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Abstract: This study shows that the type of the analytical treatment that should be adopted for 
non-probabilistic analysis of uncertainty depends upon the available experimental data. The main 
idea is based on the consideration that the maximum structural response predicted by the 
preferred theory ought be minimal, and the minimum structural response predicted by the 
preferred theory ought be maximal, to constitute a lower overestimation. Prior to the analysis the 
existing data ought be enclosed by the minimum volume hyper-rectangle V1 that contains all 
experimental data. The experimental data also have to be enclosed by the minimum volume 
ellipsoid V2. If V1 is smaller than V2 and the response calculated based on it R(V1) is smaller than 
R(V2), then one has to prefer interval analysis. However, if V1 is in excess of V2 and R(V1) is 
greater than R(V2), then the analyst ought to utilize convex modeling. If V1 equals V2 or these two 
quantities are in close vicinity, then two approaches can be utilized with nearly equal validity. 
Some numerical examples are given to illustrate the efficacy of the proposed methodology. 
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1. Introduction 
 
Probabilistic approaches are used by numerous analysts for the safety assessment of structures 
whose parameters or loadings on them are modeled as uncertain variables or functions. In recent 
decades, some alternatives of it have been suggested. Fuzzy-sets based approaches gain much 
popularity. There are many discussions on philosophical implications of each of these 
approaches. Whereas the probabilistic methodology requires the knowledge of probability 
densities, the fuzzy-sets based approaches demand the knowledge of membership functions. More 
recently, yet another alternative is embraced by the investigators, that is not based upon any 
specified measure, either probabilistic or fuzzy, of uncertain variables. It presupposes the 
knowledge only of bounds of uncertain quantities. These are then called as unknown-but-bounded 
or uncertain-but-bounded variables. This analysis is both old and new. It is old chronologically 
but new by its revived use. Apparently the first work on response of a single-degree-of-freedom 
system under uncertain-but-bounded excitation was written by Bulgakov in 1946. He specially 
mentioned that the task is to calculate the upper bounds of structural response “under unfavorable 
circumstances”, when the “disturbing action yp(t)(p=1,2,…,r) satisfy the condition | 
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yp(t)|≤lp(lpconstant) but are otherwise arbitrary one-valued continuous functions of the time t 
possessing as many derivatives as necessary ”. This problem was dubbed by Bulgakov (1946) as 
the “problem of accumulation of disturbances” (see also his other paper, in 1940, which considers 
a special case). 
 There is a considerable literature in the Russian language on the Bulgakov’s problem. 
Independently, in late sixties, Schweppe (1968) developed an analogous thinking based on 
ellipsoidal modeling, representing the uncertain variables as belonging to an ellipsoid. 
 Recently, some researchers in uncertain mechanics are developing interval analysis whereas 
others follow convex modeling (Ben-Haim and Elishakoff, 1990; Rao and Berke, 1997; 
Lombardi, 1998; Pantelides and Ganzerli, 1998, 1999; Mullen and Muhanna, 1999; Manson, 
2005; McWilliam, 2001; Moens and Vandepitte, 2007). The question arises if these analyses are 
interrelated specifically, should one perform both analyses, or one of them in preferable? This 
work tries to elucidate the possible reply to this question. Some researchers performed a 
comparison of results derived by both methods. Elishakoff, Li and Starnes (2001) derived a 
minimum volume ellipsoid that encloses the minimum volume parallelepiped for buckling 
analysis. Elishakoff, Cai and Starnes (1994) studied the buckling of elastic column on non-linear 
elastic foundation by interval analysis whereas Qiu, Ma and Wang (2006) dealt with the same 
problem via convex modeling. Qiu and Wang (2003) specially distinguished between these two 
non-probabilistic set theoretical models. 
 Although convex modeling and interval analysis have been used extensively, in practice, 
which of the non-probabilistic uncertain descriptions, convex modeling or interval analysis 
should be preferred? In this study, this problem will be answered. The experimental data are 
shown to be of the cardinal influence on which of these methods ought be given a preference. 
 Consider the case that due to high cost of the measurements the experimental points are too 
scant to determine their statistical information on uncertain parameters: if we choose non-
probabilistic set-theoretical convex methods, convex modeling or interval analysis, for uncertain 
modeling, then the precondition is to seek or determine the suitable set containing the limited 
experimental points. In fact, there is more than one set to be able to enclose the limited 
experimental points. However, too big set will produce over-conservative bounds on the 
structural responses. Of course, it is impossible for us to know the real bounds on uncertain 
parameters based on the limited experimental points. The enclosing set with minimal volume 
property may be a better selection, which will produce lower overestimation on the bounds of the 
structural responses. We can only act on what we know. 
 
