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Abstract: In many engineering disciplines the interesting model parameters are estimated from a 
large number of heterogeneous and redundant observations by a least-squares adjustment. The 
significance of the model parameters and the model selection itself are checked with statistical 
hypothesis tests. After formulating a null hypothesis, the test decision is based on the comparison 
of a test value with a quantile value. The acceptance and the rejection of the null hypothesis are 
strongly related with two types of errors. A type I error occurs if the null hypothesis is rejected, 
although it is true. A type II error occurs if the null hypothesis is accepted, although it is false. 
This procedure is well known in case of only random errors for the observations.  
 If the uncertainty budget of the observations is assumed to comprise both random variability 
(probabilistic errors) and imprecision (interval errors), the classical test strategies have to be 
extended accordingly. In this study we focus on the relation of imprecision and the probability of 
type I and type II errors. These steps are based on newly developed one- and multidimensional 
hypothesis tests in case of imprecise data. The applied procedure is outlined in detail showing 
both theory and one numerical example for the parameterization of a geodetic monitoring 
network. Its main benefit is an improved interpretation of the influence of imprecision in model 
selection and significance tests. In addition the well known sensitivity analysis in parameter 
estimation can now generally be treated in terms of imprecise data. 
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1. Introduction  
 
Hypothesis tests are of wide interest for many applications in engineering and mathematical 
science. Different approaches to hypothesis testing exist, which are due to different methods for 
the description of the occurring uncertainties, e. g., in the performed measurements and the prior 
knowledge about the model formulation (for further data processing) and in model selection. The 
probably most popular approaches are statistical tests in parameter estimation, where interesting 
model parameters are estimated from a large number of heterogeneous and redundant 
observations by a least-squares adjustment. The uncertainties are assessed in a stochastic 
framework: measurement and system errors are modeled using random variables and probability 
distributions. However, the quantification of the uncertainty budget of empirical measurements is 
often too optimistic due to, e.g., the ignorance of non-stochastic errors in the analysis process 
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(Ferson et al., 2007). For this reason in this paper a more general formulation is presented which 
may be closer to the situation in real-world applications. 
 The paper is organized as follows: first, the main steps in uncertainty modeling with respect 
to non-stochastic measurement errors are briefly reviewed, see, e. g. (Kutterer, 2004; Neumann 
et al., 2006). Second, two linear hypotheses are introduced as a general approach to imprecise 
hypothesis testing. The main part of the paper deals with the relation of imprecision and the 
probability of type I and type II errors in imprecise hypothesis testing. The applied procedure is 
outlined in detail showing both theory and numerical examples for the parameterization of a 
geodetic monitoring network. 
 

2. Hypothesis testing in parameter estimation under interval-/fuzzy-uncertainty  
 
2.1.  MODELING OF UNCERTAINTY 
 
In this paper uncertainty is treated in terms of fuzzy-intervals (e. g., Bandemer and Näther 1992), 
see Fig. 1. With a fuzzy-interval A�  it is possible to describe uncertain quantities by their 
membership function ( )Am x�  over the set \  of real numbers with a membership degree between 
0 and 1: 

{ }: ( , ( ))AA x m x x= ∈�
� \       with    [ ]: 0,1Am →� \ .                           (1) 

The membership function of a fuzzy interval can be described by its left (L) and right (R) 
reference functions (see also Fig. 1)  
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with mx  denoting the midpoint, r  the radius, and ,l rc c  the spread parameters of the 
monotonously decreasing reference functions (convex fuzzy intervals).  

