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Abstract: Assessing the reliability of components and systems is an important problem in 
engineering design. Estimates of the reliability of a design can play a significant role in final 
design decisions. Data for making these estimates is often scarce during the design process. 
However, designers also frequently have the option to acquire more information by expending 
resources. Designers thus face the dual questions of how to update their estimates and whether it 
is valuable to collect additional information. Various statistical updating methods exist and can be 
used in reliability estimation, including precise Bayesian updating and methods based on 
imprecise probabilities. In this paper, we explore the management of information collection using 
these two approaches.  These ideas combine elements from sensitivity analysis, value of 
information calculations, and uncertainty measures.  Rather than dealing with abstract measures 
of total of uncertainty for a particular distribution or set of distributions, we explore the 
relationships between variance-based sensitivity analysis of the prior and posterior estimates of 
the mean and variance over all possible results of a particular test.  The goal is to gain insight into 
the many tradeoffs that occur when comparing different information collection actions, especially 
when the exact outcome of the action is uncertain.  These tradeoffs are explored using the 
example reliability modeling of a simple parallel-series system with three components. 
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1. Introduction 

Modeling uncertainty is an increasingly important activity in engineering applications. As 
engineers progress from deterministic approaches to nondeterministic approaches, the question of 
how to model the uncertainty in the nondeterministic approaches must be answered. Researchers 
have proposed various methods for modeling and propagating uncertainty. A great deal of 
literature has been devoted to developing and applying individual methods, and others are 
devoted to philosophical debates of the appropriateness of different measures. More recently, 
there is a growing interest in practical comparisons of the methods (Oberkampf et al., 2001; 
Nikolaidis et al., 2004; Soundappan et al., 2004; Aughenbaugh and Paredis, 2006; Hall, 2006; 
Kokkolaras et al., 2006; Aughenbaugh and Herrmann, 2007). 

 Most of this work has focused on what we will call the problem solution stage of engineering 
decisions. In this stage, the engineer makes a decision about a product’s design. For example, the 
engineer determines the dimensions of a component or chooses a particular architecture for the 
system. This stage follows and is distinct from the problem formulation phase, which includes 
tasks such as identifying design alternatives, eliciting stakeholder preferences, and modeling the 
state of the world. One step of this formulation phase is information management. In this step, the 
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engineers make decisions about what information to collect, how to collect it, and how to process 
it. For example, the design of experiments falls into this stage. The focus of this paper is on how 
to model uncertainty in order to best support information management decisions. In particular, we 
consider the problem of system reliability assessment, as discussed in Section 2. 

 Managing information collection activities during engineering design is clearly related to the 
concept of the value of information. This concept has been used in the context of engineering 
design for incorporating the cost of decision making (Gupta, 1992), for model selection 
(Radhakrishnan and McAdams, 2005), and for catalog design (Bradley and Agogino, 1994). 
Some recent work to improve engineering design processes has considered this problem from a 
frequentist updating perspective (Ling et al., 2006) and developed a method for managing 
multiple sources of information in engineering design using imprecise probabilities (Schlosser 
and Paredis, 2007). This work used the principles of information economics (Howard, 1966; 
Matheson, 1968; Marschak, 1974; Lawrence, 1999). At a basic level, these principles state that 
one should explicitly consider the expected net value of information, which is the expected 
benefit of the information minus the cost of acquiring that information.  

 In this paper, we focus on a Bayesian updating problem and consider problem-independent 
measures of the value of the information. Ideally, the value of information would be measured in 
terms of the value of the final product and the cost of the design process. However, such value 
and cost models are not always available, particularly early in the design process when the design 
is only very vaguely defined (Malak et al., 2007). It is thus important to have some statistical 
metrics for guiding information collection that are independent of the value context of the 
problem, while still adequately accounting for the information state and the known structure of 
the system being designed. 

 Section 2 presents the example problem. Section 3 reviews the precise and imprecise 
Bayesian statistical models. Section 4 presents the uncertainty metrics that we will use. 
Experimental results are presented and discussed in Section 5. Section 6 gives a general 
discussion, and Section 7 concludes the paper. 

2. Example problem description 

 We consider the case where a designer is considering additional testing of some key 
components in a system in order to get better estimates of the system reliability. From a reliability 
perspective, the example system can be modeled as a parallel-series system, as shown in Figure 1. 
We assume that the failures of each component are independent events. The designer has some 
prior information about the reliability of each component and thus can create an estimate of the 
system reliability. However, the engineer hopes that additional testing will refine the estimate. 

A
B

C  
Figure 1. Reliability Block Diagram for the System. 

 

 It will be convenient to frame things in terms of failure probability instead of reliability. If 
component i has a reliability of iR , then the corresponding failure probability of component i is 
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1i iP R= − . Let θ  be the failure probability of the system, which is the parameter of interest. 
Ideally, in order to determine this, the designer would have enough data to make a precise 
assessment of AP , BP , and CP , such as “ 0.05AP = .” However, there are practical reasons why 
the designer cannot or is unwilling to make a precise assessment despite holding some initial 
beliefs about the failure probability (Malak et al., 2007).  

 We consider the case in which only component testing is feasible. No system-level tests are 
possible. The designer will use the results of additional testing to update his beliefs about the 
components’ failure probabilities, which will yield an updated estimate of the system failure 
probability. In particular, the engineer is interested in knowing which component should be 
tested. Since testing requires resources, it is not reasonable to test every component a large 
number of times. In this work we consider the number of tests as a surrogate for the cost of 
testing, which is reasonable if all tests require roughly the same amount of resources. 

 The failure probabilities AP , BP , and CP  are modeled as independent random variables with a 
beta distribution. If ~ ( , )A A AP beta α β , then  

[ ] ( )/A A A AE P α α β= + ; 

[ ]
( ) ( )2 1

A A
A

A A A A

V P α β

α β α β
=

+ + +
; 

[ ] [ ]( )22 1
1
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 The mathematical model for the reliability of the system shown in Figure 1 follows. 

 ( )1 (1 )(1 )sys A B CR R R R= − − −  (1) 

 sys A B C A B CP P P P P P Pθ = = + −  (2) 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]A B C A B CE E P E P E P E P E P E Pθ = + −  (3) 
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 2 2[ ] [ ] ( [ ])V E Eθ θ θ= −  (5) 

3. Formalisms for modeling uncertainty 

In this paper we will compare two different approaches for updating reliability assessments: the 
precise Bayesian and the imprecise beta model, which is useful for both the robust Bayesian 
approach and the imprecise probability approach. Some introductory material is provided here. 
For a more complete discussion, see the cited references and the discussion in Aughenbaugh and 
Herrmann (2007). 

3.1.  PRECISE BAYESIAN 
The Bayesian approach (e.g. Box and Tiao, 1973; Berger, 1985) provides a way to combine 
existing knowledge and new knowledge into a single estimate by using Bayes’s Theorem. One of 
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the requirements of Bayesian analysis is a prior distribution that will be updated. The objective 
selection of a prior distribution in the absence of relevant prior information is a topic of extensive 
research and debate. The approaches proposed include the use of non-informative priors (Jeffreys, 
1961; Zellner, 1977; Berger and Bernardo, 1992), maximum-entropy priors (Fougere, 1990), and 
data-dependent empirical Bayes approaches (Maritz and Lewin, 1989). Still, whether a single 
prior distribution, especially the uniform prior, can reflect all of the uncertainty is an open 
question to some observers. However, in many engineering problems, designers do have some 
prior information, such as data and experience from similar systems, and the Bayesian approach 
allows this information to be included in the analysis. 