 
 

2. Description of the Method by Zhu, Elishakoff and Starnes 
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In this section, the description of the method by Zhu, Elishakoff and Starnes (1996), in which the 
smallest hyper-rectangle and the smallest ellipsoid containing the given experimental data are 
determined, is stated in brief. 
 Suppose that there are m uncertain parameters ( 1, 2, , )ia i m= L  describing either the 
structural properties or the excitation. These parameters constitute an m-dimensional parameter 
space, namely, 1 2( , , , )ma a a a= L . Suppose that we have limited information on these 

parameters, represented by M experimental points, ( ) ( 1, 2, , )ra r M= L  in this m-dimensional 
space. Convex modeling assumes that all these experimental points belong to an ellipsoid 
 0 0( ) ( ) 1Ta a W a a− − ≤  (1) 
where 0a  is the state vector of the central point of the ellipsoid, and W  is the weight matrix. 
Interval analysis assumes that all experimental points belong to a hyper-rectangle. 
 By using transformation matrix 1 2 1( , , , )m mT θ θ θ −L  given in Ref. Zhu et al.(1996), the above 
M points in the rotated coordinate system will have their new coordinates denoted by 

( ) ( 1, 2, , )rb r M= L . To obtain the smallest ellipsoid, let us first examine an m-dimensional box 
of the form 
 0b b d− ≤  (2) 

which contains all M points. The vector of semi-axes 1 2( , , , )T
md d d d= L  and the vector of 

central points 0 10 20 0( , , , )T
mb b b b= L  of the “box” in the rotated coordinate system are given by 

 
( )
( )

( ) ( )

( ) ( )
0

1 max( ) min( ) ,
2
1 max( ) min( ) ,
2

r r
k k krr

r r
k k krr
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b b b

= −

= +
    ( 1, 2, , ; 1, 2, , )r M k m= =L L  (3) 

 We now enclose this box by an ellipsoid 
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where kg  are the semi-axes of the ellipsoid. There are infinite number of ellipsoids which 
contain the box given in Eq.(2). Clearly, the best choice is the one with minimum volume. The 
volume of an m-dimensional ellipsoid is given by 

 
1

m

e m k
k

V C g
=

= ∏  (5) 

where mC  is a constant. 
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 From the monograph by Elishakoff, Li and Starnes (2001) and paper by Qiu (2003), 
corresponding to the smallest ellipsoid, the semi-axes of the smallest ellipsoid should be 
 , ( 1, 2, , )i ig md i m= = L  (6) 
 Thus, once the size of the box Eq.(2) is known, the semi-axes of the minimum-volume 
ellipsoid enclosing the box of the experimental data are readily determined by utilizing Eq.(6). If 
there are no experimental points at the corner of the box, the size of such an ellipsoid may further 
be reduced until one of the experimental points reaches the surface of the ellipsoid. The semi-axes 
of the ellipsoid in this case may be replaced by kgη , where the factor is determined from the 
condition 

 
( )2( )

0
2

1

max 1
rm

k k

r k k

b b
g

η
=

−
= ≤∑ ,   ( 1, 2, , )r M= L  (7) 

 If there are some experimental points in the corner of the multidimensional box, the factor η  
equals unity. The ellipsoid (4) can be written in the form 
 0 0( ) ( ) 1Tb b D b b− − ≤  (8) 
in which 0b  is the vector of central points whose components are given by Eq.(3), and D  is a 
diagonal matrix 
 ( )2 2 2

1 2( ) , ( ) , , ( )mD diag g g gη η η− − −= L  (9) 

 The volume of the ellipsoid now reads 

 
1

m
m

e m k
k

V C gη
=

= ∏  (10) 

which is a function of a set of parameters ( 1,2, , 1)k k mθ = −L . Therefore, the best ellipsoid 
among these ellipsoids is the one which contains all given points and possesses the minimum 
volume, i.e., 
 { }