 
 

Figure 1. Fuzzy interval and its α -cut 
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The - cutα  of a fuzzy-interval A�  is defined by: 

{ }: ( )AA x X m xα α= ∈ ≥�
� ,                                                                                          (3) 

with [0,1]α ∈ . Each - cutα  represents in case of monotonously decreasing reference functions a 
classical interval. The lower bound ,minAα

�  and upper bound ,maxAα
�  of an - cutα  are obtained as:  

 ( ),minA min Aα α=� � ,                                                                                                      (4) 

 ( ),maxA max Aα α=� � .                                                                                                     (5) 

Throughout the paper we assume symmetric fuzzy intervals. Hence, an equivalent representation 
of symmetric - cutsα  can be found by the midpoint mA  and radius ,rAα

�  representation: 

 ,min ,m rA A Aα α= −� � ,                                                                                                      (6) 

 ,max ,m rA A Aα α= +� � .                                                                                                     (7) 
The integral over all - cutsα  equals the membership function: 

 
1

0

( ) ( )A Am x m x d
α

α= ∫� � .                                                                                                 (8) 

Furthermore, basic operations on fuzzy intervals are the intersection and the complement; they are 
defined through the following membership functions: 
 ( )    :      ( ) min ( ), ( )   x  BA B AIntersection C A B m x m x m x∩= ∩ ⇔ = ∀ ∈� � ��

� � � \           (9_a) 

          :         ( ) 1 ( )                x  C
C

AA
Complement C A m x m x= ⇔ = − ∀ ∈��

� � \            (9_b) 

Fuzzy intervals serve as basic quantities: Random variability is introduced through the fuzzy-
interval midpoint which is modeled as a random variable and hence treated by methods of 
stochastics. Here random variability is superposed by imprecision which is due to non-stochastic 
errors of the measurements and the physical model with respect to reality. The standard deviation 

xσ  is the carrier of the stochastic uncertainty, and the spread of the fuzzy-intervals describes the 
range of imprecision. 

For the modeling of imprecision it is important to know that the original measurement results 
are typically preprocessed before they are used in the further calculations. These preprocessing 
steps comprise several factors p  influencing the observations (see also Fig. 2):  

• Physical parameters (model constants) for the reduction and correction steps from the 
original to the reduced measurements  

• Sensor parameters (e. g., remaining error sources that cannot be modeled)  
• Additional information (e. g., temperature and pressure measurements for the reduction 

steps of a distance measurement) 
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Most of these influence factors are uncertain realisations of random variables; their imprecision is 
meaningful by many reasons: 

• The model constants are only partially representative for the given situation (e. g., the 
model constants for the refraction index for distance measurements). 

• The number of additional information (measurements) may be too small to estimate 
reliable distributions.  

• Displayed measurement results are affected by rounding errors. 
• Other non-stochastic errors of the reduced observations occur due to neglected correction 

and reduction steps and for effects that cannot be modeled.  
Figure 2 shows the interaction between the observation and analysis model and their influence 
factors. While correction and reduction steps are systematic, the imprecision of the influence 
parameters is directly transferred to the measurements, which are now carrier of random variability 
and imprecision.  

 
Figure 2. Interaction between the observation/analysis model and their influence factors 

The non-stochastic part of the influence factors is described by fuzzy-intervals. This step is based on 
expert knowledge and on error models concerning the deterministic behavior of these parameters. 
The propagation of uncertainty is then separated into two parts. The stochastic part is treated with 
the law of variance-covariance propagation. Based on the assumption that imprecision is small in 
comparison with the measured values, we derive the data imprecision by means of a sensitivity 
analysis of the mostly sophisticated observation models (Neumann et al., 2006). 
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2.2.  GENERAL FORM OF A LINEAR HYPOTHESIS IN IMPRECISE HYPOTHESIS TESTING 

 
2.2.1.  The pure stochastic case    
 
In this subsection a general approach to imprecise hypothesis testing in parameter estimation is 
presented. We focus on the standard case where the vector y  is assumed to be normal distributed 
with expectation vector    
 ( ) yE =y µ ,           (10_a) 

and (positive definite) variance-covariance matrix yyΣ  (vcm)  

 ( ) 2
yy 0 yyD = = σy QΣ ,                     (10_b) 

where 2
0σ  denotes the variance of the unit weight and yyQ  the associated cofactor matrix. Such a 

random vector may either be an observable quantity or a derivable quantity such as the 
parameters estimated by means of a least-squares (LS) adjustment. The next steps of these well-
known test procedure leads to a quadratic form, which may be given by 
 2 ( , )T fχ λ-1

yyy Σ y ∼ .             (11) 

