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Abstract. A stochastic model of wave groups is presented to explain the occurrence of large
waves in nonlinear random seas. The model leads to the description of the non-Gaussian statistics
of oceanic waves and to a new asymptotic distribution of crest heights over large waves in a form
that generalizes the Tayfun model. Comparisons based on a first wave data set collected at the
Tern platform in the northern North Sea during an extreme storm, and a second set collected in the
southern North Sea ( WACSIS) show good agreement with the new theoretical wave distributions.
In particular, for broad band seas, the Tayfun model seems to fit the data, and thus it can be
regarded suitable for describing crest statistics for engineering applications.

Keywords: crest height; stochastic wave group; second order effects; probability of exceedance;
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1. INTRODUCTION

To the leading order of approximation, the free surface displacement η(t) is a Gaussian process of
time. Lindgren (1970,1972) showed that locally near a very high crest, the surface displacement
tends to assume the same shape as the covariance function ψ(T ) = hη(t)η(t+ T )i. This is the
Slepian model ( Kac & Slepian 1959) whose time-domain formulation was used by Tromans et al.
(1991) to analyze wave measurements.
An alternative view of the Slepian model was offered in the eighties by Boccotti (1989,2000).

His theory of quasi determinism revealed the mechanics of three dimensional wave groups and their
relation to the occurrence of extreme waves in a Gaussian sea and confirmed with field experiments
(Boccotti et al., 1993a,1993b, Phillips et al. 1993a, 1993b).
In Gaussian sea waves, both crest and trough distributions follow the same Rayleigh law for

narrow-band spectra (Longuet-Higgins, 1952). In the more general case of Gaussian waves with
finite-band spectra, the Rayleigh distribution serves as an upper bound for the exceedance proba-
bility of crest heights.
In reality, water waves are nonlinear, and the probability density function of the surface displace-

ment tends to deviate from the Gaussian form. In particular, due to second order nonlinearities the
water surface presents sharper crests and shallower rounded troughs. Thus, the skewness λ3 of sur-
face elevations is not zero (Longuet-Higgins 1963). The exact theoretical form of the corresponding
distribution of nonlinear wave crests is not known under general conditions. A series expansion based
on the Edgeworth’s form the Gram-Charlier distribution was proposed by Longuet-Higgins (1963),
but can lead to expressions that violate the non-negativity condition on probability densities. Crest
heights of large waves can be over predicted unrealistically in steep storm seas in deep or transitional
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water depths. Convenient and simple narrow-band approximation for deep-water waves was given
by Tayfun (1980, 1986a, 2006) in the early eighties based upon weakly second order wave theory.
As a corollary, Tayfun (1980) also derived an analytical distribution for the crest statistics and a
least-upper-bound (lub) distribution of crest heights ( Tayfun and Al-Humoud, 2002 ). Comparisons
of such models with various deep and shallow water second-order simulations have been carried out
by Forristall (2000) and Prevosto & Forristall (2002).
The recent experimental results of Onorato et al. (2006) and the numerical simulations of

Socquet-Juglard et al. (2005) both show that for the case of multidirectional random waves, the
nonlinear effects are due dominantly to bound waves and the Tayfun distribution explains very
well the crest statistics. Deviations from the Tayfun distribution may occur only in long-crested
narrow-band waves due to third order nonlinear effects, such as the Benjamin- Feir type modulation
instability ( Zakharov 1999, Janssen 2003) as shown by Onorato et al. (2006) and Socquet-Juglard
et al. (2005). Thus, for practical engineering applications where realistic oceanic conditions are
characterized by multidirectional spectra, the second order Stokes theory, and thus the Tayfun
model, still offers a valid theoretical framework for the wave statistics.
In this paper, we propose an alternative view of second order wave theory and a generalization

of the Tayfun model. We first present an extension of the theory of quasi-determinism of Boccotti
(1989,2000), defining a stochastic wave group that describes the dynamics of the wave surface
around a randomly chosen very large crest (Lindgren 1970,1972). The stochastic wave group can
be thought as a first order regression approximation according to Rychlik (1987) and Lindgren &
Rychlik (1991).
In the second part of the paper, we shall study the nonlinear evolution of the stochastic wave

