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Abstract. In the field of scientific computing, the exactitude of the calculation is of prime
importance. That leads to efforts made to increase the precision of the floating-point algorithms.
One of them is to increase the precision of the floating-point number to double or quadruple the
working precision. The building block of these efforts is the error-free transformations.

CELL processor is a microprocessor architecture jointly developed by a Sony, Toshiba, and IBM.
Although its first major commercial application of Cell was in Sony’s PlayStation 3 game console,
it can provide a great potential for scientific computing with a peak single precision performance
of 204.8 Gflop/s.

In this paper, we will do the study on how to implement the double working precision library,
named single-single, on the SPEs (Synergistic Processing Element), the workhorse processors of the
CELL. The methodology of this implementation is based on the paper of Yozo Hida, Xiaoye S. Li,
and David H. Bailey, titled ”Algorithms for quad-double precision floating point arithmetic”.

To improve the performance, the FPU of the SPE supports only the truncation rounding. So all
the floating point operations used in the implementation of the library can only use this rounding
mode, which requires to make some modifications to the algorithms. That increases the complexity
of the implementation. However by taking advantage of the characteristics of the SPE processor,
among which the most important are the fully pipelined set of instructions in single precision
and the FMA (Fused Multiplier-Add) function, we have managed to implement the error-free
transformations very effectively, even more quickly than the ones used in the paper (Hida et al.,
2001). With the SIMD characteristic, we can perform 4 operations at the same time. We also prove
the exactitude of our modified error-free transformation, and the precision of our floating-point
arithmetics by providing error bounds.

Even though the theoretical peak performance of the library is much less than the performance
of the real double precision of the machine, which is about 2.7 Gflop/s in comparison with the 14.4
Gflop/s of the real double precision, the results of our test show that it is not such that bad. In the
best case, the performance of our library and the performance of the real double are nearly equal.
With the same approach, in the future, we will promote our work to the quad-single precision,
which is very promising because the CELL processor does not support the quad precision.
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1. Introduction

The CELL processor jointly developed by Sony, Toshiba, and IBM provides a great power of
calculation with a peak performance in single precision of 204.8 Gflop/s. This performance is
obtained with a set of SIMD processors which use single precision floating point numbers with
rounding mode toward zero. The goal of our work is to develop extended precision libraries for this
architecture.

In this paper we will study how to implement the double working precision library named
single-single on the SPEs (Synergistic Processing Element) which are the workhorse processors of
the CELL. Our approach is similar to those used in (Hida et al., 2001) for the quad-double precision
arithmetic in the rounding mode to the nearest. The next CELL generation will provide powerfull
computing power in double precision with a rounding toward zero. Our library will be easily fit
into double-double library which will emulate the quad precision.

This paper begins with a brief introduction to the CELL processor, then we propose algorithms
for the operators (+,−,×, /) of extended precision based on the error-free transformations for the
rounding mode toward zero. The next section is devoted to the implementation of the single-single
library on the SPE by taking into account the advantages of the SIMD characteristics, among
which the most important are the fully pipelined single precision instructions set and the FMA
(Fused Multiply-Add). Finally, the numerical experiments and the test results showing the library
performance are presented.

2. Introduction to CELL processor

The CELL processor (Kahle et al., 2005; Williams et al., 2006) is composed of one “Power Processor
Element” (PPE) and eight “Synergistic Processing Elements” (SPE). The PPE and SPEs are linked
together by an internal high speed bus called “Element Interconnect Bus” (EIB).

The PPE is based on the Power Architecture. Despite its important computing power, in prac-
tical use, it only serves as a controller for the eight SPEs which perform most of the computational
workload.

The SPE is composed of an “Synergistic Processing Unit” (SPU) and a “Memory Flow Con-
troller” (MFC) which is devoted to the memory transfer via the DMA access. The SPE contains an
SIMD processor for single and double precision (Jacobi et al., 2005; Gschwind et al., 2006), which
can perform at the same time 4 operations in single precision or 2 operations in double precision.
It supports all the 4 rounding modes for the double precision and only the rounding mode toward
zero for the single precision.