In general, the quadratic form follows a non-central chi-square distribution with f rank( )= yyΣ  
degrees of freedom and the non-centrality parameter λ . In the following, the vector y is assumed 
as the vector of reduced observations = 0y l - a  within a least-squares adjustment, with the 
random vector of observations l  and the deterministic vector of approximate observations 0a . 
Then the estimated parameters x̂  of a least-squares adjustment (Gauß-Markov model) are given 
by the following equation: 
 0 0 0ˆ ( ) ( ) ( )+= = + T Tx l,x x A PA A P l - af ,                                                                (12) 
with the n u×  column regular design matrix A , the 1n×  vector of approximate values 0x  of the 

parameters x , the n n×  regular weight matrix 1
yy
−=P Q . The number of observations is n  and 

the number of parameters is u . In geodetic networks the normal equations matrix TA PA can be 
rank-deficient due to an incomplete definition of the coordinate frame through the configuration. 
If for example such a network is composed of distance observations only, it is not possible to 
estimate coordinates which are required in practice. This problem can be overcome if the 
pseudo-inverse matrix ( )+TA PA  is used; see, e. g., (Koch, 1999) which is a standard reference in 
geodetic literature on parameter estimation (and hypotheses tests). Finally, the imprecise vector of 
estimated parameters x̂�  is constructed, based on a sufficient number of - cutsα : 
 ( ),min 0 ,ˆ ( ) rα α

+= + −T Tx x A PA A Py F p� � ,                                                             (13_a) 

 ( ),max 0 ,ˆ ( ) rα α
+= + +T Tx x A PA A Py F p� � ,                                                            (13_b) 
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1

ˆ ˆ
0

( ) ( )m x m x d
α

α= ∫x x� �        and        ,min ,maxˆ
ˆ ˆ,m

α
α α

⎡ ⎤= ⎣ ⎦x
x x�
� � ,                                     (13_c) 

with the matrix of partial derivatives ∂
=
∂

xF
p

 and i  denoting the element-by-element absolute 

value of the matrix. 
 
2.2.2.  A linear hypothesis for the standard model in parameter estimation   
 
The standard model in parameter estimation is given by 
 E( ) =y Ax ,                                                                                                               (14) 
where the expected value of the reduced observations E( )y  equals Ax . The null hypothesis of a  
linear hypothesis is then introduced as: 
 0 :     H =Cx w ,                                                                                                    (15_a) 
provided that Cx  must be a testable hypothesis, cf. (Koch, 1999) for details concerning the 
matrix C  and the vector w . The null hypothesis must be compared with the alternative 
hypothesis 
 :     AH = ≠Cx w w .                                                                                            (15_b) 
This leads after a few calculation steps to a quadratic form: 

 ( ) 2
0ˆ ˆ( ) ( )  ( ,0)  under  HTT h

++⎡ ⎤= − −⎢ ⎥⎣ ⎦
T TCx w C A PA C Cx w ∼ χ ,                       (16) 

that follows under the null hypothesis a central chi-square distribution ( 0λ = ) with 

( )rankh
+⎡ ⎤= ⎢ ⎥⎣ ⎦

T TC A PA C  degrees of  freedom. In order to avoid overestimation in imprecise 

hypothesis testing, the general form of a linear hypothesis has to be converted to a quadratic form 
of imprecise influence parameters p� ; it is obtained as: 

 ,min min

T

m mT

⎛ ⎞⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠

T T T T T T

T T T

∆p F K DKF F K DK F K D ∆p
y K DKF K DK K D y
w DKF DK D w

�
α ,                     (17_a) 

 ,max max

T

m mT

⎛ ⎞⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠

T T T T T T

T T T

∆p F K DKF F K DK F K D ∆p
y K DKF K DK K D y
w DKF DK D w

�
α ,                    (17_b) 