group in the context of second order Stokes waves. This analysis will reveal the expected shape of
large nonlinear crests and their statistics. In particular, we prove that the distribution of second
order extreme crests is uniquely defined by the skewness λ3 of the nonlinear surface displacement.
This result is in perfect agreement with the narrow-band model of Tayfun (1980,1986a,2006), and
it is valid for waves at deep and transitional water depths in a manner free of any constraints
on their directionality or spectral bandwidth in agreement with the analytical results of Fedele
& Arena (2005). In addition, a generalization of the Tayfun model (1980, 1986a) is proposed.
Both the models are free of any bandwidth constraints and depends only on the global properties
of the spectrum available from wave hindcasts. We also consider the Weibull model of Forristall
(2000), and an exact closed form solution of the crest distribution based on the asymptotics for
the h-upcrossings in Gaussian multivariate processes derived by Breitung and Richter (1996) which
yields to the First Order Reliability Method (FORM).
Comparisons based on a first wave data set collected at the Tern platform in the northern North

Sea during an extreme storm, and a second set collected in the southern North Sea ( WACSIS) are
presented. In particular, for broad band seas, the new theoretical models do not improve upon the
Tayfun distribution (Tayfun 1980,1986, 2006), which thus can be regarded suitable for describing
crest statistics for engineering applications.
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2. Second order random waves

Consider weakly nonlinear random waves propagating in water of uniform depth d. The second
order sea surface displacement ζ from the mean sea level at a fixed point x is given by

ζ (x, t) = ζ1 (x, t) + ζ2 (x, t) (1)

where the first order linear Guassian component ζ1 is of the form

ζ1 (x, t) =
NX
i=1

zi cos (θi) (2)

and the second order correction ζ2 is given by

ζ2 (x, t) =
1

4

NX
i,j=1

zizj
h
A+ij cos (θi + θj) +A−ij cos (θi − θj)

i
, (3)

with
θi = ki · x− ωit+ εi = kix cosφi + kiy sinφi − ωit+ εi.

Here, A+ij and A
+
ij are second order interaction coefficients ( see e.g. Sharma & Dean 1979, Forristall

2000), ki are horizontal wave-number vectors, with ki = |ki|, the directional angles φi refer to the
x axis, x = (x, y) is the horizontal spatial vector coincident with the mean water surface, ωi is the
wave frequency related to ki through the dispersion relation ki tanh kid = ω2i

±
g. We assume that

frequencies ωi are different from each other, the number N is infinitely large and that the phase
angles εi are independent and uniformly distributed in [0, 2π]. The linear wave amplitudes zi are
related to the wave spectral density S(k) as

S(k)dk=S(k, φ)k δk δφ =
X
i

z2i
2
,

where the sum is over i’s for which (ki, φi) ∈ ([k, k + δk] , [φ, φ+ δφ]).

2.1. Basic definitions and assumptions

The jth order moment of the linear spectrum is

mj =

Z ∞
0

ωjS (k) dk.

The validity of the form assumed for ζ is measured by the smallness of the rms surface gradient
(Tayfun 1993)

μ1 =

rD
|∇ζ1|2

E
= m4/g

2 << 1 (4)
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where h·imeans time average. The spectral mean frequency ωm, the mean zero-upcrossing frequency
ω0 of the underlying linear process ζ1 and the bandwidth ν of the spectral density S (k) are defined
respectively as

ωm =
m1

m0
, ω0 =

r
m2

m0
, ν =

s
m0m2

m2
1

− 1. (5)

Moreover, EX+ = ω0/2π is the expected number per unit time of zero up-crossings of ζ, correct to
O(μ1). To the same order, the space-time covariance Ψ(X, T ) of ζ is given by

Ψ(X, T ) = hζ1 (X, t) ζ1 (X, t+ T )i =
Z
S (k) cos(k ·X− ωT )dk

where X =(X,Y ) and ψ(T ) = Ψ(0, T ) for brevity. Hereafter, the first absolute minimum of ψ(T )
occurs at time T = T ∗ and that ψ(T ) decreases monotonically between T = 0 (when the absolute
maximum is attained) and T = T ∗.
The first moment hζi = 0, and the higher order moments hζpi with p = 2, ..4 are given, correct

to O(μ1), by D
ζ2
E
= m0 +O

³
μ21

´
, (6)

D
ζ3
E
=
3

2

Z
S (k1)S (k2)

£
A+(k1,k2) +A−(k1,k2)

¤
dk1dk2 +O

³
μ21

´
,

D
ζ4
E
= 3m2

0 +O
³
μ21

´
,

where A±(ki,kj) = A±ij . The spectral mean frequency and the mean zero-upcrossing frequency of
the nonlinear process ζ are given by ωm and ω0 in Eq. (5) and they are correct to O (μ1).

