pipelined instruction set. The performance and the precision
of the implemented library is tested by running test programs on a real CELL processor with a
frequency of 3.2GHz.

In the future, this library could be completed by the treatment of numeric exceptions, by the
binary operations, algebraic operations and transcendental operations.

Waiting for the next CELL generation, we are developing the quad-single precision library. With
the next generation of CELL processor, we will be able to easily get:
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− the quad precision implemented with double-double numbers with the methodology of the
single-single library,

− the quad-double precision implemented with four double numbers with the methodology of the
quad-single library.

These precisions are needed by more and more current applications.
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Abstract. Several different techniques and softwares intend to improve the accuracy of results
computed in a fixed finite precision. Here we focus on a method to improve the accuracy of the
product of floating point numbers. We show that the computed result is as accurate as if computed
in twice the working precision. The algorithm is simple since it only requires addition, subtraction
and multiplication of floating point numbers in the same working precision as the given data. Such
an algorithm can be useful for example to compute the determinant of a triangular matrix and to
evaluate a polynomial when represented by the root product form. It can also be used to compute
the power of a floating point number.

Keywords: accurate product, exponentiation, finite precision, floating point arithmetic, faithful
rounding, error-free transformations

AMS Subject Classification: 65-04, 65G20, 65G50

1. Introduction

In this paper, we present fast and accurate algorithms to compute the product of floating point
numbers. Our aim is to increase the accuracy at a fixed precision. We show that the results have the
same error estimates as if computed in twice the working precision and then rounded to working
precision. Then we address the problem on how to compute a faithfully rounded result, that is to
say one of the two adjacent floating point numbers of the exact result.

This paper was motived by papers (Ogita et al., 2005a; Rump et al., 2005; Graillat et al.,
2005; Langlois and Louvet, 2007) and (Kornerup et al., 2007) where similar approaches are used to
compute summation, dot product, polynomial evaluation and power.

The applications of our algorithms are multiple. One of the examples frequently used in Ster-
benz’s book (Sterbenz, 1974) is the computation of the product of some floating point numbers.
Our algorithms can be used to compute the determinant of a triangle matrix. Another application
is for evaluating a polynomial when represented by the root product form p(x) = an

∏n
i=1(x− xi).

We can also apply our algorithms to compute the power of a floating point number.
The rest of the paper is organized as follows. In Section 2, we recall notations and auxiliary

results that will be needed in the sequel. We present the floating point arithmetic and the so-called
error-free transformations. In Section 3, we present a classic algorithm to compute the product
of floating point numbers. We give an error estimate as well as a validated error bound. We also

c© 2008 by authors. Printed in USA.
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present a new compensated algorithm together with an error estimate and a validated error bound.
We show that under mild assumptions, our algorithm gives a faithfully rounded result.

2. Notation and auxiliary results

2.1. Floating point arithmetic

Throughout the paper, we assume to work with a floating point arithmetic adhering to IEEE 754
floating point standard in rounding to nearest (IEEE Computer Society, 1985). We assume that
no overflow nor underflow occur. The set of floating point numbers is denoted by F, the relative
rounding error by eps. For IEEE 754 double precision, we have eps = 2−53 and for single precision
eps = 2−24.

We denote by fl(·) the result of a floating point computation, where all operations inside
parentheses are done in floating point working precision. Floating point

operations in IEEE 754 satisfy (Higham, 2002)

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2) for ◦ = {+,−, ·, /} and |εν | ≤ eps.

This implies that

|a ◦ b− fl(a ◦ b)| ≤ eps|a ◦ b| and |a ◦ b− fl(a ◦ b)| ≤ eps| fl(a ◦ b)| for ◦ = {+,−, ·, /}. (1)

2.2. Error-free transformations

One can notice that a ◦ b ∈ R and fl(a ◦ b) ∈ F but in general we do not have a ◦ b ∈ F. It is known
that for the basic operations +,−, ·, the approximation error of a floating point operation is still a
floating point number (see for example (Dekker, 1971)):

x = fl(a± b) ⇒ a± b = x + y with y ∈ F,
x = fl(a · b) ⇒ a · b = x + y with y ∈ F.

(2)

These are error-free transformations of the pair (a, b) into the pair (x, y).
Fortunately, the quantities x and y in (2) can be computed exactly in floating point arithmetic.

For the algorithms, we use Matlab-like notations. For addition, we can use the following algorithm
by Knuth (Knuth, 1998, Thm B. p.236).

ALGORITHM 2.1 (Knuth (Knuth, 1998)). Error-free transformation of the sum of two floating
point numbers

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))
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Another algorithm to compute an error-free transformation is the following algorithm from
Dekker (Dekker, 1971). The drawback of this algorithm is that we have x+ y = a+ b provided that
|a| ≥ |b|. Generally, on modern computers, a comparison followed by a branching and 3 operations
costs more than 6 operations. As a consequence, TwoSum is generally more efficient than FastTwoSum.

ALGORITHM 2.2 (Dekker (Dekker, 1971)). Error-free transformation of the sum of two floating
point numbers with |a| ≥ |b|.
function [x, y] = FastTwoSum(a, b)

x = fl(a + b)
y = fl((a− x) + b)

For the error-free transformation of a product, we first need to split the input argument into
two parts. Let p be given by eps = 2−p and define s = dp/2e. For example, if the working precision
is IEEE 754 double precision, then p = 53 and s = 27. The following algorithm by Dekker (Dekker,
1971) splits a floating point number a ∈ F into two parts x and y such that

a = x + y and x and y nonoverlapping with |y| ≤ |x|.

ALGORITHM 2.3 (Dekker (Dekker, 1971)). Error-free split of a floating point number into two
parts

function [x, y] = Split(a, b)
factor = fl(2s + 1)
c = fl(factor · a)
x = fl(c− (c− a))
y = fl(a− x)

With this function, an algorithm from Veltkamp (see (Dekker, 1971)) makes it possible to
compute an error-free transformation for the product of two floating point numbers. This algorithm
returns two floating point numbers x and y such that

a · b = x + y with x = fl(a · b).

ALGORITHM 2.4 (Veltkamp (Dekker, 1971)). Error-free transformation of the product of two
floating point numbers

function [x, y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x− a1 · b1)− a2 · b1)− a1 · b2))

The following theorem summarizes the properties of algorithms TwoSum and TwoProduct.
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THEOREM 2.1 (Ogita, Rump and Oishi (Ogita et al., 2005a)). Let a, b ∈ F and let x, y ∈ F such
that [x, y] = TwoSum(a, b) (Algorithm 2.1). Then,

a + b = x + y, x = fl(a + b), |y| ≤ eps|x|, |y| ≤ eps|a + b|. (3)

The algorithm TwoSum requires 6 flops.
Let a, b ∈ F and let x, y ∈ F such that [x, y] = TwoProduct(a, b) (Algorithm 2.4). Then,

a · b = x + y, x = fl(a · b), |y| ≤ eps|x|, |y| ≤ eps|a · b|. (4)

The algorithm TwoProduct requires 17 flops.

3. Accurate floating point product

In this section, we present a new accurate algorithm to compute the product of floating point
numbers. In Subsection 3.1, we recall the classic method and we give a theoretical error bound
as well as a validated computable error bound. In Subsection 3.2, we present our new algorithm
based on a compensated scheme together with a theoretical error bound. In Subsection 3.3, we give
sufficient conditions on the number of floating point numbers so as to get a faithfully rounded result.
Finally, in Subsection 3.4, we give a validated computable error bound for our new algorithm.

3.1. Classic method

The classic method for evaluating a product of n numbers a = (a1, a2, . . . , an)

p =
n∏

i=1

ai

is the following algorithm.

ALGORITHM 3.1. Product evaluation

function res = Prod(a)
p1 = a1

for i = 2 : n
pi = fl(pi−1 · ai)

end
res = pn

This algorithm requires n− 1 flops. Let us now analyse its accuracy.
We will use standard notations and standard results for the following error estimations (see (Higham,

2002)). The quantities γn are defined as usual (Higham, 2002) by

γn :=
neps

1− neps
for n ∈ N.
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When using γn, we implicitly assume that neps ≤ 1. A forward error bound is

|a1a2 · · · an − res| = |a1a2 · · · an − fl(a1a2 · · · an)| ≤ γn−1|a1a2 · · · an|. (5)

Indeed, by induction,

res = fl(a1a2 · · · an) = a1a2 · · · an(1 + ε2)(1 + ε3) · · · (1 + εn), (6)

with εi ≤ eps for i = 2 : n. It follows from Lemma 3.1 of (Higham, 2002, p.63) that (1 + ε2)(1 +
ε3) · · · (1 + εn) = 1 + θn where |θn−1| ≤ γn−1.

A convenient device for keeping track of power of 1 + ε term is described in (Higham, 2002,
p.68). The relative error counter 〈k〉 denotes the product

〈k〉 =
k∏

i=1

(1 + εi), |εi| ≤ eps.

A useful rule for the counter is 〈j〉〈k〉 = 〈j + k〉. Using this notation, Equation (6) can be written
res = fl(a1a2 · · · an) = a1a2 · · · an〈n− 1〉.

It is shown in (Ogita et al., 2005b) that for a ∈ F, we have

(1 + eps)n ≤ 1
(1− eps)n

≤ 1
1− neps

, (7)

|a|
1− neps

≤ fl
( |a|

1− (n + 1)eps

)
. (8)

¿From Equation (6), it follows that

|a1a2 · · · an − res| ≤ (1 + eps)n−1γn−1|res|.
If meps ≤ 1 for m ∈ N, fl(meps) = meps and fl(1−meps) = 1−meps. Therefore,

γm ≤ (1 + eps) fl(γm). (9)

Hence,

|a1a2 · · · an − res| ≤ (1 + eps)n fl(γn−1)|res|
≤ (1 + eps)n+1 fl(γn−1|res|),

and so
|a1a2 · · · an − res| ≤ fl

(
γn−1|res|

1− (n + 2)eps

)
.

The previous inequality gives us a validated error bound that can be computed in pure floating
point arithmetic in rounding to nearest.

3.2. Compensated method

We present hereafter a compensated scheme to evaluate the product of floating point numbers, i.e.
the error of individual multiplication is somehow corrected. The technique used here is based on
the paper (Ogita et al., 2005a).
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ALGORITHM 3.2. Product evaluation with a compensated scheme

function res = CompProd(a)
p1 = a1

e1 = 0
for i = 2 : n

[pi, πi] = TwoProduct(pi−1, ai)
ei = fl(ei−1ai + πi)

end
res = fl(pn + en)

This algorithm requires 19n− 18 flops. For error analysis, we note that

pn = fl(a1a2 · · · an) and en = fl

(
n∑

i=2

πiai+1 · · · an

)
.

We also have

p = a1a2 . . . an = fl(a1a2 . . . an) +
n∑

i=2

πiai+1 · · · an = pn + e, (10)

where e =
∑n

i=2 πiai+1 · · · an.
Before proving the main theorem, we will need two technical lemmas. The next lemma makes

it possible to obtain a bound on the individual error of the multiplication namely πi in function of
the inital data ai.

LEMMA 3.1. Suppose floating point numbers πi ∈ F, 2 ≤ i ≤ n are computed by the following
algorithm

p1 = a1

for i = 2 : n
[pi, πi] = TwoProduct(pi−1, ai)

end

Then,
|πi| ≤ eps(1 + γi−1)|a1 · · · ai| for i = 2 : n.

Proof. From Equation (1), it follows that

|πi| ≤ eps|pi|.
Moreover, pi = fl(a1 · · · ai) so that from (5),

|pi| ≤ (1 + γi−1)|a1 · · · ai|.
Hence, |πi| ≤ eps(1 + γi−1)|a1 · · · ai|. 2

The following lemma enables us to bound the rounding errors during the computation of the
error during the full product.
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LEMMA 3.2. Suppose floating point numbers ei ∈ F, 1 ≤ i ≤ n are computed by the following
algorithm

e1 = 0
for i = 2 : n

[pi, πi] = TwoProduct(pi−1, ai)
ei = fl(ei−1ai + πi)

end

Then,

|en −
n∑

i=2

πiai+1 · · · an| ≤ γn−1γ2n|a1a2 · · · an|.
Proof. First, one notices that en = fl(

∑n
i=2(πiai+1 · · · an)). We will use the error counters

described above. For n floating point numbers xi, it is easy to see that (Higham, 2002, chap.4)

fl(x1 + x2 + · · ·+ xn) = x1〈n− 1〉+ x2〈n− 1〉+ x3〈n− 2〉+ · · ·+ xn〈1〉.
This implies that

en = fl(
n∑

i=2

(πiai+1 · · · an)) = fl(π2a3 · · · an)〈n− 2〉+ fl(π3a4 · · · an)〈n− 2〉+ · · ·+ fl(πn)〈1〉.

Furthermore, we have shown before that fl(a1a2 · · · an) = a1a2 · · · an〈n− 1〉. Consequently,

en = π2a3 · · · an〈n− 2〉〈n− 1〉+ π3a4 · · · an〈n− 3〉〈n− 1〉+ · · ·+ πn〈1〉.
A straightforward computation yields

|en −
n∑

i=2

πiai+1 · · · an| ≤ γ2n−3

n∑

i=2

|πiai+1 · · · an|.

¿From Lemma 3.1, we have |πi| ≤ eps(1 + γi−1)|a1 · · · ai| and hence

|en −
n∑

i=2

πiai+1 · · · an| ≤ (n− 1)eps(1 + γn−1)γ2n−3|a1a2 · · · an|.

Since eps(1 + γn−1) = γn−1/(n− 1) and γ2n−3 ≤ γ2n, we obtain the desired result. 2

One may notice that the computation of en is similar to the Horner scheme. One could have
directly applied a result on the error of the Horner scheme (Higham, 2002, Eq.(5.3),p.95).

We can finally state the main theorem.

THEOREM 3.3. Suppose Algorithm 3.2 is applied to floating point number ai ∈ F, 1 ≤ i ≤ n, and
set p =

∏n
i=1 ai. Then,

|res− p| ≤ eps|p|+ γnγ2n|p|.
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Proof. The fact that res = fl(pn + en) implies that res = (1 + ε)(pn + en) with ε ≤ eps. So it
follows

|res− p| = | fl(pn + en)− p| = |(1 + ε)(pn + en − p) + εp|

= |(1 + ε)(pn +
n∑

i=2

πiai+1 · · · an − p) + (1 + ε)(en −
n∑

i=2

πiai+1 · · · an) + εp|

= |(1 + ε)(en −
n∑

i=2

πiai+1 · · · an) + εp| by (10)

≤ eps|p|+ (1 + eps)|en −
n∑

i=2

πiai+1 · · · an|

≤ eps|p|+ (1 + eps)γn−1γ2n|a1a2 · · · an|.
Since (1 + eps)γn−1 ≤ γn, it follows that |res− p| ≤ eps|p|+ γnγ2n|p|. 2

It may be interesting to study the condition number of the product evaluation. Ones defines

cond(a) = lim
ε→0

sup
{ |(a1 + ∆a1)(a2 + ∆a2) · · · (an + ∆an)− a1a2 · · · an|

ε|a1a2 · · · an| : |∆ai| ≤ ε|ai|
}

.

A standard computation yields
cond(a) = n.

COROLLARY 3.4. Suppose Algorithm 3.2 is applied to floating point number ai ∈ F, 1 ≤ i ≤ n,
and set p =

∏n
i=1 ai. Then,

|res− p|
|p| ≤ eps +

γnγ2n

n
cond(a).

3.3. Faithful rounding

We define the floating point predecessor and successor of a real number r satisfying min{f : f ∈
R} < r < max{f : f ∈ F} by

pred(r) := max{f ∈ F : f < r} and succ(r) := min{f ∈ F : r < f}.
DEFINITION 3.1. A floating point number f ∈ F is called a faithful rounding of a real number
r ∈ R if

pred(f) < r < succ(f).

We denote this by f ∈ ¤(r). For r ∈ F, this implies that f = r.

A faithful rounding is then one of the two adjacent floating point numbers of the exact result.

LEMMA 3.5 (Rump, Ogita and Oishi (Rump et al., 2005, lem. 2.5)). Let r, δ ∈ R and r̃ := fl(r).
Suppose that 2|δ| < eps|r̃|. Then r̃ ∈ ¤(r + δ), that means r̃ is a faithful rounding of r + δ.
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Let res be the result of CompProd. Then we have p = pn + e and res = fl(pn + en) with
e =

∑n
i=2 πiai+1 · · · an. It follows that p = (pn + en) + (e− en). This leads to the following lemma

which gives a criterion to ensure that the result of CompProd is faithfully rounded.

LEMMA 3.6. With the previous notations, if 2|e− en| < eps|res| then res is a faithful rounding
of p.

Since we have |e − en| ≤ γnγ2n|p| and (1 − eps)|p| − γnγ2n|p| ≤ |res|, a sufficient condition to
ensure a faithful rounding is

2γnγ2n|p| < eps((1− eps)|p| − γnγ2n|p|)
that is

γnγ2n <
1− eps

2 + eps
eps.

Since γnγ2n ≤ 2(neps)2/(1− 2neps)2, a sufficient condition is

2
(neps)2

(1− 2neps)2
<

1− eps

2 + eps
eps

which is equivalent to
neps

1− 2neps
<

√
(1− eps)eps
2(2 + eps)

and then to

n <

√
1− eps√

2
√

2 + eps + 2
√

(1− eps)eps
eps−1/2.

We have just shown that if n < αeps−1/2 where α ≈ 1/2 then the result is faithfully rounded. More
precisely, in double precision where eps = 2−53, if n < 225 ≈ 5 · 107, we get a faithfully rounded
result.

3.4. Validated error bound

We present here how to compute a valid error bound in pure floating point arithmetic in rounding
to nearest. It holds that

|res− p| = | fl(pn + en)− p| = | fl(pn + en)− (pn + en) + (pn + en)− p|
≤ eps|res|+ |pn + en − p|
≤ eps|res|+ |en − e|.

Since |en − e| ≤ γn−1γ2n|p| and |p| ≤ (1 + eps)n−1 fl(|a1a2 · · · an|) we obtain

|res− p| ≤ eps|res|+ γn−1γ2n|p|
≤ eps|res|+ γn−1γ2n(1 + eps)n−1 fl(|a1a2 · · · an|).
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Using (8) and (9), we get

|res− p| ≤ fl(eps|res|) + (1 + eps)n fl(γn) fl(γ2n) fl(|a1a2 · · · an|)
≤ fl(eps|res|) + (1 + eps)n+2 fl(γnγ2n|a1a2 · · · an|)
≤ fl(eps|res|) + fl

(
γnγ2n|a1a2 · · · an|
1− (n + 3)eps

)

≤ (1 + eps) fl
(
eps|res|+ γnγ2n|a1a2 · · · an|

1− (n + 3)eps

)

≤ fl
((

eps|res|+ γnγ2n|a1a2 · · · an|
1− (n + 3)eps

)
/ (1− 2eps)

)
.

We can summarize this as follows.

LEMMA 3.7. Suppose Algorithm 3.2 is applied to floating point numbers ai ∈ F, 1 ≤ i ≤ n and
set p =

∏n
i=1 ai. Then, the absolute forward error affecting the product is bounded according to

|res− p| ≤ fl
((

eps|res|+ γnγ2n|a1a2 · · · an|
1− (n + 3)eps

)
/ (1− 2eps)

)
.

3.5. Validated error bound and faithful rounding

In the previous subsection, we have shown that

|en − e| ≤ fl
(

γnγ2n|a1a2 · · · an|
1− (n + 3)eps

)
. (11)

Lemma 3.6 tells us that if 2|e − en| < eps|res| then res is a faithful rounding of p (where res is
the result of CompProd).

As a consequence, if

fl
(

2
γnγ2n|a1a2 · · · an|
1− (n + 3)eps

)
< fl(eps|res|)

then we got a faitfully rounded result. This makes it possible to check a posteriori if the result is
faithfully rounded.

4. Conclusion

In this paper, we provided an accurate algorithm for computing product of floating point numbers.
We gave some sufficient conditions to obtain a faithfully rounded result as well as validated error
bounds.
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Abstract: Model updating techniques are largely used in civil and mechanical engineering to obtain 
reliable FE models. The model parameters are iteratively adjusted until the model response matches the 
measured structural response within a given tolerance. In this work it is assumed to know the response of 
a structure in terms of uncertain modal quantities. Accordingly, the model response is computed 
accounting for uncertainty by defining the model parameters as intervals. 
The updating problem is formulated in the framework of interval analysis by exploiting the inclusion 
theorem. The solution is reached when the structural response is completely included by the FE model 
response and the parameters uncertainty is at a minimum. The presented method offers some advantages 
that are: each model parameter is included in a physical interval hence the solutions are guaranteed to be 
physical; the uncertainties of the measured response are naturally embodied into the problem. The method 
is discussed through a simple numerical example. The interval updating solution is then compared with 
conventional updating technique by applying it to a real case study. 
 
Keywords: model updating, interval analysis, global optimization, FE model admissibility 
 
 

1. Introduction 
 
The work is framed in the field of finite element model (FEM) updating procedures (Friswell and 
Mottershead, 1995), that have the goal of calibrating the model parameters to get the best match between 
experimental and analytical modal data. In the case of civil engineering, model updating is a useful tool to 
know the actual state of the structures (diagnosis) and for the construction of predictive structural models 
(prognosis). The solution of the problem belongs to the field of inverse problems (Sorenson, 1980) and is 
classically faced using nonlinear programming algorithms. The objective function to be minimized is 
often chosen as the distance between measured and computed response quantities and the solution 
strategies can be distinguished by the algorithm used to search for the minimum. In structural dynamics, 
the updating is classically performed using modal data, that can be expressed either as the modal model or 
the response model of the structures (Ewins, 1984). In the case of civil engineering it is common practice 
to refer to modal shapes and related frequencies (Camillacci and Gabriele, 2005). 
Two alternative formulations are usually followed: deterministic methods and statistical or Bayesian 
methods depending on the analyst preference and confidence on the uncertainty related to the problem. 
The first formulation makes use of deterministic or crisp parameters and measures, whereas the second 
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includes uncertainty through normal probability density functions or two crisp parameters and measures 
(average and standard deviation). In both cases the updating problem results to be ill-conditioned because 
of two fundamental aspects: the dependency of the problem on the ratio between the number of 
parameters and the number of independent measures (Gola et al., 2001) and the inherent uncertainties that 
characterize both the FE model (modelling errors) and the experimental data (measurement errors) 
(Capecchi and Vestroni, 1993). 
In general no explicit uncertainty is associated to deterministic methods, for which the optimal parameters 
gauging is demanded to the search algorithm and to the model sensitivity. On the contrary, Bayesian 
approaches account for uncertainty by assigning appropriate values to the standard deviation to express 
confidence on the data. However, the statistical values, at least for the model data, are to be assigned a 
priori and strictly depend on the skill of the structural analyst (Collins et al., 1974). 
The present work proposes an alternative way to treat the uncertainty in updating problems, that is based 
on the concepts of “interval analysis” (Moore, 1966). This methodology allows to represent uncertain 
quantities not by means of point values, but by bounding them inside possibility intervals. The interval 
width define the uncertainty level. In this respect, interval methods offer some advantages as compared to 
deterministic and stochastic methods in fact: they are capable to account explicitly for the uncertainties of 
the problem, do not need the introduction of distributions, as in the probabilistic case, let to define interval 
limits coherent with engineering bounds, do not require initial conditions to start the search algorithm. 
Up to date various works have been issued concerning the computation of bounded eigenvalues and 
eigenvectors of mechanical structures (Shalaby, 2000), while it remains to deepen the possibility of using 
interval global optimization methods (Ratschek and Rokne, 1988, Hansen and Walster, 2004) to update 
parameters of FE models. The decision to use an interval approach also implies the use of interval finite 
element method (IFEM) for the development of numerical model to be updated. A formalized formulation 
of the IFEM can be found in the works of Muhanna and Mullen (1999) and Muhanna et al. (2006), also 
with applications in the static case. Previous applications of the static IFEM can be found in the works of 
Rao and Berke (1997), in Köyluoglu and Elishakoff (1998) where a comparison with probabilistic 
solutions is also presented. The interval FEM also finds applications in structural optimization procedures 
of truss structures (Pownuk, 1999). Some deepening in the dynamic case, that is of major interest for the 
treated arguments, can be found in Moens (2002). 
The work is organized in three parts. In section 2 the basic concepts of interval analysis are given and the 
main properties of interval operations and functions are discussed in view of their subsequent use. In 
section 3 the interval model updating problem is discussed and applied to simple numerical example. In 
the last section the method is applied to a real test case, concerning the model updating of a simplified 
model of a building sub-structure, whose experimental modal data are made available by an independent 
experimental campaign. The method is discussed according to two possible cases: crisp or certain 
experimental measures and interval valued or uncertain measures. 
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2. Interval computations 
 
In interval analysis (Moore 1966, Sunaga 1958) numbers are replaced by intervals in which they are 
contained, the larger the interval the larger the uncertainty in the evaluation of the number. An interval X 
could be denoted by infimum and supremum limits (xinf, xsup) or by the central notation, where the interval 
limits are obtained by respectively adding and subtracting the uncertainty radius Δx to the central value xc 

, by way of the unit interval eΔ = [-1,1] and by applying the interval addition rule. 
 