The instruction set in single precision of the SPE is fully pipelined, one instruction can be issued
for each clock cycle. It is based on the FMA function, which calculates the term a ∗ b + c in one
operation and one rounding. So with a frequency of 3.2 GHz, each SPE can achieve the performance
of 2× 4× 3.2 = 25.6 GFLOPs on single precision numbers.

For the double precision, the instruction set is not fully pipelined. It is only possible to issue
one instruction for each 7 cycles. So the peak performance of each SPE for the double precision is:
2× 2× 3.2/7 = 1.8 GFLOPs.
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Each SPE has a “Local Storage” (LS) of 256 KB for both data and code. In the opposite of the
cache memory managment, there is no mechanism to load data in the LS. It is up to the programmer
to explicit data transfer via DMA function call. The SPE possess a large set of registers (128 128-bits
registers) which can be used directly by the program avoiding the load-and-store time.

3. Floating-point arithmetic and extended precision

In this section we briefly introduce the floating-point arithmetic and the methodology to extend
the precision. In this paper, due to the specific environment of the CELL processor, we work only
with the rounding mode toward zero.

In a computer, the set of floating-point numbers denoted F is the most frequently used to
represent real numbers. A binary floating-point number is described as follows:

x = (±) 1.x1 . . . xp−1︸ ︷︷ ︸
mantissa

×2e, xi ∈ {0, 1},

with p the precision and e the exponent of x. We use ε = 21−p as the machine precision, and
the value corresponding to the last bit of x is called unit in the last place, denoted ulp(x) and
ulp(x) = 2e−p+1.

Let x, y be two floating-point numbers, ◦ be a floating-point operation (◦ ∈ {+,−,×, /}). It
is clear that (x ◦ y) is a real number but in most cases it is not representable by a floating-point
number. Let fl(x◦y) be the representative floating-point number of (x◦y) obtained by a rounding.
The difference between (x ◦ y) and fl(x ◦ y) corresponds to the rounding error denoted err(x ◦ y).

Given a specific machine precision, the precision of calculation can be increased by software.
Instead of using a floating-point number, multiple floating-point numbers can be used to represent
multiple parts of a real number. This is the idea of the extended precision. In our case, a single-single
is defined as follows:

Definition 1. A single-single is a non-evaluated sum of 2 single precision floating-point numbers.
The single-single represents the exact sum of these two floating-point numbers:

a = ah + al.

There may be multiple couples of 2 floating-point numbers whose sums are equal. To ensure a
unique representation, ah and al should have the same sign and require to satisfy:

|al| < ulp(ah). (1)

To implement the extended precision we have to calculate the error produced by single precision
operations by using the error-free transformations presented below.
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3.1. The error-free transformations (EFT)

Let x, y be two floating-point numbers and ◦ be a floating-point operation. The error-free transfor-
mations are intended to calculate the rounding error caused by this operation. The EFTs transform
(x ◦ y) into a couple of two floating-point numbers (r, e) so that:

r ≈ x ◦ y and r + e = x ◦ y.

3.1.1. Accurate sum
There are two main algorithms for the accurate sum of two floating point numbers. For example
for the rounding mode to nearest, there is the algorithm proposed by Knuth (Knuth, 1998) which
uses 6 standard operations, or the algorithm proposed by Dekker (Dekker, 1971) which uses only
3 standard operations but with the assumption on the order between the absolute values of two
input numbers.

In this paper, our work focuses only on the rounding mode toward zero. So, it is necessary to
adapt these algorithms. Priest (Priest, 1992) has proposed an algorithm for an accurate sum using
a rounding mode toward zero. To better use the pipelines, we proposed another algorithm.

Algorithm 1. Error-free transformation for the sum with rounding toward zero.