 
1

0

( ) ( )T Tm x m x d
α

α= ∫� �        and        ,min ,max,Tm T T
α α α⎡ ⎤= ⎣ ⎦�

� � .                                      (17_c) 



7 The probability of type I and type II errors in imprecise hypothesis testing 
 

with ,min m ,max m,α α α⎡ ⎤∈ = − −⎣ ⎦∆p p p p p p� � � , ( )+= T T TK C A PA A P , ( )
++⎡ ⎤= ⎢ ⎥⎣ ⎦

T TD C A PA C  and 

my  the midpoint of the reduced observations.  
 
2.2.3.  A linear hypothesis for an extended model in parameter estimation   
 
The presented strategy from Section 2.2.2 has some shortcomings concerning the computational 
complexity. If additional parameters z , e. g., in model selection and outlier detection shall be 
tested in the given enviroment, the model from Equation (15) has to be reformulated and must be 
fully analyzed (including the inversion of the normal equations). This problem can be overcome 
by an extended model in parameter estimation: 
 E( ) = +y Ax Bz .                                                                                                      (18) 
The linear hypothesis may then be given by: 

 0 :     H ⎡ ⎤
=⎢ ⎥

⎣ ⎦

x
C w

z
     versus     :     AH ⎡ ⎤

= ≠⎢ ⎥
⎣ ⎦

x
C w w

z
.                                           (19) 

Starting with the extended normal equations (Koch, 1999) 

  0

0

ˆ ( )
ˆ ( )

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

TT T

TT T

x A P l - aA PA A PB
z B P l - aB PA B PB

,                                                                    (20) 

this procedure leads after a few calculation steps to a modified quadratic form: 

 2
0

ˆ ˆ
( ) ( ) ( ,0)  under  H

ˆ ˆ
TT j

++⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥= − −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

T T
T

T T

x xA PA A PB
C w C C C w

z zB PA B PB
∼ χ . (21) 

This quadratic form follows under the null hypothesis a central chi-square distribution ( 0λ = ) 

with rankj
+⎡ ⎤⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

T T
T

T T

A PA A PB
C C

B PA B PB
 degrees of  freedom. If only the additional parameters z  

have to be tested, the null hypothesis 0H  can be reformulated as follows: 

 [ ] [ ]0
2

:     H
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2 2

0x x x
C C C 0 C w

wz z z
,                                       (22) 

 and the quadratic form is now easy to handle (Koch, 1999): 

 ( )( ) 2
0ˆ ˆ ( ,0)  under  HT j⎡ ⎤= − −⎢ ⎥⎣ ⎦

+-1T T T + T T
2 2 2 2 2 2(C z w ) C B P- PA(A PA) A P B C (C z w )∼ χ . (23) 

According to Section 2.2.2 this quadratic form from Equation (23) has to be converted to a 
quadratic form of imprecise influence parameters p� . With ( )ˆ ˆ ˆ ˆ 0ˆ ( )=

-1T T
vv vvz B PQ PB B PQ P l - a  
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and ( )1
ˆ ˆ

−= T + T
vvQ P - A(A PA) A , ( )ˆ ˆ ˆ ˆ=

-1T T
vv 2 vvJ B PQ PB C B PQ P  and ( )ˆ ˆ

+
⎡ ⎤= ⎢ ⎥⎣ ⎦

-1T T
2 vv 2M C B PQ PB C  

we obtain: 

 ,min min

T

m mT

⎛ ⎞⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠

T T T T T T

T T T

2 2

∆p F J MJF F J MJ F J M ∆p
y J MJF J MJ J M y
w MJF MJ M w

�
α ,                        (24_a) 

 ,max max

T

m mT

⎛ ⎞⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠

T T T T T T

T T T

2 2

∆p F J MJF F J MJ F J M ∆p
y J MJF J MJ J M y
w MJF MJ M w

�
α ,                       (24_b) 

 
1

0

( ) ( )T Tm x m x d
α

α= ∫� �        and        ,min ,max,Tm T T
α α α⎡ ⎤= ⎣ ⎦�

� � .                                      (24_c) 

The quadratic form from the Equations (23) and (24) is computable from the residuals without a 
new parameter estimation. Therefore the computational complexity is significant reduced.   
 