 [ ] Δ⋅Δ+== exxxxX csupinf ,  (1) 
 
The result of a generic interval operation “op” is the interval set of all the possible solutions when any 
operand varies independently in its own limits. From this definition follow the inclusion property, that is 
any possible result from the crisp operation “x op y” is included in the interval operation “X op Y”, 
providing that x∈X and y∈Y.  
In the standard interval computations a result is generally overbounded. In this case the word “standard” 
means that any interval expression is evaluated according to the assumption of independency between 
operands. From this follows that the sharpest computed interval is evaluated from an expression that 
contains a minimum number of occurrences of the same operand. An example is given from the so called 
sub-distributivity property in equation (2). 
 
 ( ) ZXYXZYX ⋅+⋅⊆+⋅  (2) 
 
Let be f(x) a real valued function that depends on the crisp parameters x = (x1, …, xi, …, xn), there exist 
some ways to define its interval extension F(X) (Moore, 1966). The interval functions considered in the 
paper are called natural extensions and are obtained by replacing every single occurrence xi in the 
expression of f with the correspondent interval Xi in F. F(X) maps X = (X1,…,Xn) into the real interval 
space and converges to f, i.e. F(x) = f(x), whenever X shrinks to crisp x. 
The inclusion property is settled for natural extensions by the inclusion theorem (Hansen and Walster, 
2004). This theorem ensures, for various kind of interval extensions, that the inclusion range of F(X) 
bounds all minima and maxima of f(x) over X. This theorem was firstly demonstrated for interval natural 
extensions that are also inclusion monotonic, i.e. F(⋅) is inclusion monotonic if taken {X ⊂ Y | Xi ⊂ Yi, ∀ 
i}, it follows that 
 
 ( ) ( )YX FF ⊂  (3) 
 
In this work it is of interest to discuss the interval analysis aspects related to inverse engineering 
problems. One of this is the convergence to crisp values of interval functions, and two different type of 
interval functions are considered. The first type, also called thin interval function, possesses interval 
variables X and crisp parameters p, F(X,p). The thin attribute is referred to the kind of convergence of the 
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function as the radius Δx decrease and tends to zero. This is shown in the graphical example of Figure 1a, 
where the continuous line represents the crisp evaluated function f(x,p), whereas the progressive 
decreasing monotonic boxes are the interval representation of its natural extension. From the figure is 
seen that as Δxi → 0, ∀ i, then Xi → xci and F(X,p) → f(xc,p). The second type, also called thick interval 
function, possesses both interval variables X and parameters P, F(X,P). For thick functions only a relaxed 
type of convergence can be defined. In fact, if F(⋅,P) is evaluated on crisp xc of the Figure 1b, then the 
best that can be obtained is that F(xc,P) ⊃ f(xc,p), ∀ p∈P, but not equals it at xc. In this case the thick 
attribute refers to the impossibility of converging to crisp values of this type of functions, as a 
consequence of the presence of interval parameters P inside the function expression. From a geometrical 
point of view, as Δxi → 0, ∀ i, F(X,P) converge to a segment, and covers a bundle of crisp functions. 
This distinction between thin and thick function and their different kind of convergence are the main 
concepts embodied into the presented method together with the inclusion property. In fact, solutions to 
mechanical problems are considered physically plausible only if the method guarantees the inclusion of 
the experimental outcomes. 
 
  

Figure 1 – Monotonic convergence of (a) thin function, (b) thick function 
 
 
2.1 MODEL FUNCTION AND INTERVAL SOLUTION 
 
The previously presented concepts about interval functions are now applied to define which kind of 
model are used in the present work, which kind of quantities are affected by uncertainty and which kind 
of interval solutions need to be computed.  
One remembers that the purpose of the paper is to present an interval model updating procedure and the 
models to be updated are finite element (FE) representations of mechanical structures.  

(a) (b)



 An interval based technique for FE model updating 367 

REC 2008 – Stefano Gabriele and Claudio Valente 

The formulation of the interval FE method can be found in Muhanna (1999) and Moens (2002), where 
uncertainties can appear in the mass and stiffness coefficients as well as in the geometry of the system. 
However, in the present context, only the constitutive parameters of the model are considered affected by 
uncertainty, therefore the stiffness matrix K is an interval matrix.  
In view of model updating applications eigenvalues and eigenvectors of the system need to be computed 
and then compared with the experimental counterparts. In general these measured quantities are uncertain, 
due to experimental errors, and could be bounded in confidence intervals, that one wants to reproduce 
with the updated FE model. 
For this purpose the model functions are defined as {Λ(K), U(K)}, respectively the interval eigenvalues 
and eigenvectors, that depend on the interval stiffness variables that are present in the stiffness matrix K. 
Λ(K) and U(K) can also be considered as the interval extensions of the crisp eigenfunctions λ(k) and 
u(k). 
According to the interval FE method, interval enclosure Λ=Λ(K) and U=U(K) can be computed as the 
solution of the generalized algebraic problem: 
 
 ΛmUKU =  (4) 
 
To solve this problem one should find the inclusion set for the eigenvalues, defined as 
 
 { }KkuλmukuuλΓ ∈≠=∈∈= × ,0,|R,R nnn  (5) 
 
Unfortunately the methods proposed in the literature are capable to find the true solution Λ = Γ only in 
limited cases (Shalaby, 2000) being the wider solution Λ ⊃ Γ the only available solution for the general 
cases. Presently, a solution strategy similar to that developed by Qiu and Chen (1995) is followed. The 
choice comes from the observation that the interval computations can be replaced by crisp operations on 
the interval limits yet preserving the monotonic inclusion of the solution (Chiao, 1999). According to Qiu 
and Chen the problem (4) specialised for the j-th eigenvalue is written as: 
 
 ( ) jjj Λe mUUkk =⋅Δ+ Δc  (6) 
 
and the solution bounds are then computed by solving two crisp sub-problems obtained according to the 
following general interval property: 
 

 
( )

( )( )jjjjj

jjjcjjcj

signdiag

ee

ususu

uskukukukKu

==

⋅Δ+=⋅Δ+= ΔΔ

 and with

;
 (7) 
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that guarantees the monotonic inclusion in the working range. The infimum and supremum limits are 
obtained by the following expressions: 
 

 
( )
( )⎪⎩

⎪
⎨
⎧

=Δ+
=Δ−

sup,sup,sup,

inf,inf,inf,

jjjj
T
jc

jjjj
T
jc

umusksk
umusksk

λ
λ

 (8) 

 
Equations (8) gives Λ = [λinf, λsup] ⊃ Γ where the over-bounding depends on the uncertainty radius Δk. It 
has been shown in Moens (2002) that the above formulation ensures to include all the true solutions when 
the eigenvalues of the system are properly spaced.  
The solution of the equations (8) is found under the hypothesis of sign invariance of the j-th eigenvector 
(Deif and Rhon, 1994). This restriction on the allowable eigenvectors is again necessary to guarantee the 
preservation of the inclusion property. In view of the updating problem it is also important to guarantee 
that the interval method used to calculate the function values {Λ=Λ(K), U=U(K)} is inclusion 
monotonic, in this case it is demonstrated (Hansen and Walster, 2004) that, for the defined extensions, the 
inclusion theorem holds. The authors are aware that exist many methods to compute interval eigenvalues 
and that the selected method is characterized by a great overbounding of the interval estimation. But the 
inclusion theorem validity it is, at author’s judgment, more important for optimization problems applied 
to physical systems than the overbounding, at this work stage. This will be better explained in the 
following sections. 
 
 

3. Interval model updating 
 
The inverse model updating problem is classically formulated as the search for the minimum of a 
predefined objective function l(x) that depends on the vector of the updating unknowns x: 
 
 ( )x

D
Dx

l
nR

min
∈
∈

 (9) 

 
In those cases in which a matching between two sets of quantities is sought for, l(x) is conveniently 
expressed as a measure of the distance between experimental and numerical quantities and a least squares 
formulation is followed (Camillacci and Gabriele, 2005). Therefore, in the present case, the objective 
function is specialized as the 2 norm distance: 
 
 ( ) ( ) 2

2kλk λ−= sl  (10) 
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where the unknowns are stiffness variables, that are present in the matrix k, and where only the 
contribution of the eigenvalues is considered. A more general form than (10) would comprise the 
contribution of the eigenvectors as well (Gola et al. 2001), but this further sophistication is not within the 
purposes of the paper. 
On the contrary, the interval model updating problem is here discussed.  
 
3.1 INTERVAL GLOBAL MINIMIZATION 
 
First of all the minimization of the error norm defined by equation (10), is a nonlinear programming 
problem and is possible to solve it in an interval space by interval global optimization algorithms (Hansen 
and Walster, 2004; Ratschek and Rockne, 1988). Such algorithms are generally comprised in the so called 
branch and bound methods (B&B), where an initial search domain is iteratively subdivided in smaller 
sub-domains and, for each created sub-domain, a first criterion (bounding step) is applied to verify if the 
sought solution could be contained in it or not. In the first case a sub-domain survives and a second 
criterion is applied to subdivide it again. In the second case the evaluated sub-domain is discarded from 
the search. The found solution is finally given by the surviving sub-domains. Interval B&B methods can 
be developed thanks to the existence of the interval inclusion theorem. In fact a non verified inclusion into 
generated sub-domains can be used as discarding criterion. Inclusions need to be verified by defining a 
proper interval extension of the crisp function to be minimized and a proper extension is that for which 
the inclusion theorem can be demonstrated, for example the class of inclusion monotonic extensions. 
All the concepts briefly explained are now applied to the original updating problem defined by equation 
(10). The model updating problem is not only a mathematical programming problem, it is also a physical 
problem defined with some uncertainties, and is here important to underline the differences that arise with 
respect to a conventional setting. In fact, different cases should be accounted for, depending on which 
quantities are affected by the  uncertainty. 
 
1. The uncertainty source is only in the FE model stiffness parameters (K); in this case a natural 

extension for (10) is written as (11) 
 
 ( ) ( ) 2

2KλΚ ΛL s −=  (11) 
 
where λs is the crisp vector of the experimental eigenvalues, Λ(K) is the interval extension by which 
the FE model interval eigenvalues, Λ, are calculated. If Λ(K) is evaluated by the equations (8), it is 
inclusion monotonic and hence L(K) is also inclusion monotonic. 
L(K) is a thin interval extension, because as Δki → 0, ∀ i, then Ki → kci and L(K) → f(kc). That means 
that the crisp updating problem (10) and the interval updating problem (11) have the same crisp 
solution, in the limit that the uncertainty approach to zero. 
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The solution in this case can be effectively obtained through standard interval B&B optimization 
techniques (Hansen and Walster, 2004; Jansson and Knüppel, 1995) that give good results even in the 
case of ill-conditioned problems and that, in the limit Δk → 0, converge to crisp solutions. 

2. In a second case the uncertainty source is both in the experimental measures and in the model 
parameters; in this case it is required to match the interval vectors Λs and Λ=Λ(K). 
The natural extension of equation (10) is in this case given by 
 

 ( ) ( ) 2
2KΛΚ ΛL s −=  (12) 

 
and the above expression for L(K) cannot be used unless a metric between intervals is introduced to 
replace the standard metric between crisp values (Moore, 1966).  
The equation (12) also defines an interval thick extension of (10), due to the fixed uncertainty in the 
experimental measures vector Λs. In this case the objective of reducing the stiffness uncertainty, with 
the goal to converge around an optimal solution, is limited by this fact and numerical solutions can 
only be found with a final fixed uncertainty. 

 
In the case 2., instead of introducing a metric between intervals, an approach coherent with the principles 
of interval analysis is proposed and named Interval Intersection Method (INTIM, Gabriele, 2004), where 
the basic branch and bound optimization technique present in Hansen (2004) is adopted. 
One supposes to define the interval search domain D, with Ki ∈ D, ∀ i. The branching step is left 
unchanged and its repeated application produces progressively smaller sub-domains, Dj ⊂ D, in which the 
searched stiffness parameters are included. In the bounding step the basic operations between sets are 
applied to interval solutions Λ, to verify the inclusion of the experimental vector Λs. If the function Λ(K) 
is inclusion monotonic and the inclusion theorem is verified, then the verified inclusion of Λs in Λ means 
that the FE model, endowed with the interval parameters K, is capable to represent the experimental 
solution. This capability is here intended as FE model admissibility. 
The degree of admissibility of a model, in the parameters domain, with respect to the known measured 
response is hence simply checked using the intersection operation to verify the inclusion: 
 
 ( ){ }i,, ji ∀∈=∩ DΛKΛ KΛ ss  (13) 
 
It can be assumed that if the total inclusion is not verified the model is not admissible to represent the real 
structure in the considered domain, in fact if the inclusion theorem holds no other eigensolution can be 
found outside the calculate interval (Λ). 
By inverting the previous statement, the equation (13) can be taken as exclusion criterion in the B&B 
search algorithm, for the sub-domains Dj, in the following pessimistic form: 
  
 ( ){ }i,, ji ∀∈∅=∩ DKΛ KΛs  (14) 
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In the interval updating algorithm the solution is iteratively found. Starting from the whole parameters 
space D, this is consecutively branched in sub-domains Dj that, in turn, are preserved or discarded 
according to (13) and (14). The procedure stops when for some Dj the criterion (13) holds and a pre-fixed 
radius of minimum uncertainty tolerance is reached, so they cannot be further branched.  
It is important to note that the above procedure is indeed general and can be applied to case 1. as well, 
when λs is a crisp measures vector. Both cases and solution procedures are illustrated according to the 
numerical simulation discussed below. 
In Figure 2 is depicted a graphical representation of the branching and the bounding steps, by thinking to 
apply admissibility criteria (13) and (14) for each generated sub-domain in the initial search box K0. In 
the figure the arrows represent the applications of the interval extension Λ(K), in order to obtain the 
intervals Λ to be compared with Λs in the measures space. 
 
 

K1 λ1

bounding

discarded ?

Λs

discarded

λ2K2

Search box (K0)

PARAMETERS SPACE {D} (branching) MEASURES SPACE {Λ} (bounding)

K1 λ1

bounding

discarded ?

Λs

discarded

λ2K2

Search box (K0)

PARAMETERS SPACE {D} (branching) MEASURES SPACE {Λ} (bounding)

 
Figure 2 – Interval intersection method – branching and bounding step 

 
 
3.2 NUMERICAL EXAMPLE 
 
A simple mechanical system composed by a 2dofs mass-spring system is considered. The problem is 
again to find the parameters vector k = [k1, k2] that produces the best match between given experimental 
and numerical modal data. The mechanical system is used either to generate pseudo-experimental data or 
to compute the numerical frequencies according to the formulation given in section 2.1. It is initially 
assumed that the experimental frequencies are exactly identified (case 1.) and only the parameters are 
affected by uncertainty. Then, also the experimental frequencies are assumed to be identified within an 
interval (case 2.). 
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The uncertainty free pseudo-experimental frequencies are fs = [0.082, 0.307] Hz, (λs = 2πfs
2), and it 

corresponds to k0 = [1, 2]. In a full deterministic setting the 2-norm objective function (10) applies and 
conventional minimization schemes can be used. However, even in this simple situations the objective 
function can have more than one minimum as shown in Figure 3a where it is plotted in the form of a 
contour plot representation. In particular, the function has two global minima: one for the true vector of 
parameters k0 and the other for k = [3, 2/3]. Depending on the search domain, the solution algorithm and 
the initial value of the parameters the false minimum can be reached by the a crisp updating procedure. 
 

(a) (b)  
Figure 3 –  (a) Crisp objective function, (b) INTIM solution for case 1. 

 
 
In the case of crisp experimental (solution case 1.) INTIM technique is applied starting from the initial 
parameters domain D ⊇ K0 = [[0,4], [0,3]] and the result is shown in Figure 3b, where the progressive 
partition in finer sub-domains tending to accumulate around the minima. The partitioning stops when for 
some Dj the criterion (13) holds and the radius of minimum uncertainty tolerance kw, is reached, so that Dj 
cannot be further branched. In the figure the solution domain is given by the collection of the lightest 
boxes that are those for which kw < 0.15. The uncertainty in the obtained solution is measured by the 
spread of the lightest boxes around the crisp minima. 
In the case of interval valued experimental data the considerations done for solution case 2. are valid. 
Now the pseudo-experimental eigenvalues are collected in the interval vector Λs = [[0.08, 0.45], [3.55, 
3.92]] and it corresponds to K* = [[0.99, 1.01], [1.98, 2.02]]. 
The solution in the parameter space is given in Figure 4a. In the present case kw = 0.31 and the solution is 
slightly more confined with a reduced number of branches, but with larger final boxes. Here again two 
distinct sub-domains solutions are detected. 
 



 An interval based technique for FE model updating 373 

REC 2008 – Stefano Gabriele and Claudio Valente 

(a)  (b)  
Figure 4 –  INTIM solutions for case 2. (a) bounded solution, (b) solution choice 

 
3.2.1.  Solution choice 
As shown by the example above, one of the main advantages of INTIM is the capability to find all the 
minima in the parameters space, in the form of a collection of boxes. Anyway, no further distinction 
between minima can be done to locate the box of the true parameters.  
To make a choice among all the possible solutions an a posteriori processing of the solution is performed 
on the base of a choice criterion. If the experimental modal shapes are known the modal assurance 
criterion MAC can be used: 
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,MAC  (15) 

 
where un and us stand for numerical and experimental central values of the eigenvectors. It is worth 
recalling that 0 ≤ MAC ≤ 1 and MAC = 1 whenever un = us.  
The MAC values have been computed for all the solution boxes in Figure 4a and have been reported in 
Figure 4b as a color scale superposed to the parameters domain. The darkest box is the parameters 
interval endowed with the highest MAC that is therefore chosen as the updating solution. 
 
 
 

4. Real case study 
 
The case study is taken from the ILVA-IDEM project in which one of the authors is involved (Mazzolani 
et al., 2004; Cardellicchio, Spina and Valente, 2004; Valente, Spina and Nicoletti, 2006). The 
experimental results were obtained during a large experimental campaign aimed at evaluating the 
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mechanical and strength characteristics of an existing reinforced concrete building that can be considered 
representative of many gravity-load designed reinforced concrete buildings located in the South of Italy, 
Figure 5a. 
 
 

(a)   (b)  
Figure 5 –  Case study: (a) Original building, (b) Selected structural module 

 
 

 

 
 
Partition walls and external claddings were removed and, then, the original building was divided into six 
separate smaller structures (Figure 5b). Four of them, nominally identical each other, were subjected to 
dynamic testing aimed at identifying the modal model and at evaluating the scatter in the results. 
Different types of tests were performed by changing the excitation type. Impulse excitations were used to 
provide transient response (test TR) and harmonic excitations were used to provide steady state response 
(test SS). The analysis of the dynamic response was performed through well established methods (Ewins, 
1984) and frequencies and modal shapes were identified for the first six modes. For the present  purposes, 
only a small set of the whole available data are considered. They are referred to the structural module 
marked in Figure 5b. Further, for simplicity, only the modal behaviour in the plane of the main frames is 
considered Figure 6a. The frequencies of the first two longitudinal modes have been used in the updating 
procedure and their interval variation is shown in Table 1. 

 TR - Transient tests SS - Steady state tests 
1st longitudinal mode [1.76, 1.87] [1.74, 1.85] 
2nd longitudinal mode [5.65, 5.72] [5.20, 5.65] 

Table 1 – Identified experimental frequencies (Hz) of the longitudinal main frame. 
 
 

 First floor Second floor 
Beams 1.75e10 1.75e10 

Columns [1.35, 1.90]e10 [0.89, 1.21]e10 
Table 2 – Measured Young modulus (N/m2) of the structural members. 
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The mechanical properties of the concrete were measured in laboratory on core samples extracted from 
the structure and on site using NDT tests to check for the concrete uniformity. The results are given in 
Table 2, from which it is apparent that the uncertainty is limited to the columns.  
 
4.1 RESULTS 
 
The INTIM described in section 3 is applied to the 2D model of Figure 6b in order to update the stiffness 
of the columns. The Young modulus E is the parameter to update since it acts as a scale factor for the 
columns stiffness. It is assumed that the columns of a floor have all identical stiffness, therefore two 
interval values E1 and E2 are sought for, one per floor. A wide and identical intervals E1 = E2 = [0.1, 
3]×1010 N/m2 has been chosen to be the initial search domain D. A physical justification can be given to 
this choice in consideration of the large uncertainties related to the NTD tests, but it is unnecessary since 
it is the ability of the technique to work with box domains and its numerical efficiency that suggest to 
widen D in order to get a complete picture of the solution. 
 
4.1.1.  Solution case 1. 
It is interesting to observe that if a crisp model updating procedure would be used, together with the initial 
conditions equal to the average values of the measured elastic moduli of Table 2 (Es), the following crisp 
values would be found: e1 =  2.27×1010 N/m2, e2 = 0.33×1010 N/m2 (Figure 7). They are very far from 
those listed in Table 2 that can be considered the physical solution range so that one can wonder if the 
adopted FE model is adequate to the problem or it should be revised. 
In this case the interval solution calculated by INTIM and applied by choosing λs as the central values of 
the uncertain experimental measures (solution case 1.), is again far from the measured elastic moduli box 
(Es). But INTIM solution puts in evidence the presence of a second solution sub-domain that have a not 
null intersection with Es only along the E2 axis. 
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(a)   (b)  
Figure 6 –  Case study: (a) Longitudinal main frames, (b) 2D FE model 

 
 

 
Figure 7 –  Comparison between crisp updating solution and INTIM solution case 1. 
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4.1.2.  Solution case 2. 
The presented case study is really uncertain, as it clear from the values in Tables 1 and 2, and could be 
wrong to consider crisp values of the experimental frequencies as objective of the updating procedure. 
If one considers the full measures uncertainty, firstly the interval updating technique can be used initially 
to check the admissibility of the FE model and then to find the solution. In the presence of experimental 
evaluations for the elastic moduli Es, admissible FE models are those for which the experimental 
eigensolution (Λs) is completely included by the model response (Λ), and parameters solution ([E1,E2] ∈ 
Dj) has at least one non vanishing intersection with the experimental box Es. 
The solution of the interval updating procedure is shown in the parameter space in Figure 8, where the 
results obtained from test TR and test SS are both reported. The empty rectangle shown in the figures is 
the box Es of Table 2 and the most feasible solutions are in the color scale of the MAC values. 
 

(a) (b)  
Figure 8 –  INTIM solution case 2. (a) test TR, (b) test SS 

 
A finer partitioning in Figure 8a than in Figure 8b can be appreciated. In fact, for test TR and SS the stop 
tolerances are different, 1.83×109 N/m2 and 3.67×109 N/m2 respectively, because of the different level of 
uncertainties in the identified frequencies, see Table 1. Anyway, as expected, the qualitative behaviour of 
the solution is similar in the two cases. 
It is worth to recall that all the boxes that are possible solutions have a full intersection in the frequency 
space (13). The MAC values are then used to discriminate among the possible solutions. From the figures, 
it can be observed that the darkest boxes are also those closest to the rectangle of the measured elastic 
moduli. Finally it deserves to underline that one could want to shrink the boxes radius to a point in order 
to have a crisp solution. However the convergence to a point value is not guaranteed in the parameters 
space, since in the frequency space it can happen that further radius reductions pushes the results of Λ(K) 
to interval boxes for which the inclusion rule (13) does not apply, that is to say that in this case the 
objective function is an interval thick extension. 
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5. Conclusions 
 
In this work the application of an interval updating technique is discussed and applied in both numerical 
and experimental cases. The technique is applied to uncertain interval FE models by taking distinct the 
case of certain (crisp) measures (solution case 1.) from the case of uncertain (interval) measures (solution 
case 2.). For this second case the updating approach, consistent with the principles of interval analysis and 
set theoretic comparisons, is presented and here called interval intersection method, INTIM. In the 
solution case 1. standard updating techniques, based on crisp objective function, and the new one are 
compared, by applying them to a simple 2dofs mechanical system. For the interval solution case 1. it is 
pointed out that all the admissible solutions can be found. 
In the solution case 2. only the INTIM technique has been applied. In this case further developments are 
given for the choice of physical solutions in the FE model parameters space, based on MAC comparison 
of modal shapes. The interval intersection method is first numerically validated by applying it to the 
previous 2dofs system, is then applied for updating the column stiffness of a 2D model of an r/c 
experimented structure, by tacking its longitudinal modal behaviour. The obtained interval best results, in 
the parameters space, are found to be intersected with the interval of the equivalent measured mechanical 
properties. 
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Abstract: Static analysis is an essential procedure to design a structure. Using static analysis, the 

structure’s response to the applied external forces is obtained. This response includes internal 

forces/moments and internal stresses that is used in the design process. However, the mechanical 

characteristics of the structure possess uncertainties which alter the structure’s response. One method to 

quantify the presence of these uncertainties is interval or unknown-but-bounded variables.  

 

In this work a new method is developed to obtain the bounds on structure’s static response using interval 

eigenvalue decomposition of the stiffness matrix. The bounds of eigenvalues are obtained using 

monotonic behavior of eigenvalues for a symmetric matrix subjected to non-negative definite 

perturbations. Moreover, the bounds of eigenvectors are obtained using perturbation of invariant 

subspaces for symmetric matrices. Comparisons with other interval finite element solution methods are 

presented. Using this method, it has shown that obtaining the bound on static response of an uncertain 

structure does not require a combinatorial or Monte-Carlo simulation procedure. 
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1. Introduction 

 

In design of structures, the performance of the structure must be guaranteed over its lifetime. Moreover, 

static analysis is a fundamental procedure for designing reliable structure that are subjected to static or 

quasi-static forces induced by various loading conditions and patterns.  

 

However, in current procedures for static analysis of structural systems, the existence of uncertainty 

in either mechanical properties of the system or the characteristics of forcing function is generally not 

considered. These uncertainties can be attributed to physical imperfections, modeling inaccuracies and 

system complexities.  