Two−Sum−toward−zero2 ( a , b )
i f ( | a | < |b | )

swap (a , b)
s = f l ( a + b)
d = f l ( s − a )
e = f l (b − d)
i f ( | 2 ∗ b | < |d | )

s = a , e = b
return ( s , e )

The exactitude of the newly proposed algorithm is provided in the following theorem.

Theorem 1. Let a, b be two floating-point numbers. The result of Two-Sum-toward-zero2 (s, e)
in applying on a, b satisfies:

s + e = a + b,

|e| < ulp(s).

The proof of all the theorems of this paper can be found in (Nguyen, 2007) (in french).

3.1.2. Accurate product
The calculation of the error-free transformation for the product is much more complicated than the
sum (Dekker, 1971). But if the processor has a FMA (Fused Multiply-Add) which calculates the
term a ∗ b + c in one operation then the classic algorithm for the product can be used.
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Algorithm 2. The error-free transformation for the product of two floating-point numbers.

Two−Product−FMA ( a , b)
p = f l ( a ∗ b)
e = fma (a , b,−p)
re turn ( p , e )

This algorithm is applicable for all the four rounding modes. The basic operation on the SIMD
unit of the SPE being a FMA, our libray implements this algorithm.

4. Basic operations of single-single

4.1. Renormalisation

Using the EFTs toward zero, we can implement the basic operations for the single-single. Most of the
algorithms described hereafter often produce an intermediate result of two overlapping floating point
numbers. To respect the definition of the normalisation (1), it is necessary to apply a renormalisation
step to transform these two floating-point numbers into a normalised single-single. The following
function is proposed:

1 Renormalise2−toward−zero ( a , b )
2 i f ( | a | < |b | )
3 swap (a , b)
4 s = f l ( a + b)
5 d = f l ( s − a )
6 e = f l (b − d)
7 re turn ( s , e )

It is interesting to note that the renormalisation is the same for the rounding mode toward zero
and to the nearest. But in the case of the rounding mode toward zero, it is not possible to give an
exact result. The following theorem provides an error bound for this algorithm.

Theorem 2. Let a, b be two floating-point numbers. The result returned by Renormalise2-toward-zero
is a couple of two floating-point numbers (s, e) which satisfies:

− s, e have the same sign and |e| < ulp(s),

− a + b = s + e + δ, where δ is error of normalisation and |δ| ≤ 1
2ε2|a + b|.

As we will see later, this error is much smaller than the errors produced by the following
algorithms. To describe them, we use the notations in figure 4.1.

4.1.1. Addition
The figure 2 represents the algorithm for the addition of two single-singles a, b. The source code is
as follows:
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Two-Sum Two-Product Quick-Two-Sum

Standard summation Standard product

Figure 1. Notations

bhah blal

Renormalisation

rh rl

Figure 2. Algorithm for the addition of two single-singles

1 add ds ds ( ah , al , bh , b l )
2 ( th , t l ) = Two−Sum−toward−zero ( ah , bh)
3 t l l = f l ( a l + bl )
4 t l = f l ( t l + t l l )

5 ( rh , r l ) = Renormalise2−toward−zero ( th , t l )
6 re turn ( rh , r l )

With two sums, a Two-Sum-toward-zero and a Renormalise2-toward-zero, the cost of the
add ds ds algorithm is 11 FLOPs. The following theorem provides an error bound for this algorithm.

Theorem 3. Let ah + al and bh + bl be two input single-singles and rh + rl be the result of
add ds ds. The error produced by this algorithm δ satisfies:

rh + rl = (ah + al) + (bh + bl) + δ,

|δ| < max(2−23 ∗ |al + bl|, 2−43 ∗ |ah + al + bh + bl|) + 2−45 ∗ |ah + al + bh + bl|.
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bhah bhal

bl

ah

Renormalisation

rh rl

Figure 3. Algorithm for the product of two single-singles

4.1.2. The subtraction
The subtraction of two single-singles a − b is implemented by a sum a + (−b). To compute the
opposite of a single-single, it is just necessary to get the opposite of the floating-point components.
Therefore, the algorithms for the addition and the subtraction are similar.