 To support analytical solutions, the form of the prior is often restricted to conjugate 
distributions with respect to the measurement model, in which case the posterior distribution that 
results from the update has the same type as the prior. For the problem considered in this paper, in 
which the number of failures in a given number of tests is a binomial random variable, it is 
convenient to model the prior distribution of a component’s failure probability as a beta 
distribution with parameters α  and β . If the prior distribution is 0 0( , )Beta α β  and one observes 
m  failures out of n  trials, then the posterior distribution is 0 0( , )Beta m n mα β+ + − . 
Consequently, the update involves simple addition and subtraction, an enormous improvement in 
efficiency over the general case.  

3.2.  ROBUST BAYESIAN AND IMPRECISE PROBABILITIES APPROACHES 
Two alternatives to a precise Bayesian approach are the robust Bayesian and imprecise 
probabilities approaches. The two approaches are mathematically similar, but differ in 
motivation.  

 The robust Bayesian approach addresses the problem of lack of confidence in the prior 
(Berger, 1984; Berger, 1985; Berger, 1993; Insua and Ruggeri, 2000). The core idea of the 
approach is to perform a “what-if” analysis by changing the prior. The analyst considers several 
reasonable prior distributions and performs the update on each to get a set of posterior 
distributions. After additional data is collected, each candidate prior is updated, resulting in a set 
of posterior distributions. This set of posterior distributions yields a range of point estimates and a 
set of credible intervals. If there is no significant change in the conclusion across this set of 
posteriors, then the conclusion is robust to the selection of the prior.  

 This analysis is not possible with a single prior. For example, if the designer is unsure about 
the failure probability, one precise Bayesian approach for dealing with this lack of confidence in 
the estimate is to increase the variance of the prior model, thus reflecting more uncertainty of 
some kind. Taken to the extreme, a complete lack of information generally leads to a uniform 
distribution. Unfortunately, the use of a uniform distribution confounds two cases: first, that 
nothing is known; second, that all failure probabilities between 0 and 1 are equally likely, which 
is actually substantial information.  

 In the context of a large engineering project in which there are many individuals, this is an 
important distinction. For example, one engineer’s complete lack of knowledge about some 
aspect of the system may be offset by another engineer’s expertise or by additional 
experimentation. However, if substantial analysis has already led to the conclusion that certain 
outcomes are equally likely, then it would be inefficient to expend additional resources examining 
those probabilities. A precise approach confounds these two scenarios, therefore adding 
confusion to information management decisions. The robust Bayesian approach allows one to 
consider the different scenarios independently rather than aggregating them together. This affords 
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the design team the opportunity to make different, more appropriate decisions under the two 
scenarios. 

 The theory of imprecise probabilities, formalized by Walley (1991), has previously been 
considered in design decisions and set-based design (Aughenbaugh and Paredis, 2006; Rekuc et 
al., 2006) and in reliability analysis (Coolen, 1994; Coolen, 2004; Utkin, 2004a; Utkin, 2004b). 
The theory of imprecise probabilities uses the same fundamental notion of rationality as de 
Finetti’s work (1974). However, the theory allows a range of indeterminacy—prices at which a 
decision-maker will not enter a gamble as either a buyer or a seller. These in turn correspond to 
ranges of probabilities. For the problem of updating beliefs, imprecise probability theory 
essentially allows prior and posterior beliefs to be expressed as sets of density functions.  

 The imprecise model captures two aspects of uncertainty: the imprecision in the prior beliefs 
(whether inherent or due to incomplete elicitation) and the probabilistic uncertainty in the 
parameter value. The distinction between these two types of uncertainty is not always obvious, 
but the distinction can be valuable in practice (Winkler, 1996). 

 The consideration of imprecision is the primary difference between the motivation for 
imprecise probabilities and the motivation for a robust Bayesian approach. Whereas the imprecise 
probability view is that the analyst’s beliefs can be imprecise, the robust Bayesian view is that 
there exists a single prior that captures the analyst’s beliefs perfectly, although it may be hard to 
identify this distribution in practice. Either motivation leads to the consideration of sets of priors 
and posteriors. 

 For the robust updating approach, it is convenient to use the imprecise beta model and to re-
parameterize the beta so that the density of ( , )beta s t  is as given in Equation (6) (Walley, 1991; 
Walley et al., 1996). 

 1 (1 ) 1
, ( ) (1 )st s t

s tπ θ θ θ− − −∝ −  (6) 

 Compared to the standard parameterization of ( , )beta α β , this means that s tα = ⋅  and 
(1 )s tβ = ⋅ −  or equivalently that s α β= +  and /( )t α α β= + . The convenience of this 

parameterization is that t  is the mean of the distribution, which has an easily grasped meaning for 
both the prior assessment and the posterior analysis. The model is updated as follows: if the prior 
parameters are 0s  and 0t , then, after n  trials with m  failures, the posterior parameters are 

0ns s n= +  and 0 0 0( ) /( )nt s t m s n= + + . Since 0ns s n= + , 0s  can be interpreted to be a virtual 
sample size of the prior information; it captures how much weight to place on the prior compared 
to the observed data. Selecting this parameter therefore depends on the available information. 
Following Walley (1991), the parameters t and s can be imprecise and expressed as intervals 

00 ,t t⎡ ⎤⎣ ⎦  and 00 ,s s⎡ ⎤⎣ ⎦ . That is, the priors are the set of beta distributions with 0 0 0s tα =  and 
( )0 0 01s tβ = −  such that 0 00t t t≤ ≤  and 0 00s s s≤ ≤ . When the test results are collected, each 

prior in the set is updated as described above. 

4. Metrics of uncertainty  

When considering measures of uncertainty in context of planning additional tests to reduce 
uncertainty, it is important to keep the following points in mind. 

 First, if one is modeling the system performance (e.g., system failure probability) as a precise 
probability distribution, then the mean, variance, and other statistics about that distribution are 
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specific numbers for the prior distribution. If n identical tests are conducted, and each test result is 
a pass or fail, then there are 1n +  possible test results. Thus, there are 1n +  possible posterior 
distributions and 1n +  possible means, variances, and other statistics. Characterizing the quality a 
test plan (which has uncertain outcomes) is a classic problem in decision-making. Decision-
makers have different attitudes towards such situations. For example, some decision-makers will 
want to know the complete distribution of outcomes, some will want the worst-case, and others 
will want the “average” value of a statistic. 

 Modeling the system performance as an imprecise probability distribution introduces an 
additional complexity: the mean, variance, and other statistics about that distribution are 
imprecise; that is, there is a set of means for the prior distribution. If n identical tests are 
conducted, and each test result is a pass or fail, then there are 1n +  possible imprecise posterior 
distributions, with 1n +  possible sets of means, variances, and other statistics. Characterizing any 
specific result requires some way to describe the set, either by selecting a subset of the 
distributions or finding the range of values for that result. After that, one still has the problem of 
uncertain outcomes, as discussed above. 