 

Although, in a design process, uncertainty is accounted for by a combination of load amplification 

and strength reduction factors that are based on probabilistic models of historic data, consideration of the 

effects of uncertainty has been removed from current static analysis of structural systems.  

 

 In this work, a new method is developed to perform static analysis of a structural system in the 

presence of uncertainty in the system’s mechanical properties as well as uncertainty in the magnitude of 

loads. The presence of these uncertainties is quantified using interval or unknown-but-bounded variables.  

 

 This method obtains the bounds on structure’s static response using interval eigenvalue 

decomposition of the stiffness matrix. The bounds of eigenvalues are obtained using the concept of 

monotonic behavior of eigenvalues for a symmetric matrix subjected to non-negative definite 

perturbations. Furthermore, the bounds of eigenvectors are obtained using perturbation of invariant 

subspaces for symmetric matrices. Using this method, it has shown that obtaining the bound on static 

response of an uncertain structure does not require a combinatorial or Monte-Carlo simulation procedure. 

 

 

2. Deterministic Static Analysis 

 

The equation of equilibrium for a multiple degree of freedom structure is defined as a linear system of 

equations as:   

 }{}]{[ PUK             (1) 

 

where, ][K is the stiffness matrix, }{U is the vector of unknown nodal displacements, and }{P  is the 

vector of nodal forces. The solution to this system of equation is: 

 

 }{][}{ 1 PKU             (2) 
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3. Interval Variables 

 

The concept of interval numbers has been originally applied in the error analysis associated with digital 

computing.  Quantification of the uncertainties introduced by truncation of real numbers in numerical 

methods was the primary application of interval methods (Moore 1966).  

 

A real interval is a closed set defined by extreme values as (Figure 1): 

 

 }|{],[
~ ulul zzzzzzZ   (3) 

 

 
 

 
 

Figure 1. An interval variable. 

 

 

In this work, the symbol (~) represents an interval quantity. One interpretation of an interval number 

is a random variable whose probability density function is unknown but non-zero only in the range of 

interval.  

 

Another interpretation of an interval number includes intervals of confidence for  -cuts of fuzzy 

sets. The interval representation transforms the point values in the deterministic system to inclusive set 

values in the system with bounded uncertainty. 

 

 

3. Interval Static Analysis 

 

Considering the presence of interval uncertainty in stiffness and force properties, the system of 

equilibrium equations, Eq.(1), is modified as an interval system of equilibrium equation as: 

 

 }
~

{}]{
~

[ PUK             (4) 

 

where, ]
~

[K is the interval stiffness matrix, }{U is the vector of unknown nodal displacements, and 

}{P  is the vector of interval nodal forces. In development of interval stiffness matrix, the physical and 

mathematical characteristics of the stiffness matrix must be preserves. 

 

],[~ bax 
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This system of interval equations is mainly solved using computationally iterative procedures 

(Muhanna et al 2007) and (Neumaier and Pownuk 2007). The present method proposes a computationally 

efficient procedure with nearly sharp results using interval eigenvalue decomposition of stiffness matrix. 

 

While the external force can also have uncertainties, in this work only problems with interval stiffness 

properties are addressed. However, for functional independent variations for both stiffness matrix and 

external force vector, the extension of the proposed work is straightforward. 

 

 

3.1. DETERMINISTIC EIGENVALUE DECOMPOSITION 

 

The deterministic symmetric stiffness matrix can be decomposed using matrix eigenvalue decomposition 

as: 

 
TK ]][][[][             (5) 

 

where, ][  is the matrix of eigenvectors, and ][  is the diagonal matrix of eigenvalues. 

Equivalently, 
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where, the values of i  is the eigenvalues and the vectors }{ i are their corresponding eigenvectors.  

Therefore, the eigenvalue decomposition of the inverse of the stiffness matrix is: 

 

 
TK ][]][[][ 11  

           (7) 

 

equivalently, 
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Substituting Eq.(8) in the solution for the deterministic linear system of equation, Eq.(2), the solution 

for response is shown as: 
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3.2. INTERVAL EIGENVALUE DECOMPOSITION 

 

Similarly, the solution to interval system of equilibrium equations, Eq.(4), is: 
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           (10) 

 

where, the values of i
~

 is the interval eigenvalues and, the vectors }~{ i  are their corresponding 

interval eigenvectors that are to be determined. 

 

 

4. Interval Eigenvalue Problem 

 

 

4.1. BACKGROUND 

 

The research in interval eigenvalue problem began to emerge as its applicability in science and 

engineering was realized. Hollot and Bartlett (1987) studied the spectra of eigenvalues of an interval 

matrix family which are found to depend on the spectrum of its extreme sets. Dief (1991) presented a 

method for computing interval eigenvalues of an interval matrix based on an assumption of invariance 

properties of eigenvectors.  

 

In structural dynamics, Modares and Mullen (2004) have introduced a method for the solution of the 

interval eigenvalue problem which determines the exact bounds of the natural frequencies of a system 

using Interval Finite Element formulation. 

 

 

4.2. DEFINITION 

 

The eigenvalue problems for matrices containing interval values are known as the interval eigenvalue 

problems. If ]
~

[A  is an interval real matrix )
~

( nnA   and ][A  is a member of the interval matrix 

])
~

[]([ AA  , the interval eigenvalue problem is shown as:  

 

 ])
~

[]([,0}]){[]([ AAxIA   (11) 
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4.2.1. Solution for Eigenvalues 

 

The solution of interest to the real interval eigenvalue problem for bounds on each eigenvalue is defined 

as an inclusive set of real values )
~

(  such that for any member of the interval matrix, the eigenvalue 

solution to the problem is a member of the solution set. Therefore, the solution to the interval eigenvalue 

problem for each eigenvalue can be mathematically expressed as: 

 

 }0}]){[]([:]
~

[][|],[
~

{  xIAAAul   (12) 

 

4.2.2. Solution for Eigenvectors: 

 

The solution of interest to the real interval eigenvalue problem for bounds on each eigenvector is defined 

as an inclusive set of real values of vector }~{x  such that for any member of the interval matrix, the 

eigenvector solution to the problem is a member of the solution set. Thus, the solution to the interval 

eigenvalue problem for each eigenvector is: 

 

 }0}]){[]([:],
~

[][|}~{}{{  xIAAAxx   (13) 

 

 

4.3. INTERVAL STIFFNESS MATRIX 

 

The system’s global stiffness can be viewed as a summation of the element contributions to the global 

stiffness matrix:  

 



n

i

T

iii LKLK
1

]][][[][  (14) 

 

where [ iL ] is the element Boolean connectivity matrix and ][ iK  is the element stiffness matrix in the 

global coordinate system. Considering the presence of uncertainty in the stiffness properties, the non-

deterministic element elastic stiffness matrix is expressed as: 

 

 ]])[,([]
~

[ iiii KulK   (15) 

 

in which, ],[ ii ul  is an interval number that pre-multiplies the deterministic element stiffness matrix. 

This procedure preserves the physical and mathematical characteristics of the stiffness matrix. 

Therefore, the system’s global stiffness matrix in the presence of any uncertainty is the linear 

summation of the contributions of non-deterministic interval element stiffness matrices: 
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in which, ][ iK  is the deterministic element elastic stiffness contribution to the global stiffness matrix.  

 

4.4. INTERVAL EIGENVALUE PROBLEM FOR STATICS 

 

The interval eigenvalue problem for a structure with stiffness properties expressed as interval values is: 
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Substituting Eq.(16) in Eq.(17): 
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This interval eigenvalue problem can be transformed to a pseudo-deterministic eigenvalue problem 

subjected to a matrix perturbation. Introducing the central and radial (perturbation) stiffness matrices as: 
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Using Eqs. (19,20), the non-deterministic interval eigenpair problem, Eq.(18),  becomes:  

 

 }~){
~

(}~]){
~

[]([   RC KK  (21) 

 

Hence, the determination of bounds on eigenvalues and bounds on eigenvectors of a stiffness matrix 

in the presence of uncertainty is mathematically interpreted as an eigenvalue problem on a central 

stiffness matrix ( ][ CK ) that is subjected to a radial perturbation stiffness matrix ( ]
~

[ RK ). This 

perturbation is in fact, a linear summation of non-negative definite deterministic element stiffness 

contribution matrices that are scaled with bounded real numbers )( i . 
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5. Solution 

 

5.1. BOUNDS ON EIGENVALUES 

 

The following concepts must be considered in order to bound the non-deterministic interval eigenvalue 

problem, Eq.(21). The classical linear eigenpair problem for a symmetric matrix is: 

 

 }{}]{[ xxA   (22) 

 

with the solution of real eigenvalues ( n  ...21 ) and corresponding eigenvectors 

( nxxx ,...,, 21 ). This equation can be transformed into a ratio of quadratics known as the Rayleigh 

quotient: 

 
}{}{

}]{[}{
)(

xx

xAx
xR

T

T

                       (23) 

 

The Rayleigh quotient for a symmetric matrix is bounded between the smallest and the largest 

eigenvalues (Bellman 1960 and Strang 1976). 

 

 nT

T

xx

xAx
xR  

}{}{

}]{[}{
)(1  (24) 

 

Thus, the first eigenvalue ( 1 ) can be obtained by performing an unconstrained minimization on the 

scalar-valued function of Rayleigh quotient:   

 

 1)
}{}{

}]{[}{
(min)(min 

 xx

xAx
xR

T

T

RxRx nn
 (25) 

 

For finding the next eigenvalues, the concept of maximin characterization can be used. This concept 

obtains the k
th
 eigenvalue by imposing (k-1) constraints on the minimization of the Rayleigh quotient 

(Bellman 1960 and Strang 1976):  

 

)](max[min xRk   

 (subject to constrains 2,1,...1),0(  kkizx i

T
) (26) 
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5.1.1. Bounding the Eigenvalues for Statics 

 

Using the concepts of minimum and maximin characterizations of eigenvalues for symmetric matrices, 

the solution to the interval eigenvalue problem for the eigenvalues of a system with uncertainty in the 

stiffness characteristics (Eq.(21)) for the first eigenvalue can be shown as: 
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 (27) 

 

for the next eigenvalues: 
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  (28) 

 

 

5.1.2. Deterministic Eigenvalue Problems for Bounding Eigenvalues in Statics 

 

Substituting and expanding the right-hand side terms of Eqs. (27,28): 
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(29) 

   

Since the matrix ][ iK  is non-negative definite, the term )
}{}{

}]{[}{
(

xx

xKx
T

i

T

 is non-negative.  

 

Therefore, using the monotonic behavior of eigenvalues for symmetric matrices, the upper bounds on 

the eigenvalues in Eqs.(19,20) are obtained by considering maximum values of interval coefficients of 

uncertainty ])1,1[~( i , )1)(( max i , for all elements in the radial perturbation matrix.  

 

Similarly, the lower bounds on the eigenvalues are obtained by considering minimum values of those 

coefficients, )1)(( min i , for all elements in the radial perturbation matrix. Also, it can be observed 

that any other element stiffness selected from the interval set will yield eigenvalues between the upper 
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and lower bounds. This imonotonic behavior of eigenvalues can also be used for parameterization 

purposes.  

 

Using these concepts, the deterministic eigenvalue problems corresponding to the maximum and 

minimum eigenvalues are obtained (Modares and Mullen 2004) as:  

 

 }){(}){])[(( max

1

 


n

i

ii Ku  (30) 

 }){(}){])[(( min

1

 


n

i

ii Kl  (31) 

 

 

 

5.2. BOUNDS ON EIGENVECTORS 

 

5.2.1. Invariant Subspace 

 

The subspace   is defined to be an invariant subspace of matrix ][A  if: 

 

  A     (32) 

 

Equivalently,  if   is an invariant subspace of nnA ][  and also, columns of mnX ][ 1  form a basis 

for  , then there is a unique matrix mmL ][ 1  such that: 

 

 ]][[]][[ 111 LXXA   (33) 

 

The matrix ][ 1L  is the representation of ][A  on   with respect to the basis ][ 1X  and the 

eigenvalues of ][ 1L  are a subset of eigenvalues of ][A . Therefore, for the invariant subspace, )},({ v  is 

an eigenpair of ][ 1L  if and only if )}},]{({[ 1 vX  is an eigenpair of ][A .  

 

5.2.2. Theorem of Invariant Subspaces 

 

For a real symmetric matrix ][A , considering the subspace   with the linearly independent columns of 

][ 1X  forming a basis for   and the linearly independent columns of ][ 2X  spanning the complementary 

subspace 
 , then,    is an invariant subspace of ][A  iff: 
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 ]0[]][[][ 12 XAX T
 (34) 

  

Therefore, invoking this condition and postulating the definition of invariant subspaces, the 

symmetric matrix ][A  can be reduced to a diagonalized form using a unitary similarity transformation as: 

 

 


















][]0[

]0[][

]][[][]][[][

]][[][]][[][
]][[][

2

1

2212

2111

2121
L

L

XAXXAX

XAXXAX
XXAXX

TT

TT

T
 (35) 

 

where .2,1],][[][][  iXAXL i

T

ii  

 

5.2.3. Simple Invariant Subspace 

 

An invariant subspace is simple if the eigenvalues of its representation ][ 1L  are distinct from other 

eigenvalues of ][A . Thus, using the reduced form of ][A  with respect to the unitary matrix ]]][[[ 21 XX , 

  is a simple invariant subspace if the eigenvalues of ][ 1L  and ][ 2L  are distinct: 

 

 ])([])([ 21 LL    (36) 

 

5.2.4. Perturbed Eigenvector 

 

Considering the column spaces of ][ 1X  and ][ 2X   to span two complementary simple invariant 

subspaces, the perturbed orthogonal subspaces are defined as: 

 

 ]][[][]ˆ[ 211 PXXX   (37) 

 
TPXXX ]][[][]ˆ[ 122   (38) 

 

in which ][P  is a matrix to be determined.  

Thus, each perturbed subspace is defined as a summation of the exact subspace and the contribution 

of the complementary subspace. Considering a symmetric perturbation ][E , the perturbed matrix is 

defined as: 

 ][][]ˆ[ EAA   (39) 

Applying the theorem of invariant subspaces for perturbed matrix and perturbed subspaces, and 

linearizing due to a small perturbation compared to the unperturbed matrix, Eq.(34) is rewritten as: 
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 ]][[][]][[]][[ 1221 XEXPLLP T  (40) 

 

This perturbation problem is an equation for unknown ][P  in the form of a Sylvester’s equation in 

which, the uniqueness of the solution is guaranteed by the existence of simple perturbed invariant 

subspaces. 

 

Finally, specializing the result for one eigenvector and solving the above equation, the perturbed 

eigenvector is (Stewart and Sun 1990): 

 

 }]{[][])[][]([}{}ˆ{ 12

1

21211 xEXLIXxx T   (41) 

 

5.2.5 Bounding Eigenvectors for Statics 

 

For the perturbed eigenvalue problem for statics, Eq.(21),  the error matrix is:  
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Using the error matrix in eigenvector perturbation equation for the first eigenvector, Eq.(33) the 

perturbed eigenvector is:  
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n

i
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ii
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T K
lu
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in which, }{ 1 is the first eigenvector, )( 1  is the first eigenvalue, ][ 2  is the matrix of remaining 

eigenvectors and ][ 2  is the diagonal matrix of remaining eigenvalues obtained from the deterministic 

eigenvalue problem. Eq.(30,31 and 43) is used to calculate the bounds on interval eigenvalues and 

interval eigenvectors in the response equation, Eq.(9).  

In order to attain sharper results, the functional dependency of intervals in direct interval multiplications 

in Eq.(9) is considered. Also, input intervals are subdivided and the union of responses of subset results is 

obtained. 

 

 

6. Numerical Example Problem 

 

The bounds on the static response for a 2-D statically indeterminate truss with interval uncertainty present 

in the modulus of elasticity of each element are determined (Figure 2). The cross-sectional area A , the 
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length for horizontal and vertical members L , the Young’s moduli E for all elements are 

EE ])01.1,99.0([
~
 . 

 
Figure 2.  The structure of 2-D truss 

 

The problem is solved using the method presented in this work. The functional dependency of 

intervals in the response equation is considered. A hundred-segment subdivision of input intervals is 

performed and the union of responses is obtained. For comparison, an exact combinatorial analysis has 

performed which considers lower and upper values of uncertainty for each element i.e. solving 

( 102422 10 n
) deterministic problems.  

The static analysis results obtained by the present method and the brute force combination solution 

for the vertical displacement of the top nodes in are summarized Table (1). 

 

 
 

Lower Bound 

Present Method 

 

Lower Bound 

Combination 

Method 
 

 

Upper Bound 

Combination 

Method 

 

Upper Bound 

Present Method 

 

Error 

% 










AE

PL

U
 

-1.6265 -1.6244 -1.5859 -1.5838 % 0.12 

 

Table1. Bounds on Vertical Displacement of Top Nodes 
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The results show that the proposed robust method yields nearly sharp results in a computationally 

efficient manner as well as preserving the system’s physics. 

 

 

 

4. Conclusions 

 

A finite-element based method for static analysis of structural systems with interval uncertainty in 

mechanical properties is presented.  

 

This method proposes an interval eigenvalue decomposition of stiffness matrix. By obtaining the 

exact bounds on the eigenvalues and nearly sharp bounds on the eigenvectors, the proposed method is 

capable to obtain the nearly sharp bounds on the structure’s static response.  

 

Some conservative overestimation in response occurs that can be attributed to the linearization in 

formation of bounds of eigenvectors and also, the functional dependency of intervals in the dynamic 

response formulation.  

 

This method is computationally feasible and it shows that the bounds on the static response can be 

obtained without combinatorial or Monte-Carlo simulation procedures. 

 

This computational efficiency of the proposed method makes it attractive to introduce uncertainty into 

structural static analysis and design. While this methodology is shown for structural systems, its extension 

to various mechanics problems is straightforward. 
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General Interval FEM Program Based on Sensitivity Analysis

Andrzej Pownuk
The University of Texas at El Paso

Department of Mathematical Sciences
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Abstract. Today there are many methods for solution of equation with interval parameters (Moens
and Vandepitte, 2005). Unfortunately there are very few efficient methods which can be directly
applied for solution of complex engineering problems. Sensitivity analysis method (Pownuk, 2004)
gives very good inner approximation of the exact solution set. This method was implemented in
C++ language by the author and the program can be recompiled on Windows, Linux and Solaris
operating systems. The program is able to solve 1D, 2D and 3D linear problems of electrostatics
with interval parameters.

Additionally it is possible to solve problems with uncertain functional parameters (Pownuk,
2006). In order to do that it is necessary to create special finite elements. It is possible to consider
also uncertain shapes The program is very universal and can be applied to the solution of complex
engineering problem. The program is a part web application, which is written in php language and
can be run on the web page http://andrzej.pownuk.com.

Keywords: interval stresses, stress distribution, sensitivity analysis, functional parameters

1. Design of structures with the interval parameters

One of the simplest method of modelling of uncertain parameters is based on the intervals (Moore,
1966). In that case in order to describe values of the parameter p it is necessary to know only two
numbers i.e. upper p and lower bound p.
In civil and mechanical engineering one of the most popular method of mathematical modeling
of engineering structures is the finite element method (Zienkiewicz and Taylor, 2000). The FEM
method leads to the following system of parameter dependent system of linear or nonlinear equations

K(p)u(p) = Q(p) (1)

where K is the stiffness matrix, Q is the right hand side and p is the vector of uncertain parameters

p = [p1, ..., pm]T . (2)

In this paper the following notation for the interval parameters and the interval functions will be
applied. If we have the function f(p) then

f(p) = {f(p) : p ∈ p} (3)

f(p) = ¤f(p) = ¤{f(p) : p ∈ p} (4)

c© 2008 by authors. Printed in USA.
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where p is the interval or a vector of the interval parameters. Function f can be real valued or vector
valued. p can be an interval in R (i.e. p = [p

i
, pi] ⊂ R) or in Rm (i.e. p = [p

1
, p1]× ...× [p

m
, pm]).

If the parameters pi belong to some know intervals pi ∈ [p
i
, pi], then the solution can be defined as

the smallest interval which contain the exact solution set.

u(p) = {u : K(p)u(p) = Q(p), p ∈ p} (5)

u(p) = ¤u(p) = ¤{u : K(p)u(p) = Q(p), p ∈ p} (6)

2. Sensitivity analysis method

There are different methods of calculation of the set (6) (Moens and Vandepitte, 2005; Neumaier,
1990). One of the simplest and most efficient method of solution of system of equations with the
interval parameters is the sensitivity analysis method (Pownuk, 2004).

Sensitivity analysis method for general explicit function ui = ui(p).

1. Calculate the mid point solution u(p0) from the following system of equations

u0 = u(p0) (7)

where p0=mid(p).

2. Calculate the sensitivity ∂u(p0)
∂pi

at the mid point p0.

3. Find the combination of parameters which corresponds to the extreme values of the solution.

If
∂ui(p0)

∂pj
> 0 then pmax

i,j = pj , p
min
i,j = p

j
, (8)

if
∂ui(p0)

∂pj
< 0 then pmax

i,j = p
j
, pmin

i,j = pj . (9)

Combination of endpoints which correspond to the extreme value of function ui = ui(p) will be
denoted in the following way

pmin
i = (pmin

i,1 , pmin
i,2 , ..., pmin

i,m ), (10)

pmax
i = (pmax

i,1 , pmax
i,2 , ..., pmax

i,m ). (11)

4. Create a list L of all critical endpoints combinations.

L = {pmin
1 , pmax

1 , pmin
2 , pmax

2 , ..., pmin
m , pmax

m } = (12)

= {p1, p2, ..., p2m} (13)
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5. Now it is possible to create a new list L∗, which contain only different endpoints

L∗ = {p∗1, p∗1, ..., p∗n∗}. (14)

6. For all elements in the list L∗ calculate a value of the vector u

u∗i,j = ui(p∗j ), for j = 1, ..., n∗. (15)

7. Calculate the extreme values of the solution

ui = min{ui(p0), u∗i,1, u
∗
i,2, ..., u

∗
i,n∗}, ui = max{ui(p0), u∗i,1, u

∗
i,2, ..., u

∗
i,n∗}. (16)

The results are exact if the sign of the derivative is constant.

3. Interval functional parameters

3.1. Equations with interval functional parameters

In order to get reliable results it is possible to approximate the values of the unknown function p
by using some upper and lower bounds

p(x) ∈ [p, p] = p (17)

Better approximation can be obtained using functional intervals

p(x) ∈ [p(x), p(x)] = p(x) (18)

Lets assume that the behaviour of the structure with interval parameters is described by the
following equation

F (x, u, p) = 0 (19)

where u is a vector of the solutions and p is a vector of parameters. The solution of the equation
(19) can be defined in the following way (Neumaier, 1990)

u(x,p) = {u : F (x, u, p) = 0, p(x) ∈ p(x)}, x ∈ Ω. (20)

The set u(x,p) is in general very complicated (Neumaier, 1990), because of that in applications it
is easier to use the smallest interval which contain the exact solution set.

u(x,p) = ¤u(x,p) = ¤{u : F (x, u, p) = 0, p(x) ∈ p(x)}, x ∈ Ω. (21)

If the equation is not directly dependent on x then the solution set is the following

u(p) = {u : F (u, p) = 0, p(x) ∈ p(x)}, (22)

u(p) = ¤u(p) = ¤{u : F (u, p) = 0, p(x) ∈ p(x)}. (23)
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3.2. General concept of monotonicity

A map T : X → Y is monotone if (X, >) is a partially ordered set and x, y ∈ X, x > y ⇒ T (x) >
T (y). Typically, X will be a subset of a Banach space Y with a cone Y+ of positive elements and
x 6 y is equivalent to y − x ∈ Y+ (Hirsch and Smith, 2005).

3.3. Solution of the equations with the interval functional parameters - general
case

In general it is very hard to get the solution set (23) or (21). Fortunately in many applications
it is possible to apply the method which is based on sensitivity analysis, Taylor expansion and/or
functional derivative (Pownuk, 2006). These methods allow us to get very actuate solution and
have low computational complexity.
Let us consider a function u = u(p) where p : Rn ⊃ Ω → p(x) ∈ R, X is a functional space which
contain the functions p, u is the function form the space X to the space R i.e. u : X 3 p → u(p) ∈ R.
Lets consider only positive variation of the function p i.e.

δp(x) = p1(x)− p0(x) > 0 (24)

where p1, p2 ∈ X. If one add positive variation to the function p0 then the results (i.e. p0 + δp) is
bigger than the function p0 i.e.

p0 + δp(x) > p0(x) (25)

If the difference u(p + δp)− p(p0) has constant sign the the function u is monotone.
If the function u is differentiable then finite increment of the functions u can be approximated by
the differential

u(p0 + δp)− u(p0) = δu(p0, δp) + R(p0, δp) (26)

where
lim

‖δp‖→0

|R(p0, δp)|
‖δp‖ = 0, (27)

and for small variations δp we can write

u(p0 + δp)− u(p0) ≈ δu(p0, δp) (28)

If the differential δu(p0, δp) is positive then the function u = u(p) is monotone around the point p0

(Hirsch and Smith, 2005).

Theorem 1
If the function u : X → R is differentiable and δu(p0, δp) > 0 for all p ∈ [p, p] ⊂ X and some δp,
then u = u(p) is monotone in the interval [p, p].

Proof

u(p0 + δp)− u(p0) =
1∫

0

δu(p0 + tδp, δp)dt (29)
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if δu(p0 + tδp, δp) > 0 then
1∫
0

δu(p0 + tδp, δp)dt > 0 and then

u(p0 + δp) > u(p0) (30)

i.e. the function u is monotone. Now it is possible to calculate extreme values of the function
u = u(p) for p ∈ p if the sign of the differential is constant.