2.2.4.  Final Test decision based on the card criterion 
 
The fuzzy evaluation of the quadratic forms from the Equations (17) and (24) is based on Zadeh’s 
extension principle (Zadeh 1965), which can be equivalently replaced by the min-max operator of 
an optimization algorithm, cf. (Dubois and Prade, 1980, p. 37) for the theoretical concept and 
(Möller and Beer, 2004) for applications in civil engineering. The optimization problem can be 
solved, e. g., with a standard Newton algorithm, cf. (Coleman and Li, 1996). Figure 3 shows a 
constructed test value T�  and the comparison of the imprecise test value with the imprecise 
regions of acceptance A�  and rejection R�  (Neumann et al., 2006). 
 

 
Figure 3. Comparison of the constructed test value T�  with the regions of acceptance A�  and rejection R�  
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Whereas the influence of imprecision on the test decision for a smaller number of observations is 
unimportant, it gets more important for a larger number of observations. This is in full accordance 
to the theoretical concept, because the goodness of fit for the stochastic uncertainty of the 
parameters increases with the number of observations. 
The final test decision is based on the set-theoretical comparison of the imprecise test value 
(constructed using an - cutα optimization algorithm) with the region of acceptance A�  and the 
region of rejection R�  (see Fig. 3), cf. (Kutterer 2004) and (Neumann et al. 2006) for detailed 
explanations. The hypotheses are defined by  

 2 ( , ) ;mT kχ λ∼   0

A

 0         H  the null hypothesis,

 0         H the alternative hypothesis, 
λ
⎧ =⎪
⎨
≠⎪⎩

                              (25) 

with the non-centrality parameter λ . The midpoint of the test value follows under the null 
hypothesis a central chi-square distribution with  {  , }k h j∈  degrees of freedom. The regions of 
acceptance A�  and rejection CR A= ��  are defined as fuzzy intervals. The degree of the rejectability 

( )R Tρ �  of the null hypothesis 0H  under the condition of T�  is computed based on the degree of 
agreement of the test value with the region of rejection ( )R Tγ � �  and the degree of disagreement of 

the test value with the region of acceptance ( )A Tδ �
� . We use the card criterion, because it allows a 

more suitable description of the degree of agreement between two fuzzy intervals. This leads to 
the equations given below (see also Fig. 3): 

 
( )
( )

( )R

card T R
T

card T
γ

∩
=�

� �
�

�      and     
( )
( )

( ) 1A

card T A
T

card T
δ

∩
= −�

��
�

�                                  (26_a)  

 ( )( ) min ( ), ( )R R AT T Tρ γ δ=� � �
� � �                                                                                 (26_b) 

For the final test decision, the degree of rejectability ( )R Tρ �
�  of the null hypothesis has to be 

compared with a suitable critical value [0,1]critρ ∈ : 

 ( ) [ ] 0
critR

0

Do not reject H
0,1

Reject H
T

≤ ⎧⎧ ⎫
ρ ρ ∈ ⇒⎨ ⎬ ⎨>⎩ ⎭ ⎩
�
�                                                     (27) 

The test is only rejected, if the test value agrees with the region of rejection and disagrees with the 
region of acceptance. This is in full accordance with the theoretical expectations, where 
observation imprecision is an additive term of uncertainty during the measurement process. The 
choice of critρ  depends on the particular application and must be based on expert knowledge. For 
outlier detection we propose to choose 1crit →ρ  and for safety-relevant measures 0critρ → . 
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3. Probability of type I errors in imprecise hypothesis testing 
 
In this subsection we focus on the relation of imprecision and the probability of a type I error. The 
probability imprγ  of a type I error in the imprecise case is defined by:  

 ( )( )0 impr critRP T Hγ = ρ > ρ�
� .                     (28) 

The index „impr“ denotes the case of imprecision. Equation (28) can be reformulated as follows 
 ( )0 f ( )impr m critP T Hγ = > ρ ,                     (29) 

with the degree of rejectability ( )R Tρ �
�  of the null hypothesis under the condition of T� as a 

function f  of the midpoint mT  of the imprecise test value T� .  