1 2 1
1 2 1, , ,

min ( , , , )
m

e e mV V
θ θ θ

θ θ θ
−

−=
L

L  (11) 

 A possible approach to determine this ellipsoid is to search among all possible cases by 
increasing ( 1,2, , 1)k k mθ = −L  from 0 to π/2 in sufficiently small increments kθΔ , and to 
compare the volumes of so obtained ellipsoids. Once one finds the ellipsoid with minimum 
volume in one direction, say 0 ( 1,2, , 1)k k mθ = −L , the ellipsoid can be transformed back into 
the original coordinate system by applying the transformation matrix mT . Hence, the vector 0a  of 
central point and the weight matrix W  in Eq.(1) become 
 0 0

T
ma T b= ,   T

m mW T DT=  (12) 
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where 10 20 0( , , , )m m mT T θ θ θ= L . So Eq.(12) constitutes the smallest ellipsoid containing all 
experimental points. The “box” corresponding to the smallest ellipsoid is the smallest hyper-
rectangle. 
 

3. Convex Modeling and Interval Analysis for the Structural Response 
 
For convenience, in this section, convex modeling method and interval analysis method for the 
static response analysis of structures with uncertain parameters are reformulated (see Ref. Qiu 
(2003)). In fact, the presented concept in this study also can be applied to other linear elastic 
structural mechanics problem with uncertainty, such as the natural frequency analysis, the 
dynamic response analysis etc. 
 The matrix equation of static equilibrium in the finite element method can be written as 
 ( ) ( ) ( )K a u a f a=  (13) 
where )( ijkK =  is the nn× -dimensional stiffness matrix, )( iuu =  is the n-dimensional nodal 

displacement vector and )( iff =  is the n-dimensional external load vector; 

1 2( , , , )T
ma a a a= L  is the structural parameters, such as the physical, material and geometric 

properties in structures. 
 Consider a realistic situation in which not enough information is available on the structural 
parameters to justify an assumption on their probabilistic characteristics. It is assumed that by use 
of Zhu, Elishakoff and Starnes’s method (1996), the derived smallest ellipsoid and the derived 
smallest hyper-rectangle on the structural parameters can be obtained as, respectively, 
 2

0 0( , ) { : , ( ) ( ) }m TZ W a a R a a W a aθ θ= ∈ − − ≤  (14) 
and 
 a a a≤ ≤  or 0 0a a a a a−Δ ≤ ≤ + Δ  (15) 

where 0 0( ) m
ia a R= ∈  is the nominal value vector of the structural parameter vector a , W  is a 

positive definite matrix and is called the weight matrix, θ  is a positive constant and is called the 
radius of the ellipsoid; a  and a  are the lower bound and upper bound of the hyper-rectangle, 

aΔ  is the radius of the hyper-rectangle. 
 The structural parameter of a value slightly different from this nominal value can be denoted 
as 
 0a a aδ= +   or  0 , 1, 2, ,i i ia a a i mδ= + = L  (16) 

where ( ) m
ia a Rδ δ= ∈  is a small quantity. 

 By Taylor’s series expansion, the static displacement of the structure with uncertain 
parameter vector 0a a aδ= + , to first order in aδ , is 
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 0
0 0

1

( )( ) ( ) ( ) , 1, 2, ,
m

i
i i i j

j j
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a

δ δ
=

∂
= + = + =

∂∑ L  (17) 

 For convenience of notation, let us define 

 0 0 0 0 0 0

1 2 1 2

( ) ( ) ( ), , , , , ,T i i i i i i

m m

u a u a u a u u u
a a a a a a

ϕ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

= =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
L L  (18) 

 By combination of Eq.(17) and Eq.(14), the most and least favourable response for convex 
modeling method can be obtained as (see Ref. Ben-Haim and Elishakoff (1990)) 

 1
0

T
Cu u Wθ ϕ ϕ−= −   and  1

0
T

Cu u Wθ ϕ ϕ−= +  (19) 
 By combination of Eq.(17) and Eq.(15), the most and least favourable responses for interval 
analysis method can be obtained as (see Ref. Qiu (2003)) 