General sensitivity analysis with functional parameters

1. if δu(p, δp) > 0 then pmin = p, pmax = p.

2. if δu(p, δp) < 0 then pmin = p, pmax = p.

3. u = u(pmin), u = u(pmax).

The algorithm is not very practical because in general it is hard to verify the sign of the differential
δu(p0, δp). In order to make that method a little more practical it is necessary to consider some
special cases.

3.4. Extreme values of the integral in the form u(p) =
∫
Ω

L(x, p(x))dx

Differential of the function u(p) =
∫
Ω

L(x, p(x))dx has the following form

δu(p0, δp) =
∫

Ω

∂L(x, p(x))
∂p(x)

δp(x)dx =
〈

δu

δp
, δp

〉
(31)

where
δu

δp(x)
=

∂L(x, p(x))
∂p(x)

(32)

is the functional derivative of the function u = u(p) and 〈., .〉 is the scalar product.

Theorem 2
If δu

δp(x) > 0 for p ∈ [p, p] ⊂ X, then the function u = u(p) is monotone in the interval p.
Proof
If δu

δp(x) > 0 and δp(x) > 0 then δu(p0, δp) =
〈

δu
δp , δp

〉
> 0 and according to the theorem 1 the

function u = u(p) is monotone.

Now it is possible to use more efficient version of the algorithm

Sensitivity analysis based on functional derivative

1. if δu
δp(x) > 0 then pmin = p, pmax = p.

if δu
δp(x) < 0 then pmin = p, pmax = p.

u = u(pmin), u = u(pmax).

REC 2008 - Andrzej Pownuk



402 Andrzej Pownuk

If the sign of the functional derivative is not constant, then it is possible to apply approximate
method for finding extreme values of the solutions. According to the equation (28) the finite
increment of the functions can be approximated by the differential. If the differential is positive
(i.e. δu(p0, δp) > 0) then for very small variations δp we can assume that u(p + δp) > u(p). The
product δu

δp(x)δp(x) is nonnegative if δu
δp(x) > 0 and δp(x) > 0 or δu

δp(x) 6 0 and δp(x) 6 0. If we

have the function p0 ∈ [p, p] and the value of functional derivative δu(p0)
δp(x) is not constant, then it is

possible to change the sign of the variation δp is such a way which make the differential positive.
It is possible to define the small variations in the following way

δpu(x) = λ(x)
δu(p0)
δp(x)

, δpl(x) = −λ(x)
δu(p0)
δp(x)

(33)

where λ(x) is an arbitrary positive function. If the variations δpl, δpu are small enough then
δu(p0, δp

u) > 0, δu(p0, δp
l) 6 0 and according to the relation (28) we can write

u(p0 + δpu) > u(p0) (34)

u(p0 + δpl) 6 u(p0) (35)

Above described properties can be applied to the creation of approximate algorithm for finding
upper and lower bound of the function u = u(p).

Calculation of upper bound u

1. p(x) = p0(x)

2. choose the function λ(x)

3. δpu(x) = λ(x) δu(p)
δp(x)

4. pold(x) = p(x)

5. p(x) := p(x) + δpu(x)

6. if p(x) > p(x) then p(x) = p(x)

7. if p(x) < p(x) then p(x = p(x)

8. if ‖pold − p‖ > ε then goto step 2

9. u = u(p)

10. stop

The lower bound can be calculated in the similar way.
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3.5. Extreme values of the functions and the integrals

In more complicated cases the function u = u(p) is a superposition of algebraic function f and the
integrals in the form

∫
Ω

Li(x, p(x))dx

u(p) = f (y1, ..., yq) = f(y)
y1 = I1(p) =

∫
Ω

L1(x, p(x))dx, ..., yq = Iq(p) =
∫
Ω

Lq(x, p(x))dx (36)

Differential in this case is equal to:

δu(p, δp) =
∑

i

∂f(y)
∂yi

Ii(p, δp) =
∑

i

∂f(y)
∂yi

∫

Ω

∂Li

∂p(x)
δp(x)dx (37)

Functional derivative can be defined in this case in the following way

δu

δp(x)
=

∑

i

∂f(y)
∂yi

δIi(p)
δp(x)

=
∑

i

∂f(y)
∂yi

∂Li(x, p(x))
∂p(x)

(38)

In matrix notation

δu(p)
δp

=

[
∂f(y)
∂y1

, ...,
∂f(y)
∂yp

] 


∂L1
∂p(x)

...
∂Lp

∂p(x)


 (39)

If the sign of the functional derivative is constant, then the sign of the differential is constant (for
very small perturbations δp) and according to the theorem ?? the function u = u(p) is monotone.
In order to calculate the extreme values of the solutions by using the algorithm 3.4. If the sign of
the derivative is not constant then it is possible to apply algorithm ?? and ??.
It is also interesting to study the function u in the case when it depend on many functions pi i.e.

u(p) = f (y1, ..., yq) = f(y)
y1 = I1(p) =

∫
Ω

L1(x, p(x))dx, ..., yq = Iq(p) =
∫
Ω

Lq(x, p(x))dx (40)

where p = (p1, ..., pm). The differential is equal to

δu(p, δp) =
∑

i

∂f(y)
∂yi

Ii(p, δp) =
∑

i

∂f(y)
∂yi

∫

Ω


∑

j

∂Li

∂pj(x)
δpj(x)


 dx (41)

Now it is possible to calculate the functional derivative which is in this case a vector with the
following components

δu(p)
δp

=

[∑

i

∂f(y)
∂yi

∂Li

∂p1(x)
, ...,

∑

i

∂f(y)
∂yi

∂Li

∂pm(x)

]
(42)
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In matrix notation

δu(p)
δp

=

[
∂f(y)
∂y1

, ...,
∂f(y)
∂yp

] 


∂L1
∂p1(x) ... ∂L1

∂pm(x)

... ... ...
∂Lp

∂p1(x) ...
∂Lp

∂pm(x)


 (43)

The differential is positive if the variations δpj have the same sign as
∑
i

∂f(y)
∂yi

∂Li
∂pj(x) . It is also possible

to create discrete version of these methods.

4. Sensitivity with respect to changes of the region of integration

4.1. Introduction

Lets consider a function u = u(Ω) where Ω is a domain of integration.

u(Ω) =
∫

Ω

L(x)dx (44)

Lets consider the following increment

u(Ω + ∆Ω)− u(Ω) =
∫

Ω+∆Ω

L(x)dx−
∫

Ω

L(x)dx =
∫

∆Ω

L(x)dx (45)

The operation ”Ω + ∆Ω” is a sum of two set i.e. ”Ω ∪ ∆Ω”. If the set is convex then from main
value theorem ∫

∆Ω

L(x)dx = |∆Ω|L(x∗) (46)

where x∗ ∈ ∆Ω.
u(Ω + ∆Ω)− u(Ω)

|∆Ω| = L(x∗) (47)

In the limit case
δu

δΩ(x)
= lim
|∆Ω(x)|→0

u(Ω + ∆Ω(x))− u(Ω)
|∆Ω(x)| = L(x). (48)

If Ω ⊂ Ω ⊂ Ω then extreme values of the function u = u(p) by using sensitivity analysis method.
The inclusion ⊂ can be treat as the partial order relation >. Because of that it is possible to

take into account ”set intervals”

[Ω, Ω] = {Ω : Ω ⊂ Ω ⊂ Ω}. (49)

If the sign of the derivative δu
δΩ(x) is not constant then it is possible to create the sets Ωmax and

Ωmin in the following way.

Ωmax = Ω ∪
{

x :
δu

δΩ(x)
> 0, x ∈ Ω− Ω

}
(50)
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Ωmin = Ω ∪
{

x :
δu

δΩ(x)
< 0, x ∈ Ω− Ω

}
(51)

Extreme values of the function u = u(Ω) are equal u = u(Ωmin), u = u(Ωmax).
The function u = u(Ω) may be a superposition of algebraic function and the integral.

u(Ω) = f (y) , y =
∫

Ω

L(x)dx (52)

δu

δΩ(x)
=

df(p)
dy

δ

δΩ(x)

∫

Ω

L(x)dx =
df(p)
dy

L(x) (53)

The function u can be dependent on many integrals.

u(Ω) = f (y) , y1 =
∫

Ω

L1(x)dx, ..., yn =
∫

Ω

Lp(x)dx (54)

δu

δΩ(x)
=

∑

i

df(p)
dyi

δ

δΩ(x)

∫

Ω

Li(x)dx =
∑

i

df(p)
dyi

Li(x) (55)

4.2. Moment of inertia of cross-section with uncertain shape

Polar moment of inertia
I0(Ω) =

∫

Ω

r2dΩ =
x

Ω

(x2 + y2)dxdy (56)

Because the limit is positive in the set Ω− Ω

Figure 1. Uncertain shape of cross-section
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δI0

δΩ(x, y)
= x2 + y2 > 0 (57)

then
I0 = I0(Ω) =

x

Ω

(x2 + y2)dxdy, I0 = I0(Ω) =
x

Ω

(x2 + y2)dxdy (58)

In the case of product moment of inertia

Ixy(Ω) =
x

Ω

xydxdy (59)

the limit
δIxy

δΩ(x, y)
= xy (60)

is sometimes positive and sometimes negative. From the picture 2 we can see that xy > 0 in the

Figure 2. Uncertain shape

sets Ω1 and Ω3. xy 6 0 in the set Ω2 and Ω4. Because of that

Ixy = Ixy(Ω ∪ Ω2 ∪ Ω4) =
x

Ω∪Ω2∪Ω4

(x2 + y2)dxdy (61)

Ixy = Ixy(Ω ∪ Ω1 ∪ Ω3) =
x

Ω∪Ω1∪Ω3

(x2 + y2)dxdy (62)
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5. General case

In general it is possible to consider a functional which is dependent on parameters hi ∈ p, functional
parameters pi(x) ∈ pi(x) and integrals which are dependent on the sets Ωi

u = F (h1, ..., hm, y1, ..., yp, z1, ..., zq) (63)

y1 =
∫

Γ1

L1(x, p1(x), ...., pk(x))dx (64)

y2 =
∫

Γ2

L2(x, p1(x), ...., pk(x))dx (65)

... (66)

yq =
∫

Γq

Lq(x, p1(x), ...., pk(x))dx (67)

z1 =
∫

Ω1

Ψ1(x, p1(x), ...., pk(x))dx (68)

z2 =
∫

Ω2

Ψ2(x, p1(x), ...., pk(x))dx (69)

... (70)

zq =
∫

Ωq

Ψq(x, p1(x), ...., pk(x))dx (71)

If the sign of each derivative is constant then it is possible to apply sensitivity analysis
to each uncertain parameters separately.

6. Direct method of calculation of sensitivity from differential equation

6.1. Sensitivity with respect to real valued parameters

Lets us consider tension-compression differential equation

d

dx

(
EA

du

dx

)
+ n = 0 (72)

with the following boundary condition

EA
du(0)
dx

= P, u(0) = 0 (73)
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After integration we will get

EA
du

dx
+

x∫

0

ndx = EA
du(0)
dx

(74)

EA
du

dx
+

x∫

0

ndx = P (75)

du

dx
=

P

EA
− 1

EA

x∫

0

ndx (76)

u(x) = u(0) +
x∫

0

P

EA
dη −

x∫

0


 1

EA

η∫

0

ndξ


 dη (77)

u(x) =
x∫

0

P

EA
dη −

x∫

0


 1

EA

η∫

0

ndξ


 dη (78)

For constant values of E,A and n we will get

u(x) =
Px

EA
− nx2

2EA
(79)

Partial derivative of the solution is equal to

∂u(x)
∂E(y)

= − Px

E2A
+

nx2

2E2A
(80)

Functional derivative of the differential equation with respect to the uncertain parameter pi

∂

∂pi

[
d

dx

(
EA

du

dx

)
+ n

]
= 0 (81)

d

dx

(
∂(EA)

∂pi

du

dx

)
+

d

dx

(
EA

d

dx

(
∂u

∂pi

))
+

∂n

∂pi
= 0 (82)

For example if pi = E then

d

dx

(
∂(EA)

∂E

du

dx

)
+

d

dx

(
EA

d

dx

(
∂u

∂E

))
+

∂n

∂E
= 0 (83)

d

dx

(
A

du

dx

)
+

d

dx

(
EA

d

dx

(
∂u

∂E

))
= 0 (84)

After integration

A
du

dx
+ EA

d

dx

(
∂u

∂E

)
= C (85)
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Derivative of boundary conditions

d

dx

(
∂u(0)
∂E

)
= − P

E2A
,

∂u(0)
∂E

= 0 (86)

then
P

E
−EA

P

E2A
= C ⇒ 0 = C (87)

From boundary conditions we will get

A
du

dx
+ EA

d

dx

(
∂u

∂E

)
= 0 (88)

d

dx

(
∂u

∂E

)
= − 1

E

du

dx
(89)

d

dx

(
∂u

∂E

)
= − 1

E


 P

EA
− 1

EA

x∫

0

ndη


 (90)

d

dx

(
∂u

∂E

)
= − P

E2A
+

1
E2A

x∫

0

ndη (91)

After integration

∂u

∂E
=

∂u(0)
∂E

−
x∫

0

P

E2A
dξ +

x∫

0


 1

E2A

ξ∫

0

ndη


 dξ (92)

∂u

∂E
= −

x∫

0

P

E2A
dξ +

x∫

0


 1

E2A

ξ∫

0

ndη


 dξ (93)

For constant values
∂u

∂E
= − Px

E2A
+

nx2

2E2A
(94)

Using this method it is possible to avoid approximation errors.

6.2. Sensitivity with respect to functional parameters

The solution of the equation (72) is given by the formula (78). The functional derivative with the
respect the the values of Young modulus E(y) is equal to

δu(x)
δE(y)

=
δ

δE(y)

x∫

0

P

EA
dη − δ

δE(y)

x∫

0


 1

EA

η∫

0

ndξ


 dη (95)
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δu(x)
δE(y)

= − P

E2(y)A(y)
+

1
E2(y)A(y)

y∫

0

ndξ (96)

It is possible to calculate the functional derivative of the solution of the equation (72) with respect
of the functional parameter E = E(y)

d

dx

(
E(x)A(x)

du(x,E)
dx

)
+ n(x) = 0 (97)

d

dx

(
(E(x) + δE(x))A(x)

du(x,E + δE)
dx

)
+ n(x) = 0 (98)

The last equation for a small perturbation can be written in the following way

u(x,E + δE) ≈ u(x,E) + δuE(x, δE) (99)

After neglecting quadratic terms we will get

d
dx

(
E(x)A(x)du(x,E)

dx

)
+ d

dx

(
δE(x)A(x)du(x,E)

dx

)
+

+ d
dx

(
E(x)A(x) d

dxδuE(x, δE)
)

+ n(x) = 0
(100)

If we subtract the equations (97) and (100) the result is

d
dx

(
δE(x)A(x)du(x,E)

dx

)
+ d

dx

(
E(x)A(x) d

dxδuE(x, δE)
)

= 0 (101)

After integration we will get

δE(x)A(x)
du(x,E)

dx
+ E(x)A(x)

d

dx
δuE(x, δE) = C (102)

The functional derivative of the boundary conditions is given by the following formulas

u(0, E) = 0, (103)

u(0, E + δE) = 0, (104)

u(0, E) + δuE(0, δE) = 0 (105)

then
δu(0, δE) = 0 (106)

d

dx
u(0, E) =

P

E(0)A(0)
, (107)

d

dx
u(0, E + δE) =

P

(E(0) + δE(0))A(0)
, (108)

d

dx
u(0, E) +

d

dx
δuE(0, δE) =

P

E(0)A(0)
− PδE(0)

E2(0)A(0)
(109)
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then
d

dx
δuE(0, δE) = − PδE(0)

E2(0)A(0)
(110)

For x = 0 we have
δE(0)A(0)

du(0, E)
dx

+ E(0)A(0)
d

dx
δuE(0, δE) = C (111)

From boundary conditions

δE(0)A(0)
P

E(0)A(0)
− E(0)A(0)

PδE(0)
E2(0)A(0)

= C (112)

0 = C (113)

Now the equation has the following form

δE(x)A(x)
du(x,E)

dx
+ E(x)A(x)

d

dx
δuE(x, δE) = 0 (114)

d

dx
δuE(x, δE) = −δE(x)

E(x)
du(x,E)

dx
(115)

From the equation (76)

d

dx
δuE(x, δE) = −δE(x)

E(x)


 P

E(x)A(x)
− 1

E(x)A(x)

x∫

0

n(x)dx


 (116)

d

dx
δuE(x, δE) = − PδE(x)

E2(x)A(x)
+

δE(x)
E2(x)A(x)

x∫

0

n(η)dη (117)

After integration

δuE(x, δE) = δuE(0, δE)−
x∫
0

PδE(ξ)
E2(ξ)A(ξ)

dξ+

+
x∫
0

(
δE(ξ)

E2(ξ)A(ξ)

ξ∫
0

n(η)dη

)
dξ

(118)

for x = 0 we know that δu(0, δE) = 0, then

δuE(x, δE) = −
x∫
0

PδE(ξ)
E2(ξ)A(ξ)

dξ +
x∫
0

(
δE(ξ)

E2(ξ)A(ξ)

ξ∫
0

n(η)dη

)
dξ (119)

δuE(x, δE) =
x∫
0

(
−P

E2(ξ)A(ξ)
+ 1

E2(ξ)A(ξ)

ξ∫
0

n(η)dη

)
δE(ξ)dξ (120)

then
δu(x)
δE(ξ)

=
−P

E2(ξ)A(ξ)
+

1
E2(ξ)A(ξ)

ξ∫

0

n(η)dη (121)
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7. FEM with uncertain functional parameters

Finite element method lead to the following parameter dependent system of equations (Zienkiewicz
and Taylor, 2000)

K(p)u(p) = Q(p) (122)

where K is the stiffness matrix, Q is the load vector and u is the vector of the solutions. The
functional derivative δu(p)

δpi(x) of the solution can be calculated from the following equation

K(p)
δu(p)
δpi(x)

=
δQ(p)
δpi(x)

− δK(p)
δpi(x)

u(p). (123)

The solution δu(p)
δpi(x) can be applied in the algorithms, which are described in the previous sections.

It is not possible to calculate the functional derivative δu(p)
δpi(x) in all points x ∈ Ω. Because of that

functional derivative should be calculated in as many grid points as possible xk. The sign of the
functional derivative δu(p)

δpi(x) is calculated by using the nearest grid points xk i.e. δu(p)
δpi(xk) .

8. Postprocessing of the interval solution
based on sensitivity analysis

8.1. 3D elasticity

In structural mechanics solution of the system of equations (122) is used for calculations of other
mechanical quantities like for example stress and strain. In linear elasticity the relation between
the strain tensor ε and displacement vector u is the following

ε(x) =
1
2

(
∇T u(x) +∇u(x)

)
(124)

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(125)

In cartesian coordinate system it is possible to approximate the displacement field ui(x) (i is a
direction of the displacement i.e. x, y, z, ϕx, ϕy, ϕz ) in the element Ωe using shape functions Nek(x)
(e is a number of element, k is a number of node) and the values of the function ui in the nodal
points xek (usually ueki = ui(xek), however ueki can be also defined using derivatives of the function
ui, e is a number of element, k is a number of node, i is a direction of the displacement)

uei(x) ≈
∑

k

Nek(x)ueki (126)

From the equation (124) and (126) we have

εeij =
1
2

(
∂

∂xj

(∑

k

Nek(x)ueki

)
+

∂

∂xi

(∑

k

Nek(x)uekj

))
= (127)
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=
1
2

(∑

k

∂Nek(x)
∂xj

ueki +
∑

k

∂Nek(x)
∂xi

ueki

)
= (128)

=
1
2

∑

k,p

(
∂Nek(x)

∂xj
δpi +

∂Nek(x)
∂xi

δpj

)
uekp = (129)

=
∑

k,p

Beijkpuekp (130)

then

Beijkp =
1
2

∑

k,p

(
∂Nek(x)

∂xj
δpi +

∂Nek(x)
∂xi

δpj

)
(131)

Relation between the global solution vector uq (q is a number of degree of freedom in the solution
vector) and the vector of local solution of the elements uekp (e is a number of element, k is a number
of node in the element e, p is a direction of the displacement) is the following

uekp =
∑
q

Uekpquq (132)

Sensitivity of the displacements
∂uekp

∂pj
=

∑
q

Uekpq
∂uq

∂pj
(133)

In the case of linear elastic materials the relation between the stress σij and strain εij is the following

σemn =
∑

i,j

Cemnijεeij =
∑

i,j,k,p

CemnijBeijkpuekp (134)

The sensitivity of the strain field can be calculated as a derivative

∂εeij

∂pl
=

∂

∂pl


∑

k,p

Beijkpuekp


 = (135)

=
∑

k,p

(
∂Beijkp

∂pl
uekp + Beijkp

∂uekp

∂pl

)
(136)

or in the case of functional parameters

δεeij

δpl(x)
=

δ

δpl(x)


∑

k,p

Beijkpuekp


 = (137)

=
∑

k,p

(
δBeijkp

δpl(x)
uekp + Beijkp

δuekp

δpl(x)

)
(138)
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The sensitivity of the stress field can be calculated from the equation (134)

∂σemn

∂pl
=

∂

∂pl


 ∑

i,j,k,p

CemnijBeijkpuekp


 = (139)

=
∑

i,j,k,p

(
∂(CemnijBeijkp)

∂pl
uekp + BeijkpCemnij

∂uekp

∂pl

)
(140)

or in the case of functional parameters

δσemn

δpl(x)
=

δ

δpl(x)


 ∑

i,j,k,p

CemnijBeijkpuekp


 (141)

=
∑

i,j,k,p

(
δ(CemnijBeijkp)

δpl(x)
uekp + BeijkpCemnij

δuekp

δpl(x)

)
(142)

If we know the derivatives of the strain and stress field then it is possible to calculate the extreme
values of the solution using the methods which are described in the previous sections.
Potential energy can be calculated as

V =
∑

e,m,n,i,j

∫

Ω

CemnijεeijεemndΩ−
∑

e,i

∫

Ω

feiueidΩ (143)

where fei are the loads. The local stiffness matrix can be calculated from the following formula

Kekplq =
∑

e,m,n,i,j

∫

Ω

CemnijBemnkpBeijlpdΩ (144)

Global stiffness matrix
Kαβ =

∑
e

Keαβ (145)

where
Keαβ =

∑

k,p,l,q

KekplqUekpαUekpβ (146)

Above relation is linear that is way it is possible to calculate sensitivity of global stiffness matrix
using linear relation

∂Kαβ

∂pγ
=

∑
e

∂Keαβ

∂pγ
(147)

∂Keαβ

∂pγ
=

∑

k,p,l,q

∂Kekplq

∂pγ
UekpαUekpβ (148)

Local load vector can be calculated using shape functions Nek(x) and load vector tei

Qeki =
∫

Ωe

teiNekdΩ (149)
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Global load vector Qp can be assembled from the local load vectors Qeki

Qp =
∑

eki

UekipQeki (150)

then the sensitivity of the global load vector can be calculated from the sensitivity of the local load
vectors

∂Qp

∂pl
=

∑

eki

Uekip
∂Qeki

∂pl
(151)

8.2. Tension-compression problem

The displacement field u in the case of tension-compression problem is described by second order
differential equation

d

dx

(
EJ

du

dx

)
+ n = 0 (152)

where E is Young modulus, J is a moment of inertia, n is a vector of continuous loads and u is a
displacement. After discretization in the case of constant E,A, L we will get the following stiffness
matrix

Ke =
[

ke11 ke12

ke21 ke22

]
=

[
EeAe

Le
−EeAe

Le

−EeAe
Le

EeAe
Le

]
(153)

Sensitivity with respect to the variation of Young modulus

∂Ke

∂Ep
=

[
δepAe

Le
− δepAe

Le

− δepAe

Le

δepAe

Le

]
(154)

in similar way it is possible to calculate sensitivity with the respect of other parameters. Global
stiffness matrix can be calculated in by using the connectivity matrix.