 This paper presents and demonstrates approaches for evaluating information gathering plans 
using metrics of uncertainty. In addition, we will compare the types of results that these different 
approaches give. These results can be used as the input to existing approaches for decision-
making under uncertainty, including those for determining the economic value of information. 
The integration with such approaches we leave for future work. Therefore, we will focus on the 
required methods and demonstrating them with metrics that display the range of results. 

 For the precise Bayesian approach, we will use a variance-based sensitivity analysis and the 
dispersion of the mean and variance of the posterior distributions of system failure probability. 
For the imprecise beta model, we will consider an imprecise variance-based sensitivity analysis 
(Hall, 2006), the imprecision in the mean before and after additional tests are conducted, and the 
range of the mean and variance of the prior and posterior distributions of system failure 
probability. 

4.1. METRICS FOR PRECISE DISTRIBUTIONS 
For both precise and imprecise priors, we will consider two different strategies. The first is a 
variance-based sensitivity analysis of the prior distribution, which allows one to ignore the 
possible test results. The second strategy considers the possible outcomes of a test plan. 

4.1.1. Variance-based sensitivity analysis 

One can avoid the problem of considering a large number of possible test results by ignoring 
them entirely and focusing on the current state of information. One such approach is variance-
based sensitivity analysis, which calculates the total variance of the system performance and 
determines how each input variable contributes to this (Sobol, 1993; Chan et al., 2000). The 
sensitivity of the system performance to an input variable iX  is described by the sensitivity index 

iSV . The sensitivity index is the ratio of the variance of the conditional expectation to the total 
variance.  

 For test planning, a large sensitivity index indicates that reducing the variance of that variable 
can reduce the system performance variance. This suggests that, in order to reduce system 
performance variance, a test plan should focus on reducing that input variable’s variance. A small 
sensitivity index for an input variable suggests that reducing that variable’s variance should be a 
low priority for testing. 
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 In the case considered here, the failure probabilities of the three components ( AP , BP , and 
CP ) are the input random variables, and the failure probability of the system is the system 

performance (or output random variable). In particular, we can calculate the sensitivity indices for 
our example system as follows: 

 

( ) [ ] [ ]( ) [ ]

( ) [ ]( ) [ ]( ) [ ]

( ) [ ]( ) [ ]( ) [ ]

2

2 2

2 2

1 1

1 1

1 1

A B C A

B C A B

C B A C

SV E P E P V P
V

SV E P E P V P
V

SV E P E P V P
V

θ

θ

θ

= −

= −

= −

 (7) 

4.1.2. Observing Mean and Variance for different results 

The variance of the probability distribution is a measure of uncertainty about the parameter that 
the probability distribution models. In general, a distribution with smaller variance means that 
there is less uncertainty about the parameter. For the problem of test planning, we may hope to 
conduct tests that will yield a posterior distribution with a variance that is smaller than some 
threshold.  

 Pham-Gia and Turkann (1992) derived lower bounds on the number of additional samples 
needed to satisfy an upper bound on the posterior variance for a random probability modeled with 
a beta distribution. Unfortunately this result is not directly applicable to reducing the variance of 
the system failure probability by testing only the components. 

 In the case considered here, a test plan conducts An  tests of component A, Bn  tests of 
component B, and Cn  tests of component C. The test plan can be summarized as 

{ , , }A B CT n n n= . If there Ax  failures of component A, Bx  failures of component B, and Cx  
failures of component C, then the posterior distributions of the component failure probabilities are 
as follows: ~ ( , )A A A A A AP beta x n xα β+ + − , ~ ( , )B B B B B BP beta x n xα β+ + − , and 

~ ( , )C C C C C CP beta x n xα β+ + − . From these posterior distributions, one can calculate the mean 
and variance of the system failure probability as discussed in Section 2. Of course, this must be 
repeated for each of the ( ) ( ) ( )1 1 1A B Cn n n+ × + × +  possible test results. 

4.2. METRICS OF UNCERTAINTY FOR IMPRECISE DISTRIBUTIONS 
As we did with the precise priors, we will consider two different strategies. The first is a 
variance-based sensitivity analysis of the prior distribution, which allows one to ignore the 
possible test results. The second strategy considers the possible outcomes of a test plan. 

 One of the motivations for using imprecise probabilities instead of precise probabilities is that 
they allow the total uncertainty to be captured more adequately, by separating imprecision and 
probability. If the variance generally captures the variability, the natural question follows: how 
can imprecision be measured? Or more generally, how can we measure the total uncertainty? 

 This issue has been pursued by various authors (see (Klir and Smith, 2001) for an overview). 
In short, the search for a single, useful measure of total uncertainty has been largely unsuccessful. 
We begin our examination of the problem by considering the extension of precise measures to the 
imprecise case. 
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4.2.1. Imprecise variance-based sensitivity analysis 

Hall (2006) presented an approach to extend variance-based sensitivity analysis to imprecise 
probability distributions. The generalization from the precise case is to consider the minimum and 
maximum sensitivity indices across the set of input distributions. Let F  be the set of input 
distributions (jointly across all inputs). Let ,i pSV  be the sensitivity to input i  given the input 
distribution p . Then the bounds are given by the following: 

 
( )
( )

,

,

min

max

i pi p F

i i p
p F

SV SV

SV SV

∈

∈

=

=
 (8) 

 The difficulty in calculating these is the need to optimize these indices over the set F. In the 
case considered here, each input distribution p  is a joint distribution over the component failure 
probabilities. Each marginal distribution comes from the imprecise prior distribution for that 
component.  

 We will use a numerical approach that selects distributions from the set F  in the following 
way. First, we select a parameter eN  that determines the number of intermediate values for each 
parameter. For parameter As , we calculate the following set of values: 

( ) ( ) ( )0 0 0 00 0 0 0 0 0 0
1 2, , , , ,

1 1 1
e

A A A AA A A A A A A
e e e

Ns s s s s s s s s s s
N N N

⎧ ⎫
+ − + − + −⎨ ⎬+ + +⎩ ⎭

…  

 This yields 2eN +  values for this parameter. We repeat for the other five parameters. We 
then take all of the combinations, which yields ( )62eN +  joint prior distributions. We choose 

3eN = , which was determined to be adequate for this problem. More complex systems will 
require a more complex parameter sampling scheme. 

4.2.2. Dispersion of mean and variance 

In Section 4.1.2, the dispersion of the mean and variance were considered for a precise prior. 
Given an imprecise prior, a specific test result will yield an imprecise posterior distribution, 
which has a range of means and a range of variances, as discussed above. The dispersion of the 
mean and variance (over the possible test results) is no longer a sequence of points, as in the 
precise case; it is instead a sequence of sets of mean-variance pairs. 

 In the case considered here, given imprecise priors for the failure probabilities of the three 
components, we can compare different test plans (e.g. test just Component A or test just 
Component B) and determine how they affect the dispersion of the mean and variance. 