 0
0

1

m
i

iI i j
j j

uu u a
a=

∂
= − Δ

∂∑   and  0
0

1

m
i

iI i j
j j

uu u a
a=

∂
= + Δ

∂∑  (20) 

 Thus, in the case that the smallest intervals or hyper-rectangle containing uncertain 
parameters are known, interval analysis method can be adopted to obtain the most and least 
favorable responses. In the case that the smallest ellipsoid containing uncertain parameters are 
known, convex modeling method can be adopted to obtain the most and least favorable responses. 
So, a question will arise. Which method is better? In other words, which method will give the 
tighter bounds on the structural responses? In the following, a 7-bar planar truss structure and a 
60-bar space truss structure are used to reply to this quest. 
 
 
 

4. Seven-Bar Planar Truss Structure 
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(4, 0)5
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Figure 1. A 7-bar planar truss structure 
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Let us consider a 7-bar planar truss structure with linear elastic properties depicted in Figure 1. 
Here, 5A =  is the cross-sectional area, 200E =  is Young’s modulus, 1F  is an external load at 
node No.2, 2F  is an external load applied at node No.4. The parameters of the truss are given as 
dimensionless numbers, since the physical values are not relevant to our analysis. 
 This truss is the same as adopted by Skalna (2003) but here the loads 1F  and 2F  are 
considered to be uncertain, and the other properties of the truss, such as A  and E , are 
deterministic. Namely, the truss members have deterministic stiffness. 
 In the following, several sets of hypothesized data for uncertain parameters will be given. By 
use of the Zhu, Elishakoff and Starnes’s method (1996), the smallest ellipse and rectangle can be 
derived. Based on the derived ellipse and rectangle, the most and least favorable responses of the 
structure can be calculated by convex modeling method and interval analysis method, 
respectively. 
 We will discuss this problem in the following two cases: one is that the principal axes of the 
derived ellipse and rectangle are parallel to the global coordinate system; the other is that the 
principal axes of the derived ellipse and rectangle are not parallel to the global coordinate system. 
 
4.1.  THE PRINCIPAL AXES OF THE DERIVED ELLIPSE AND RECTANGLE ARE PARALLEL TO THE 
GLOBAL COORDINATE SYSTEM 
 
Case I: Consider a set of hypothesized data for uncertain parameters as shown in Figure 2, and 
they are listed in Table 1. Here these hypothesized data are randomly generated in order to 
proceed to the numerical simulations, but in practice the samples for uncertain parameters can be 
generally obtained by the experiments. 
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Figure 2. Rectangle and ellipse containing the data on uncertain parameters 1F  and 2F  

 
 The smallest rectangle obtained from the set of data by using of Zhu, Elishakoff and Starnes’s 
method (1996) is 
 1 [0.80,1.20]IF = ,  2 [0.90,1.10]IF =  (21) 
 Based on Eq.(21), we conclude that the central values of 1F  and 2F  are, respectively, 
 1 2(0.80 1.20) / 2 1.0, (0.90 1.10) / 2 1.0c cF F= + = = + =  (22) 
and the values of radii 1F  and 2F  are, respectively, 
 1 2(1.20 0.80) / 2 0.2, (1.10 0.90) / 2 0.1F FΔ = − = Δ = − =  (23) 
 Thus, one can analyze the system as subjected to an interval load vector with nominal values 
(1.0,1.0)  and scatter of (20%,10%) . 
 

Table 1. The values of uncertain parameter 1F  and 2F  
k 1 2 3 4 5 6 7 8 9 10 11 12 

F1 0.991 1.082 1.085 0.938 0.976 0.993 1.011 1.056 0.800 1.200 1.000 1.000
F2 1.018 1.031 0.964 1.037 0.965 1.011 1.048 1.008 1.000 1.000 0.900 1.100
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 On the other hand, the smallest ellipse can be obtained from the set of data by using of Zhu, 
Elishakoff and Starnes’s method (1996). The optimal rotation angle 10θ  obtained is 0o , so the 
transformation matrix 2T  is 

 2

1 0
0 1

T ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (24) 

 In the case of 10 0θ = o , the vector of semi-axes and the vector of central point of the “box” in 

the optimal rotated coordinate system are, respectively, 1 2( , ) (0.2, 0.1)T Td d d= =  and 