3. Large crests in Gaussian seas

Assume for the moment that a large wave crest of amplitude h is observed at x = x0 = (x0, y0) and
t = t0. Boccotti (2000) and Fedele (2006b) showed that as h/σ →∞, with probability approaching
1, a well defined wave group passes through the point x = x0, with the apex of its development
stage occurring at time t = t0. As h/σ →∞, the surface displacement ζc around x = x0 and t = t0
is asymptotically described by the sum of a deterministic part ζdet of O(h) and a residual random
process Rζ of O(1), viz.

ζc(X, T ) = ζdet(X, T ) +Rζ(X, T ), (7)

where

ζdet(X, T ) = hζ1(X, T ) |ζ1(0, 0) = hi = h

σ2
Ψ(X, T ). (8)

Thus, ζc represents the conditional process ζ1(X, T ) |ζ1(0, 0) = h and ζdet is its conditional expec-
tation. As h/σ → ∞ in (7), the residual Rζ becomes negligible relative to the first term, leading
to

ζc(X, T ) = ζdet(X, T ) +O(h0). (9)
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Thus, a high local maximum also corresponds to a local wave crest since ζdet attains its absolute
maximum at (T = 0,X = 0). Moreover, ζc can be also interpreted as the wave surface around a
randomly chosen large crest (Lindgren 1970,1972; Boccotti 2000) if h is assumed to be a random
variable described by the Rayleigh probability density

pR(h) =
EX(h)

EX+
= exp

Ã
− h2

2σ2

!
h

σ2
, (10)

where EX(h)dh represents the expected number per unit time of local maxima of the surface
displacement recorded at X = 0 and T = 0, whose amplitudes lie between h and h + dh. This
model is the first order regression approximation of the wave process locally near a randomly
chosen large crest ( Rychlik 1987, Lindgren & Rychlik 1991). The random process (9) represents
a family of wave groups which evolves in space and time attaining the largest crest at X = 0 and
T = 0. Thus, ζc ≈ ζdet is asymptotically correct to O(h), and it either represents the wave field
locally to a given crest height h, or it defines the conditional process for the dynamics in space-time
around a randomly chosen crest if h is interpreted as a Rayleigh distributed random variable.
Our principal interest is in two-dimensional crests of the surface displacement, viz. the largest

maxima of a surface time series recorded at a fixed point. Therefore, h is Rayleigh distributed.
In general though, (9) can be also interpreted as a snapshot of the wave surface locally around a
three-dimensional crest at a particular instant of time. In this case, the variable h is not distributed
according to the Rayleigh law. In fact, in Gaussian processes the crest height follows the Rayleigh
distribution by virtue of the one-to-one correspondence between each h-upcrossing point and a
maximum of amplitudes greater than a large threshold h. In multi-dimensional Gaussian fields, this
one-to-one correspondence is lost since h-upcrossings are level curves. In this case, an appropriate
definition of a h-upcrossing is necessary, yielding an asymptotic form of the crest distribution
different from the Rayleigh law (Adler 1981, Adler & Hasofer 1976, Wilson & Adler 1982, Piterbarg
2003).

4. Stochastic wave groups

We now extend and generalize some results of Boccotti (1989) to wave groups with large crests.
Boccotti considers, as H/σ →∞, the conditional process

ζb(X, T ) = (ζ1(X, T ) |ζ1(X, 0) = H/2, ζ1(X, Tw) = −H/2)

where H represents the largest wave height in the group, and Tw = T ∗ + O(H−1) is the time-
lag between the crest of the wave and the following trough. In particular, Boccotti derives the
asymptotic form of the statistical distribution of H (Boccotti 1989, 2000, see also Tayfun & Fedele
2007b). Boccotti (2000) and later Fedele (2007b) both show that largest wave heights occur not
as waves reach the apex of a group, but just after they pass it. In the present case, we draw
upon Boccotti’s concepts but consider the largest crest which occurs at the apex of a wave group.
Specifically, we examine the conditional process ζc(X, T ) around a large crest, and analyse itsO(h0)-
random residual Rζ and thus devise a new formulation of wave groups in Gaussian seas. First, the
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Figure 1.

wave profile ηc(T ) at X = 0 is expressed in terms of an O(h) contribution ηdet(T ) = ζdet (0, T ) and
the random residual r(T ) = Rζ(0, T ) of O(h0) as

ηc(T ) = ηdet(T ) + r(T ) (11)

where

ηdet(T ) = ζdet(0, T ) = h
ψ(T )

σ2
.