4.1.3. Product
The product between two single-singles a and b can be considered as the product of two sum ah +al

and bh + bl so the exact product has 4 components:

p = (ah + al)× (bh + bl)
= ah × bh + al × bh + ah × bl + al × bl.

Considering ah × bh as a term of order O(1), this product consists of 1 term O(1), 2 terms O(2)
and 1 term O(3). To decrease the complexity of the algorithm the terms of order below O(2) will
not be taken into account. Additionally, using the EFT for the product, ah×bh can be transformed
exactly into 2 floating-point numbers of orders O(1) and O(2) respectively. So the product of two
single-singles can be approximated by:

p ≈ fl(ah × bh)︸ ︷︷ ︸
O(1)

+(err(ah × bl) + al × bh + ah × bl)︸ ︷︷ ︸
O(2)

.

This approximation can be easily translated into the following algorithm:

1 mul ds ds ( ah , al , bh , b l )
2 ( th , t l ) = Two−Product−FMA ( ah , bh)
3 t l l = f l ( a l ∗ bh)
4 t l l = f l ( ah ∗ bl + t l l )
5 t l = f l ( t l + t l l )
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6 ( rh , r l ) = Renormalise2−toward−zero ( th , t l )
7 re turn ( rh , r l )

This algorithm is described in figure 3.
The error bound of the algorithm mul ds ds is provided by the following theorem.

Theorem 4. Let ah + al and bh + bl be two single-singles. Let rh + rl be the result returned
by the algorithm mul ds ds applying to ah + al and bh + bl. The error of this algorithm called δ
satisfies:

|(rh + rl)− (ah + al)× (bh + bl)| < 2−43 × |(ah + al)× (bh + bl)|+ 9× 2−68 × |(ah + al)× (bh + bl)|.

4.1.4. The division
The division of two single-singles is calculated by using the classic division algorithm.

Let a = (ah, al) and b = (bh, bl) be two single-singles. To calculate the division of a by b, at first
we calculate the approximate quotient by: qh = ah/bh.

Then we calculate the residual r = a− qh × b, which allows to calculate the correction term by:
ql = r/bh.

It can be written in detail as follows:

1 d i v d s d s ( a , b)
2 ph = f l ( ah / bh)
3 tmp1 = f l ( ah − qh ∗ bh)
4 tmp2 = f l ( a l − qh ∗ bl )
5 r = f l ( tmp1 + tmp2)
6 p1 = f l ( r / bh)
7 (qh , q l ) = Renormalise2−toward−zero (ph , p l )
8 re turn ( qh , q l )

We also provide the following theorem to estimate the error of this algorithm.

Theorem 5. Let a = (ah, al) and b = (bh, bl) be two single-singles, ε the machine precision, and
ε1 the error bound for the single precision division with O(ε1) = O(ε). The error of the algorithm
div ds ds is bounded by:

|div ds ds(a, b))− a/b| < [ε2 × (6.5 + 7× ε1/ε + 2× (ε1/ε)2) +O(ε3))]× |a/b|.

In most of cases we have ε1 = ε. In this case, the error bound of this algorithm is:

|q − a/b| < [15.5× ε2 +O(ε3)]× |a/b|.

This inequality means that our division algorithm of two single-singles is accurate to 42 bits
on a maximum of 48 bits. The accuracy of this algorithm can be increased by calculating another
correction term q2 but it has a great impact on the performance.
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hi1 lo1 hi2 lo2︸ ︷︷ ︸
single−single 1

︸ ︷︷ ︸
single−single 2

Figure 4. A vector of 2 single-singles

5. Implementation

The SPE (Synergistic Processor Element) of CELL processor contains a 32-bit 4-way SIMD proces-
sor together with a large set of 128 128-bits registers. It can perform the operations on the vectors
of 16 char /unsigned char, 4 int/unsigned int, 4 float or 2 double.

The operations on scalars are implemented by using the vectorial operations. In this case,
only one operation is performed on the preferred slot instead of 4 on vectors. For this reason,
we implement only the vectorial operations for the single-singles.