P

1
L

2
L

3
L

1 2 3 4

1
2

3

1 1
,E A

2 2
,E A

3 3
,E A

1
u

2
u

3
u

4
u

Figure 3. Tension problem
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Global stiffness matrix can be calculated in the following way

K1 =




E1A1
L1

0 0
0 0 0
0 0 0


 (155)

K2 =




E2A2
L2

−E2A2
L2

0
−E2A2

L2

E2A2
L2

0
0 0 0


 (156)

K3 =




0 0 0
0 E3A3

L3
−E3A3

L3

0 −E3A3
L3

E3A3
L3


 (157)

K = K1 + K2 + K3 =




E1A1
L1

+ E2A2
L2

−E2A2
L2

0
−E2A2

L2

E2A2
L2

+ E3A3
L3

−E3A3
L3

0 −E3A3
L3

E3A3
L3


 (158)

Global load vector after applying boundary conditions

Q =




0
0
P


 (159)

Mid point solution is a solution of the following system of equation

Ku = Q (160)

where

u =




u2

u3

u4


 (161)

Sensitivity of the displacement u with respect of value of Young modulus E2 can be calculated from
the following system of equation

K
∂u

∂E2
=

∂Q

∂E2
− ∂K

∂E2
u (162)

where

∂K

∂E2
=

∂K1

∂E2
+

∂K2

∂E2
+

∂K3

∂E2
=




A2
L2

−A2
L2

0
−A2

L2

A2
L2

0
0 0 0


 (163)

∂Q

∂E2
=

∂

∂E2




0
0
P


 =




0
0
0


 (164)
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Displacements in the first element

u1(x) = [N11(x), N12(x)]
[

u1

u2

]
(165)

Sensitivity of the displacements in the first element

∂u1(x)
∂E2

=
[
1− x

L1
,

x

L1

] [
∂u1
∂E2
∂u2
∂E2

]
(166)

Displacements in the second element

u2(x) = [N21(x), N22(x)]
[

u2

u3

]
(167)

Sensitivity of the displacements in the first element

∂u2(x)
∂E2

=
[
1− x

L2
,

x

L2

] [
∂u2
∂E2
∂u3
∂E2

]
(168)

Displacements in the third element

u3(x) = [N31(x), N32(x)]
[

u3

u4

]
(169)

Sensitivity of the displacements in the third element

∂u3(x)
∂E2

=
[
1− x

L3
,

x

L3

] [
∂u3
∂E2
∂u4
∂E2

]
(170)

Now it is possible to calculate the strain in all elements

ε1 =
du

dx
=

[
− 1

L1
,

1
L1

] [
u1

u2

]
(171)

ε2 =
du

dx
=

[
− 1

L2
,

1
L2

] [
u2

u3

]
(172)

ε2 =
du

dx
=

[
− 1

L3
,

1
L3

] [
u3

u4

]
(173)

Sensitivity of the strain field
∂ε1

∂E2
=

[
− 1

L1
,

1
L1

] [
∂u1
∂E2
∂u2
∂E2

]
(174)

∂ε2

∂E2
=

[
− 1

L2
,

1
L2

] [
∂u2
∂E2
∂u3
∂E2

]
(175)
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∂ε3

∂E2
=

[
− 1

L3
,

1
L3

] [
∂u3
∂E2
∂u4
∂E2

]
(176)

The stress in elements
σ1 = E1ε1 (177)

σ2 = E2ε2 (178)

σ3 = E3ε3 (179)

The sensitivity of the stress filed
∂σ1

∂E2
= E1

∂ε1

∂E2
(180)

∂σ2

∂E2
= 1 · ε2 + E2

∂ε2

∂E2
(181)

∂σ3

∂E2
= E3

∂ε3

∂E2
(182)

Above described formulas are true only if the Young modulus E = E(x) and the area of cross-
section A = A(x) is constant inside each element. If these functions are not constant then the
stiffness matrix have to be calculated by using the integration.

K1 =




L∫
0

E1(x)A1(x)dN12
dx

dN12
dx dx 0 0

0 0 0
0 0 0


 (183)

K2 =




L∫
0

E2(x)A2(x)dN21
dx

dN21
dx dx

L∫
0

E2(x)A2(x)dN21
dx

dN12
dx dx 0

L∫
0

E2(x)A2(x)dN22
dx

dN21
dx dx

L∫
0

E2(x)A2(x)dN22
dx

dN22
dx dx 0

0 0 0




(184)

K3 =




0 0 0

0
L∫
0

E3(x)A3(x)dN31
dx

dN31
dx dx

L∫
0

E3(x)A3(x)dN31
dx

dN32
dx dx

0
L∫
0

E3(x)A3(x)dN32
dx

dN31
dx dx

L∫
0

E3(x)A3(x)dN32
dx

dN33
dx dx




(185)

The functional derivative can be calculated without differentiation.

δK1

δE2(x)
=




0 0 0
0 0 0
0 0 0


 (186)

δK2

δE2(x)
=




A2(x)dN21
dx

dN21
dx A2(x)dN21

dx
dN12
dx 0

A2(x)dN22
dx

dN21
dx A2(x)dN22

dx
dN22
dx 0

0 0 0


 (187)
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δK3

δE2(x)
=




0 0 0
0 0 0
0 0 0


 (188)

δK

δE2(x)
=

δK1

δE2(x)
+

δK2

δE2(x)
+

δK3

δE2(x)
(189)

δQ

δE2(x)
=

δ

δE2(x)




0
0
P


 =




0
0
0


 (190)

Functional derivative of the displacements can be calculated from the following system of equations

K
δu

δE2(x)
=

δQ

δE2(x)
− δK

δE2(x)
u (191)

In the same way it is possible to calculate the functional derivative of the displacements, stress and
strain fields.

8.3. Truss structures

Using the sensitivity analysis method it is possible to calculate the interval displacements in the
truss structures with the interval Young modulus and the area of cross-section (Fig. 4). The struc-

Figure 4. Plain stress-strain problem

ture can be described in two steps. In the first step the truss structure is described by using ANSYS
FEM (http://www.ansys.com) program internal scripting language. In this case the uncertainty of
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Table I. Interval displacements of truss structure

ID Interval displacement [m] node dof

u[0] [ 2.54206368e-05, 2.88890319e-05] 5 1

u[1] [-2.41613231e-06, -5.5936232e-07] 5 2

u[2] [ 1.89488493e-05, 2.18240888e-05] 6 1

u[3] [-1.18336781e-05, -9.68801242e-06] 6 2

u[4] [ 1.74375666e-05, 2.00368684e-05] 7 1

u[5] [-1.53016570e-05, -1.28438219e-05] 7 2

u[6] [ 2.23883755e-05, 2.55322229e-05] 8 1

u[7] [-2.43184098e-05, -2.13175562e-05] 8 2

u[8] [ 4.47984203e-05, 5.07482294e-05] 9 1

u[9] [-1.25873042e-05, -9.13828295e-06] 9 2

u[10] [ 3.58319463e-05, 4.09641151e-05] 10 1

u[11] [-2.03184368e-05, -1.75638790e-05] 10 2

u[12] [ 3.30408793e-05, 3.79901925e-05] 11 1

u[13] [-2.87524495e-05, -2.54594638e-05] 11 2

u[14] [ 3.51831538e-05, 4.042328624e-05] 12 1

u[15] [-4.18322390e-05, -3.7394527e-05] 12 2

the Young modulus is 5% (MP, EX, 1, 5) and the uncertainty of the area of cross-section is also
5% (R, 1, 5). The interval displacements are shown in the Table I.
This example shows that the sensitivity analysis can be use as an extension of existing FEM code.

8.4. Plain stress

Let us consider a 2D structure which is shown on Fig. 5.
In calculation linear-elastic plain stress-strain mathematical model was used. Young nodulus

was uncertain and equal to E ∈ [210 · 109, 212 · 109] N
m2 , Poisson number ν ∈ [0.2, 0.4], thickness

h = 0.1m, width L = 1m, height h = 1m surface load ty ∈ [3, 2]kN . Numerical results are shown
in the Table II. The results are show in the following format
u[number] = [lower bound, midpoint solution, upper bound].

8.5. Interval stress in 3D elastic body

Using described theory it is possible to calculate the interval stress using the 3D brick elements
(Fig. 6). Let us consider 6 finite elements with continuous loads q ∈ [1, 3]kN

m , Young modulus
E ∈ [210, 212]109 N

m2 , Poisson number ν ∈ [0.2, 0.4] which are shown in the Fig. 7.
In each element there are 27 Gauss points. Results of calculations are shown in the table below.
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Figure 5. Plain stress-strain problem

Table II. Interval displacements in the truss structure

ID Interval displacement [m]

u[5] [7.010160e-08, 9.384325e-08, 1.175510e-07]

u[6] [-4.461538e-07, -3.479902e-07, -2.587601e-07]

u[7] [-4.600000e-07, -3.619668e-07, -2.716981e-07]

u[9] [-1.175510e-07, -9.384325e-08, -7.010160e-08]

u[10] [-4.461538e-07, -3.479902e-07, -2.587601e-07]

The program can be run from the web page http://andrzej.pownuk.com. The structure is described
using some easy to understand scripting language.

9. The computer program

Sensitivity analysis is implemented in object oriented C++ computer program. In the program
there is 11 finite elements. The program allow to use the following analysis types

1. Liner static analysis (classical FEM solution)

2. Liner static analysis with interval combinatoric

3. Liner static analysis with sensitivity analysis
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Figure 6. 3D brick element
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Figure 7. 3D brick elements with surface load

4. Liner static analysis with Taylor expansion method

5. Liner static analysis with functional derivative method

6. Liner static analysis with combination of functional derivative and sensitivity analysis method

The program can be run on-line from the web page http://andrzej.pownuk.com. In the first box
there is a description of the problem Fig. 8.
After clicking the button ”calculate” the results will appear in the second box.
In order to see all steps of the calculations ”debug” command can be apply (e.g. debug interval solution).
In order to see the intermediate results commands ”print” can be applied (e.g. print global stiffness matrix).
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Table III. Interval stress in the element 1

Number of Gauss point interval stress σzz

[
N

m2

]

1 [-3.000000e+03, -1.000000e+03]

2 [-3.000000e+03, -1.000000e+03]

3 [-3.000000e+03, -1.000000e+03]

4 [-3.000000e+03, -1.000000e+03]

5 [-3.000000e+03, -1.000000e+03]

6 [-3.000000e+03, -1.000000e+03]

etc. etc.

Table IV. Interval von Mises stress in the element 1

Number of Gauss point interval von Mises stress σM

[
N

m2

]

1 [1.000000e+03, 3.000000e+03]

2 [1.000000e+03, 3.000000e+03]

3 [1.000000e+03, 3.000000e+03]

4 [1.000000e+03, 3.000000e+03]

5 [1.000000e+03, 3.000000e+03]

6 [1.000000e+03, 3.000000e+03]

etc. etc.

Figure 8. Web application
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Figure 9. Results of the calculations

10. Interval eigenvalue

10.1. Sensitivity of the eigenvalues

In the dynamical problems of structural mechanics the finite element method lead to the following
system of differential equations

Mü + Ku = 0 (192)

If we assume that the solution is in the following form

u = u0 sin(ωt + φ) (193)

then
u̇ = ωu0 cos(ωt + φ), ü = −ω2u0 sin(ωt + φ) (194)

and from the equation (192) we have

−Mω2u0 sin(ωt + φ) + Ku0 sin(ωt + φ) = 0 (195)

(K − ω2
j M)uj = 0 (196)

Eigenvectors u1, ..., un are M -orthogonal

uT
i Muj = δij (197)

then from the equation (196)
uT

i Kuj = ω2
j δij (198)

Sensitivity with the respect to the parameter p
(

∂K

∂p
− ∂ω2

j

∂p
M − ω2

j

∂M

∂p

)
uj + (K − ω2

j M)
∂uj

∂p
= 0 (199)
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Lets multiply above equation by uT
i

uT
i

(
∂K

∂p
− ∂ω2

j

∂p
M − ω2

j

∂M

∂p

)
uj = 0 (200)

uT
i

(
∂K

∂p
− ω2

j

∂M

∂p

)
uj =

∂ω2
j

∂p
uT

i Muj (201)

uT
i

(
∂K

∂p
− ω2

j

∂M

∂p

)
uj =

∂ω2
j

∂p
δij (202)

Then sensitivity of the frequency of vibration ω2
j can be calculated from the following formula

(Lund, 1994; Hilbert and Courant, 1953)

∂ω2
j

∂p
= uT

j

(
∂K

∂p
− ω2

j

∂M

∂p

)
uj (203)

The interval frequency of vibration can be calculated using sensitivity analysis and derivative ∂ωj

∂p .

∂ω2
j

∂p
= 2ωj

∂ωj

∂p
(204)

∂ωj

∂p
=

1
2ωj

∂ω2
j

∂p
=

1
2ωj

uT
j

(
∂K

∂p
− ω2

j

∂M

∂p

)
uj (205)

If the derivative of stiffness matrix ∂K
∂p and the mass matrix ∂M

∂p are constant then the sign of the

derivative
∂ω2

j

∂p is constant and extreme values of ω2 can be calculated by using sensitivity analysis.
Let us consider the system of first order differential equation in the matrix form

ẋ = Ax (206)

If we assume that the solution has the following form x = x0e
λt, x = λx0e

λt then

λx0e
λt = Ax0e

λt, ⇒ (A− λI)x0 = 0 (207)

Then we have the standard eigenvalue problem. Derivative with respect of parameter p is equal to
the following (

∂A

∂p
− ∂λj

∂p
I

)
xj + (A− λjI)

∂xj

∂p
= 0 (208)

xT
i

(
∂A

∂p
− ∂λj

∂p
I

)
xj = 0, ⇒ ∂λj

∂p
xT

i xj = xT
i

∂A

∂p
xj (209)

Finally derivative of the eigenvalue can be calculated from the following formula

∂λj

∂p
= xT

j

∂A

∂p
xj (210)
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Now it is possible to apply sensitivity analysis method in order to calculate upper and lower bound
of the eigenvalue λj .
If the derivative of the matrix A i.e. ∂A

∂p is constant then the sign of the derivative ∂λ
∂p is constant

and extreme values of λ can be calculated by using sensitivity analysis.
Different method which is based on perturbation of positive definite matrices is described in the
paper (Modares, Mullen and Muhanna, 2006).

10.2. Vibration of multibody system

Dynamics of the mechanical system, which is shown in the Fig. 10 is described by the following
system of differential equation

1
x

2
x

1
m

2
m

1
k

2
k

Figure 10. Multibody system

[
m 0
0 m

] [
ẍ1

ẍ2

]
+

[
2k −k
−k k

] [
x1

x2

]
=

[
0
0

]
(211)

or shortly
Mẍ + Kx = 0 (212)

where k = k1 = k2 and m = m1 = m2. The eigenvalue problem

det
(
K − ω2M

)
= 0 (213)

has the following solution

ω1 =

√
(3−

√
5)

k

2m
, ω2 =

√
(3 +

√
5)

k

2m
(214)

The eigenvectors x1, x2 satisfy the following system of linear equations

(K − ω2
1M)x1 = 0 (215)

x1 =




√
5−1√

2(5−√5)m√
2√

(5−√5)m


 (216)
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(K − ω2
2M)x2 = 0 (217)

x2 =



−

√
5+1√

2(5+
√

5)m√
2√

(5+
√

5)m


 (218)

∂ω2
1

∂m
= xT

1

(
∂K

∂m
− ω2

1

∂M

∂m

)
x1 = −(3−

√
5)

k

2m2
< 0 (219)

∂ω2
2

∂m
= xT

2

(
∂K

∂m
− ω2

2

∂M

∂m

)
x2 = −(3 +

√
5)

k

2m2
< 0 (220)

∂ω2
1

∂k
= xT

1

(
∂K

∂k
− ω2

1

∂M

∂k

)
x1 = (3−

√
5)

1
2m

> 0 (221)

∂ω2
2

∂k
= xT

2

(
∂K

∂k
− ω2

2

∂M

∂k

)
x2 = (3 +

√
5)

1
2m

> 0 (222)

If we assume that the sign of the eigenvalue is constant, then extreme values of the eigenvalues can
be calculated in the following way

ω1 = ω1(m, k), ω1 = ω1(m, k) (223)

ω2 = ω2(m, k), ω2 = ω2(m, k) (224)

where m ∈ [m,m], k ∈ [k, k].

11. Conclusions

Using functional derivative it is possible to check monotonicity of the function with uncertain
functional parameters. If the function u = u(p) is monotone then extreme values of the results
can be calculated by using upper and lower bound of the functional intervals and sensitivity
analysis (Neumaier and Pownuk, 2004; Pownuk, 2004). Sensitivity can be use as an extension
of the existing FEM programs. Using quasi analytical method it is possible to avoid approximation
errors. Functional derivative can be sometimes calculated without integration. This property may
increase accuracy of the solution. Using the sensitivity analysis method it is possible to calculate
the interval eigenvalues. Interval eigenvalues can be calculated also in the case of structures with
uncertain shape and uncertain functional parameters.
Presented sensitivity analysis method can be applied to the solution of any problem with functional
parameters in which it is possible to calculate the functional derivative and verify monotonicity.
For non-monotone problems it is possible to apply an extension of the algorithm, which gives only
inner bounds.
The approach presented can be applied together with any numerical method for the solution of the
underlying problem, including techniques for partial differential equations e.g. FEM, FDM, BEM,
FVM etc. Extended version of this paper was published as a research report at the web page of the
University of Texas at El Paso (Pownuk, 2007).
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Abstract: In this work, local discretization error is bounded via interval approach for the elasticity 

problem using the interval boundary element formulation. The formulation allows for computation of the 

worst case bounds on the errors in the solution of elasticity problem. From these bounds the worst case 

bounds on the discretization error of any point in the domain of the boundary can be computed. Examples 

are presented to demonstrate the effectiveness of the treatment of local discretization error in elasticity 

problem via interval methods. 

 

Keywords: interval boundary element method, interval analysis, discretization error, elastostatics 

 

 

1. Introduction 

 

Most of the problems in engineering mechanics are governed by partial differential equations, to which 

solutions, in general, cannot be obtained exactly due to complexities in the geometry of the system for 

which the applied boundary conditions must be satisfied. Therefore, numerical methods have been 

developed to approximate the true solution by a polynomial interpolation between discrete values. The 

foremost method is the finite element method (FEM), in which the domain of the system is discretized 

into elements consisting of polynomial interpolation functions between discrete values which are to be 

computed. Another numerical method used to approximate the solutions to partial differential equations is 

the boundary element method (BEM). In boundary element analysis (BEA), the domain variables are 

transformed to the boundary variables, thus decreasing the dimension of the problem by one. This allows, 

in general, decreasing the time necessary for mesh generation or mesh refinement. The domain 

transformation is performed by the use of fundamental solutions to the linear partial differential 

equations, thus restricting classical BEM to problems for which the fundamental solution is known. The 

boundary integral equations, resulting from weighted residual formulation, are solved using point 

collocation methods, in which the residual is set to zero in the domain and exists only g 

on the boundary of the system. To achieve such residual, the weighted residual function in a weak 

formulation of the partial differential equation, takes the form of the fundamental solution. The 

transformed boundary integral equations are then solved by approximating the true solution over discrete 
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mailto:rlm@case.edu
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boundaries, thus introducing the discretization error. Although discretization error estimates have been 

made for BEM (Rencis and Jong 1989) the worst case bounds on the local discretization error have been 

computed only for the Laplace problem (Zalewski and Mullen 2007). 

 

In this work the point-wise discretization error is studied for the elasticity problem. The boundary 

integral equations are bounded by interval boundary integral equations, eventually resulting in interval 

linear system of equations. A parametric solver is reviewed that enables the computation of non-naive 

bounds. Example problems are presented to illustrate the behavior of the discretization error bounds. 

 

 

2. Boundary Element Analysis of Elasticity Problem 

 

2.1. BEA FORMULATION FOR ELASTICITY PROBLEM 

 

The boundary element formulation for the behavior of an isotropic and homogeneous body is discussed in 

the literature (Brebbia 1992, Hartmann 1889, Pilkey and Wunderlich 1994). The following section 

reviews the two dimensional boundary element formulation for the elasticity problem. The elasticity 

problem is: 
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ijij

and
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 (1) 

 

where   is the domain of the system,   is the boundary of the system, ij  is the stress tensor, ib  is the 

vector of body force, iu  is the displacement vector with a forced boundary condition iû  on 1 , and it  is 

the traction vector with a natural boundary condition it̂  on 2 . The first step in approximating the 

solution to Eq. (1) is to express it in a weighted residual form or a weak form: 

 

   1

*

2

**

,

12

)ˆ()ˆ(  


dtuuduttdub iiiiiiiijij  (2) 
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where 
*

iu  and 
*

it  are the weighted residual functions. In the following steps Betti’s reciprocal theorem is 

reviewed and used to formulate boundary integral equations. Expanding the left side of Eq. (2) results in: 

 

   0**

,

*

,   
 

dubdudub iiijijiijij   (3) 

 

Applying the chain rule to the first integral on the right side of Eq. (3) yields: 

 

    


dududu jiijjiijijij

*

,,

**

,   (4) 

 

Substituting 
*

,

*

jiij u  in Eq. (4) results in: 

 

    


ddudu ijijjiijijij

*

,

**

,   (5) 

 

where ij  is the linear strain tensor. Applying Gauss integral theorem to the first integral on the right side 

of Eq. (5): 

 

    


dutdundnudu iiijijjiijjiij

***

,

*   (6) 

 

Substituting the result of Eq. (6) into Eq. (5) and rearranging terms yields: 

 

  


dutdud iiijijijij

**

,

*   (7) 

 

The equilibrium condition, ijij b, , is substituted into Eq. (7) to obtain: 

 

  


dutdubd iiiiijij

***  (8) 

Following the same procedure, Eq. (3) through Eq. (8), the following equation can be obtained: 

 

  


dutdubd iiiiijij

***  (9) 
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It is then considered that the body follows the linear elastic constitutive model: 

 

 klijklij E    (10) 

 

where ijklE  is the fourth order linear elasticity tensor. Eq. (10) can also be written as: 

 

 
   kkijijij

EE










2111 



  (11) 

 

Also by expansion of ij  tensor and symmetry of ijklE  tensor with respect to ji,  and lk,  indices: 

 ijijijklijklijklklijklijklijijklijklijij EEEE  ******   (12) 

 

By equating the first integral terms in Eq. (8) and Eq. (9) due to Eq. (12), Betti’s reciprocal theorem can 

be obtained: 

 

  


dubdutdubdut iiiiiiii

****
 (13) 

 

Eq. (13) is the starting point of the boundary element formulation for the elasticity problem. Equilibrium 

equation 
**

, ijij b  is substituted into Eq. (13) resulting in: 

 

  


dtudbudutdu iiiiiiijij

****

,  (14) 

 

In order to decrease the dimension of the integral equation, Eq. (14), the weighted residual function is set 

to be the Green’s function, which is obtained by applying a point load in direction ia . This can be 

expressed as: 

 ijij ax )(*

,    (15) 

where   is a source point at which a concentrated force is applied, x  is a field point at which a response 

to the concentrated force is observed, and )(  x  is the Dirac delta function. The resulting 

fundamental solution is: 

 

 jjii auu **   (16) 
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 jjii att **   (17) 

 

where 
*

jiu  and 
*

jit  are i  components of the displacements and tractions, respectively, due to a 

concentrated force in the j  direction, and ja  is a unit vector in the direction of the applied concentrated 

force. The kernel functions 
*

jiu  and 
*

jit  are given as: 
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Substituting Eq. (15), Eq. (16), and Eq. (17) into Eq. (14) yields: 

 

  


 ,)( *** dtaudbauduatau ijjiijjiijjiii  (20) 

 

The indices are exchanged in all the integral terms in Eq. (20) as: 

 

  


 ,)( *** dtaudbauduatau jiijjiijjiijii  (21) 

 

The ia  coefficients are constant and can be canceled out from Eq. (21): 

 

  


 ,)( *** dtudbudutu jijjijjiji  (22) 

 

Assuming that the body force is zero, Eq. (22) can be simplified to: 
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 ,)( ** dtudutu jijjiji  (23) 

 

Eq. (23) is integrated such that the source point,  , is included on the circular boundary of radius  , as 

0 . This results in the right side integral vanishing. For constant elements the left side integral results 

in )(2/1 iu . Thus on the boundary of the system, Eq. (23) can be rewritten as: 

 

  


 ,)(),()(),()(
2

1 ** dxtxudxuxtu jijjiji  (24) 

 

In most cases, the exact solution to Eq. (24) cannot be found. Therefore Eq. (24) can be approximately 

solved using numerical methods such as BEM. 

 

 

2.2. BOUNDARY  DISCRETIZATION USING CONSTANT ELEMENT 

 

In general, boundary integral equations, such as Eq. (24), cannot be solved analytically. To obtain 

approximate solutions, the boundary integral equation is discretized into boundary elements for which the 

true solution is approximated by a polynomial interpolation between known values of either u  or t . In 

this work, only boundary elements with constant shape functions are used to generate significant 

discretization errors. Higher order approximation is assumed to approximate the true solutions better thus 

decreasing the discretization error. Constant elements contain one node per element, leading to the 

following discretization: 

 

 iuxu )(  (25) 

 

 itxt )(  (26) 

 

where iu  and it  are the vectors of nodal values of u  or t , respectively, at node i , and   is the vector of 

constant shape functions. The discretized Eq. (24) can be written as: 

 

 j

Elements

xij

Elements

jxiji tdxuudxtu

xx

  


 ),(),(
2

1 **   (27) 

 

Eq. (27) can be written in a matrix form: 
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 GtHu   (28) 

 

where matrix H  is singular and therefore satisfies the rigid body motion. To obtain a unique solution to 

Eq. (28) at least one boundary condition in each direction of the problem must be specified for the 

displacement. Eq. (28) is then rearranged according to the appropriate boundary conditions and solved as 

a linear algebra problem: 

 

 fAx   (29) 

 

The terms of H  and G  matrices can either be determined explicitly or are computed numerically using 

numerical integration schemes. The effects of the integration error and truncation error have been studied 

(Zalewski et al. 2007) and can be implemented to enclose the true solution of Eq. (29). In this work the 

impact of the discretization error on the solution to Eq. (24) is studied, following the boundary element 

formulation, using interval methods. 