0 10 20( , ) (1.0,1.0)T Tb b b= = . The semi-axes of the smallest ellipsoid are 1 12 0.2828g d= =  

and 2 22 0.1414g d= = . The diagonal matrix D  is 

 ( ) ( )2 2
1 2( ) , ( ) 25,100D diag g g diagη η− −= =  (25) 

where 2 / 2η = . Thus, we can get 

 0 2 0 2 2

25 0
(1.0,1.0) ,

0 100
T T Ta T b W T DT ⎡ ⎤

= = = = ⎢ ⎥
⎣ ⎦

 (26) 

 It can be seen from Figure 2 that the derived rectangle contains the derived ellipse based on 
the hypothesized data listed in Table 1. 
 We can find that the higher-order derivatives of static responses of the 7-bar planar truss 
structure with respect to uncertain parameters are all zeros. Thus, Eq.(17) based on the first-order 
Taylor series for this example will be linear and exact, i.e. 

 
1 2 1 1 2 2

1 2 1 2
1 2

( , ) ( , )
( ) ( )( , ) , 1, 2, ,

i i c c

i c i c
i c c

u F F u F F F F
u F u Fu F F F F i n

F F

δ δ

δ δ

= + +

∂ ∂
= + + =

∂ ∂
L

 (27) 

 This is the reason why only the external loads are taken as the uncertain parameters in this 
study. 
 Taking the derivative of both sides of Eq.(13) yields 

 , 1, 2
j j j

K u fu K j
F F F
∂ ∂ ∂

+ = =
∂ ∂ ∂

 (28) 

 Due to the vanishing of 
j

K
F
∂
∂

 for this problem, the sensitivity derivative of the structural 

response with respect to uncertain parameters becomes 

 1 , 1, 2
j j

u fK j
F F

−∂ ∂
= =

∂ ∂
 (29) 
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 Substitution of Eqs.(22), (23) and (29) into Eq.(20) yields the most and least favorable 
responses in y-direction of node 3 of the 7-bar planar truss structure obtained from interval 
analysis method as follows 
 3min 0.005803y

Iu = ,  3max 0.007852y
Iu =  (30) 

 Substitution of Eqs.(26) and (29) into Eq.(19) provides us with the most and least favorable 
responses in y-direction of node 3 of the 7-bar planar truss structure obtained from convex 
modeling method as follows 
 3min 0.006064y

Cu = ,  3max 0.007591y
Cu =  (31) 

 The “∗” points on the derived rectangle in Figure 2 are the most and least favorable points for 
interval analysis method. The “+” points on the derived ellipse in Figure 2 are the most and least 
favorable points for convex modeling method. The two markers “∗” and “+” have the same 
meaning in sequel figures. 
 Thus, it can be seen from Eqs.(30) and (31) that interval analysis method gives tighter bounds 
of responses than convex modeling method in the case of data points listed in Table 1. 
 
Case II: Consider another set of hypothesized data for uncertain parameters as shown in Figure 3, 
and they are listed in Table 2. 

 
Figure 3. Rectangle and ellipse containing the data on uncertain parameters 1F  and 2F  

 
Table 2. The values of uncertain parameter 1F  and 2F  

k 1 2 3 4 5 6 7 8 9 10 11 12 
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F1 0.991 1.082 1.085 0.938 0.976 0.993 1.011 1.056 0.900 1.100 1.100 0.900
F2 1.018 1.031 0.964 1.037 0.965 1.011 1.048 1.008 0.950 0.950 1.050 1.050
 
 The smallest rectangle obtained from the set of data by using of Zhu, Elishakoff and Starnes’s 
method (1996) is 
 1 [0.90,1.10]IF = ,  2 [0.95,1.05]IF =  (32) 
 Based on Eq.(32), we conclude that the central values and the values of radii of 1F  and 2F  
are, respectively, 
 1 21.0, 1.0c cF F= =  and 1 20.1, 0.05F FΔ = Δ =  (33) 
 Thus, one can analyze the system as subjected to an interval load vector with nominal values 
(1,1)  and scatter of (10%, 5%) . 
 On the other hand, the smallest ellipse can be obtained from the set of data by using of Zhu, 
Elishakoff and Starnes’s method (1996). The optimal rotation angle 10θ  obtained is 0o . Similar 
to Eqs.(24)~(26), the vector 0a  of central point and the weight matrix W  can be obtained as 