5.1. Representation

A single-single is a couple of two floating-point numbers so each vector of 128 bits contains two
single-singles (figure 4). So, the 128 bits register containing two single-single numbers could be seen
as a vector of 4 floating points numbers.

5.2. Implementation of the error-free transformations

The EFT for the product is simply implemented by two instructions as follows:

1 Two−Prod−FMA ( a , b)
2 p = spu mul ( a , b )
3 e = spu msub (a , b , p)
4 re turn ( p , e )

The algorithm of the EFT for the sum begins with a test and a swap. This test limits the
possibility of parallelism. So, we have to first eliminate this test by the following procedure:

− evaluation of the condition. The result is a vector comp of type unsigned int, in which a value
of zero means the condition holds and a value of FFFFFFFF for the opposite case.

− computation of the values of the two branches val 1 (if the condition is satisfied) and val 2
(if not).

− selection of the right value according to the vector of condition by using bit selection function:

d = spu sel(val 2, val 1, comp).

For each bit in the 128-bit vector comp, the corresponding bit from either vector val2 or val1
is selected. If the bit is 0, the bit from val2 is selected; otherwise, the bit from val1 is selected.
The result is returned in vector d.
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a a1 a2 a3 a4
b b1 > a1 b2 < a2 b3 = a3 b4 > a4

comp = spu cmpabsgt(b, a)
FFFFFFFF 00000000 00000000 FFFFFFFF

hi = spu sel(a, b, comp)
b1 a2 a3 b4

lo = spu sel(b, a, comp)
a1 b2 b3 a4

Figure 5. Example of the exchange of two vectors

For example, the test and the swap can be coded as follows:

1 comp = spu cmpabsgt (b , a )
2 h i = spu s e l ( a , b , comp)
3 l o = spu s e l (b , a , comp)

Figure 5 gives a concrete example of this exchange.
Each spu cmpabsgt costs 2 clock cycles and the spu sel too. Moreover, since the instructions

of lines 2, 3 of this code are independent, they can be pipelined. So these 3 instructions cost only
5 clock cycles, which is less than a single precision operation (6 clock cycles for the FMA).

Applying the same procedure for the last conditional test of the algorithm Two-Sum-toward-zero2,
this algorithm can be rewritten as follows:

1 Two−Sum−toward−zero2 ( a , b )
2 comp = spu cmpabsgt (b , a )
3 h i = spu s e l ( a , b , comp)
4 l o = spu s e l (b , a , comp)
5 s = spu add ( a , b)
6 d = spu sub ( s , h i )
7 e = spu sub ( l o , d )
8 tmp = spu mul ( 2 , l o )
9 comp = spu cmpabsgt (d , tmp)

10 s = spu s e l ( s , hi , comp)
11 e = spu s e l ( e , lo , comp)
12 return ( s , e )

Note that the addition of a and b does not change after the exchange. So we choose to use a + b
instead of hi + lo to avoid the instructions dependencies. More precisely the 3 first instructions for
the test and the exchange are independent of the instruction of line 5 which costs 6 cycles. So, they
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start

instr 2
2 cycles

instr 5
6 cycles

instr 3
2 cycles

instr 4
2 cycles

instr 6
6 cycles

instr 7
6 cycles

instr 8
6 cycles

instr 9
2 cycles

instr 11
2 cycles

instr 10
2 cycles

end

Figure 6. The dependencies between instructions of algorithm Two-Sum-toward-zero

can be executed in parallel1. The figure 6 emphasis the full independencies of instructions. This
algorithm costs 20 clock cycles, which is a little bit more than the execution time of 3 consecutive
double precision operations.

5.3. Renormalisation

The implementation of algorithm Renormalise2-toward-zero is similar to the Two-Sum-toward-zero2
algorithm but without the conditional test and the exchange at the end.