 As before, let F be the entire set of prior joint distributions for the component failure 
probabilities, and consider a test plan that conducts An  tests of component A, Bn  tests of 
component B, and Cn  tests of component C. If there Ax  failures of component A, Bx  failures of 
component B, and Cx  failures of component C, then this result yields a set 

( ), , , , ,A B C A B CF x x x n n n′  of posterior distributions. There is a different 'F  for every test result. 
Each posterior distribution ( ), , , , ,A B C A B Cp F x x x n n n′ ′∈  is determined by updating a prior 
distribution p F∈  as described in Section 4.1.2. From the posterior distribution, one can 
calculate the mean and variance of the system failure probability as discussed in Section 2. 
 We will select distributions from F using the procedure described in Section 4.2.1. 
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4.2.3. Imprecision in the mean 

A fundamental measure of imprecision is the range of the mean value across the set of probability 
distributions. For the imprecise beta model, this measure is simply t t− . We can measure this 
range for the prior distribution and for each imprecise posterior distribution that results from a 
specific test result. Each result has a particular posterior imprecision (of the mean) associated 
with it. Ideally, the analyst would like this posterior imprecision to be as small as possible over all 
results, so we consider the maximum imprecision that results across all results. 

 In the case considered here, given the range of means for the failure probabilities of the three 
components, it is easy to see that the minimal failure probability of the system is determined by 
the components’ minimal failure probabilities. Likewise, the maximal failure probability of the 
system is determined by the components’ maximal failure probabilities. Therefore, the prior 
imprecision in the system failure probability can be calculated as follows: 

 
( )

( ) ( )
0

0 0 0 0 0 0 0 0 0 0 0 0

max min
p Fp F

A B C A B C A B C A B C

E p E p

t t t t t t t t t t t t

θ θ θ
∈∈

⎡ ⎤ ⎡ ⎤Δ = −⎣ ⎦ ⎣ ⎦

= + − − + −
 (9) 

Each possible result of a test plan that conducts a total of n tests will yield a set F ′  of posterior 
distributions. The posterior imprecision in the system failure probability (given this result) can be 
determined as follows: 

 
( )

( ) ( )
, max minn F p Fp F

nA nB nC nA nB nC nA nB nC nA nB nC

E p E p

t t t t t t t t t t t t

θ θ θ′ ′ ′′ ′ ∈∈
′ ′⎡ ⎤ ⎡ ⎤Δ = −⎣ ⎦ ⎣ ⎦

= + − − + −
 (10) 

The maximum posterior imprecision over all possible F ′  (that is, over all possible results for this 
test plan, 0 A Ax n≤ ≤ 0 B Bx n≤ ≤ 0 C Cx n≤ ≤ ) can be denoted as follows: 

 ( ) ( ){ }max ,max n FF
θ θ′′

Δ = Δ  (11) 

 One can also consider the average mean over the results for a given prior. For each prior and 
possible test result, that prior is used to determine the probability of that test result and the 
posterior mean given that result. Here, let ( )0, , ( )x n pμ ⋅  be the posterior mean, which depends 
upon the prior 0 ( )p ⋅  and the test result. These posterior means and prior probabilities of each 
result are then used to calculate an average mean for that prior: [ ]

0 ( ) 0( , , )p p xE x n pμ μ=� . Across a 
set of priors 0p F∈ , one can find the minimum and maximum of 

0pμ� . 

4.2.4. Imprecision in the variance 

Just as the mean of the posterior depends on both the priors and the experimental results, so does 
the variance. The variance is a traditional measure of uncertainty in precise formulations of 
probability. Even in an imprecise approach, the analyst would like the variance to be as small as 
possible. However, the variance is no longer a precise measure, but rather an interval for each 
possible result. Strictly speaking, if the analyst requires a posterior variance below some 
threshold, then he must consider the maximum variance across all combinations of prior 
distributions and possible experimental results.  

 As we did with the mean, the analyst could calculate the expected posterior variance across 
all results given the prior. When the prior is precise, this yields a single number. When the prior is 
imprecise, this also results in an interval. The motivation for such as approach is that although the 
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experimental results may not match the prior mean estimate, the analyst believes (by definition) 
that the priors are a reasonably accurate model of the results. For example, assume the prior mean 
is the range [0.05,0.10] . Then if one performs 20 experiments, it is highly unlikely that one will 
observe 20 failures. Thus, this result is discounted by its improbability, unlike the maximum 
variance approach that would consider this extreme case on an equal footing with all others. 

 One can also consider measuring the imprecision using the range of the variance across the 
set of probability distributions. The imprecision in the variance reflects how well the variance is 
known.  Ideally, an analyst would pick a test design that will result in a posterior variance that 
tends to be low and well known.  The prior imprecision in the variance, the posterior imprecision 
in the variance given a particular result, and the maximum imprecision over all results are shown 
in Equations (12)–(14) respectively.  

 ( )0 max min
p Fp F

V V p V pθ θ
∈∈

⎡ ⎤ ⎡ ⎤Δ = −⎣ ⎦ ⎣ ⎦  (12) 

 ( ), max minn F p Fp F
V V p V pθ θ′ ′ ′′ ′ ∈∈

′ ′⎡ ⎤ ⎡ ⎤Δ = −⎣ ⎦ ⎣ ⎦  (13) 

 ( ) ( ){ }max ,max n FF
V V′′

Δ = Δ  (14) 

 To estimate these measures, we will select distributions for each F ′  by updating the 
distributions from F that are generated using the procedure described in Section 4.2.1.  

5. Results 

 As mentioned above, in this paper we are primarily concerned with determining which 
component should receive more tests. To illustrate the approaches to evaluating test plans, we 
will consider the example of Section 2 using both precise priors and imprecise priors about the 
failure probabilities of the three components. We consider two scenarios for each approach. 

5.1. SCENARIO 1 
In the first scenario, the priors for the failure probability distributions are precise beta 
distributions. The parameters are shown in Table 1. The high prior mean for Component C is 
chosen for illustrative purposes; it is unlikely that any real system would have a component with 
such a high mean estimate of probability of failure.  For the distribution of the system failure 
probability, the prior mean equals 0.2201, and the prior variance equals 0.0203. 

Table 1. Priors for Scenario 1 
Component A B C 

Beta  
parameters 

0

0

0.15
10

t
s
=

=
 0

0

0.15
2

t
s
=

=
 0

0

0.55
10

t
s
=

=
 

 

5.1.1. Scenario 1: Variance-based Sensitivity Analysis 

The variance-based sensitivity analysis gives the following values: 
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0.4814
0.4583
0.0181

A

B

C

SV
SV
SV

=
=
=

 

 These values indicate that the output variance is similarly dependent on the variance of the 
failure probabilities for Components A and B. It is highly insensitive to component C. This 
suggests that testing be focused on Components A and B, but it does not suggest the appropriate 
allocation between them. 

5.1.2. Scenario 1: Observing Mean and Variance for different results 

Figure 1 shows the dispersion of the mean and variance for seven test plans: (1) 12 tests of 
Component A, (2) 12 tests of Component B, (3) 12 tests of Component C, (4) 4 tests of each 
component, (5) 6 tests of Components A and B, (6) 6 tests of Components A and C, and (7) 6 
tests of Components B and C. The multiple points for each test plan correspond to the set of 
possible outcomes of the test.  