We can now determine the effects of the residual r(T ) on ηc. Specifically, as h/σ → ∞, with
probability approaching 1, the surface profile locally near a large crest tends to assume the shape
given by ηdet(T ) (see Lindgren 1972, Boccotti 2000). The latter represents a wave profile with a
crest of amplitude h at time T = 0 followed by a local minimum of amplitude ηdet(T

∗) at T = T ∗,
with T ∗ being the abscissa of the first local minimum of ψ(T ) (point P in figure 1). Further, when
the absolute minimum of ψ(T ) occurs at T = T ∗, then ηdet(T ) represents a large wave with period
Th ≈ 2T ∗ and a crest-to-trough amplitude H given by

H = h

µ
1− ψ(T ∗)

σ2

¶
.

For large h, the wave trough of the profile ηc(T ) following the crest of amplitude h shall now occur
at time T = T ∗ + u, shown as point P 0 in figure 1, with u being random. To obtain an explicit
expression for u, we set the time derivative of the profile ηc equal to zero at T = T ∗ + u and use
the expansion

η̇c(T
∗ + u) = η̈det(T

∗)u+ ṙ(T ∗) +O(u2) = 0.
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Thus,

u = − ṙ(T ∗)
η̈det(T

∗)
+O(u2h−1). (12)

Note that u is of O(h−1) because the residual process ṙ(T ∗) is of O(h0) and η̈det(T
∗) is of O(h).

Thus, the residual terms in (12) are of O(h−3) and negligible. By expansion, the value of the surface
displacement ηc(T ) at T

∗ + u is then given by

ηc(T
∗ + u) = ηdet(T

∗) +
1

2
η̈det(T

∗)u2 + r(T ∗) +O(h−2). (13)

Because u is of O(h−1), it follows that

ηc(T
∗ + u) = ηdet(T

∗) +∆+O
³
h−1

´
,

where ∆ = r(T ∗) is the residual at T ∗ of O(h0). Correct to the same order, ηc(T ∗) = ηc(T
∗ + u).

Thus, as h/σ →∞, a crest of amplitude h that occurs at T = 0, is followed after a time lag T ∗+u
by a trough, and ηc(T ) and its first time derivative η̇c(T ) at T = T ∗ attain values given, correct to
O
¡
h0
¢
, by

ηc(T
∗) = ηdet(T

∗) +∆+O
³
h−1

´
, (14)

η̇c(T
∗) = −η̈det(T ∗)u+O

³
h−1

´
.

Conversely, if the conditions in (14) hold, then a crest of amplitude h at time T = 0 is followed by
a trough at time T = T ∗ + u.
Next, we describe ηc(T ) locally near a randomly chosen crest, using a regression approximation

(Rychlik 1987, Lindgren & Rychlik 1991). In particular, such an approximation must satisfy the
conditions in (14), viz. it must have a local maximum of amplitude h at time T = 0 followed by a
trough of amplitude η∗det +∆ at T = T ∗ + u. For linear Gaussian functions, an approximation to
ηc(T ) satisfying both conditions exactly is given by

ηc(T ) = Aψ(T ) +Bψ(T − T ∗ − u), (15)

where

A =
ψ(0)h− ψ(T ∗ + u) · (ψ(T ∗)h+∆)

ψ2(0)− ψ2(T ∗ + u)
, B =

ψ(0) · [ψ(T ∗)h+∆]− ψ(T ∗ + u)h

ψ2(0)− ψ2(T ∗ + u)
.