1 Renormalise2−toward−zero ( a , b )
2 s = spu add ( a , b)
3 comp = spu cmpabsgt (b , a )
4 h i = spu s e l ( a , b , comp)
5 l o = spu s e l (b , a , comp)
6 d = spu sub ( s , h i )
7 e = spu sub ( l o , d )
8 re turn ( s , e )

With the same analysis as Two-Sum-toward-zero2, Renormalise2-toward-zero costs only 18
clock cycles. Now we will use these two functions to implement the arithmetic operators of single-
singles.

5.4. Version 1

The natural version on single-single operations computes one operation on TWO single-singles. The
SIMD processor allows us to manipulate simultaneously four 32 bits floating point numbers at the
same time. When applying to vectors of single-singles, we can manipulate both the high and low
components of these single-singles.

1 On the SPE, there are 2 pipelines. The first one is devoted to numerical operations, the second one for control
and logical operations. The two pipelines can be used in parallel.
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Using the Two-Sum-toward-zero2 presented above we calculate the sums and the rounding
errors of two couples of high components and also of two couples of low components in the same
time. Note that the rounding errors of these two couples of low components is computed, but not
used by the algorithm.

Moreover, in the algorithms, it is necessary to compute operations between high and low com-
ponents. This requires some extra operations to shuffle those components. So the first version does
not take full advantage of the SIMD processor. We have implemented the first version for the sum
and the product of single-singles which are add ds ds 2, mul ds ds 2 and cost 50 cycles and 49
cycles respectively for two single-singles.

5.5. Version 2

The second version computes one operation on FOUR single-singles. It separates the high and the
low components into two separated vectors (see figure 7) by using the function spu shuffle of SPE
which costs 4 clock cycles. This solution makes it possible a better optimisation of the pipelined
instructions

merge1 vect 00 01 02 03 10 11 12 13 08 09 0a 0b 18 19 1a 1b

merge2 vect 04 05 06 07 14 15 16 17 0c 0d 0e 0f 1c 1d 1e 1f

a a1
hi a1

lo a2
hi a2

lo

b b1
hi b1

lo b2
hi b2

lo

a hi = spu shuffle(a, b, merge1 vect )

a1
hi b1

hi a2
hi b2

hi

a lo = spu shuffle(a, b, merge2 vect )

a1
lo b1

lo a2
lo ab2

lo

Figure 7. Merging of two vectors

Then, the operators can be implemented by applying directly the algorithms presented above
on four operands separated in four vectors.

The intermediate result of these algorithms is also two vectors which contain respectively the
four high parts and the four low parts of the result. At the end of the algorithm, the result vectors
should be built by shuffling the high and the low components.

For example, the version 2 for the sum of single-singles is written as follows2

1 add ds ds 4 ( vect a1 , vect a2 , vect b1 , vect b2 )
2 a h i = s pu s hu f f l e ( vect a1 , vect a2 , merge1 vec t )
3 a l o = spu s hu f f l e ( vect a1 , vect a2 , merge2 vec t )
4 b h i = s pu s hu f f l e ( vect b1 , vect b2 , merge1 vec t )
5 b l o = s pu s hu f f l e ( vect b1 , vect b2 , merge2 vec t )
6 ( s , e ) = Two−Sum−toward−zero ( a hi , b h i )

2 The SIMD unit computes on 128-bits vectors. The 4 single-singles values of a and b are cut into two parts to
keep the register organisation.

REC 2008 - H. D. Nguyen, S. Graillat, J.-L. Lamotte



Extended precision on Cell processor 13

7 t1 = spu add ( a l o , b l o )
8 tmp = spu add ( t1 , e )
9 ( hi , l o ) = Renormalise2−toward−zero ( s , tmp)

10 vec t c1 = spu s hu f f l e ( hi , lo , merge1 vec t )
11 vec t c2 = spu s hu f f l e ( hi , lo , merge2 vec t )
12 re turn ( vect c1 , v e c t c2 )

Figure 8 shows the dependencies between instructions of this function. By using the tool spu timing
of IBM, the execution time of this function is 64 clock cycles for four single-singles.

start

instr 2
4 cycles

instr 3
4 cycles

instr 4
4 cycles

instr 5
4 cycles

instr 6
23 cycles

instr 7
6 cycles

instr 8
6 cycles

instr 9
18 cycles

instr 10
4 cycles

instr 11
4 cycles

end

Figure 8. The dependencies between instructions of add ds ds 4

It is the same for the product of single-singles. We have successfully implemented the version 2
of the product of single-singles, called mul ds ds 4 with an execution time of 60 clock cycles for
four single-singles.