 ( )-1
impr crit m 0P f ( ) T Hγ = ρ > .                     (30) 

This leads with respect to Equation (30) after a few calculation steps to the quantile value 
impr

2
1−γχ  

of the chi-square distribution ( k  degrees of freedom) in the imprecise case 
 2 -1

1 ( ,0)  f ( )
impr critk−γχ = ρ ,                     (31) 

with -1f  denoting the inverse function of f . In order to illustrate the theoretical concept, an 
example will be shown in Section 5. See (Kutterer, 2004) for a close mathematical formulation in 
case of classical regions of acceptance and rejection in the one-dimensional case. Based on the 
quadratic form from Equation (24), the influence of imprecision on the tests decision is analyzed 
for different positions for the midpoint mT  of the test value (see figure 4).  

 
 

Figure 4. Calculation of the probability of a type I error in the imprecise case (for 0.9critρ = ) 
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The calculation of the probability of a type I error is then easy to handle and can be solved by the 
followings steps:  
 

 Step 1: Choose an adequate value for critρ  (see Section 2.2.4). 

 Step 2: Compute -1f ( )critρ  2
1 ( ,0)

impr
k−γχ . 

        Step 3:  Find imprγ  in such a way that Equation (31) is fulfilled within a negligible threshold.     
 

4. Probability of type II errors in imprecise hypothesis testing 
 
The probability imprβ  of a type II error in the imprecise case can be derived by 

 ( )( )crit ARP Himpr Tβ = ρ ≤ ρ�
� .                               (32) 

According to the probability of a type I error, Equation (32) can be reformulated as follows 
 ( ) f( )impr m crit AP T Hβ = ≤ ρ ,                                             (33) 

with the degree of rejectability ( )R Tρ �
�  of the null hypothesis under the condition of T� as a 

function f  of the midpoint mT  of the imprecise test value T� . In order to analyze Equation (33), 
either the non-centrality parameter imprλ  in the imprecise case or the probability imprβ  of a type II 
error in the imprecise case must be set in advance. This leads after a few calculation steps to the 
comparison of two chi-square distributions (with k  degrees of freedom). The first central chi-
square distribution is related to the probability of a type I error in the imprecise case and the 
second one (with the non-centrality parameter imprλ  in the imprecise case) is related to the 
probability of a type II error.     
 2 2

1 ( ,0) ( , )
impr impr imprk k−γ βχ = χ λ .                                             (34) 

The calculation of the probability of a type II error and of the non-centrality parameter in the 
imprecise case can be seen as the following search problem (see figure 5a and 5b):  
 

1. Calculation of the type II error in imprecise hypothesis testing: 
 

 Step 1: Compute the probability of a type I error in the imprecise case (see Section 3). 
 Step 2: Choose an adequate value for imprλ . 

 Step 3: Find imprβ  in such a way that Equation (34) is fulfilled within a negligible threshold.   
 

2. Calculation of the non-centrality parameter in imprecise hypothesis testing:  
 

 Step 1: Compute the probability of a type I error in the imprecise case (see Section 3). 
 Step 2: Choose an adequate value for imprβ . 

 Step 3: Find imprλ  in such a way that Equation (34) is fulfilled within a negligible threshold.   
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a. Calculation of a type II error 
( constimprλ = ) 

 

b. Calculation of the non-centrality parameter 
( constimprβ = ) 

 

Figure 5. Calculation of the probability of a type II error (a) and the non-centrality parameter (b) in the imprecise case 
 

5. Example for the parameterization of a geodetic monitoring network 
 
In order to illustrate the theoretical concept, three exemplary applications in the parameterization 
of a geodetic monitoring network are presented. The aim of the geodetic monitoring network is to 
detect significant changes of a lock due to changing water levels inside the lock. Figure 6 shows 
the lock and the geodetic monitoring network, which consist of four object points on top of the 
lock (101-104) and eight control points around the lock; see (Neumann et al., 2006) for a detailed 
description about the geodetic monitoring network.  
 