 0 2 0 2 2

50 0
(1.0,1.0) ,

0 200
T T Ta T b W T DT ⎡ ⎤

= = = = ⎢ ⎥
⎣ ⎦

 (34) 

 It can be seen from Figure 3 that the derived ellipse contains the derived rectangle based on 
the hypothesized data listed in Table 2. 
 By substituting Eqs.(33) and (29) into Eq.(20) and substituting Eqs.(34) and (29) into Eq.(19)
, the most and least favorable responses in y-direction of node 3 of the 7-bar planar truss structure 
can be, respectively, obtained from interval analysis method and convex modeling method as 
follows 
 3min 0.006316y

Iu = ,  3max 0.007340y
Iu =  (35) 

and 
 3min 0.006288y

Cu = ,  3max 0.007367y
Cu =  (36) 

 Thus, it can be seen from Eqs.(35) and (36) that convex modeling method gives tighter 
bounds of responses than interval analysis method in the case of data points listed in Table 2. 
 Under this circumstance, an interesting phenomenon can be seen. For convex modeling 
method, the extreme value points on the ellipse in Figure 3 may be different based on different 
structural parameters. Namely, the locations of the extreme value points of convex modeling 
method will change by changing the structural parameters. In certain particular case, the extreme 
value points of convex modeling method and interval analysis method will coincide. 
 
4.2.  THE PRINCIPAL AXES OF THE DERIVED ELLIPSE AND RECTANGLE ARE NOT PARALLEL TO THE 
GLOBAL COORDINATE SYSTEM. 
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Case I: Consider a set of hypothesized data for uncertain parameters as shown in Figure 4, and 
they are listed in Table 3. 
 The smallest rectangle obtained from the set of data by using of Zhu, Elishakoff and Starnes’s 
method (1996) is shown as Figure 4. The smallest ellipse can be obtained from the set of data by 
using of Zhu, Elishakoff and Starnes’s method (1996). The optimal rotation angle 10θ  obtained is 

30o . Similarly, the vector 0a  of central point and the weight matrix W  can be obtained as 

 0 2 0 2 2

43.75 32.48
(0.366,1.366) ,

32.48 81.25
T T Ta T b W T DT

−⎡ ⎤
= = = = ⎢ ⎥−⎣ ⎦

 (37) 

 As above mentioned, Eq.(17) based on the first-order Taylor series will be exact and linear 
for this example. Due to the convexity of the derived smallest rectangle, the most and least 
favorable responses in y-direction of node 3 of the 7-bar planar truss structure for interval 
analysis method will reach on the four vertexes of the smallest rectangle. By calculating and 
comparing the four responses, the most and least favorable responses or the minimum and 
maximum values of them are, respectively, 
 3min 0.004855y

Iu = ,  3max 0.006970y
Iu =  (38) 

 

 
Figure 4. Rectangle and ellipse containing the data on uncertain parameters 1F  and 2F  
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Table 3. The values of uncertain parameter 1F  and 2F  

k 1 2 3 4 5 6 7 8 9 10 11 12 
F1 0.349 0.422 0.458 0.294 0.362 0.355 0.351 0.411 0.193 0.539 0.416 0.316
F2 1.377 1.434 1.377 1.367 1.323 1.372 1.413 1.401 1.266 1.466 1.279 1.453
 
 By substituting of Eqs.(37) and (29) into Eq.(19), we obtain the most and least favorable 
responses in y-direction of node 3 of the 7-bar planar truss structure obtained from convex 
modeling method as follows 
 3min 0.004972y

Cu = ,  3max 0.006854y
Cu =  (39) 

 Thus, it can be seen from Eqs.(38) and (39) that interval analysis method gives tighter bounds 
of responses than convex modeling method in the case of data points listed in Table 3. 
 