The implementation of the division is more complicated. As described in the previous section,
the division of single-singles div ds ds is based on the division in single precision, meanwhile the
CELL processor does not support this kind of operation. It provides only a function to estimate
the inverse of a floating-point number called spu re which allows us to obtain a result precise up
to 12 bits. So in order to implement the division of single-singles, we first have to implement the
division in single precision.

The procedure to calculate the division of two 32 bits floating-point numbers a and b is as
follows:

1. calculate the inverse of b,

2. multiply the inverse of b with a.

To improve the precision of the inversion we use the iterative Newton’s method with the formula:
invi+1 = invi + invi × (1− invi × b). We also use the Newton’s method for the multiplication with
a× inverse(b) being the initial value. The division in single precision can be written as follows:
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1 div ( a , b)
2 tmp0 = spu re (b)
3 r e r r = spu nmsub (tmp , b , 1 )
4 inv = spu madd ( r e r r , tmp0 , tmp0)
5 r e r r = spu nmsub ( inv , b , 1 )
6 e e r r = spu mul ( r e r r , inv )
7 tmp = spu mul ( e e r r , a )
8 q = spu madd ( a , inv , tmp)
9 re turn q

The precision of the algorithm div is provided by the following theorem.

Theorem 6. Let a, b be two floating-point numbers in single precision, ε being the machine
precision. The relative error of the algorithm div is bounded by:

|div(a, b)− a/b| < [ε +O(ε2)]× |a/b|.

Using the newly implemented single-precision division operator and the algorithm of division
of single-singles presented above, we have implemented the function div ds ds 4 which calculates
fours single-single divisions at the same time. This function costs 111 clock cycles for four single-
singles.

5.6. Optimised algorithms

The versions 2 of the single-single operators performs four operations at the same time, and they
have taken full advantage of the SIMD processor which provides an important performance of
calculation. But using the spu timing tool of IBM we recognized that there still left many non-used
clock cycles in the process of calculation of each operator.

We can use these non-used clock cycles by increasing the number of operations executed at the
same time.

With the restricted local storage (only 256 KB for both the code and data) we choose to
implement operations on EIGHT single-singles. This third version is considered as the optimal
version in our library. The third version of the sum, the product and the division are named
add ds ds 8, mul ds ds 8, div ds ds 8 and cost respectively 72 cycles, 63 cycles and 125 cycles
for eight single-singles. In comparison with the version 2 with only some supplementary clock cycles
(for example 8 cycles for the sum and 3 cycles for the product) we can execute 8 single-single
operations instead of 4. It means that we have achieved a coarse gain with the final version in
terms of performance.

Almost every clock cycles being used, there would be no gain to deal with sixteen single-singles.
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Table I. Theoretical results of the single-single library

Function Number of operations Execution time Performance

add ds ds 2 2 50 cycles 0.128 GFLOPs

add ds ds 4 4 64 cycles 0.2 GFLOPs

add ds ds 8 8 72 cycles 0.355 GFLOPs

mul ds ds 2 2 49 cycles 0.130 GFLOPs

mul ds ds 4 4 60 cycles 0.213 GFLOPs

mul ds ds 8 8 63 cycles 0.406 GFLOPs

div ds ds 4 4 111 cycles 0.115 GFLOPs

div ds ds 8 8 125 cycles 0.2048 GFLOPs

5.7. Theoretical results

On a CELL processor with a frequency of 3.2 GHz, its theoretical performances (without memory
access problem) of the single-single are presented in table I.