 Figure 1 reveals that the test plan makes a significant difference in the mean and variance of 
the possible posterior distributions. Because [ ]CE P  is near 0.5 and the 0 10s = , test plan 3 can 
change [ ]CE P  very little for any test result. When Component C fails, Component B becomes 
serially connected to Component A and its influence on the system failure is greatly increased.  

 Test plans 1 and 2, on the other hand, can change the mean a great deal, from a low near 0.15 
to a max near 0.65, and can substantially reduce ( )V θ . Test plans 4, 5, 6, and 7 likewise have a 
large range of possible posterior means. Test plans 4, 6, and 7 have generally larger posterior 
variance than test plan 5, which tests only the two components with the largest sensitivity indices. 
In this scenario, it seems that testing the components with the largest sensitivity indices is a 
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Figure 1. Dispersion of the mean and variance of the system failure probability for different test 

plans for Scenario 1. 
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worthwhile plan because this testing can reduce the variance of the corresponding component 
failure probability distributions, which has a large impact on the variance of the system failure 
probability distribution. 

5.1.3. Posterior variance 

Table 2 shows the minimum and maximum variance of ( )V θ , the posterior system failure 
probability distribution, for each of the seven test plans (taken over the possible results for each 
plan). Test plans 1 and 2 test the components with the largest sensitivity indices and reduce 
variance significantly. Test plan 5 can significantly reduce variance, as it has a significantly lower 
minimum variance. Its maximum variance is moderate, as poor test results for both Components 
A and B would increase the ( )AV P  and ( )BV P , increasing ( )V θ . Test plan 4 has similar 
performance. Test plan 3 has the largest minimum and maximum posterior variance. Reducing 
the variance of Component C’s failure probability distribution cannot reduce ( )V θ  much, but 
poor test results could increase [ ]CE P  greatly, which in this case increases ( )V θ  by making it 
more sensitive to the highly uncertain performance of Component B as in Equation (7). 

Table 2. Posterior variance for scenario 1 
Posterior Variance Across Test Results Test Plan 

#:{ , , }A B Cn n n  Min Max 
1:{12,0,0}  0.0110 0.0151 
2:{0,12,0}  0.0117 0.0175 
3:{0,0,12}  0.0131 0.0291 
4:{4,4,4}  0.0071 0.0195 
5:{6,6,0} 0.0059 0.0181 
6:{6,0,6} 0.0094 0.0228 
7:{0,6,6} 0.0117 0.0177 

5.2. SCENARIO 2 
In the second scenario, as in the first, the priors for the failure probability distributions are precise 
beta distributions. The parameters are shown in Table 3. The difference from Scenario 1 is that 
Component C now has the same distribution as Component A. For the distribution of the system 
failure probability, the mean equals 0.1691, and the variance equals 0.0116. 

Table 3. Priors for Scenario 2 
Component A B C 
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5.2.1. Scenario 2: Variance-based Sensitivity Analysis 

The variance-based sensitivity analysis gives the following values: 
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The important position of Component A yields a large sensitivity index. Compared to Scenario 1, 
[ ]CE P  is now much smaller, which reduces BSV , as suggested by Equation (7). These values 

suggest that reducing ( )AV P  by testing Component A should reduce ( )V θ  significantly. 

5.2.2. Scenario 2: Observing Mean and Variance for different results 

 Figure 2 shows the dispersion of the mean and variance of the posterior mean and variance of 
the system failure probability distribution for seven different test plans (the same test plans used 
in Scenario 1). Although the prior distributions for the failure probabilities for Components A and 
C are the same, testing Component A (which is essential for system operation and has a much 
greater sensitivity index) makes a bigger change in [ ]E θ  and ( )V θ . In this scenario, the mean-
variance dispersion confirms the suggestion made by the variance-based sensitivity analysis: 
testing Component A appears to be the best strategy. 
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Figure 2. Dispersion of the mean and variance of the system failure probability for different test 

plans for Scenario 2. 
 

 Components B and C have the same position in the system, but Component B has a smaller s 
parameter and a higher variance. Therefore, testing Component B makes a bigger change in 
[ ]BE P  and ( )BV P  than the same number of tests of Component C would make in [ ]CE P  and 
( )CV P . Moreover, the fact that B CSV SV>  suggests that this impact will be larger on ( )V θ  than 

on [ ]E θ , which we see by comparing test plans 2 and 3 and then comparing test plans 5 and 6. 
Testing Component B reduces ( )V θ  more than testing Component C. 

 If we look at the possible results of test plan 2, which tests Component B, we see an 
interesting “hook” pattern that occurs because the test results with a small number of failures tend 
to confirm the prior, which reduces ( )BV P . However, results with more failures increase both 
[ ]BE P  and ( )BV P , which increase [ ]E θ  and ( )V θ . 



14  J.M. Aughenbaugh and J.W. Herrmann 

                                                   REC2008 – J. M. Aughenbaugh and J. W. Herrmann 

5.2.3. Posterior variance 

Table 4 shows the minimum and maximum variance of ( )V θ , the posterior system failure 
probability distribution, for each of the seven test plans (taken over the possible results for each 
plan). Test plans 1, 4, 5, and 6 all have low minimum ( )V θ  because all test Component A and 
can lower ( )AV P , which make a large impact, as we know because Component A has the largest 
sensitivity index. Test plan 1 also has a low maximum ( )V θ , which makes this test plan 
particularly desirable. As in Scenario 1, test plan 3 has the largest minimum and maximum 
posterior variance. Reducing the variance of Component C’s failure probability distribution 
cannot reduce ( )V θ , but poor test results could increase [ ]CE P  greatly, which in this case 
increases ( )V θ  because the large variance ( )BV P  becomes more important, as in Equation (7). 

Table 4. Posterior variance for scenario 2 
Posterior Variance Across Test Results Test Plan 

#:{ , , }A B Cn n n  Min Max 
1:{12,0,0}  0.0042 0.0109 
2:{0,12,0}  0.0115 0.0155 
3:{0,0,12}  0.0116 0.0218 
4:{4,4,4}  0.0064 0.0158 
5:{6,6,0} 0.0051 0.0145 
6:{6,0,6} 0.0054 0.0160 
7:{0,6,6} 0.0115 0.0145 

5.3. SCENARIO 3 
In the third scenario, prior distributions are imprecise (we use the imprecise beta model 
parameterized by t and s). Table 5 lists the parameters for each component’s failure probability 
distribution. We assume that less is known about Component B than the other components, as 
indicated by the small values for s  and the large range for t . The estimated probability of failure 
of Component C is assumed to be quite large; while these values may not make sense in a real 
system, they are illustrative of interesting information management behavior. Note that the 
precise priors given for the first scenario (Table 1) are included in these sets. For selecting priors 
for the numerical results, as discussed in Section 4.2.1, we use 3eN = . 

Table 5. Imprecise priors for Scenario 3 
Component A B C 
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parameters 
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The mean of the system failure probability distribution ranges from 0.2201 to 0.4640, which is an 
imprecision of 0.2439. The variance ranges from 0.0136 to 0.0332, which has an imprecision of 
0.0196. 
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5.3.1. Scenario 3: Variance-based sensitivity analysis 

The imprecise variance-based sensitivity analysis yields the results shown in Table 2. These 
results suggest that it is similarly important to test A and B (using the upper bounds), and it is 
much less important to test component C. The maximum for component C is about the same as 
the minimum for Component B, so the values strongly suggest that testing B is more valuable 
than testing C. 