            
Figure 6 – The lock and the geodetic monitoring network 

The coordinates of the object points are estimated within a least-squares adjustment. Therefore 
special geodetic measurements like horizontal directions (a), zenith angles (b) and distances (c) 
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were carried out between the object and control points. The measurements are affected by 
different types of uncertainty (see Table 1 and Section 2.1). The non-stochastic uncertainties are 
analyzed within a sensitivity analysis (see Table 1). 
 

 

Influence factors 
p  

Interval radii 
( 0α = ) 

(imprecision) 

Affected 
measurements 

Temperature 1.0 °C  (c) 
Pressure 1.0 hPa  (c) 

Visual axis error 0.1 mgon  (a) 
Collimation 

error 
0.1 mgon  (a) 

Vertical axis 
error 

0.2 mgon  (a) and (b) 

 

a. Main influence factors for the observations 

 

Observations 
Interval radii 

( 0α = ) 
(imprecision) 

Standard 
deviation 

Horizontal direction 0.1 mgon  0.5 mgon  
Zenith angle 0.5 mgon  1.5 mgon  

Distance 0.5 mm  3 mm  
 

b. Uncertainties of the observations 

 

Table 1. Influence factors and uncertainties of the observations 
 

First we focus on a single and multiple outlier test. Then a congruence test is evaluated in terms 
of imprecision. For a straightforward comparison to the pure stochastic case, the region of 
acceptance is given by a classical interval with a significance level of 5%γ = . All computations 
are based on 11 different .cutsα −  
 
5.1.  EXAMPLES IN OUTLIER DETECTION 
 
5.1.1.  Testing procedure for a single measurement 
 
The first example shows an outlier test for a distance measurement. The construction of the test 
value T�  is based on the imprecise evaluation of the quadratic form in Equation (24) with an 

cutα −  optimization method.  
 

 
Figure 7 – The degree of rejectability ( )R T�

�ρ  of a single outlier test as a function of the midpoint mT  of the test value T�  
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Figure 7 shows the degree of rejectability ( )R Tρ �
�  of the null hypothesis 0H  under the condition 

of T� as a function f  of the midpoint mT  of the imprecise test value T� . Obviously, in this 
example the observation imprecision is small in comparison to the stochastic uncertainty. For this 
reason, the test value is tight and close to symmetric. 
The probability of a type I error in the imprecise case imprγ  is strongly related to the choice of the 
critical value critρ  for the test decision, see Equation (31). Figure 8 shows the probability of a 
type I error in relationship to the choice of critρ .   

 
Figure 8 – Probability of a type I error in the imprecise case for a single outlier test (depending on the choice of critρ ) 

 
Figure 9 – Variation of the probability of a type I error in the imprecise case (depending on the choice of critρ  and the 

order of magnitude of imprecision) 
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The choice of critρ  depends on the particular application and must be based on expert knowledge. 
For outlier detection we propose to choose 1crit →ρ  and for safety-relevant measures 0critρ → . 
The variation of a type I error in the imprecise case imprγ  depends also on the order of magnitude 
of imprecision. If imprecision is more important in comparison to the stochastic uncertainty, the 
variation of a type I error in the imprecise case increases. Figure 9 shows an example with strong 
imprecision (twice of the imprecision of Table 1), normal imprecision and small imprecision (half 
of the imprecision of Table 1): 
 
5.1.2.  Testing procedure for multiple measurements 
 
The second example shows a multiple outlier test due to an assumed centering error of the 
instrument, while measuring a set of distances at station 102. The construction of the test value T�  
is based on the imprecise evaluation of the quadratic form in Equation (24) with the cutα −  
optimization method. In this example, the number of tested observations is four ( 4j = ). 
Figure 10 shows the probability of a type I error in the imprecise case imprγ .  