6. Numerical simulations

6.1. Experimental results

To test the performance of the single-single library, we created a program which performs the basic
operators on two large vectors of single-single and also on two large double precision vectors of the
same size. To achieve the peak performance of the library we use the third version of each operator.
Double-buffering is used to hide data transfer time.

This program is executed on a IBM CELL Blade based at CINES, Montpellier, France. The
CPU frequency is 3.2GHz. The results obtained are listed in the table II.

Figure 9 illustrates the performance of the addition on single-singles and on native double
precision. Both have the same memory size. They are very close. It is interesting to note that
the maximum performance with 64 bits floating point is not reached. In this case the program
measures mainly the memory transfer time. The native double operation are completely hidden.

For the single-singles, the computing time of one operation is on the same order as the transfer
memory necessary for one operation. This kind of program benefits for our library.

To have another comparison, another program is created which executes a large number of
basic operators on a small number of data generated within the SPE without any data transfer.
The execution time of the program is exactly the time of calculation. The results are presented
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Table II. Real performances of the library single-single

Functions Theoretical performance Experimental performance

add ds ds 8 355 MFLOPs 250.4 MFLOPs

mul ds ds 8 406 MFLOPs 287.2 MFLOPs

div ds ds 8 204 MFLOPs 166.4 MFLOPs

SPE number

MFLOPs

single-single

native double

1 2 4 81 2 4 8

336

559

932

1089

Figure 9. The performance of the library single-single: The addition

in table III. The peak performance for the multiplication on the CELL processor is achieved for
native double precision.

With the single-singles numbers, it is not possible to achieve the same performance than with
the native double precision. This is mainly due to two factors:

− the cost of the function call,

− the transfer from the local memory to the registers.

6.2. Exactitude

The exactitude of the library is tested by performing a large number of operations on random values
of single-single and their corresponding double precision values. With 224 comparisons, the results
are summarized in table IV.
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Table III. Performance of the single-single library and of the double precision of the machine, without data transfer

Theoretical Experimental Experimental

Functions performance performance performance

(1SPE) (1 SPE) (8 SPEs)

add ds ds 8 355 MFLOPs 266 MFLOPs 2133 MFLOPs

mul ds ds 8 406 MFLOPs 320 MFLOPs 2560 MFLOPs

div ds ds 8 204 MFLOPs 172 MFLOPs 1383 MFLOPs

sum in double precision 914 MFLOPs 914 MFLOPs 7314 MFLOPs

product in double precision 914 MFLOPs 914 MFLOPs 7314 MFLOPs

division in double precision (not supported) 86 MFLOPs 691 MFLOPs

Table IV. The exactitude of single-single library

Operation Max difference Mean difference

Sum 0.0e+00 0.00e+00

Product 2.964e-14 1.425e-16

Division 2.373e-14 1.758e-15

7. Conclusions and perspectives

This paper is based mostly on (Hida et al., 2001) with some adaptations to the rounding mode
toward zero and to the implementation environment of CELL processor. First we propose an
algorithm for the error-free transformation of the sum which is proved to be effectively implemented
on the CELL processor. Then, we introduce the methodology to develop the extended precision
of single-single with such basic operators that the sum, the product and the division. A large
part of this paper is dedicated to the implementation of this library in exploiting the specific
characteristics of CELL processor, among which the most important are the truncation rounding,
the SIMD processor and the fully pipelined instruction set. The performance and the precision
of the implemented library is tested by running test programs on a real CELL processor with a
frequency of 3.2GHz.

In the future, this library could be completed by the treatment of numeric exceptions, by the
binary operations, algebraic operations and transcendental operations.

Waiting for the next CELL generation, we are developing the quad-single precision library. With
the next generation of CELL processor, we will be able to easily get:
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− the quad precision implemented with double-double numbers with the methodology of the
single-single library,

− the quad-double precision implemented with four double numbers with the methodology of the
quad-single library.

These precisions are needed by more and more current applications.
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