Table 6. Imprecise variance-based sensitivity analysis Scenario 3 
Component i A B C 

{ }min ijSV  0.1363 0.2406 0.0116 

{ }max ijSV  0.7204 0.6960 0.2512 

5.3.2. Scenario 3: Dispersion of mean and variance 

We will consider the same seven test plans used in Scenarios 1 and 2. Based on the sensitivity 
indices, it appears that test plans 1 (12, 0, 0), 2 (0, 12, 0), and 5 (6, 6, 0) should have the most 
potential to reduce ( )V θ . We begin by examining the dispersion of the mean and variance 
estimates across all possible experimental results for these three test plans, as shown in Figure 3. 
In general, a figure showing all of these points gets very difficult to display and view due to 
overlap. Consequently, we generally will display just the convex hull of each result of each test 
plan, as shown in Figure 4, which are clearer when viewed in color. While these sets of points are 
not always convex, this approximation is reasonable for the qualitative analysis performed with 
them.  

 All three test plans (1, 2, and 5) can significantly change [ ]E θ . The impact of test plan 2 (0, 
12, 0) is mitigated by the system structure, in which Component B is parallel to Component C. 
The maximum ( )V θ  of test plan 1 (12, 0, 0) is much greater than the other two test plans. The 
significant imprecision in the priors, especially when combined, leads to large imprecision for 
any test result, especially in test plan 1 (12, 0, 0). Because the s parameters for Component B are 
smaller than those for Component A, testing Component B reduces ( )BV P  more than testing 
Component A reduces ( )AV P . Of course, testing both components (as in test plan 5) can reduce 
both component variances, which is quite effective at reducing ( )V θ  while still being responsive 
to the mean. 

 Figure 5 shows the convex hulls for the results of test plans 3 (0, 0, 12), 6 (6, 0, 6), and 7 (0, 
6, 6). Test plan 6 leads to results that have a wide range of means and variances. Test plan 3 also 
has results with large variance, though not as large a range as test plan 6. The results for test plan 
7 are similar to those of test plan 5 (shown in Figure 4), but the variance is not as small. As 
suggested by the sensitivity indices, testing A has more impact than testing C. 

 Figure 6 includes the convex hulls for the results of test plan 4 (4, 4, 4), as well as the 
promising plans of 2, 5, and 7. Plan 4 yields results that are quite close to those of test plan 5. 
Because it tests all three components and can change all three mean values, the max [ ]E θ  is 
larger in the results of test plan 4. The extreme results of test plan 5 were limited by no change in 
[ ]CE P . 
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Test plan 1: [12, 0, 0]
Test plan 2: [0, 12, 0]
Test plan 5: [6, 6, 0]
Prior

Figure 3. Sample results for test plans 1, 2, and 
5 for Scenario 3. 

Figure 4. Convex hull for each result of test 
plans 1, 2, and 5 for Scenario 3. 
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Test plan 3: [0, 0, 12]
Test plan 6: [6, 0, 6]
Test plan 7: [0, 6, 6]
Prior
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Test plan 2: [0, 12, 0]
Test plan 4: [4, 4, 4]
Test plan 5: [6, 6, 0]
Test plan 7: [0, 6, 6]
Prior

Figure 5. Convex hull for each result of test 
plans 3, 6, and 7 for Scenario 3. 

Figure 6. Convex hull for each result of test 
plans 2, 4, 5, and 7 for Scenario 3. 

 

5.3.3. Scenario 3: Imprecision in the mean 

Table 7 describes the imprecision of the [ ]E θ  that can result from the various test plans. In each 
row, the first column is the test plan. The second column (“Minimum minimum”) is the minimum 
possible mean over all possible distributions and test results. The third column (“Maximum 
maximum”) is the maximum possible mean over all possible distributions and test results. The 
fourth column (“Minimum average”) is the minimum average mean (see Section 4.2.3). The fifth 
column (“Maximum average”) is the maximum average mean over all the priors. The sixth and 
seventh columns are different. Here, the imprecision in [ ]E θ  is calculated for each possible test 
result using Equation (10), and the minimum and maximum are taken over the possible test 
results. 

 In these results, test plan 4 (4, 4, 4) stands out for its low minimum minimum, low minimum 
average, and low maximum average. This occurs because this test plan is more likely to have zero 
failures (than other test plans that run more tests of a component) and it includes the possibility of 
zero failures of all three components. Either result would significantly reduce the components’ 
means and thus [ ]E θ . Such a result would also leave little imprecision in [ ]E θ , as indicated in 
its very low minimum imprecision. Test plans 2, 4, 5, and 7 have a maximum imprecision that is 
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less than the imprecision in the prior. All of these plans test Component B and reduce the large 
imprecision in [ ]BE P , which reduces the imprecision in [ ]E θ . Note that testing Component A 
(as in test plans 1 or 6) does not reduce the imprecision significantly, suggesting that the 
sensitivity indices are not good predictors of which tests will do well on this measure. Similarly, 
the suggestion to not test Component C based on the sensitivity indices is contradicted. 

Table 7. Posterior mean analysis for scenario 3 
[ ]E θ  Imprecision in [ ]E θ  Test Design 

#:{ , , }A B Cn n n  Minimum 
minimum 

Maximum 
maximum 

Minimum
average 

Maximum
average Minimum Maximum

Prior 0.2201 0.4640 n.a. n.a. 0.2439 
1:{12,0,0}  0.1451 0.7564 0.2143 0.4680 0.1463 0.2519 
2:{0,12,0}  0.1600 0.6491 0.2113 0.4766 0.1085 0.1486 
3:{0,0,12}  0.1819 0.5600 0.2192 0.4678 0.1501 0.3112 
4:{4,4,4}  0.1119 0.6367 0.1644 0.2916 0.0709 0.1817 
5:{6,6,0} 0.1124 0.7662 0.2116 0.4778 0.1172 0.1952 
6:{6,0,6} 0.1405 0.7063 0.2153 0.4690 0.1474 0.3019 
7:{0,6,6} 0.1610 0.7325 0.2151 0.4773 0.1126 0.2174 

5.3.4. Scenario 3: Imprecision in the variance 

Table 8 describes the imprecision of [ ]V θ  that can result from the various test plans. The table 
structure and results shown are similar to those of Table 7. In these results, test plans 4 and 5 
(which test both Components A and B) are notable for their low values on all of the measures. 
Both plans reduce the variance associated with these components’ failure probability 
distributions, which can significantly reduce [ ]V θ , as the sensitivity indices indicate. 