 

 

3. Interval Analysis 

 

In this work, the discretization error in BEM is treated using an interval approach. The following is a 

review of interval analysis (Moore 1966, Neumaier 1990). An interval number ],[~ bax   is a set of real 

numbers such that: 

 

 }|{],[ bxaxba   (30) 

 

where ),( ba . Interval variables ],[~ bax   and ],[~ dcy   behave according to the following 

operations: 

 

 

 

Addition: 

 ],[~~ dbcayx   (31) 

Subtraction: 

 ],[~~ cbdayx   (32) 

Multiplication: 

 }],,,max{},,,,[min{~~ bdbcadacbdbcadacyx   (33) 

Division: 
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cd
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x ~0,
1

,
1

],[~
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  (34) 

 

Integration of interval-valued function )
~

,( xf , which is a class of all possible functions bounded by a 

given interval is performed as: 

 

 ],[,)
~

,(,)
~

,()
~

,(  







 



dxfdxfdxf  (35) 

 

Subdistributive property: 

 

 zxyxzyx ~~~~)~~(~   (36) 

 

One of the major sources of overestimation or underestimation in interval solutions is the subdistributive 

property of interval numbers. Great emphasis should be made to the correct order of operations in interval 

analysis. If the correct representation is given by the left term in Eq. (36), expressing the operation by the 

right term may cause overestimation. If the correct representation is expressed as the right term in Eq. 

(36), expressing it as the left term may result in inner bounds and the enclosure of the solution may not be 

guaranteed. This issue will be farther referred to in considering interval kernel functions. 

 

Another source of overestimation occurs due to the dependency of interval numbers, either linear or 

nonlinear. Linear dependency of interval numbers for ]1,1[~ x  and ]1,1[~ y  can be illustrated as: 

 

 ]1,1[~~  yx  (37) 

 

 ]1,0[~~  xx  (38) 

 

Eq. (37) considers the two sets to be independent; therefore, the operation must enclose all possible 

values. Eq. (38) takes into account that the same set is multiplied by itself; therefore, every number in set 

x~  is multiplied by itself. For engineering problems interval dependency occurs mostly due to the physics 

of the problem and needs to be considered for sharp solutions. Naive interval application may results in 

wide and unrealistic bounds. Considering an example: 

 

]1,1[~,~3~~6~  xxxxy  
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direct interval operation results in naive bounds for the solution, ]9,9[~ y . However, considering 

interval dependency, the bounds on the solution result in exact bounds, ]9,375.0[~ y . 

 

Another source of overestimation is the order of operations in interval linear algebra. To obtain 

sharp results, interval operations should be performed last to reduce the overestimation due to the 

dependency in interval matrix coefficients. The following example demonstrates this consideration. 

 

xBAyxBAy ~)(~),~(~
21  , where 
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It can be clearly seen that 2
~y  is sharper then 1

~y  due to the considered dependency of 1
~x  and 2

~x  

throughout the rows of 2
~y . Therefore special care should be given to the order of interval operations to 

obtain sharp bounds on the solution. 

 

 

4. Interval Linear System of Equations 

 

The interval linear system of equations of the form of Eq. (29) is solved using Krawczyk iteration 

(Krawczyk 1969) based on Brouwer’s fixed point theorem (Mullen and Muhanna 1999, Muhanna and 

Mullen 2001, Muhanna et al. 2005). One approach of self-validating (SV) methods to find the zero of the 

function 
nnxf  ,0)(  is to consider a fixed point function xxg )( . The transformation 

between )(xf  and )(xg  for a non-singular preconditioning matrix C  is: 

 

 xxgxf  )(0)(  (39) 

 

 )()( xfCxxg   (40) 

 

where the function )(xg  is considered as a Newton operator. From Brouwer’s fixed point theorem and 

from: 
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nxsomeforxxg  ~~)~(  (41) 

 

the following is true: 

 

 0)(:~  xfxx  (42) 

 

This method is used to solve linear system of equations of the form of Eq. (29). The preconditioning 

matrix C  is chosen as 
1 AC . From Eq. (40) and Eq. (41) it follows that: 

 

 xxCAICb ~~)(   (43) 

 

The left hand side of Eq. (43) is the Krawczyk operator (Krawczyk 1969). For the iteration to provide 

finite solution, the preconditioning matrix needs to be proven regular (Neumaier 1990, Rump 2001). The 

following proves this condition. 

 

Theorem 1. (Rump 2001) givenbexandbCALet nnnn   ~,,, . If 

 

 )~int(~)( xxCAICb   (44) 

 

xbAsatisfiesbAxofsolutionuniquetheandregularareAandCthen ~1  
.  

 

)~int(x  refers to the interior of x~ . However, all terms in Eq. (29) can be interval terms, thus the following 

is a proof for the guarantee of the solution for the equation of this form. 

 

 

Theorem 2. (Rump 2001) givenbexandbCALet nnnnnn   ~,
~

,,
~

. If 

 

 )~int(~)
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(
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xxACIbC   (45) 

 

andregularisAAmatrixeveryandCthen
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Eq. (46) guarantees the solution to the interval linear system of equations of the form of Eq. (29). The 

residual form of Eq. (46) is (Neumaier 1990): 

 

 )
~

int(
~

)
~

(
~~

0   ACIxACbC  (47) 

 

where 
~~

0  xx . A good initial guess is bCx ˆ
0  , where 

1ˆ  AC , Â  is the midpoint matrix of A , 

and b̂  is the midpoint vector of b . The following sections describe the treatment of point-wise 

discretization error via interval methods. 

 

 

5. Discretization Error Bounds for Boundary Element Method 

 

The discretization error in the solutions to integral equations results from considering a finite number of 

collocation points for which these solutions are computed. In general, the true solutions to integral 

equations are functions, not discrete values, and therefore the space of the approximate solutions does not 

cover the space of the true solutions. The boundary integral equations can be obtained by the use of 

collocation methods resulting in equation of the form of Eq. (24). The boundary integral equations are 

satisfied exactly only if all the locations of the source point   on the boundary are considered. However, 

to obtain a linear system of equations, a finite number of source points are considered. Moreover, the 

location of the source points is unique and the solution is considered as a polynomial interpolation 

between discrete values, whose location corresponds to the location of the source point. This allows for 

the solution of the linear system of equations to be unique and thus the system can be solved for the 

unknown boundary values. It should be noted that if al non countable source points are considered, the 

boundary values at all points can be computed, resulting in the true solution. The boundary integral 

equation can also be evaluated over n  sub-domains as expressed by Eq. (27). The unique location of the 

source point and its correspondence to the point at which the approximate solution is computed must be 

satisfied for all sub-domains. Eq. (27) is satisfied exactly only if all the locations of the source point are 

considered. Thus the discretization error is introduced in the same manner as in Eq. (24). 

 

In the analysis of the discretization error, all the locations of the source point, 
~

, in the continuous 

boundary integral equation: 

 

  


 ,)(),()(),()(
2

1 ** dxtxudxuxtu jijjiji  (48) 
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are treated via interval approach. Considering interval bounds 
~

 on all the possible locations of the 

source points   allows obtaining an interval solution which bounds the true solution. From the interval 

bounds on the boundary values, the bounds on the true solution for any point in the domain can be 

computed. Eq. (48) is bounded by an interval boundary integral equation in which the terms ),(* xuij  and 

),(* xtij  are known interval-valued functions. The unknown functions )(xu j  and )(xt j  in Eq. (48) are 

then bounded by interval values enclosing the true solution. 

 

The integral over the domain can be expressed as the sum of the integrals over the elements and thus the 

boundary integral equation must be bounded on each element for all the locations of the source points. 

Hence, for the boundary   subdivided into n  boundary elements, for each element k  the interval values 

u~  and t
~

 that bound the functions )(xu  and )(xt  are found (Figure 1). 

 
 

Figure 1. Constant interval bounds on a function. 

 

For higher order elements the interval valued function, of the order of the polynomial approximation, 

encloses the true solution. The bounding of the function using linear elements is shown (Figure 2). 
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Figure 2. Linear interval bounds on a function. 

 

It is assumed that on all other elements, except for the element in consideration, the bounds on all 

boundary values are known. Also either the bounds on the Dirichlet or the Neumann boundary condition 

bounds are known for the element in consideration. Then the remaining boundary value for the single 

element in consideration is bounded. The process is repeated for the second element with the assumed 

bounds for all the other elements, a computed bound for the previously considered element, and either the 

Dirichlet or the Neumann boundary condition bounds for the second element in consideration. This 

procedure, known as the interval Gauss-Seidel iteration (Neumaier 1990), is performed for all elements 

until the true solution is enclosed. Mathematically the above statement can be expressed as: 
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 (49) 

 

Each term of the summation in Eq. (49) is represented graphically (Figure 3). 

 

Figure 3. Integration from element B from point P on element A. 

 

If u  or q  are specified boundary conditions, the interval integration can be performed explicitly as 

described in section 3, Eq. (35). In this work, for computational efficiency purposes, the underlying 

system of interval equations is solved using Krawczyk iteration (Krawczyk 1969), rather than using the 

interval Gauss-Seidel iteration (Neumaier 1990). This substitution of the method for bounding the 

unknown boundary values can be made since both of these methods are iterative methods for solving 
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interval linear systems of equations and both obtain guaranteed bounds for the solution. Hence, the 

interval boundary element method (IBEM) formulation is performed such that the resulting interval linear 

system of equations is of the form of Eq. (29). 

 

 

6. Interval Kernel Splitting Technique 

 

The analysis of the discretization error requires that the boundary integral equations for each element be 

bounded for all the locations of the source point  . The integral equation in the boundary element 

formulation has the form of the Fredholm equation of the first kind. Kernel splitting techniques have been 

used to bound the interval Fredholm equation of the first kind in which the right side is deterministic 

(Dobner 2002) as: 

 

 )()(),(~  bdxuxa 


 (50) 

 

However, the interval boundary integral equations considered herein have an interval right side, due to the 

interval valued location of the source point 
~

, therefore a new Interval Kernel Splitting Technique 

(IKST) is developed. The integral of the product of two functions is bounded considering interval bounds 

on the unknown value as: 

 

 )
~

()()
~

,(~)
~

,(  bdxuxaduxa  


 (51) 

 

To separate the kernels such that the unknown u~  can be taken out of the integral on  , the left side 

integral from Eq. (51) is expressed as a sum of the integrals: 
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The interval kernel is of the same sign on 1 , thus u~  can be directly taken out of the integral on 1  as: 

 

 udxaduxa ~)
~

,(~)
~

,(

11

11 


   (55) 

 

Due to the subdistributive property of interval numbers, Eq. (36), u~  cannot be taken out of the integral on 

2 . The direct application of the subdistributive property may result in inner bounds on the interval 

integral as: 

 

 




22

22
~)

~
,(~)

~
,( duxaudxa   (56) 

 

Hence the interval kernel is bounded by its limits on 2 : 

 

 




22

22
~)

~
,(~~ duxadua   (57) 

 

where a~  is defined as: 

 

 )}]
~

,~(max{)},
~

,~([min{~   xaxaa  (58) 

 

 ],[~    (59) 

 

  is the tolerance level of the nonlinear solver used to find the zero location of )
~

,( xa . To show that by 

bounding the kernel on 2  allows u~  to be taken out from the integral on 2 , the integral on 2  is 

expressed as an infinite sum: 
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(60) 

 

where   is a small part of 2 . Thus u~  can be taken out of both integrals on 1  and on 2  and the split 

interval boundary integral equation becomes: 
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21

21  bdxuxaduxaudaudxa  


 (61) 

 

The kernels are bounded for all the elements resulting in interval linear system of equations: 

 

 buAuA
~~~~~

21   (62) 

 

IKST bounds the continuous boundary integral equation for all the locations of the source point   and 

Eq. (48) is guaranteed to be satisfied for all the weighting functions. The solution to Eq. (62) is described 

in the following sections. 

 

 

7. Iterative Solver for the Interval Linear System of Equations 

 

The bounding of the original boundary integral equation using IKST results in the interval linear system 

of equations different from that of Eq. (29). Hence, the algorithm to solve the interval linear system of 

equations, Eq. (62), must be developed. This section describes the transformation of Eq. (62) to obtain it 

in the form of Eq. (29). Then, Krawczyk iteration (Krawczyk 1969) is performed to obtain the guaranteed 

bounds on the solution. Considering the linear system of equations: 

 

 eeeee bxAxA
~~~~~

21   (63) 

 

where xxbbAAAA eeee
~~,

~~
,

~~
,

~~
2211   and eA1  is regular eee AAA 111

~
 . Eq. (63) is pre-

multiplied by 
1

1

~

eA  as: 

 

 eeeeeeee bAxAAxAA
~~~~~~~~ 1

12

1

11

1

1

   (64) 

 

By substituting eeeee AAAIAA 32

1

11

1

1

~~~
,

~~
 

 and eee bbA 1

1

1

~~~


, Eq. (64) can be rewritten as: 

 

 eeee bxAx 13

~~~~   (65) 

 

Since the first term in Eq. (65) is a deterministic identity matrix pre-multiplying ex~ , the following 

substitution can be made directly. Letting ee AAI
~~

3   results in: 
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 eee bxA 1

~~~
  (66) 

 

The transformed system of equations is subjected to Krawczyk iteration (Krawczyk 1969) as described in 

the previous section. 

 

 

8. Discretization Error in Interval Boundary Element Method 

 

In the preceding formulation, the bounds on the unknown boundary values are found using iterative 

techniques. The obtained bounds, however, are greatly overestimated since the dependency of interval 

values was not considered. One reason for this overestimation is that the interval kernels are bounded 

such that the source point   is allowed to vary along the entire element. Thus, for two adjacent elements, 

two source points are allowed to be connecting point between the elements and have the same location, 

resulting in the reduction of the rank of the system of equations. The unique location of a single source 

point is also not considered throughout the rows of H  and G  matrices, which are in 
nnR 

. Thus, the 

parameterization of the interval location of the source point, 
~

, in the H
~

 and G
~

 matrices must be 

considered in the solver to obtain n  independent interval equations and to reduce the overestimation 

which results from a non-unique location of the source point on any individual element. For convenience, 

the system is parameterized such that ]1,0[
~
  is the location scaled by a length of an element. In 

performing interval matrix products, the value of 
~

 is decomposed into sub-intervals such that: 

 

 0
~~~

11





n

i

ii

n

i

and   (67) 

 

The parameterized boundary integral equation is bounded by IKST for each subinterval i
~

, resulting in 

the linear system of equations: 

 

 tGtGuHuH iiii

~
)

~
(

~
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~
(~)

~
(~)

~
( 2121    (68) 

 

where the kernel is of the same sign for )
~

(1 iH   and )
~

(1 iG   and contains zero for )
~

(2 iH   and )
~

(2 iG  . 

The system of equations is rearranged according to the boundary conditions as: 
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Steps described in the previous section lead to the equation of the form: 
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The initial interval guess is then considered as: 
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where A  is computed for 2/1 . The difference between I  and the preconditioning matrix 
1A  post-

multiplied by the interval matrix )
~

( iA   is computed as: 
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The difference between the solution and the initial guess is computed for each i
~

 pre-multiplied by the 

preconditioning matrix I , which numerically gave the sharpest results: 
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Also: 

 
~~

1   (74) 

 

The iteration is performed as: 
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For any point n  on element k  the bounds on the discretization error are found as: 
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 nk

tiondiscretiza

nk xxE  ~~
 (79) 

 

where kx~  are the solution bounds over an element k  and nx  is the solution from a conventional 

boundary element analysis for point n . 

 

 

9. Examples 

 

The first example demonstrates the IBEM considering discretization error for the elasticity problem. A 

unit square domain of the problem as well as the boundary element mesh is shown (Figure 4). The body 

has a unit elastic modulus and a zero Poisson ratio. The left and right sides have a zero traction boundary 

condition; the bottom boundary has a zero displacement boundary condition, while the top boundary has a 

zero traction condition in the x  direction and a unit displacement in the y  direction. 

 

  

Figure 4. Boundary discretization using constant boundary elements. 

 

The behavior of the y  displacement bounds such as solution width, effectivity index, and solution 

bounds is depicted (Figure 5-7) for nodes 2, 3, 4, and 5 on the four respective meshes. The interval 

bounds, depicted by a solid line enclosing the dashed true solution, for the right edge displacement in the 

y  direction are shown (Figure 8). The effect of the parameterization for the traction in the x  direction 

for element 1 for the 4 and 8 element meshes is also shown (Figure 9, Figure 10). 
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Figure 5. Behavior of the width of the interval solution with problem size. 
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Figure 6. Behavior of the effectivity index with problem size. 
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Figure 7. Behavior of the interval bounds with problem size. 
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Figure 8. Behavior of the interval bounds for the different meshes. 
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Figure 9. Behavior of the width of the interval solution with parameterization for a 4 element mesh. 
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Figure 10. Behavior of the width of the interval solution with parameterization for an 8 element mesh. 
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The second example obtains bounds on the solution, considering the discretization error, to a hexagonal 

plate subjected to a unit displacement in the y  direction at the top and a unit displacement in the y  

direction on the bottom (Figure 11). The body has a unit elastic modulus and a zero Poisson ratio. 

 

 
 

Figure 11. Hexagonal plate subjected to a unit displacement. 

 

 

A symmetry model is considered, to decrease the computational time, with a unit displacement at the top 

and is uniformly discretized using constant boundary elements (Figure 12, Figure 13). 

 

 
Figure 12. Symmetry model. 

 

 
 

Figure 13. Uniform boundary discretization using constant boundary elements. 
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The behavior of the solution width, effectivity index, and solution bounds is depicted (Figure 14-16) for 

the displacement in the y  direction for nodes 4, 8, 12, and 16 on the four respective meshes shown 

above. The interval bounds, depicted by a solid line enclosing the dashed true solution, for the left edge 

displacement in the y  direction are shown (Figure 17). 
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Figure 14. Behavior of the width of the interval solution with problem size. 
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Figure 15. Behavior of the effectivity index with problem size. 
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Figure 16. Behavior of the interval bounds with problem size. 
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Figure 17. Behavior of the interval bounds for the different meshes. 
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10. Conclusion 

 

In this work the discretization error for the elasticity problem is bounded using interval boundary element 

method. The interval bounds on the true solution are shown to converge for the meshes considered despite 

the increase in the effectivity index. The increase in the effectivity index is attributed to the slower 

convergence of the interval bounds than the true solution. The overestimation in the interval bounds is 

due to the overestimation of the terms in the interval boundary integral equation using IKST, imperfect 

parameterization of the location of the source point throughout the rows of the matrices H  and G , and 

the overestimation in the iterative interval solver. There are two sources of overestimation in the iterative 

scheme solving the interval system of linear equations. The first one is due to the inherent overestimation 

when Krawczyk iteration is used to solve interval linear system of equations. This source of 

overestimation occurs due to the orthogonal multidimensional interval bounds enclosing a true solution 

which may not be, and in most cases is not, orthogonal and/or oriented in the same direction as the 

interval bounds (Figure 18). 

 

 
 

Figure 18. Interval bounds on the solution. 

 

The second source of overestimation on the interval solver comes from incomplete consideration of the 

interval parameterization in Eq. (76). Each term in Eq. (76) is parameterized; however, each of these 

terms must be dealt with in its entirety when operated with. The solution of the linear system of equations 

must be satisfied for the entire system and thus the residual has to be calculated for the entire interval 

width, not for the length of the subinterval. If the residual is computed for the portion of the interval, for 

instance an interval width corresponding to a subinterval such that a complete interval parameterization 

can be utilized in Eq. (76), the enclosure in no longer guaranteed. 
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Abstract.  This paper presents the efforts by the authors to introduce interval uncertainty in the stress 

analysis of reinforced concrete flexural members. A singly reinforced concrete beam with interval values 

of steel reinforcement and corresponding Young’s modulus and subjected to an interval bending moment 

is taken up for analysis. Using extension principle, the internal moment of resistance of the beam is 

expressed as a function of interval values of stresses in concrete and steel. The stress distribution model 

for the cross section of the beam given by IS 456-2000 (Indian standard code of practice for plain and 

reinforced concrete) is modified for this purpose. The internal moment of resistance is then equated to the 

external bending moment due to interval loads acting on the beam. The stresses in concrete and steel are 

obtained as interval values for various combinations of interval values of structural parameters. The 

interval stresses and strains in concrete and steel obtained using combinatorial solution; search-based 

algorithm and sensitivity analysis are found to be in excellent agreement. 

 

Keywords: interval stresses; stress distribution; sensitivity analysis; search-based algorithm 

 

1. Introduction 

Analysis of rectangular beams of reinforced concrete is based on nonlinear and/or discontinuous stress-

strain relationships and such analyses are difficult to perform. Provided the nature of loading, the beam 

dimensions, the materials used and the quantity of reinforcement are known, the theory of reinforced 

concrete permits the analysis of stresses, strains, deflections, crack spacing and width and also the 

collapse load. Further, the aim of analyzing the beam is to locate the neutral axis depth, find out the 

stresses in compression concrete and tensile reinforcement and also compute the moment of resistance. 

The aim of the designer of reinforced concrete beams is to predict the entire spectrum of behavior in 

mathematical terms, identify the parameters which influence this behavior, and obtain the cracking, 

deflection and collapse limit loads. There are usually innumerable answers to a design problem. Thus the 
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design is followed by analysis and a final selection is obtained by a process of iteration. Thus the design 

process becomes clear only when the process of analysis is learnt thoroughly. 

In the traditional (deterministic) methods of analysis, all the parameters of the system are taken to be 

precisely known. In practice, however, there is always some degree of uncertainty associated with the 

actual values for structural parameters. As a consequence of this, the structural system will always exhibit 

some degree of uncertainty. A reliable approach to handle uncertainty in a structural system is the use of 

interval algebra. In this approach, uncertainties in structural parameters will be introduced as interval 

values i.e., the values are known to lie between two limits, but the exact values are unknown.  Thus, the 

problem is of determining conservative intervals for the structural response. Though interval arithmetic 

was introduced by Moore (Moore, 1966), the application of interval concepts to structural analysis is 

more recent. Modeling with intervals provides a link between design and analysis where uncertainty may 

be represented by bounded sets of parameters. Interval computation has become a significant computing 

tool with the software packages developed in the past decade.  In the present work,     a singly-reinforced 

concrete beam with interval area of steel reinforcement and corresponding interval Young’s modulus and 

subjected to an interval moment is taken up for analysis. Interval algebra is used to establish the bounds 

for the stresses and strains in steel and concrete. 

2. Literature Survey 

 

In the literature there are several methods for solution of equations with interval parameters. In the year 

1966, Moore (1966) discussed the problem of solution of system of linear interval equations. Neumaier 

(1990) discussed several methods of solution of linear interval equations in his book. Ben-Haim and 

Elishakoff (1990) introduced ellipsoid uncertainty. System of linear interval equation with dependent 

parameters and symmetric matrix was discussed by Jansson (1991). In their work Köylüoglu, Cakmak, 

Nielsen (1995) applied the concept of interval matrix to solution of FEM equations with uncertain 

parameters. Rao and Chen (1998) developed a new search-based algorithm to solve a system of linear 

interval equations to account for uncertainties in engineering problems. The algorithm performs search 

operations with an accelerated step size in order to locate the optimal setting of the hull of the solution.  

 

McWilliam (2000) described several method of solution of interval equations. Akpan   et. al (2001) 

used response surface method in order to approximate fuzzy solution. Vertex solution methodology that 

was based on -cut representation was used for the fuzzy analysis. Muhanna and Mullen (2001) handled 

uncertainty in mechanics problems on using an interval-based approach. Muhanna’s algorithm is 

modified by Rama Rao (2006) to study the cumulative effect of multiple uncertainties on the structural 

response. Neumaier and Pownuk (2007) explored properties of positive definite interval matrices. Their 

algorithm works even for very large uncertainty in parameters. Skalna, Rama Rao and Pownuk (2007) 

investigated the solution of systems of fuzzy equations in structural mechanics. 
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Several models were proposed to describe the stress distribution in the cross section of a concrete 

beam subjected to pure flexure. Initially, the parabolic model was proposed by Hognestad (1955) in 1951. 

This was followed by an exponential model proposed by Smith and Young (1955) and Desai and 

Krishnan model (1964). These models are applicable to concretes with strength below 40 MPa. The 

Indian standard code of practice for plain and reinforced concrete IS 456-2000 (2000) allows the 

assumption of any suitable relationship between the compressive stress distribution in concrete and the 

strain in concrete i.e. rectangle, trapezoid, parabola or any other shape which results in prediction of 

strength in substantial agreement with the results of test. 

 

Rama Rao and Pownuk (2007) made the initial efforts to introduce uncertainty in the stress analysis 

of reinforced concrete flexural members. A singly reinforced concrete beam subjected to an interval load 

is taken up for analysis. Using extension principle, the internal moment of resistance of the beam is 

expressed as a function of interval values of stresses in concrete and steel. The stress distribution model 

for the cross section of the beam given by IS 456-2000 is modified for this purpose. The internal moment 

of resistance is then equated to the external bending moment due to interval loads acting on the beam. The 

stresses and strains in concrete and steel are obtained as interval values. The sensitivity of stresses in steel 

and concrete to corresponding variation of interval values of load about its mean values is explored.  

  
A study of the effect of multiple uncertainties on the stress distribution across the cross section of a 

singly-reinforced concrete member is taken up by the authors in the present work. The stress distribution 

model suggested by the Indian code IS 456-2000 is followed in the present study (Figure 1). Post 

cracking behavior up to Limit State of Serviceability is considered in the present work (Purushottaman, 

1986).  