To O(h0), u drops out, and ηc(T ) becomes

ηc(T ) = ηdet(T ) +
∆

σ2
−ψ∗ψ(T ) + ψ(T − T ∗)

1− ψ∗2
+O(h−1), (16)

ignoring terms of O(h−1), and ψ∗ ≡ ψ(T ∗)/ψ(0). With the random residual r of O(1) explicitly
determined now, it can be differentiated from ηdet(T ) of O(h) in (11).
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The necessary conditions for the existence of a local maximum at T = 0, i.e. η̈c(0) < 0, and a
local minimum at T = T ∗, i.e. η̈c(T ∗ + u) > 0, yield the following inequality constraint:

h > ∆ min

Ã
ψ∗ + ψ̈

∗

1− ψ∗2
,
ψ∗ + 1/ψ̈

∗

1− ψ∗2

!
, (17)

where ψ̈
∗ ≡ ψ̈(T ∗)/

¯̄̄
ψ̈(0)

¯̄̄
. If the surface spectral density is defined over a compact support in the

frequency domain, then the moments mj for j > 3 are finite, and η (t) is differentiable at least
twice. Thus, the terms appearing in (17) are bounded, and since ∆ is of O(1), h can be chosen
sufficiently large to satisfy the above inequality, viz. ∆/h ∼ O(h−1).
It is straightforward to extend the above time formulation to the space-time domain obtaining

a new approximation of the stochastic wave group ζc in (7) in the form

ζc(X, T ) = ζdet(X, T ) +
∆

σ2
−ψ∗ Ψ(X, T ) +Ψ(X, T − T ∗)

1− ψ∗2
+O(h−1). (18)

Evidently, this is an improved expression of the wave surface locally around a large crest correct
to O(h0), where the random residual Rζ in (7) is explicitly determined as ∆/h→ 0, and terms of
O(h−1) have been neglected.
For a given h, ζc is the conditional processes locally around a given crest, i.e. ζ1(X, T ) |ζ1(0, 0) = h .

If we instead interpret h and ∆ as random, then ζc identifies a stochastic wave group, describing
the dynamics locally around a randomly chosen crest.
The joint pdf of the random variables h, ∆ and u, as h/σ →∞, is given by (Boccotti 1989)

p(h,∆, u) = h
exp

µ
− h2

2σ2 − ∆2

2σ2(1−ψ∗2) −
h2u2|ψ̈(0)|
2σ4γ2

¶
σ22π

r
σ2(1− ψ∗2) σ4γ2

h2|ψ̈(0)|
. (19)

The probability p(h,∆, u)dhd∆du can be interpreted as the fraction of realizations of linear ζ1 with
a large crest of amplitude h occurring at some t0, proceeded by a trough of amplitude η∗det +∆ at
T ∗ + u . As h/σ → ∞, each realization of ζ1 resembles a wave group evolving in accordance with
(18).
The joint probability density of h and ∆ follows from (19), with ξ →∞, as

pξ,∆̃(ξ, ∆̃) =

Z ∞
−∞

p(ξ, ∆̃, u)du = pξ(ξ)p∆̃(∆̃), (20)

where

pξ(ξ) = ξ exp

Ã
−ξ

2

2

!
, p∆̃(∆̃) =

exp
³
− ∆̃2

2(1−ψ∗2)
´

q
2π(1− ψ∗2)

, (21)

and ξ = h/σ and ∆̃ = ∆/σ are dimensionless variables. Thus, ξ and ∆̃ are independent. Note that
with h given in (18), averaging over ∆̃ yields the conditional mean

hζ1(X, T ) |ζ1(0, 0) = hi = hζc(X, T )i∆̃ = ζdet(X, T ),
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as expected.

5. Nonlinear stochastic groups and large crests

Herein, we examine the nonlinear evolution of the stochastic wave group ζc(X, T ) in second order
random seas, explaining how its linear structure is distorted by nonlinearities. We argue that, prior
to focussing, the nonlinear wave group tends to reflect the characteristics of a well defined Gaussian
group that can be defined by (18). Due to nonlinearities, the Gaussian group will nonlinearly evolve
forming an extreme crest with a different amplitude hnl > h, h being the linear crest height. The
relationship between h and hnl is given by the nonlinear conditional process ζnc = (ζ |ζ1 = ζc ). For
large waves, ζnc is equivalent to ζ(X, T ) |ζ1(0, 0) = h , drawing upon Fedele & Arena (2005). The
nonlinear mapping f(ζ1) between ζ1 and ζ is known from (1),(2) and (3), and it yields

ζnc = (ζ(X, T ) |ζ1(0, 0) = h) = f(ζc). (22)