 As mentioned above, because the s parameters for Component B are smaller than those for 
Component A, testing Component B reduces ( )BV P  more than testing Component A reduces 
( )AV P . Consequently, when comparing plans that test Component B to those that test 

Component A, we see that test plan 2 reduces [ ]V θ  and the imprecision in [ ]V θ  more than test 
plan 1, and test plan 7 reduces these measures more than test plan 6. The exceptions are the 
minimum-minimum and minimum average because test plans 1 and 6 include the possibility of 

Table 8. Posterior variance analysis for scenario 3 
[ ]V θ  Imprecision in [ ]V θ  Test Design 

#:{ , , }A B Cn n n  Minimum 
minimum 

Maximum 
maximum 

Minimum
average 

Maximum
average Minimum Maximum

Prior 0.0136 0.0332 n.a. n.a. 0.0196 
1:{12,0,0}  0.0075 0.0344 0.0094 0.0304 0.0046 0.0259 
2:{0,12,0}  0.0099 0.0181 0.0103 0.0153 0.0035 0.0051 
3:{0,0,12}  0.0103 0.0465 0.0134 0.0310 0.0070 0.0293 
4:{4,4,4}  0.0059 0.0162 0.0075 0.0118 0.0020 0.0054 
5:{6,6,0} 0.0056 0.0189 0.0083 0.0150 0.0022 0.0063 
6:{6,0,6} 0.0068 0.0458 0.0107 0.0295 0.0041 0.0309 
7:{0,6,6} 0.0100 0.0183 0.0109 0.0183 0.0026 0.0060 
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dramatically reducing ( )AV P  and [ ]V θ  if no failures are observed. 

 These results are more consistent with the sensitivity indices. Testing just Component C leads 
to the worst performance (according to most metrics). However, test 4, in which all three 
components are tested, performs very well, even though it includes testing C. This is because 
testing A and B change the actual sensitivities. This is related to the difference between batch 
testing and sequential (i.e. one-at-a-time) testing.  

5.4. SCENARIO 4 
For the fourth scenario, consider the imprecise prior distributions given in Table 9. The difference 
from Scenario 3 is only in component C: we now assume the probability of failure is believed to 
be much lower and more realistic. Note that the precise priors given for the first scenario are 
included in these sets. For selecting priors for the numerical results, as discussed in Section 4.2.1, 
we use 3eN = . 

Table 9. Imprecise priors for Scenario 4 
Component A B C 
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 The mean of the system failure probability distribution ranges from 0.1691to 0.2880, which is 
an imprecision of 0.1189. The variance ranges from 0.0100 to 0.0173, which is an imprecision of 
0.0073. 

5.4.1. Scenario 4: Variance-based sensitivity analysis 

 The imprecise variance-based sensitivity analysis yields the results shown in Table 10. ASV  
and CSV  have remained roughly the same. Compared to Scenario 3, BSV  has dropped due to the 
drop in [ ]CE P . These results suggest that testing Component A and reducing its variance will 
have the most impact on reducing ( )V θ .  

Table 10. Imprecise variance-based sensitivity analysis Scenario 4 
Component i A B C 

{ }min ijSV  0.5438 0.0210 0.0095 

{ }max ijSV  0.9590 0.1819 0.2515 

 

5.4.2. Scenario 4: Dispersion of mean and variance 

We will consider the same seven test plans used in the previous scenarios. Based on the 
sensitivity indices, it appears that test plan 1 (12, 0, 0) should have the most potential to reduce 
( )V θ . Because testing Component B can reduce the large imprecision in [ ]BE P , we expect that 

test plans that include Component B will reduce the imprecision in [ ]E θ . Figure 7–Figure 9 
show the convex hull of each result of each test plan. 
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Test plan 1: [12, 0, 0]
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Test plan 5: [6, 6, 0]
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Test plan 3: [0, 0, 12]
Test plan 6: [6, 0, 6]
Test plan 7: [0, 6, 6]
Prior

Figure 7. Convex hull of each result for 
Scenario 4, test plans 1, 2, and 5. 

Figure 8. Convex hull of each result for 
Scenario 4, test plans 3, 6, and 7. 
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Test plan 1: [12, 0, 0]
Test plan 4: [4, 4, 4]
Test plan 7: [0, 6, 6]
Prior

 
Figure 9. Convex hull of each result for Scenario 4, Tests 1, 4 and 7 

 
 Test plan 1 has the greatest range of [ ]E θ , which reflects the critical location of Component 
A in the system. Moreover, this plan reduces ( )V θ  significantly, as the sensitivity index 
suggested. Test plan 5 has a slightly smaller range of [ ]E θ  and does not reduce ( )V θ  as much, 
though it does more than test plan 2. In the results of test plan 2, we see again the behavior noted 
in Scenario 2 (the “hook” in Figure 2), but now multiplied for a number of priors. The entire 
convex hull follows this trajectory. For a given prior, when the test results confirm the prior, 
testing Component B reduces ( )BV P . However, poor test results increase both [ ]BE P  and 
( )BV P , which increase [ ]E θ  and ( )V θ . 

 Testing Component C (test plan 3) is not helpful. Test results that confirm the prior tend to 
shrink the range of [ ]E θ  compared to the prior. However, poor test results increase both [ ]CE P  
and ( )CV P , which increase [ ]E θ  and ( )V θ . Test plan 6 can also give high-variance results 
because it does not reduce ( )BV P , which is relatively large, and poor results can increase both 
( )AV P  and ( )CV P . Test plan 7 can reduce both ( )BV P  and ( )CV P , but, as the sensivity indices 

suggest, this cannot reduce ( )V θ  as much as reducing ( )AV P . Test plan 4 can reduce all three 
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component-level variances, but the limited number of test results means that the ( )AV P  is not 
reduced as much as it is in test plan 1, which limits the reduction of ( )V θ . 

5.4.3. Scenario 4: Imprecision in the mean 

Table 11 describes the imprecision of [ ]E θ  that can result from the various test plans. The table 
structure and the types of results shown are identical to those of Table 7. Test plan 1 yields the 
most extreme values of minimum-minimum and maximum- maximum because no failures (or all 
failures) significantly affects [ ]AE P , which has a large impact on [ ]E θ  due Component A’s 
position in the system. 

 Most of the test plans have the same minimum average and maximum average, which are 
close to the minimum and maximum prior [ ]E θ . This is not surprising since extreme test results 
(and large changes from a prior to its posterior) such as observing all failures are unlikely when 
the number of tests is large enough.  

 As in Scenario 3, the test plans that include Component B reduce the large imprecision in 
[ ]BE P , which reduces the imprecision in [ ]E θ . Test plans 3 and 6, which don’t include 

Component B, not only fail to reduce the large imprecision in [ ]BE P  but also add imprecision 
when a large number of failures for Component C add imprecision to [ ]CE P . Similarly, though 
not to the same degree, test plan 4 can add imprecision. As noted in the results of Scenario 3, 
testing just Component A (as in test plans 1) does not significantly reduce the imprecision, 
suggesting that the sensitivity index is not a good predictor of which tests will do well on this 
measure. The greatest potential reduction in imprecision can occur when A and B are tested 
equally in test plan 5. 