 

3. Stress analysis of a singly reinforced concrete section 

 

3.1 STRESS DISTRIBUTION DUE TO A CRISP MOMENT 

 

A singly reinforced concrete section shown in Figure 1 with is taken up for analysis of stresses and strains 

in concrete and steel. The beam has a width of b and an effective depth of d. The beam is subjected to a 

maximum external moment M. Strain-distribution is linear and cc  is the strain in concrete at the extreme 

compression fiber and s  is the strain in steel. Let x be the neutral axis depth from the extreme 

compression fiber. The aim of analyzing the beam is to locate this neutral axis depth, find out the stresses 

in compression concrete and the tensile reinforcement and also compute the moment of resistance. 
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The stress-distribution is concrete is parabolic and concrete in tension is neglected. The strain cy  at 

any level y below the neutral axis ( y x ) is   

cy cc

y
=

x
 

 
 
 

                                                                                                               (1) 

The corresponding stress fcy is  
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   for   cy co   and cy cof = f  for cy co=                     (2) 

Total compressive force in concrete cN  is given by 
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Tensile stress in steel  

( )s s s cc

d x
N A E

x


 
  

 
                                                                                                  (5) 

If there are no external loads, the equation of longitudinal equilibrium, s cN N  leads to        the 

quadratic equation 

  2

1 2 0cc s s s sC C x A E x A E d                                                                                  (6) 

 

Depth of resultant compressive force from the neutral axis y  is given by 
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                                                                    (7) 

Internal resisting moment RM  is given by 

( )R c cM N z N y d x                                                                                           (8) 

For equilibrium the external moment M is equated to the internal moment of resistance RM  as 

RM M                                                                                                                            (9)
 

The neutral axis depth x  can determined by solving equation (6) only when cc  is known. Thus a 

trial and error procedure is adopted where in cc  is assumed and the corresponding values of CN  , y  and 

internal resisting moment RM  are obtained using equation (3), equation (7) and equation (8) such that 

equation (9) is satisfied. 

Strain in steel s cc

d x

x
 

 
  
 

                                                                           (10) 
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Stress in steel 0.87s s s s cc y

d x
f E E f

x
 

 
   

 
                                             (11) 

Total tensile force in steel reinforcement = s s sN A f                                                  (12) 

 

4. Stress Distribution due to uncertain interval parameters 

 

Consider the case of a singly reinforced concrete beam with interval values of area of steel reinforcement 

sA with corresponding interval Young’s modulus sE and subjected to an interval external bending 

moment ,M M   M . The uncertainty in external moment arises out of uncertainty of loads acting on 

the beam. Correspondingly the resulting stresses and strains in concrete and steel are also uncertain and 

are modeled using interval numbers. 

 

Using extension principle (Zadeh, 1965) all the equations developed in the previous section can be 

extended and made applicable to the interval case. The objective of the present study is to determine 

distribution of stresses and strain across the cross section of the beam. Two new approaches have been 

proposed for this purpose: a search based algorithm and a procedure based on Pownuk’s sensitivity 

analysis (Pownuk, 2004).These methods are outlined as follows: 

 

 

4.1 SEARCH-BASED ALGORITHM (SBA) 

 

A search based algorithm (SBA) is developed to perform search operations with an accelerated step size 

in order to compute the optimal setting for the interval value of strain in concrete is ,cc cc cc  
   . 

The algorithm is outlined below: 

 

4.1.1 Algorithm -1 (Search-based algorithm) 

a) The mid-value M  of the given interval moment M  is computed as 
2

M M
M


  

b) The mid-value sA of interval area of steel reinforcement sA is computed as 
2

s s

s

A A
A


  

c) The mid-value sE of interval Young’s modulus of steel sE is computed as 
s s

s

E + E
E =

2
 

d) Now the interval form of quadratic equation (6) given below is solved using the procedure 

outlined by Hansen and Walster (2002) 
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 1 2 0ccC C d 2

s s s s
x + A E x - A E  (13) 

Various values of cc  are assumed and the neutral axis depth x  and the corresponding values of 

cN , y  and 
RM  are determined by using a trial and error procedure outlined in the previous section. 

e) The interval strain in concrete cc is initially approximated as the point interval ,cc cc  . 

f) The lower and upper bounds of cc  are obtained as  1 2,cc cc ccd d        where 

d and d  are the step sizes in strain to obtain the lower and upper bounds, 1  and 2  being 

the corresponding multipliers. Initially 1  and 2  are taken as unity. 

g) While both
1 ,

2  are non-zero, d  and d are incremented and cc is computed. The 

procedure is continued iteratively till the interval form of (9) i.e.  RM M  is satisfied. The 

computations performed are outlined as follows: 

1) The interval values of x , y , z ,
cN  and the interval internal resisting moment 

R R[ , ]M MRM are computed. If   is a very small number 

2) 1  is set to zero if  
R

R

M - M

M
                                                    (14) 

3) 2  is set to zero if 
R

R

M - M

M
                                                            (15) 

4) The search is discontinued when 1 = 2 =0. 

 

 

4.2 SENSITIVITY ANALYSIS METHOD 

 

4.2.1 Extreme values of cc  and x. 

Unknown variables cc  and x  can be found from the system of equation (8) and equilibrium 

equation s cN N . Let us introduce a new notation 

1 1 1

2 2 1

( , , ,..., ) ( ) 0

( , , ,..., ) 0

cc m R c

cc m s c

F F x p p M N y d x

F F x p p N N





      


   
                                             (16) 

where 1p M , 2 cop f , 3 Sp A , 4 cop  , 5 Sp E , 6p b , 7p d . 
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Because the problem is relatively simple and the intervals ,i ip p 
   are usually narrow, then it is 

possible to solve the problem using sensitivity analysis method (Pownuk, 2004). Let us calculate 

sensitivity of the solution with respect to the parameter
ip . 

1 1 1
1 0cc

i cc i i i

F F x F
F

p p x p p





     
   

     
                                                                      (17) 

2 2 2
2 0cc

i cc i i i

F F x F
F

p p x p p





     
   

     
                                                                    (18) 

In matrix form 

1 1 1

2 2 2

cc

cc i i

cc i i

F F F

x p p

F F x F

x p p







        
        

     
        

             

                                                                                (19) 

Using Cramer’s rule the solution is given by the following formulas 

1 1

2 2 1 2

1 21 1

2 2

( , )

( , )

( , )

( , )

i

icc i

i

cccc

cc

F F

p x

F F F F

p x p x

F FF Fp

xx

F F

x







 

 

  

  
   

 

 

 

 

,   

1 1

2 2 1 2

1 21 1

2 2

( , )

( , )

( , )

( , )

cc i

cc i cc i

i

cccc

cc

F F

p

F F F F

px p

F FF Fp

xx

F F

x



 





 

 

  

  
   

 

 

 

 

           (20) 

If all Jacobians  

1 2( , )

( , )cc

F F

x




, 1 2( , )

( , )i

F F

p x




, 1 2( , )

( , )cc i

F F

p




                                                                                (21) 
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are regular then the derivatives have constant sign and the relations ( )cc cc ip  , ( )ix x p  are 

monotone. All variables 
ip  belong to known intervals ,i i ip p p    because of that sign of the Jacobians 

can be checked using interval global optimization method (Pownuk, 2004).  

 

If  

1

1 1 1, , , , , ,..., ,
0 min ( , , ,..., )cc m

cc cc cc m m mx x x p p p p p p
x p p

  


      
        

   
                        (22) 

then the Jacobian   is regular, where 1 2( , )

( , )cc

F F

x


 


, 1 2( , )

( , )i

F F

p x


 


 or 1 2( , )

( , )cc i

F F

p


 


. If the sign of 

the derivatives is constant then extreme values of the solution can be calculated using endpoints of the 

intervals ,i ip p    and sensitivity analysis method (Pownuk, 2004). The whole algorithm of calculation is 

the following: 

 

4.2.2 Algorithm-2 (Sensitivity Analysis) 

1) Calculate mid point of the intervals 0
2

i i

i

p p
p


 . 

2) Solve the system of equation (16) and calculate 0cc , 0x . 

3) Calculate sensitivity of the solution cc

ip




, 

i

x

p




 from the system of equation (19). 

4) If 0cc

ip





 then 

min, cc

i ip p

 , 

max, cc

i ip p

 , if 0cc

ip





 then 

min, cc

i ip p

 , 

max, cc

i ip p

 . 

5) If 0
i

x

p





 then 

min,x

i ip p , 
max,x

i ip p , if 0
i

x

p





 then 

min,x

i ip p , 
max,x

i ip p . 

6) Extreme values of cc , x  can be calculated as a solution of the following system of equations. 

7) Verification of the results. If the derivatives have the same sign at the endpoints 
min, max,min, max,, , ,cc ccx x

i i i ip p p p
 

 and in the midpoint then the solution is very reliable. 

 

 

4.2.3 Interval stress in extreme concrete fiber 

Sensitivity of stress in extreme concrete fiber ccf  can be calculated in the following way 
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cc cc cc cc
cc

i cc i i i

f f x f
f

p p x p p





     
  

     
                                                                   (23) 

where cc

ip




 and 

i

x

p




 are solution of the equation (19). 

If 0cc

i

f

p





 then 

min, ccf

i ip p , 
max, ccf

i ip p , if 0cc

i

f

p





 then 

min, ccf

i ip p , 
max, ccf

i ip p . 

 min, min, min, min,
1, , ,...,cc cc cc ccf f f f

cc cc cc mf f x p p ,                                              (24) 

 max, max, max, max,
1, , ,...,cc cc cc ccf f f f

cc cc cc mf f x p p                                               (25) 

In the midpoint sensitivity is equal to  

cc cc cc cc
cc

cc

f f fx
f

M M x M M





    
  

     
                                                                        (26) 

Extreme values of stress in extreme concrete fiber calculated form the equations (24) and (25).  

 

4.2.4 Interval stress in steel 

 

Sensitivity of stress in steel sf  can be calculated in the following way 

s cc s s
s

i cc i i i

f f x f
f

p p x p p





     
  

     
                                                                       (27) 

where cc

ip




 and 

i

x

p




 are solution of the equation (19). 

If 0s

i

f

p





 then 

min, sf

i ip p , 
max, sf

i ip p , if 0s

i

f

p





 then 

min, sf

i ip p , 
max, sf

i ip p . 

 min, min, min, min,
1, , ,...,s s s sf f f f

s s cc mf f x p p ,                                                  (28) 

 max, max, max, max,
1, , ,...,s s s sf f f f

s s cc mf f x p p .                                                     (29) 

Sensitivity at the mid point is computed as 
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s cc s s
s

cc

f f fx
f

M M x M M





    
  

     
                                                                 (30) 

4.3 COMBINATORIAL SOLUTION 

 

Combinatorial solution is obtained by considering the upper and lower bounds of the external interval 

moment and computing the corresponding deterministic values of  cc
, x, y , cN  and RM  are 

determined. The lower and upper values taken by these quantities are utilized to obtain the corresponding 

interval values of x , y , z ,
cN and 

RM . 

 

5. Example Problem 

 

A singly reinforced beam with rectangular cross section is taken up to illustrate the validity of the above 

methods. The beam has the dimensions b = 300 mm and D = 550 mm and effective depth         d = 500 

mm. The beam is reinforced with 6 numbers of Tor50 bars of 25 mm diameter 

(
2 26 491 2946SA mm mm   ).The bending moment acting on the beam is M 100kNm . Allowable 

compressive stress in concrete 
2  13.4 cof is N mm and allowable strain in concrete   is 0.002co . 

Young’s modulus of steel   200SE is GPa .The stress-strain curves for concrete and steel as detailed in IS 

456-2000 are adopted (Figure 1) 

Interval uncertainty is considered in the bending moment, area of steel reinforcement and Young’s 

modulus of steel reinforcement. The corresponding membership functions are shown in Figure 2, Figure 3 

and Figure 4 respectively. Interval values of bending moment, area of steel reinforcement and 

corresponding Young’s modulus can be extracted from these figures using        -cut approach at any 

desired level of uncertainty for use in the stress analysis. For example, corresponding to   = 0.8, the 

interval values considered are M = [98,102] kNm,                         
sA = [2917, 2975] mm

2
 

and sE  [198,202]GPa . The corresponding interval values of neutral axis depth, strain and stress in 

concrete and stress in steel reinforcement are computed at various levels of uncertainty and membership 

functions are plotted.  
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Figure 2. Membership function for bending moment 
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Figure 3. Membership function for area of steel reinforcement 
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In the present study, interval values of neutral axis depthx , strain ccε  and stress ccf in extreme 

compression fiber of concrete and stress in steel sf computed using search-based algorithm (SBA) and 

sensitivity analysis (SA) approach for the following cases: 

 

a)  Case 1 : 

       External interval moment M = [96,104] kNm 

       Area of Steel reinforcement SA = 2946 mm
2 

           
Young’s modulus of Steel reinforcement SE = 210

5
 N/mm

2 

b) Case 2:  

       External interval moment M = [90,110] kNm 

       Interval area of Steel reinforcement 
sA = [0.9,1.1]*2946 mm

2 
 

           
Young’s modulus of Steel reinforcement SE = 210

5
 N/mm

2 

c) Case 3:  

       External interval moment M = [80,120] kNm 

       Area of Steel reinforcement SA = 2946 mm
2 
 

190

192

194

196

198

200

202

204

206

208

2100

0.2

0.4

0.6

0.8

1

190 195 200 205 210
Young's modulus (GPa)

M
e

m
b

e
rs

h
ip

 v
a
lu

e

Figure 4. Membership function for Young’s modulus of steel reinforcement 



472        Rama Rao, A. Pownuk  and I. Skalna          

REC 2008 – M.V.Rama Rao, A.Pownuk and I.Skalna 

           
Interval Young’s modulus of Steel reinforcement sE = [0.98, 1.02]*210

5
 N/mm

2 

 
 

d) Case 4: 

       External interval moment M = [90,110] kNm 

       Interval area of Steel reinforcement 
sA  = [0.98, 1.02]*2946 mm

2  

           
Interval Young’s modulus of Steel reinforcement 

sE = [0.98, 1.02]*210
5
 N/mm

2 

 

6. Results and Discussion 

 

A web application is developed by the authors and is posted at the URL 

http://calculus.math.utep.edu/~andrzej/php/concrete-beam . Computations are performed using this web 

application. The screen capture of the web application is shown in Figure 5. The screen capture of the 

results obtained using this web application is shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Web Application 

http://calculus.math.utep.edu/~andrzej/php/concrete-beam
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Tables 1 through 4 present the results obtained using these three approaches viz. search-based 

algorithm, sensitivity analysis and combinatorial solution. Relative difference is computed for results 

obtained using search-based algorithm and sensitivity analysis in comparison with results obtained using 

combinatorial approach.  

Table 1 presents the results obtained for Case 1. It is observed that the relative difference computed 

for search-based algorithm range from 0.003 percent to 0.416 percent while the corresponding relative 

difference computed using sensitivity analysis ranges from 0.0 percent to 0.005 percent. Table 2 presents 

the results obtained for Case 2. It is observed that the relative difference computed for search-based 

algorithm range from 0.179   percent to 2.2 percent while the corresponding relative difference computed 

using sensitivity analysis is almost zero. Table 3 presents the results obtained for Case 3. It is observed 

that the relative difference computed for search-based algorithm range from 0.039 percent to 7.567 

percent while the corresponding relative difference computed using sensitivity analysis while the 

Figure 6. Results obtained using web application 
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corresponding relative difference computed using sensitivity analysis is almost zero. Table 4 presents the 

results obtained for           Case 4. It is observed that the relative difference computed for search-based 

algorithm range from 0.061 percent to 4.701 percent while the corresponding relative difference 

computed using sensitivity analysis is almost zero. Thus it is observed that the relative difference is very 

small. Thus these methods agree very well with the combinatorial solution. 

 

Table. 1 Comparison of  results obtained using the three approaches for  

M  = [96,104]kNm 

 
ccε ×10

-4
 

ccf  (N/mm
2
) x (mm) 

sf (N/mm
2
) 

 Lower Upper Lower Upper Lower Upper Lower Upper 

Combinatorial 4.699 5.123 5.557 5.985 270.291 270.945 79.870 86.612 

Search based 

approach 
4.704 5.117 5.562 5.980 270.299 270.937 79.543 86.972 

% difference 0.106 0.117 0.090 0.084 0.003 0.003 0.409 0.416 

Sensitivity 

Analysis 
4.699 5.122 5.557 5.985 270.291 270.946 79.871 86.614 

% difference 0.002 0.005 0.001 0.011 0.000 0.000 0.001 0.005 

 

Table. 2 Comparison of  results obtained using the three approaches for 

M = [90,110] kNm , 
sA = [0.9,1.1]*2946mm

2
 

 
ccε ×10

-4
 

ccf  (N/mm
2
) x  (mm) 

sf  (N/mm
2
) 

 Lower Upper Lower Upper Lower Upper Lower Upper 

Combinatorial 4.279 5.601 5.121 6.454 261.07 279.374 68.467 101.149 

Search based 

approach 4.261 5.631 5.102 6.483 260.693 279.874 67.029 103.374 

% difference 0.421 0.536 0.371 0.449 0.144 0.179 2.100 2.200 

Sensitivity 

Analysis 

4.279 5.601 5.121 6.454 261.07 279.374 68.467 101.149 

% difference 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table. 3 Comparison of  results obtained using the three approaches for  

M = [80,120] kNm and 
sE  = [0.98,1.02]*2946mm

2
 

 
ccε ×10

-4
 

ccf  (N/mm
2
) x  (mm) 

sf  (N/mm
2
) 

 Lower Upper Lower Upper Lower Upper Lower Upper 

Combinatorial 3.848 6.021 4.661 6.853 267.338 273.939 66.339 100.286 

Search based 

approach 
3.821 6.071 4.631 6.901 267.235 274.119 61.707 107.875 

% difference 0.702 0.830 0.644 0.700 0.039 0.066 6.982 7.567 

Sensitivity 

Analysis 

3.848 6.021 4.661 6.853 267.338 273.939 66.339 100.286 

% difference 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

 

 

 

Table. 4 Comparison of  results obtained using the three approaches for 

M = [96,104] kNm, 
sA  = [0.98,1.02]*2946mm

2   

sE  = [0.98,1.02]*2.0e5kN/m^2 

 
ccε ×10

-4
 

ccf  (N/mm
2
) x  (mm) 

sf  (N/mm
2
) 

 Lower Upper Lower Upper Lower Upper Lower Upper 

Combinatorial 4.651 5.178 5.507 6.040 266.935 274.239 78.303 88.379 

Search based 

approach 
4.643 5.188 5.499 6.051 266.771 274.423 74.797 92.534 

% difference 0.172 0.193 0.145 0.182 0.061 0.067 4.477 4.701 

Sensitivity 

Analysis 
4.651 5.178 5.507 6.040 266.935 274.239 78.303 88.379 

% difference 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 
6.1 COMBINED MEMBERSHIP FUNCTION FOR STRESSES AND STRAINS 

 

Combined membership functions are plotted for stresses and strains in concrete and steel as well as 

neutral axis depth using the three approaches viz. search-based algorithm, sensitivity analysis and 

combinatorial approach. These membership functions are obtained using the procedure suggested by 

Moens and Vandepitte (2005). Figure 7 shows the plots of membership function for the depth of neutral 

axis. Combined membership functions for the strain and stress in extreme concrete fiber are presented in 

Figure 8 and Figure 9 respectively. Combined membership function for the stress in steel reinforcement is 

shown in Figure 10. It is observed that all these membership functions are triangular with linear variation 
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of the response about the corresponding mean value. The plots of combined membership functions 

obtained using search-based approach and sensitivity analysis agree well with the membership functions 

plotted using combinatorial approach.  
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Figure .7 Combined membership function for neutral axis depth(x) 
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Figure .8 Combined membership function for strain (cc) in  extreme concrete fiber 
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Figure 9. Combined membership function for stress (fcc) in extreme concrete fiber 
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Figure .10 Combined membership function for stress (fcc) in steel reinforcement 
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7. Conclusions 

In the present paper, analysis of stresses in the cross section of a singly reinforced beam with interval 

values of area of steel reinforcement with corresponding interval Young’s modulus and subjected to an 

interval external bending moment is taken up. The stress analysis is performed by three approaches viz. a 

search based algorithm and sensitivity analysis and combinatorial approach. It is observed that the results 

obtained are in excellent agreement. These approaches allow the designer to have a detailed knowledge 

about the effect of uncertainty on the stress distribution of the beam. The combined membership functions 

are plotted for neutral axis depth and stresses in concrete and steel and are found to be triangular.  

 

Interval stresses and strains are also calculated using sensitivity analysis. The sign of the derivatives 

at the mid point and also at the endpoints is found to be same thus establishing the validity of the solution. 

More accurate monotonicity tests based on second and higher order derivatives (Pownuk, 2004) can also 

be used to establish sharp bounds on interval solution. Results with guaranteed accuracy can also be 

calculated using interval global optimization (Hansen, 1992 and Neumaier, 1990). Initial efforts by the 

authors in this direction gave encouraging results. Extended version of this paper will be published on the 

web page of the Department of Mathematical Science at the University of Texas at El Paso 

(http://www.math.utep.edu/preprints/). 
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Abstract. In this paper options for a realistic evaluation of engineering data characterized by inconsistency
regarding uncertainty and imprecision are discussed. The proposed methods are linked to the generalized
uncertainty model fuzzy randomness. This enables a quantification of uncertainty and imprecision simulta-
neously with a smooth transition between fuzziness and randomness. Statistical information is exploited with
traditional statistical methods, whereas imprecision is dealt with using fuzzy methods. Statistical uncertainty
and imprecision are considered within the same model but notmixed with one another. In this manner, both
components are reflected separately in the computational results from a subsequent structural or safety
analysis. Quantification techniques are elucidated for three typical engineering cases of inconsistent infor-
mation; (i) small sample size and expert knowledge, (ii) imprecise sample elements, and (iii) inconsistent
environmental conditions and expert knowledge. The usefulness of the proposed quantification methods for
a subsequent structural analysis and safety assessment is demonstrated by way of engineering examples.

Keywords: Inconsistent data; Imprecise data; Fuzzy methods; Fuzzy probabilities; Uncertain structural
analysis; Safety assessment.

1. Introduction

The usefulness of the results from an engineering analysis depends significantly on the realistic modeling
of the input parameters. Shortcomings, in this regard, may lead to biased computational results, wrong
decisions, and serious consequences [18]. This applies, inparticular, if the data are characterized by un-
certainty and imprecision. A variety of mathematical models have been formulated to take account of the
available information as realistically as possible [3, 6, 7, 10, 13, 14, 15, 17, 23, 24, 28, 29]. The usefulness
and capabilities of these models have already been demonstrated in the solution of practical problems, for
example, in civil/mechanical engineering [1, 4, 5, 8, 9, 11,12, 14, 16, 19, 21, 22, 25].

In engineering practice the available information frequently appears as partly stochastic and partly
imprecise – in a mixed stochastic/non-stochastic form. In those cases the model fuzzy randomness [19]
provides a proper basis to utilize traditional statisticalmethods together with quantification methods from
fuzzy set theory. In this manner, a broad spectrum of typicalengineering cases can be covered; and the
introduction of unwarranted information is avoided. This is demonstrated in the sequel with proposals of
quantification techniques for three typical engineering situations. First, the quantification of data from a
small sample together with expert knowledge is considered.This is associated with the problem of weak
statistical information from estimations and tests. A solution is obtained by utilizing the statistical impre-
cision in the specification of fuzzy parameters and fuzzy distribution types of a fuzzy random quantity.

c© 2008by authors. Printed in USA.

REC 2008 - Michael Beer



482 Michael Beer

Second, samples with imprecise elements are evaluated, which requires the application of statistics with
fuzzy quantities. For this purpose, fuzzy arithmetic is implemented in statistical estimations and tests. Third,
inconsistent environmental conditions are dealt with together with expert knowledge. This leads to critical
conditions for statistical estimations and tests. For solution, a separation of fuzziness and randomness is
applied in the quantification procedure by constructing groups of consistent data.

In all three cases fuzzy random quantities are obtained which reflect the stochastic uncertainty and the
imprecision of the underlying information simultaneouslyand separately. The fuzzy probability distributions
are described as a bunch of distributions that cover all possible stochastic models within the range of impreci-
sion. Bunch parameters are fuzzy quantities p̃t, which include distribution parameters as well as parameters
for the specification of the distribution type. Then, each crisp point from the p̃t specifies one real-valued
random quantity associated with a certain membership degree according to fuzzy set theory. For a detailed
description see [19]. This enables the utilization and combination of sophisticated and numerically efficient
methods from stochastic mechanics [26, 27] and from interval [22] and fuzzy structural analysis [20] in
subsequent engineering computations. The respective algorithms of fuzzy stochastic structural analysis and
safety assessment are discussed in [19].

2. Small Sample size and Expert Knowledge

Assume that a concrete sample of small size is available. Thesample elements are random realizations.
The available information on the sample is insufficient, however, to describe a real-valued random variable
free of doubt. The type of the distribution function and the parameters cannot be determined uniquely;
additional uncertainty exists. Expert knowledge and experience are available from similar cases in the
past. This uncertainty is rather non-stochastic and may be accounted for with the aid of fuzzy set theory
[2, 30]. Statistical methods may be used as a basis for quantification, which are supplemented by fuzzy
methods to finalize the modeling. Depending on the availableinformation it is possible to formulate an
imprecise parametric or nonparametric estimation problem. On this basis, the type and the parameters of
the sought distribution are determined in as imprecise quantities, namely, as fuzzy quantities. These fuzzy
quantities are, subsequently, lumped together as fuzzy parameters p̃t(X̃), in which X̃ represents a fuzzy
random quantity – for convenience, limited to the one-dimensional case. The p̃t(X̃) may be determined from
imprecise empirical statistical information extracted from the sample together with expert knowledge.

If, for example, the type of distribution is known with sufficient certainty, this implies an imprecise,
parametric estimation problem. The sample functions applied in statistical methods yield more or less ac-
ceptable estimation values for the parameters of a distribution. In order to take account of the imprecision of
the estimator, confidence intervals may be determined for the estimator in question. The probabilistic propo-
sitions for confidence intervals applied in statistical methods may then serve as additional information for
the specification of the membership functionsµ(pt(X)) of the p̃t(X̃) in the present case. Expert knowledge
is brought in with regard to

− the specification of the distribution type,

− the choice of the estimator,

− the construction of confidence intervals (type and levels),
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− the assignment of membership degrees to the selected confidence levels, and

− the subsequent modification of the initial draft of the membership functionsµ(pt(X)).