We recall that h and ∆̃ are random variables with the joint pdf (20), and ζnc = f(ζc) is the
nonlinear stochastic group which describes the wave dynamics locally around a randomly chosen
crest. To compute f(ζc), we note that (1) along with (2) and (3) not only defines weakly nonlinear
random waves but also the general analytical solution for the second order surface displacement, if
the amplitudes ci and the phases θi are regarded as deterministic variables. Thus, if we set in (1)
the linear component ζ1 of the surface ζ equal to ζc in (18), it follows that

ζnc = f(ζc) = ζc +
h2

4σ4
F + h∆

2σ4
−ψ∗F + G
1− ψ∗2

+O
³
∆2
´
, (23)

where

F(X, T ) =

Z
S1S2

³
A+12 cos

³
β+12

´
+A−12 cos

³
β−12

´´
dk1dk2, (24)

G(X, T ) =

Z
S1S2

h
A+12 cos

³
β+12 + ω1T

∗´−A−12 cos
³
β−12 + ω1T

∗´i dk1dk2,
with the abbreviated notation Sj = S (kj), j = 1, 2, and

A±12 = A±(k1,k2), β±12 = (k1 ± k2) ·X− (ω1 ± ω2)T.

6. Crest Statistics from nonlinear groups

The highest crest of the nonlinear stochastic wave group ζnc also occurs atX = 0 and T = 0 correct
to O(μ1), with a dimensionless amplitude ξmax = hnl/σ given by

ξmax = ξ +
μ

2
ξ2 +

μK

2
∆̃ξ, (25)
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where

μ =
λ3
3
=


ζ(t)3

®
3σ3

, K = 2
−ψ∗ + κ1

1− ψ∗2
(26)

with

κ1 =
G(0, 0)
F(0, 0) =

hζ1(0,t)ζ2(0,t) ζ1(0,t+ T ∗)i
2μ

, (27)

and λ3 stands for the skewness coefficient of surface elevations correct to O (μ1).

6.1. Recovering the Tayfun model

As ξ →∞, and ignoring terms of O(∆̃) in (25) we obtain

ξmax = ξ +
μ

2
ξ2. (28)

Thus, the probability of exceedance for the nonlinear wave crest height ξmax readily follows from
the Rayleigh distribution of ξ as

Pr {ξmax > λ} = exp
Ã
−ξ(λ)

2

2
!
, (29)

where ξ follows from (28) with ξmax = λ. The result stated in (28) is valid for directional waves
in waters of finite depth irrespective of the spectral bandwidth. It also agrees with the original
narrow-band model of Tayfun (1980) appropriate to long-crested deep-water waves. In fact, Tayfun
proposed the same expression for the crest height ξc, replacing μ with

μm = m
1/2
0

ω2m
g
. (30)

This parameter is also a measure of steepness for unidirectional short-crested waves in deep water
if one neglects the frequency-difference contributions. If the latter are included, then the parameter
μ in (26) can be expressed explicitly for various theoretical spectra in the form

μ = μm(1− γν + ν2), (31)

where, for example, γ = 2/
√
3 = 1.1547 for rectangular spectra, and γ = 2/

√
π = 1.1284 for

Gaussian spectra. For oceanic applications we shall assume that γ = 1 and define for the deep-water
case

μa = μm(1− ν + ν2) (32)

both for unidirectional waves and as an approximate upper bound for directional waves. As an
alternative, Tayfun (2006) estimates μ from Forristall’s Weibull model (Forristall 2000) as

μFj = 16
α3j
βj
Γ

Ã
3

βj

!
− 1
4

r
π

2
, (33)
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where αj and βj represent the parameters of the Weibull distribution

Pr {ξmax > x} = exp
⎡⎣−Ã x

4αj

!βj
⎤⎦ (34)

used by Forristall to fit (34) to simulations of second order random seas, and j = 2 or 3 correspond-
ing to unidirectional (2D) or directional (3D) waves, respectively. Thus, not only for narrow-band
waves, but also for high crest amplitudes, i.e. as h/σ →∞ , crest heights are described by (28), with
μ defined as λ3/3 under the most general conditions. Moreover, all crest-height statistics depend
clearly on a few integral properties such as m0 (or σ), ωm, ν and/or λ3. These are easily estimated
from a surface time series.