Case II: Consider another set of hypothesized data for uncertain parameters as shown in Figure 5, 
and they are listed in Table 4. 
 The smallest rectangle obtained from the set of data by using of Zhu, Elishakoff and Starnes’s 
method (1996) is shown as Figure 5. The smallest ellipse can be obtained from the set of data by 
using of Zhu, Elishakoff and Starnes’s method (1996). The optimal rotation angle 10θ  obtained 

is30o . Similarly, the vector 0a  of central point and the weight matrix W  can be obtained as 

 0 2 0 2 2

87.50 -64.95
(0.366,1.366) ,

-64.95 162.50
T T Ta T b W T DT ⎡ ⎤

= = = = ⎢ ⎥
⎣ ⎦

 (40) 

 In perfect analogy with Eq.(38), the most and least favorable responses in y-direction of node 
3 of the 7-bar planar truss structure for interval analysis method can be obtained as follows 
 3min 0.005384y

Iu = ,  3max 0.006441y
Iu =  (41) 

 We substitute of Eqs.(40) and (29) into Eq.(19) to get the most and least favorable responses 
in y-direction of node 3 of the 7-bar planar truss structure obtained from convex modeling method 
as follows 
 3min 0.005247y

Cu = ,  3max 0.006578y
Cu =  (42) 
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Figure 5. Rectangle and ellipse containing the data on uncertain parameters 1F  and 2F  

 
 

Table 4. The values of uncertain parameter 1F  and 2F  
k 1 2 3 4 5 6 7 8 9 10 11 12 
F1 0.349 0.422 0.458 0.294 0.362 0.355 0.351 0.411 0.304 0.478 0.428 0.254
F2 1.377 1.434 1.377 1.367 1.323 1.372 1.413 1.401 1.273 1.373 1.459 1.359
 
 Thus, it can be seen from Eqs.(41) and (42) that convex modeling method gives tighter 
bounds of responses than interval analysis method in the case of data points listed in Table 4. 
Although only the displacement responses in y-direction of node 3 of the 7-bar planar truss 
structure are compared, the analysis will not change qualitatively if a different aspect of response 
of the truss structure were used to carry out the comparisons of convex modeling with interval 
analysis due to the linear elastic properties. 
 We can find from the above analysis that the choose for two methods, convex modeling or 
interval analysis, is decided by the distribution of sample data points on uncertain parameters. 
 
 
 

5. Sixty-Bar Space Truss Structure 
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Figure 6. A 60-bar space truss structure 

Consider a 60-bar space truss structure with linear elastic properties subject to two x-directional 
loads as shown in Figure 6. The external loads 1F  and 2F , respectively, act on nodes No.21 and 

No.22. Young’s moduli of the bars are 112.1 10 ( 1,2 ,60)iE i= × = L . The cross-sectional areas 

of the bars are 31.0 10 ( 1,2 ,60)iA i−= × = L . 
 Suppose that the external loads 1F  and 2F  are still considered to be uncertain, and the other 
properties of the truss, such as A  and E , are deterministic. Namely, the truss members have 
deterministic stiffness. 
 In previous section, the case that there exists the inclusion relation between the derived 
ellipse and rectangle is studied. In this section, we will consider the non-inclusion relation 
between them. 
 
Case I: Consider a set of hypothesized data for uncertain parameters as shown in Figure 7, and 
they are listed in Table 5. 
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Figure 7. Rectangle and ellipse containing the data on uncertain parameters 1F  and 2F  

Table 5. The values of uncertain parameter 1F  and 2F  
k 1 2 3 4 5 6 7 8 9 10 11 12 
F1 0.349 0.422 0.458 0.294 0.362 0.355 0.351 0.411 0.330 0.452 0.443 0.289
F2 1.377 1.434 1.377 1.367 1.323 1.372 1.413 1.401 1.288 1.358 1.433 1.299
 
 The smallest rectangle obtained from the set of data by using of Zhu, Elishakoff and Starnes’s 
method (1996) is shown as Figure 7. The smallest ellipse can be obtained from the set of data by 
using of Zhu, Elishakoff and Starnes’s method (1996). The optimal rotation angle 10θ  obtained is 

30o . Similarly, the vector 0a  of central point and the weight matrix W  can be obtained as 

 0 2 0 2 2

119.71 -91.10
(0.3664,1.3653) ,

-91.10 224.91
T T Ta T b W T DT ⎡ ⎤

= = = = ⎢ ⎥
⎣ ⎦

 (43) 