 
Figure 10 – Probability of a type I error in the imprecise case for a multiple outlier test (depending on the choice of critρ ) 

 
Figure 11 – The non-centrality parameter in the imprecise case (depending on the choice of critρ  and imprβ ) 
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To study the influence of imprecision on the probability imprβ  of a type II error and the non-

centrality parameter imprλ  in the imprecise case, it is more meaningful to hold the probability of a 

type II error constant. We focus on three standard cases with 0.1imprβ = , 0.2imprβ =  and 

0.3imprβ = . The non-centrality parameter is obtained by the search problem described in 

Section 4 (see Figure 11). For 0.5critρ >  the non-centrality parameter in the imprecise case is 
greater than in the precise case. This leads to a reduced sensitivity regarding the rejection of the 
null hypothesis.  
 
5.2.  EXAMPLE FOR A CONGRUENCE TEST (EPOCH COMPARISON) 
 
The third example demonstrates an epoch comparison between the years 1999 and 2004. Both 
epochs are estimated within a partially constrained trace minimization with respect to the same 
six network points. The construction of the test value T�  is based on the imprecise evaluation of 
the quadratic form from Equation (17). Figure 12 shows the numerical test situation with the 
probability of a type I error in the imprecise case and Table 2 some specifications about the two 
epochs and the geodetic monitoring network. Please note that the configurations in both epochs 
are different from each other. 

Specification Epoch 1999 Epoch 2004 
Observations n  317 144 
Parameters u  60 39 

Table 2. Specifications about the geodetic monitoring network in the epochs 1999 and 2004 

 
Figure 12 – Probability of a type I error in the imprecise case for a congruence test (depending on the choice of critρ ) 
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The significant imprecision of the test value in this example is caused by the strong effects of re-
maining systematics in epoch comparison of a geodetic monitoring network. The influence of im-
precision on the given test situation depends also on the geometric configuration of the geodetic 
monitoring network. Whereas a weak configuration leads to a wider expansion of the test value, a 
strong configuration decreases the influence of imprecision in the test situation. The strong 
imprecision leads to a wide variation of the probability of a type I error in the imprecise case. In 
case of 0critρ →  the null hypothesis will be rejected in any rate. For this reason, the probability 
of a type I error in the imprecise case (for 0critρ → ) is equal to one. 
 

6. Conclusions 
 
In this paper, we show a joint treatment of stochastic and interval/fuzzy uncertainty (imprecision) 
in hypothesis testing in parameter estimation. Imprecision is considered as an additive term of 
uncertainty what leads to a more reluctant rejection of the null hypothesis in case of outlier 
detection and to an earlier rejection of the null hypothesis in case of safety-relevant applications. 
If imprecision is absent, the results of the pure stochastic case are obtained. We focus on the 
probability of a type I and type II error and the non-centrality parameter in the imprecise case. In 
case of outlier detection the probability of a type I error in the imprecise case is lower than in the 
pure stochastic case and the non-centrality parameter in the imprecise case is greater than in the 
pure stochastic case. In order to detect the same changes than in the pure stochastic case, e. g., in 
a risk analysis, more precise measurements have to be carried out. 

However, the quantification of the uncertainty budget of empirical measurements is often too 
optimistic due to, e.g., the ignorance of non-stochastic errors in the analysis process (Ferson et al., 
2007). For this reason the above mentioned results in this paper are in our opinion closer to the 
situation in real-world applications. In addition, the well known sensitivity analysis in parameter 
estimation can now generally be treated in terms of imprecise data to decide about a suitable 
model for the collected data. 

Further work has to deal with a significant reduction of the computational complexity of the 
numerical solutions. In addition, it seems to be very promising, that for special types of reference 
functions analytic solutions for type I and type II errors in the imprecise case can be found.  
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