6.2. Generalizing the Tayfun model

As ξ →∞, and when we retain all the terms in (25), then

Pr (ξmax > λ) =

Z ∞
−∞

Pr
n
ξ > ξ (λ,w)

¯̄̄
∆̃ = w

o
p∆̃(∆̃ = w)dw,

where ξ (λ,w) follows from (25) with ξmax = λ and

Pr
n
ξ > ξ (λ,w)

¯̄̄
∆̃ = w

o
= exp

"
−ξ (λ,w)

2

2

#
.

As λ→∞, an asymptotic solution to the preceding integral can be obtained, if we set

ξ
³
λ, ∆̃

´
= ξ0 (λ) + a (λ) ∆̃+O

³
∆̃2
´

(35)

where λ = ξ0 +
μ
2 ξ
2
0 and

a (λ) = −K
2

μ ξ0
1 + μ ξ0

. (36)

Because ξ and ∆̃ are statistically independent and by neglecting O(∆̃3), it follows after some algebra
that

Pr {ξmax > λ} =
exp

h
−1−β(λ)2 ξ20

i
r
1 +

³
1− ψ∗2

´
a(λ)2

, (37)

where λ >> 1 and

β(λ) =

³
1− ψ∗2

´
a(λ)2

1 +
³
1− ψ∗2

´
a(λ)2

.

We shall refer to this asymptotic result as the generalized Tayfun distribution. Evidently, it is not
normalized to unity at the origin since its intended range of validity is over large waves. In the
narrow-band limit as ν → 0, K → 0, and the Tayfun distribution is recovered. An exact expression
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for K in terms of spectral parameters can be obtained because the frequency-difference terms have
been ignored. Under this condition, we recall that α vanishes and K takes the form

K = K+ = − ψ̈
∗
+ ψ∗

1− ψ∗2
(38)

since κ1 =
³
ψ∗ − ψ̈

∗´
/2. Note further that in general, ψ∗ → −1+O(ν) and ψ̈

∗ → 1−O(ν). Thus,

if we include the frequency-difference terms, then |K| ≤ |K+|, and as ν → 0, K+ → K → 0.

7. Crest statistics from Breitung’s asymptotics

Recently, Baxevani et al. (2005) improved the asymptotic formula of h-upcrossings in Gaussian
multivariate processes derived by Breitung and Richter (1996). They presented a rigorous view of
the FORM (first order feliability method) and SORM (second order reliability method) used in
applications to compute crest exceedances. We restrict our attention to FORM, and consider the
hypersurface in the Euclidean space R2N defined by the second order surface displacement of Eq.(1)
written in terms of the column vectors p = (p1, p2, ..., pN ) and q = (q1, q2, ..., qN ), where {pn} and
{qn} represent the sets of the spectral components of the linear surface displacement ζ1 and its
Hilbert transform respectively (see Baxevani et al. 2005 for details), that is

λ = ζ1(p,q) + ζ2(p,q), (39)

with λ being a fixed threshold. Moreover the components of the vectors p,q are independent
Gaussian variables with zero mean and unit variance. Then the crest exceedance in FORM is given
by

Pr {ξmax > λ} = exp
"
−g(λ)

2

2

#
(40)

where g(λ) = kzmink is the minimal distance between the origin and the point Pmin ∈ R2N iden-
tified by the column vector zmin = [p̃, q̃] on the hypersurface Γ defined by (39). Here, kzmink =p
p̃T p̃+ q̃T q̃ is the classical Euclidean norm of the vector d ∈ R2N , and T signifies the transpose.

In this case, the solution for zmin can be obtained numerically by using standard optimization
techniques (Tromans and Vanderschuren, 2004). If we compare the crest exceedance distribution
of (29) with the FORM distribution of (40), it is seen that the vector entries (p̃, q̃) of the optimal
vector zmin for very large N , can be written, with a little abuse of notation, as

p̃ =

"
ξ0(λ)

p
2S(k1)dk

σ
, ..., ξ0(λ)

p
2S(kN )dk

σ

#
, q̃ = 0 (41)

where λ = ξ0+
μ
2 ξ
2
0. The Lagrange multiplier method and some algebra will show that Pmin ∈ R2N

pointed by the vector d̃ is indeed the point on the hypersurface (39) at minimal distance from the
origin, correct to O (μξ0).
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For simplicity, we shall prove the above statement for narrow-band waves only. In this case, the
wave surface is given by (Tayfun 1980)

ζ = ζ1 +
μ

2

³
ζ21 − ζ̂

2
1

´
where ζ̂1 is the Hilbert transform respect to time of ζ1. Thus, from (39)