Table I. Sample of the cylinder compressive strength fc of a concrete

Number i of realization Compressive strength
xi = fci[N/mm2]

Number i of realization Compressive strength
xi = fci[N/mm2]

1 28.3 11 26.8

2 31.5 12 35.3

3 35.2 13 26.3

4 29.8 14 23.1

5 27.6 15 20.2

6 30.7 16 29.2

7 25.2 17 25.7

8 34.6 18 34.2

9 28.9 19 24.8

10 19.2 20 22.8

Table II. Statistical estimation and assignment of membership values for m̃x and
σ̃x

Estimation Confidence level mX σX α-level

Point - – 27.97 4.75 1.00

Interval 0.50 [27.24, 28.70] [4.35, 5.43] 0.75

0.75 [26.71, 29.23] [4.05, 5.92] 0.50

0.90 [26.13, 29.81] [3.77, 6.52] 0.25

0.99 [24.93, 31.01] [3.34, 7.92] 0.00

Suppose that a sample of size 20 is available for the cylindercompressive strength fc of a concrete
according to Table 2. A normal distribution is assumed basedon expert knowledge, and the parameters mx

andσx are determined as fuzzy values m̃x andσ̃x. For this purpose interval estimations are applied. From
the 20 measured values of the compressive strength the central confidence intervals for the confidence levels
0.50, 0.75, 0.90, and 0.99 are determined. Dependencies between the parameters are not taken into account.
Additionally, common point estimations are used to specifycrisp values for the expected value (as the mean
value of the sample) and the standard deviation (based on thesample variance). The results (Table 2) are then
taken as a basis for the specification of the parameters as fuzzy quantities. Membership values are assigned
to the estimation results by subjective assessment. That is, the confidence intervals are interpreted as being
α-level sets of the fuzzy values m̃x and σ̃x; see Table 2. The mean values of the fuzzy numbers are taken
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from the point estimations. Eventually, the fuzzy quantities m̃x andσ̃x are obtained according to Fig.??. As
dependencies between the parameters in the interval estimations are neglected, interaction between m̃x and
σ̃x is not obtained.

0.00

0.25

0.50

0.75

1.00

�(�X)

�X [N/mm²]

Fuzzy expected value mX

~
Fuzzy standard deviation �X

~

0.00

0.25

0.50

0.75

1.00

�(mX)

mX [N/mm²]

24.93 31.0127.97 3.34 4.75 7.92

Figure 1. Fuzzy expected value m̃x and fuzzy standard deviatioñσx

3. Imprecise Sample Elements

Imprecision of sample elements may occur, for example, due to imprecise readings of (analog) measuring
devices or as a reflection of imprecise individual care of personnel in tests. This imprecision can be expressed
in form of fuzzy numbers for the measured values representing the sample elements. It is then possible to
construct a fuzzy random quantitỹX directly from the imprecise data material. The corresponding fuzzy
parameters p̃t(X̃) for the description of the fuzzy random quantityX̃ can be estimated based on statistical
estimations and tests extended to deal with fuzzy arguments. This requires a proper application of fuzzy
arithmetic in these algorithms. For a numerical evaluation, the fuzzy analysis based onα-level optimization
according to [20] may be utilized. This framework enables animplementation of algorithms of mathematical
statistics as the mapping model of a fuzzy analysis. Each fuzzy sample element is then treated as a fuzzy
input quantity of the mapping model. The fuzzy result represents the sought parameter p̃t(X̃).

As an example, the sample elements from Table 2 are assumed topossess an imprecision of±2N/mm2

due to imprecise readings of the measuring device. This provides information for a modeling of the sample
elements as fuzzy triangular numbers denoted by x̃i =< xi µ=0l,xi µ=1,xi µ=0r >. The values from Table 2
are assessed withµ = 1, from where the linear branches of the membership functiondecrease down toµ = 0
at the points of the maximum deviation±2N/mm2; see Table 3.

In order to compute the empirical parameters, common statistics (sample functions) are applied with
the fuzzy values x̃i as arguments. The fuzzy sample mean is then obtained with

x̃ =
1
n

n

∑
i=1

x̃i , (1)

in which n is the sample size. The linearity of this mapping model leads to a fuzzy triangular number for
the fuzzy sample mean, which is completely specified by the membership levelsµ = 1 andµ = 0 as shown
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in Fig. 2, x̃ =< 25.97,27.97,29.97 > N/mm2. In contrast to this, the mapping model for computing the
standard deviation of the sample is nonlinear and even non-monotonic,

s̃x =

√√√√√ 1
n−1




n

∑
i=1

x̃2
i −

1
n

(
n

∑
i=1

x̃i

)2

. (2)

This requires a more sophisticated evaluation technique. In the example,α-level optimization [20] is applied

Table III. Fuzzy sample elements of the cylinder compressive strength fc of a concrete

Number i of
fuzzy realization

Fuzzy compressive strength
x̃i = f̃ci[N/mm2]

Number i of
fuzzy realization

Fuzzy compressive strength
x̃i = f̃ci[N/mm2]

1 < 26.3,28.3,30.3 > 11 < 24.8,26.8,28.8 >

2 < 29.5,31.5,33.5 > 12 < 33.3,35.3,37.3 >

3 < 33.2,35.2,37.2 > 13 < 24.3,26.3,28.3 >

4 < 27.8,29.8,31.8 > 14 < 21.1,23.1,25.1 >

5 < 25.6,27.6,29.6 > 15 < 18.2,20.2,22.2 >

6 < 28.7,30.7,32.7 > 16 < 27.2,29.2,31.2 >

7 < 23.2,25.2,27.2 > 17 < 23.7,25.7,27.7 >

8 < 32.6,34.6,36.6 > 18 < 32.2,34.2,36.2 >

9 < 26.9,28.9,30.9 > 19 < 22.8,24.8,26.8 >

10 < 17.2,19.2,21.2 > 20 < 20.8,22.8,24.8 >
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1.00
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6.54
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~_

Fuzzy standard deviation sx
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0.50
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�(x)
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_ 29.97

_

25.97 27.97 3.22 4.75 5.633.95

Figure 2. Fuzzy meañx and fuzzy standard deviation s̃x of the sample from Table 3

to evaluate Eq. (2). The membership functionµ(sx) is obtained with nonlinear branches; see Fig. 2.
The fuzzy sample elements x̃i enter Eq. (1) and Eq.(2), simultaneously. Thus, a relationship exists be-

tween the fuzzy sample mean and the fuzzy standard deviationof the sample. This is referred to as interaction
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between the fuzzy quantities̃x and s̃x. This interaction is shown in Fig. 3 for the membership levelα = 0.
Certain combinations of crisp values from̃x and s̃x cannot appear. An analytical or numerical determination
of this interaction is, however, virtually excluded due to the tremendous computational effort even for a small
sample. In the example a numerical approximation solution was determined with the aid of systematic and
random-oriented simulations. The effect of the number of fuzzy realizations on the interaction relationship
becomes apparent when only the first seven sample elements from Table 3 are considered; see Fig. 4. Not
only the position but also the shape of the fuzzy set{x̃, s̃x} shows a deviation from the illustration in Fig. 3.
As a consequence of the same support widths of the fuzzy realizations x̃i the minimum and maximum sample
means are, in each case, coupled with the same standard deviation of the sample. This property is lost in the
general case. As demonstrated forx̃ and s̃x, interaction generally exists between all empirical parameters
including the distribution type. The fact that the fuzzy realizations themselves may also be interactive
may even lead to non-connected sets for the empirical parameters. Due to the numerical complications
in the determination of the interaction, an approximation may be pursued. Or, the interaction may even
be neglected; see Fig. 3. Although this means that non-justified parameter combinations are included and
thus enter subsequent computations, the ”exact” solution is completely contained in this approximation. The
negligence of interaction leads to an envelope curve of those parameter combinations, which can actually
appear.

sx [N/mm2]

x [N/mm2]
_

6.54

4.75

3.22

25.97 27.97 28.04 29.97

With interaction
Without interaction

Figure 3. Numerical approximation of the interaction between the fuzzy sample meañx and the fuzzy standard deviation s̃x for the
20 fuzzy realizations from Table 3

The fuzzy parameters computed from the sample are the basis for the specification of the fuzzy prob-
ability distribution function needed for further processing of fuzzy random quantities in engineering com-
putations. In the example, a normal distribution is assumedfor the fuzzy random quantity. The functional
parameters are then estimated by the fuzzy sample meanx̃ as fuzzy expected value m̃x, and by the fuzzy
standard deviation s̃x of the sample as fuzzy standard deviationσ̃x of the fuzzy random quantity. The
obtained fuzzy probability density functioñf(x) and the fuzzy probability distribution functioñF(x) are
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x [N/mm2]
_
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1.74

27.76 30.00 30.04 31.76

Figure 4. Numerical approximation of the interaction betweenx̃ and s̃x for the first seven fuzzy realizations from Table 3

shown in Figs. 5 and 6, respectively. The illustrations showthe functions with and without the consideration
of the interaction between m̃x andσ̃x. Negligence of the interaction between m̃x andσ̃x leads to envelope
curves enclosing the exact fuzzy functionsf̃(x) andF̃(x). The interaction between m̃x andσ̃x excludes the
simultaneous occurrence of extrema of the expected value and standard deviation; see Fig. 3. This influences,
in particular, the tails of the fuzzy functionsf̃(x) andF̃(x). The probability mass in the tails is higher if the
interaction is neglected. This leads to an overestimation of failure probabilities in a subsequent structural
safety assessment. This overestimation is, however, not tremendous and leads to a slightly conservative
safety assessment, which is rather welcome.

0.12

0.06

0.00

0 20 40 6025.97

27.97

29.97

f(x)

x [N/mm2]

� = 0
� = 1
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Without interaction

Figure 5. Fuzzy probability density functioñf(x) with and without consideration of the interaction between ˜mx andσ̃x
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� = 0
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Figure 6. Fuzzy probability distribution functioñF(x) with and without consideration of the interaction between ˜mx andσ̃x

4. Inconsistent Environmental Conditions and Expert Knowledge

This situation appears if the sample has been generated under varying environmental conditions. It then
defies a traditional statistical evaluation and needs special treatment. The varying environmental conditions
may include, for example, involvement of different manufacturers, changes in the type of aggregates /
additives from different suppliers, varying hardening conditions (temperature, humidity), and variations in
the motivation of the personnel. In those cases, expert knowledge is usually available to separate fuzziness
and randomness present in the statistical data material. This separation can be realized by characterizing
the environmental conditions with attributes such as a specific supplier for aggregates or a certain team of
employees in the production process. Observed realizations with the same attributes are lumped together
in a singlegroup. These groups are subsets of the population. Each group of realizations with the same
attributes is treated as a separate sample. These samples can then be evaluated using statistical methods as
they comply with the preconditions in form of constant environmental conditions. The statistical evaluation
yields empirical parameter values including a distribution type for each group. For all groups the setS of
statistical propositions is obtained. Each element ofSis assigned to a subset of the population. Hence, the set
Sdescribes the set of real random quantities contained in theobserved realizations. The differences between
the elements of the setS represent imprecision, which may be modeled as fuzziness ofthe population. The
elements contained inSand, thus, the associated real random quantities may be assessed with membership
values. This results in the fuzzy setS̃. The real random quantities together with their membershipvalues
form a fuzzy random quantity, which is described byS̃.

The fuzzy set̃Scan be constructed in parametric or in a non-parametric manner. The parametric con-
struction ofS̃ involves a distribution assumption from expert knowledge.Then, the membership functions of
the empirical distribution parameters may be constructed using histograms. In the non-parametric construc-
tion of S̃empirical distribution functions are used, and a direct fuzzification of the probability distribution
function curve is pursued.
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Parametric Quantification It is presumed that the groups of sample elements with same attributes and
their corresponding empirical parameters are known. The parameter values constitute a sample for which
a histogram is constructed. The parameter value is plotted along the abscissa, which is subdivided into
subsets. In the normal manner the number of sample elements,which is the number of empirical parameter
values, per subset is plotted on the ordinate. Then, the histogram can be used as a basis for constructing the
membership function of the respective fuzzy parameter.

As an example, let specimens of a concrete be available from different concrete plants. Tests are carried
out to measure the cylinder compressive strength fc. The specimens are labeled, and the concrete plant and
work team are registered. Specimens with the same identification (same attributes) are each lumped together
in a group. In the example, twelve groups with a different number of specimens (sample size) are identified.
By this means, randomness and fuzziness are separated. The statistical evaluation of the measured cylinder
compressive strength fc yields empirical parameters for each group. The sample meanx and the standard
deviation sx of the samples are computed; see Table 4.

Table IV. Sample meanx and standard deviation sx of the cylinder compressive strength fc of the concrete for twelve groups
of specimens (twelve samples)

Label of group Sample size Sample meanx[N/mm2] Standard deviation sx[N/mm2]

1 54 27.3 5.3

2 48 26.6 4.9

3 42 29.2 4.2

4 38 31.4 3.8

5 44 28.3 5.6

6 48 29.4 3.2

7 55 26.4 5.0

8 47 30.1 4.6

9 64 28.3 5.9

10 53 27.9 3.8

11 75 29.6 6.3

12 52 27.8 4.7

The values listed in Table 4 are used to construct histogramsfor the sample meanx and the standard
deviation sx of the samples; see Fig. 7. The chosen subset widths are 1.0N/mm2 for x and 0.75N/mm2

for sx. Each of the empirical parameters is modeled using fuzzy triangular numbers. The method of least
squares is applied to determine the linear membership functions. The derived fuzzification suggestions are
shown in Fig. 7.

Due to the fact that the valuesx and sx for each group originate from the same sample, interaction exists
between the fuzzy quantities̃x and s̃x. Analog to the analysis of stochastic dependencies betweenrandom
variables, the interaction relationship may be determinedby evaluating the value pairs(x,sx) obtained.
These pairs are plotted in a coordinate system, and the interaction relationship is estimated for different
membership levels. This procedure is illustrated in Fig. 8 for the membership levelα = 0. Assuming a
normal distribution, the empirical fuzzy parametersx̃ and s̃x are adopted as the fuzzy distribution parameters
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m̃x andσ̃x, respectively, of the fuzzy probability distribution. If the assumed distribution type is different for
the individual groups, this may be accounted for with a compound distribution and fuzzy parameter for the
mixing ratio.
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Figure 7. Histograms and fuzzification of the sample meanx and the standard deviation sx assigned to the groups (samples) of the
cylinder compressive strength fc

Non-parametric Quantification The starting point is again the separation of randomness andfuzziness by
constructing groups of observed realizations. Then, empirical distribution functions are constructed for the
individual groups. The set of empirical distribution functions for all groups is then taken as the basis to
determine fuzzy quantities for the functional values of an overall empirical distribution function.

The example from the parametric quantification is reused fordemonstration. For each group, a his-
togram is constructed from the realizations to determine anempirical distribution function. The subset
widths and the subset positioning on the abscissa must be thesame for all histograms for all groups.
The subsets are defined as half-closed intervals[xl ,xr) on the real number line. The number of observed
realizations in the subsets is generally different for the individual groups. The histograms for the first two
groups from Table 4 are shown in Fig. 9.
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Figure 8. Estimation of the interaction betweenx̃ and s̃x
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Figure 9. Histograms for the realizations of groups 1 and 2 from Table 4

For each group the empirical probability distribution function

Fe
i (x) =

ni,k(x)

ni
(3)

is developed from the corresponding histogram. In the above, i denotes the group number, ni is the number
of all elements (realizations) in group i, and ni,k(x) is the number of those elements k (in group i), whose
values xk are smaller than x. The values x of the observed realizationsare determined by the left-hand subset
boundaries (that is, by the xl of the half-closed intervals[xl ,xr)) in the histograms; these mark discrete
positions on the abscissa. The evaluation of all groups yields a bunch of discrete empirical distribution
functions. The functional values Fe

i (x = fc) are listed in Table 4.
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Table V. Functional values of the empirical distribution functions Fei (x = fc) for all groups i of specimens

Group i

x = fc

[N/mm2]

1 2 3 4 5 6 7 8 9 10 11 12

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

14 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.000

16 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.000

18 0.019 0.021 0.000 0.000 0.000 0.000 0.036 0.000 0.016 0.000 0.013 0.000

20 0.074 0.083 0.000 0.000 0.023 0.000 0.091 0.000 0.063 0.000 0.067 0.000

22 0.167 0.250 0.000 0.000 0.114 0.000 0.273 0.043 0.172 0.094 0.120 0.096

24 0.296 0.333 0.071 0.026 0.295 0.042 0.327 0.064 0.266 0.170 0.227 0.231

26 0.407 0.479 0.262 0.105 0.409 0.167 0.436 0.191 0.328 0.283 0.320 0.346

28 0.556 0.604 0.476 0.184 0.523 0.354 0.655 0.340 0.422 0.509 0.400 0.577

30 0.759 0.708 0.595 0.395 0.705 0.563 0.764 0.532 0.625 0.717 0.507 0.731

32 0.815 0.813 0.786 0.632 0.750 0.833 0.855 0.702 0.766 0.887 0.653 0.788

34 0.907 0.979 0.810 0.711 0.795 0.917 0.927 0.766 0.844 0.962 0.733 0.904

36 0.926 1.000 0.905 0.816 0.909 0.979 0.964 0.830 0.922 0.981 0.827 0.923

38 0.944 1.000 1.000 1.000 0.932 1.000 1.000 0.979 0.969 0.981 0.933 0.962

40 0.981 1.000 1.000 1.000 0.977 1.000 1.000 0.979 0.969 1.000 0.947 1.000

42 1.000 1.000 1.000 1.000 0.977 1.000 1.000 1.000 0.969 1.000 0.973 1.000

44 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.984 1.000 0.987 1.000

46 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 1.000

48 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

For each discrete value x from Table 4 the functional values Fe(x) are taken as a basis to model fuzzy
functional values̃Fe(x) to cover all groups at once. At each (discrete) position x a histogram is constructed
using the functional values of the empirical distribution functions. The abscissa is subdivided into suitable
subsets in the interval[0,1); and the number of functional values assigned to each subsetis plotted on the
ordinate. Than, fuzzy numbers are generated from the histograms by simple approximation schemes such
as least squares algorithm. In this generation process the properties of the probability measure must be
observed. In the present case fuzzy triangular numbers and fuzzy numbers with a polygonal membership
function are chosen. The fuzzification process is shown in Fig. 10 for three selected values x= fc. The
fuzzification results for all x= fc are listed in Table 4. The interval bounds of the support as well as the
mean value are indicated for each fuzzy probabilityF̃e(x). The obtained fuzzy probabilities̃Fe(x) for discrete
x = fc are functional values of the sought fuzzy probability distribution functionF̃(x).

This non-parametric representation can finally be replacedby a parametric fuzzy probabilistic model in
the form of an envelope. For this purpose, different membership levelsα are considered for the determination
of fuzzy parameters of the fuzzy probability distribution and for the description of the distribution type. The
aim is to determine bounding distribution functions of the fuzzy random variable for each membership level.
The entirety of all included probabilistic models then reflects the sought fuzzy probability distribution.
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Figure 10. Histograms and membership functions of the functional values of the empirical distribution function Fe(x) for
x = fc = 20N/mm2, x = fc = 28N/mm2, and x= fc = 36N/mm2

In this example a compound distribution comprised of a normal distribution (ND) and a logarithmic
normal distribution (LND) with a constant ratio of components is adopted. It is assumed that the expected
value and standard deviation are the same for both distributions; the minimum value of the component
logarithmic normal distribution is specified to be x0 = 5N/mm2. The expected value, standard deviation,
and ratio of components are chosen to be free fuzzy parameters of the compound distribution

F̃(x) = ã· F̃NV(x)+ (1− ã) · F̃LNV(x) . (4)

The subsequent evaluation is restricted to the membership levelsα = 0 andα = 1. The free parameters
required for approximating the distribution functions of the originals are determined by the method of least
squares. The distribution function F1(x) for the membership levelα = 1 is obtained from the values of
Fe

1(x). The boundaries of the membership levelα = 0 are obtained in each case from all values of Fe
0l(x)

and Fe
0r(x), respectively. The following constraints are taken into account:

− All Fe
0l(x) > 0 lie above the approximation function F0l(x)

− All Fe
0r(x) < 1 lie below the approximation function F0r(x)
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Table VI. Support bounds Fe0l(x) and Fe0r(x), and mean values Fe
1(x)

of the fuzzy probabilitỹFe(x) for all x = fc[N/mm2] from Table 4

x Fe
0l(x) Fe

l (x) Fe
0r(x) x Fe

0l(x) Fe
l (x) Fe

0r(x)

12 0.000 0.000 0.000 32 0.603 0.799 0.975

14 0.000 0.000 0.018 34 0.652 0.925 1.000

16 0.000 0.000 0.018 36 0.742 0.958 1.000

18 0.000 0.000 0.035 38 0.913 1.000 1.000

20 0.000 0.000 0.113 40 0.949 1.000 1.000

22 0.000 0.000 0.369 42 0.966 1.000 1.000

24 0.000 0.283 0.417 44 0.983 1.000 1.000

26 0.025 0.358 0.492 46 0.984 1.000 1.000

28 0.128 0.557 0.750 48 1.000 1.000 1.000

30 0.331 0.763 0.825 – – – –

The following values are obtained for the free distributionparameters and the functional parametera of the
implemented distribution function:

− Approximation of Fe1(x): mx = 27.66N/mm2, σx = 4.34N/mm2, a = 0.00

− Approximation of Fe0l(x): mx = 34.29N/mm2 , σx = 4.81N/mm2, a = 0.00

− Approximation of Fe0r(x): mx = 23.30N/mm2, σx = 4.44N/mm2, a = 1.00
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0.50

0.00

0 40 60

F(x)

x [N/mm2]23.30 27.66 34.29

F0 l(x)

F0 r(x)

F1(x)

Fe
0 l(x), Fe

1(x), Fe
0 r(x)

Figure 11. Functional values of the empirical probability distribution functions Fe1(x), Fe
0l(x), and Fe0r(x), as well as the

approximation functions F1(x), F0l(x), and F0r(x)
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The computed distribution functions F1(x), F0l(x), and F0r(x) are shown in Fig. 11 together with the adopted
functional values of the empirical distribution function from Table 4.

The fuzzy distribution parameters and the fuzzy functionalparameter ã of the sought fuzzy probability
distribution according to Eq. (4) may be expressed as fuzzy triangular numbers (confined toα = 0 and
α = 1):

− m̃x =< 23.30,27.66,34.29 > N/mm2,

− σ̃x =< 4.34,4.34,4.81 > N/mm2, and

− ã=< 0.00,0.00,1.00 >.

The interaction relationship between m̃x, σ̃x and ã may be determined numerically (Sect. 3), or may be
approximately estimated on the basis of the available information. A possible estimation of the interaction
is shown in Fig. 12.

In the example, the interaction between m̃x, σ̃x and ã has only a very slight effect, and may be neglected
without a significant effect. The fuzzy probability densityfunctions and the fuzzy probability distribution
functions are compared in Figs. 13 and 14, with and without consideration of interaction. The approximation
functions F0l(x) and F0r(x) as well as the corresponding probability density functionsf0l(x) and f0r(x) are
also shown in the figures.

4.81

23.30 34.29

mx [N/mm²]

�x [N/mm²]

4.54
4.50

4.34
4.44
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28.00

33.00

Without interaction
With interactionComputed parameter combinations

1.0

23.30

34.29
mx [N/mm²]

a

0.0

27.66

0.2

25.00

Figure 12. Estimation of the interaction between m̃x, σ̃x and ã

5. Conclusions

Inconsistent data represent a common case of available information in civil engineering practice. These data
must be properly evaluated and described numerically to obtain realistic results in a subsequent structural
analysis, safety assessment or structural design. The evaluation of inconsistent data is, however, problematic.
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Figure 13. Fuzzy probability density functioñf(x) with and without consideration of interaction between m̃x, σ̃x and ã; probability
density functions f0l(x) and f0r(x) belonging to F0l(x) and F0r(x)
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Figure 14. Fuzzy probability distribution functioñF(x) with and without consideration of interaction between m̃x, σ̃x and ã;
probability distribution functions F0l(x) and F0r(x)

Stochastic uncertainty and imprecision appear simultaneously and in various configurations. For a proper
treatment of this type of information, the model fuzzy randomness is proposed. This enables a separate and
simultaneous treatment of statistical uncertainty and imprecision. Due to the variety of possible forms of
available information, a general quantification algorithmcannot be formulated. The quantification has to
be realized according to the conditions in each particular case. In the paper quantification guidelines for
three selected typical cases of inconsistent data in civil engineering were presented by way of examples.
Algorithms from traditional statistics have been utilizedand combined with fuzzy methods for the inclusion
of expert knowledge. The quantification results reflect the stochastic uncertainty and the imprecision of
the available information in form of a fuzzy probability. This represents an envelope of all real-valued
probabilistic models which meet the available information.

Further developments are focused on the development of a hybrid quantification algorithm for inconsis-
tent data, which includes, simultaneously, more components beyond traditional statistics and fuzzy methods
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to extend the spectrum of cases covered and to further improve the quality of the quantification results. This
leads, eventually, to a minimization of risks due to modeling errors and associated misinterpretations of
structural behavior and safety.
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