 Similar to Eq.(38) and Eq.(41), the most and least favorable responses in x-direction of node 
21 of the 60-bar space truss structure for interval analysis method can be obtained as follows 
 21min 1.6491E-7x

Iu = ,  21max 3.0862E-7x
Iu =  (44) 

 Substitution of Eqs.(43) and (29) into Eq.(19) yields the most and least favorable responses in 
x-direction of node 21 of the 60-bar space truss structure obtained from convex modeling method 
as follows 

0.24 0.29 0.34 0.39 0.44 0.49
1.25
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1.45
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F 2
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Iu
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Iu

21max x
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 21min 1.6575E-7x
Cu = ,  21max 3.0777E-7x

Cu =  (45) 

 Thus, it can be seen from Eqs.(44) and (45) that convex modeling method gives tighter 
bounds of responses than interval analysis method in the case of data points listed in Table 5. 
 
Case II: Consider another set of hypothesized data for uncertain parameters as shown in Figure 8, 
and they are listed in Table 6. 
 

 
Figure 8. Rectangle and ellipse containing the data on uncertain parameters 1F  and 2F  

 
Table 6. The values of uncertain parameter 1F  and 2F  

k 1 2 3 4 5 6 7 8 9 10 11 12 
F1 0.7991 0.887 0.901 0.744 0.793 0.803 0.813 0.865 0.751 0.889 0.906 0.716
F2 1.175 1.203 1.138 1.184 1.119 1.168 1.208 1.176 1.097 1.121 1.196 1.121
 
 The smallest rectangle obtained from the set of data by using of Zhu, Elishakoff and Starnes’s 
method (1996) is shown as Figure 8. The smallest ellipse is obtained from the set of data by using 
of Zhu, Elishakoff and Starnes’s method (1996). The optimal rotation angle 10θ  obtained is 10o . 

Similarly, the vector 0a  of central point and the weight matrix W  can be obtained as 

 0 2 0 2 2

73.46 -35.98
(0.8113,1.1576) ,

-35.98 271.17
T T Ta T b W T DT ⎡ ⎤

= = = = ⎢ ⎥
⎣ ⎦

 (46) 

 Similar to Eq.(38), the most and least favorable responses in x-direction of node 21 of the 60-
bar space truss structure for interval analysis method can be obtained as follows 

0.67 0.72 0.77 0.82 0.87 0.92
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1.13
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1.23

F1

F 2
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Iu
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Iu
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 21min 4.5511E-7x
Iu = ,  21max 5.9339E-7x

Iu =  (47) 

 Substitution of Eqs.(46) and (29) into Eq.(19) results in the most and least favorable 
responses in x-direction of node 21 of the 60-bar space truss structure obtained from convex 
modeling method as follows 
 21min 4.4628E-7x

Cu = ,  21max 6.0222E-7x
Cu =  (48) 

 Thus, it can be seen from Eqs.(47) and (48) that interval analysis method gives tighter bounds 
of responses than convex modeling method in the case of data points listed in Table 6. 
 From the analysis of this section, we still can find that the sample data points decide which of 
the non-probabilistic uncertainty descriptions, convex modeling or interval analysis, to be 
prefered. 
 
 
 

6. Conclusion 
 
In this study, through numerical examples convex modeling and interval analysis are extensively 
compared based on the same experimental points. Some explanations are given for the problem 
that which of the non-probabilistic uncertainty descriptions, convex modeling or interval analysis, 
ought be utilize. Given the experimental points, the smallest hyper-rectangle and the smallest 
ellipsoid containing them can be obtained. From these numerical examples it can be concluded 
that (1) If V1 is smaller than V2, then one has to prefer interval analysis; (2) If V1 is in excess of 
V2, then the analyst ought to utilize convex modeling; (3) If V1 equals V2 or these two quantities 
are in close vicinity, then two approaches can be utilized with nearly equal validity. Therefore, 
the type of the analytical treatment that should be adopted for non-probabilistic analysis of 
uncertainty depends upon the available experimental data. 
 Of course, the purpose of the paper is not to replace the probabilistic approach by the non-
probabilistic set-theoretic convex methods. The latter is a possible alternative or a supplementary 
way of the uncertainty analysis when scarce data is available to justify the probabilistic analysis. 
We conclude that the type of the analysis of uncertainty depends on the type and amount of 
available information. 
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