ζ1(p,q) = z
Tp, ζ2(p,q) =

μ

2

³
pTzzTp− qTzzTq

´
where μ is the steepness of the waves, and the column vector z has entries given by the spectral
components (z)j =

q
2S(kj)dk /σ such that zTz = 1. Consider now the Lagrangian function

L = 1

2

³
pTp+ qTq

´
+ χ

µ
x− zTp− μ

2

³
pTzzTp− qTzzTq

´¶
where the Lagrange multiplier χ is introduced in order to minimize over the hypersurface Γ in (39).
Some nontrivial algebra shows that the gradients ∂L

∂p and
∂L
∂q vanish for the critical vectors (p̃, q̃)

given by
p̃ = ρξcz, q̃ = 0. (42)

where

ρ =
1

1 + μξ0
2

+

µ
1 +

μξ0
2

¶
μξ0
2
= 1 +

1

2
μ2ξ20 +O

³
μ3ξ30

´
.

Thus, the crest exceedance distribution is then given by

Pr {ξmax > λ} = exp
"
− p̃

T p̃+ q̃T q̃

2

#
= exp

"
−ξ

2
0

2
ρ2
#
. (43)

Also, one can show that the critical point (p̃, q̃) on the hypersurface Γ of Eq. (42) is at minimal
distance gmin(λ) = ρξ0 from the origin. Note finally that the Breitung distribution (43) coincides
with the Tayfun distribution (29) correct to O (μξ0).

8. Data Comparisons

In the following we shall present results of the analysis of two data sets. The first set comprises
9 hours of measurements gathered during a severe storm in January, 1993 with a Marex radar
from the Tern platform located in the northern North Sea in 167 m water depth. The second set
represents nearly 9 hours of measurements gathered in January, 1998 with a Baylor wave staff from
Meetpost Noordwijk in 18 m average water depth in the southern North Sea. Forristall elaborates
the nature of the first data, hereafter simply referred to as Tern. The second set is from Wave
Crest Sensor Intercomparison Study and we shall call it as WACSIS for brevity (Forristall et al.
2002). The spectral properties of Tern are characterized by σ = 3.02 m, ν = 0.629 and λ3 = 0.174
observed, and for WACSIS by σ = 0.981 m, ν = 0.490 and observed λ3 = 0.231.
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In figure 2, the ratio y+/r of nonlinear crests y+ to the corresponding linear Rayleigh-distributed
crests defined as r = σ

√−2 lnP , is plotted for Tern and compared against the original Tayfun model
(μ ' μm = 0.096 from (30) ), the approximate model (β = 1 in (31) and μ ' μa = 0.073), the
2D Tayfun-Forristall model ( μ ' μF2 = 0.079, see (33) ), the 2D Weibull model of Forristall ( see
34, α2 = 0.3715, β2 = 1.8683), the generalized Tayfun models (K = 0.394) from (37) based on the
estimates μF2 and μa, respectively, and finally the Breitung’s approximation of (43). It is evident
that the 2D Tayfun-Forristall model describes the observed data extremely well, whereas the original
Tayfun model overestimates the observed crest heights, but it also serves as a somewhat conservative
upper bound to the distribution of crest heights over high waves. Evidently, the improvement of
the new distributions (Breitung and generalized Tayfun models) is essentially negligible. Similar
results also hold for WACSIS, as shown in figure 3.

9. CONCLUSIONS

We have presented a complete theory for second order random waves and their statistics based on
the concept of stochastic wave group. This theory provides a framework for predicting the expected
shape of large waves and the statistics of large wave crests quite accurately within the context of
second-order random wave theory and it can be extended to analyze the properties of third order
nonlinear random waves (Fedele 2006a,2006c). We have proposed a generalization of the Tayfun
model valid under general conditions in transitional or deep water depths, and that depends upon
spectral parameters easily estimated from wave hindcasts. Furthermore, we derive an exact closed
form solution for the crest distribution of FORM based on the Breitung’s asymptotics (Breitung
and Richter, 1996).
The generalized Tayfun model and the FORM model although compare well with oceanic

measurements gathered from the Tern platform in the northern North Sea (Tern) and with a
Baylor wave staff in the southern North Sea (WACSIS), do not really improve upon the original
model of Tayfun, which thus can be regarded suitable for describing crest statistics for engineering
applications.
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