Table 11. Posterior mean analysis for scenario 4 
[ ]E θ  Imprecision in [ ]E θ  Test Design 

#:{ , , }A B Cn n n  Minimum 
minimum 

Maximum 
maximum 

Minimum
average 

Maximum
average Minimum Maximum

Prior 0.1691 0.2880 n.a. n.a. 0.1189 
1:{12,0,0}  0.0891 0.6764 0.1643 0.2934 0.0918 0.1099 
2:{0,12,0}  0.1527 0.3497 0. 1671 0. 2916 0.0732 0.1041 
3:{0,0,12}  0.1587 0.4800 0.1682 0.2912 0.0853 0.2567 
4:{4,4,4}  0.1120 0.6367 0.1656 0.2918 0.0709 0.1817 
5:{6,6,0} 0.0988 0.5888 0.1647 0.2955 0.0685 0.1100 
6:{6,0,6} 0.1065 0.6375 0.1644 0.2926 0.0809 0.2190 
7:{0,6,6} 0.1530 0.5550 0.1667 0.2936 0.0737 0.1790 

 

5.4.4. Scenario 4: Imprecision in the variance 

Table 12 describes the imprecision of [ ]V θ  that can result from the various test plans. The table 
structure and types of results shown are identical to those of Table 8. In these results, test plan 1 
is notable for its low values on almost all of the measures (the only exception being the maximum 
imprecision). This plan can substantially reduce ( )AV P , which reduces [ ]V θ , as the sensitivity 
indices indicate. As we saw in Scenario 2, poor test results for Component C can greatly increase 
[ ]V θ , and we see that here in the maximum maximum for test plan 3. 
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 Unlike the results for the mean in Table 11, here we see that testing Component A, as test 
plans 1, 5, and 6 do, can reduce the minimum average and maximum average (compared to the 
prior) because they substantially reduce ( )AV P , which reduces [ ]V θ , as the sensitivity indices 
indicate. The other test plans have less impact because the sensitivity indices of the other 
components are smaller. All of the test plans except test plans 3 and 6 (which can greatly increase 
[ ]V θ ) reduce the imprecision in [ ]V θ . 

Table 12. Posterior variance analysis for scenario 4 
[ ]V θ  Imprecision in [ ]V θ  Test Design 

#:{ , , }A B Cn n n  Minimum 
minimum 

Maximum 
maximum 

Minimum
average 

Maximum
average Minimum Maximum 

Prior 0.0100 0.0173 n.a. n.a. 0.0073 
1:{12,0,0}  0.0034 0.0117 0.0053 0.0110 0.0015 0.0068 
2:{0,12,0}  0.0097 0.0181 0.0098 0.0155 0.0045 0.0061 
3:{0,0,12}  0.0098 0.0325 0.0100 0.0160 0.0048 0.0189 
4:{4,4,4}  0.0059 0.0162 0.0074 0.0117 0.0020 0.0054 
5:{6,6,0} 0.0048 0.0146 0.0067 0.0116 0.0019 0.0062 
6:{6,0,6} 0.0049 0.0243 0.0068 0.0119 0.0024 0.0165 
7:{0,6,6} 0.0097 0.0155 0.0098 0.0145 0.0028 0.0050 

6. Discussion 

The above results, though for specific scenarios and a specific system design, demonstrate some 
principles that we believe are generally applicable to problems of this type. 

 First, examining the dispersion of the mean and variance is a useful way to determine the 
possible outcomes of a test plan. Comparing different dispersions can identify which plans are 
most likely to reduce system-level variance and have a large impact on system-level mean. 

 Next, the variance-based sensitivity analysis is not a substitute for looking at the dispersion of 
the mean and variance, especially in the imprecise scenarios. It does give some prediction into 
which components should be tested. Because it is computationally less expensive to calculate the 
sensitivity indices than the potential posteriors across all results, this is important. In particular, 
testing a component with a high sensitivity index can reduce system-level variance substantially 
if the number of tests is large enough relative to the s parameter (a small number of tests won’t 
change the component-level variance enough if the s parameter is large). However, testing a 
component with a small sensitivity index may greatly increase system-level variance; only 
examining the dispersion of the mean and variance can reveal that. 

 However, the sensitivity indices do not give adequate insight into joint testing—that is, 
testing multiple components. In Scenario 3, the sensitivity indices clearly suggested that testing 
Component C was much less important than testing A or B. However, the smallest maximum-
maximum and second smallest minimum-minimum posterior variances actually occur with test 
plan 4, which tests all three components equally (see Table 8). This test plan also yields the 
smallest maximum imprecision in the variance, which means that its worst case result leads to the 
most information about the variance than any other test’s worst case. This is ideal in that not only 
does the variance have the smallest maximum, but it will be known accurately, whatever the 
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actual result. It should be noted that one could also consider joint sensitivity indices, an analysis 
that was not performed in this study and should be considered in future work. 

  A sensitivity index does not give much insight into how testing that component will affect 
the imprecision of the system-level mean. While expected, since they deal with the variance and 
not the mean, the results confirm this result. The adjustment from the precise sensitivity indices to 
the imprecise ones is necessary when using imprecise probabilities, but it does not sufficiently 
capture all important aspects of the imprecision. For example, in Scenario 4, the sensitivity 
indices clearly suggest that testing Component A is most important, and from a variance 
perspective, it is. However, the best reduction in the imprecision of the mean actually occurs in 
test plan 5, when both A and B are tested. Similarly, in Scenario 3, the best reduction in 
imprecision in the mean goes from either testing just A or testing all three equally (Table 7), 
although the sensitivity indices clearly suggested that testing C was unimportant, and were 
relatively inconclusive between A and B. 

 Testing a component with large imprecision in its mean failure probability is useful because it 
reduces the component-level imprecision, which reduces the system-level imprecision. However, 
if the component-level imprecision is low, testing that component may increase imprecision of 
the system-level mean and variance if the results contradict the prior information. Again, the 
dispersion plot will show this potential. 

 The minimum and maximum average measures (for system-level mean and variance) are not 
very useful. In Scenario 4, they change very little from the values for the prior. In Scenario 3, 
they can change significantly, but the dispersion plot will show this as well. Additionally, the 
minimum-minimum and maximum-maximum metrics yield similar rankings to those from the 
minimum-average and maximum-average respectively. Theoretically, the average metrics give a 
more accurate insight into the actual posterior means and variances that would result from test 
plans, but as far as choosing a test plan, it is only the ranking that matters. Additionally, the 
average values are computationally more expensive to compute. 

 In this example, many posterior statistics were analytically computable, as shown in 
Equations (1)-(5) and Equation (7). In general, the posterior system distribution would need to be 
calculating using a double-loop Monte Carlo simulation, or a more advanced method (for a 
summary, see Bruns and Paredis, 2006). This greatly increases the computational costs over this 
example. However, having an estimate of the posterior distribution allows one to use other 
uncertainty metrics, such as the entropy, the Aggregate Uncertainty (Klir and Smith, 2001), or 
imprecise posterior breadth measures (Ferson and Tucker, 2006).  Consideration of these metrics 
is left for future work. 

7. Summary 

This paper has presented and compared different strategies for measuring the uncertainty of 
precise and imprecise distributions for use in making test planning decisions. In this paper we 
have not considered specific approaches for making decisions in the presence of uncertainty or 
estimating the economic value of the information, since these depend on the problem context and 
the preferences of the decision-maker.  

 Instead, we considered the variance and imprecision of the posterior distributions more 
directly. In some cases, this will be sufficient to make a decision. Future work will need to 
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consider how to integrate the approaches presented here with approaches in information 
economics, decision analysis, and optimization to help one select the best test plan. 
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