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Abstract. Many urban areas suffer from traffic congestion. Intuitively, it may seem that a road
expansion (e.g., the opening of a new road) should always improve the traffic conditions. However,
in reality, a new road can actually worsen traffic congestion. It is therefore extremely important
that before we start a road expansion project, we first predict the effect of this project on traffic
congestion.

Traditional approach to this prediction is based on the assumption that for any time of the day,
we know the exact amount of traffic that needs to go from each origin city zone A to every other
destination city zone B (these values form an OD-matrix), and that we know the exact capacity
of each road segment. Under this assumption, known efficient algorithms produce the equilibrium
traffic flows.

In reality, the road capacity may unpredictably change due to weather conditions, accidents,
etc. Drivers take this uncertainty into account when planning their trips: e.g., if a driver does not
want to be late, he or she may follow a slower route but with a guaranteed arrival time instead of a
(on average) faster but unpredictable one. We must therefore take this uncertainty into account in
traffic simulations. In this paper, we describe algorithms that take this uncertainty into account.
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1. Decreasing Traffic Congestion: Formulation of the Problem

Decreasing traffic congestion: a practical problem. Many urban areas suffer from traffic
congestion. It is therefore desirable to decrease this congestion: e.g., by building new roads, or by
adding new lanes to the existing roads.

Important difficulty: a new road can worsen traffic congestion. Intuitively, it may seem that
a road expansion (e.g., the opening of a new road) should always improve the traffic conditions.
However, in reality, a new road can actually worsen traffic congestion. Specifically, if too many
cars move to a new road, this road may become even more congested than the old roads initially
were, and so the traffic situation will actually decrease – prompting people to abandon this new
road. This possible negative effect of a new road on congestion is a very well known “paradox” of
transportation science, a paradox which explains the need for a detailed analysis in the planning
of the new road; see, e.g, (Ahuja et al., 1993; Sheffi, 1985). This paradox was first discovered by A.
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Doig (see (Appa, 1973)) and first published in (Braess, 1968; Charnes and Klingman, 1971; Szwarc,
1971).

Importance of the preliminary analysis of the results of road expansion. Our objective
is to decrease traffic congestion. We have just mentioned that an addition of a new road can
actually worsen the traffic congestion. It is therefore extremely important that before we start a
road expansion project, we first predict the effect of this project on traffic congestion.

Traditional approach to predicting the results of road expansion. Traditional approach to
predicting the results of road expansion is based on the assumption that for any time of the day,
we know the exact amount of traffic that needs to go from each origin city zone A to every other
destination city zone B (these values form an OD-matrix), and that we know the exact capacity
of each road segment. Under this assumption, known efficient algorithms produce the equilibrium
traffic flows; see, e.g., (Sheffi, 1985).

Limitations of the traditional approach to predicting the results of road expansion.
In reality, the road capacity may unpredictably change due to weather conditions, accidents, etc.
Drivers take this uncertainty into account when planning their trips: e.g., if a driver does not want
to be late, he or she may follow a slower route but with a guaranteed arrival time instead of a (on
average) faster but unpredictable one.

We must therefore take this uncertainty into account in traffic simulations.

What we do in this paper. In this paper, we describe algorithms that take the above uncertainty
into account.

Comment. Some of the results presented in this paper first appeared in our research report (Cheu
et al., 2007). This report also describes a software package that implements our algorithms.

2. Traffic Assignment: Brief Reminder

Road assignment problem: informal description. In order to select the best road expansion
project, we must be able to predict how different projects will affect road congestion. For that, we
need to be able, based on the traffic demand and on the road capacities, to predict the traffic on
different places of different roads at different times of the day. This prediction problem is called the
traffic assignment problem.

To describe this problem in precise terms, we need to describe how exactly the traffic demand is
described, how the road capacities are described, and what exactly assumptions do we make about
the drivers’ behavior.

Granulation. To describe traffic demand, we divide the urban area into zones and describe how
many drivers need to get from one zone to another.

Similarly, to describe road capacity, we divide all the roads into road segments (links), and
describe the capacity of each link.

The time of the day is similarly divided into time intervals.

Comment. How to select an appropriate size of a zone, of a road link, and of a time interval?
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− On the one hand, the finer the division, we more accurate is the resulting traffic picture.

− On the other hand, the finer the division, the more zones and links we need to consider and
hence, the more computations we need to perform.

Thus, the granularity of the traffic problem should be determined by the trade-off between accuracy
and computational complexity.

For example, for the city of El Paso with a population of 700,000, a standard road network
model consists of 681 zones and 4836 road links.

How to describe traffic demand? Once we divided the urban area into n zones, we must
describe, for every two zones i and j, the number of drivers dij who need to go from zone i to zone
j. The corresponding n× n matrix is called an origin-to-destination matrix, or an O-D matrix, for
short.

So, to the traffic demand is described by the O-D matrices corresponding to different times of
the day.

How to describe road capacity? For each road link, the road capacity is usually described by
the number c of cars per hour which can pass through this road link.

How to describe travel time along a road link? Every road link has a posted speed limit.
When there are few cars of this road, then these few cars can safely travel at the speed limit s. The
resulting travel time tf along this road link can be estimated as L/s, where L is the length of this
road link. This travel time tf is called a free flow travel time.

When the traffic volume v increases, congestions starts, the cars start slowing each other down.
As a result, the travel time t along the road link increases. The dependence of the travel time on
the volume is usually described by the Bureau of Public Roads (BPR) formula

t = tf ·
[
1 + a ·

(
v

c

)β
]

.

The parameters a and β are determined experimentally; usually, a ≈ 0.15 and β ≈ 4.

Equilibrium. When a new road is built, some traffic moves to this road to avoid congestion on
the other roads; this causes congestion on the new road, which, in its turn, leads drivers to go back
to their previous routes, etc. These changes continue until there are alternative routes in which the
overall travel time is larger.

Eventually, this process converges to an equilibrium, i.e., to a situation in which the travel time
along all used alternative routes is exactly the same – and the travel times along other un-used
routes is higher; see, e.g., (Sheffi, 1985).

There exist efficient algorithms which, given the traffic demand (i.e., the O-D matrices) and the
road capacity, computes the corresponding equilibrium (Sheffi, 1985). This algorithm computes the
traffic volume along each road link, the travel time between every two zones, etc.

REC 2008 - Ruey L. Cheu, Vladik Kreinovich, et al.



4 Ruey L. Cheu, Vladik Kreinovich, et al.

3. How We Can Use the Existing Traffic Assignment Algorithms to Solve Our
Problem: Analysis

Our main objective: reminder. Our main objective is to predict how different road projects
will affect future traffic congestion – so that we will be able to select a project which provides the
best congestion relief.

To be able to do that, we must predict the traffic congestion resulting from the implementation
of each of the road projects.

How we can predict the traffic congestion resulting from different road projects. As we
have mentioned, to apply the existing traffic assignment algorithms, we need to know the traffic
capacities and traffic demands.

The traffic capacities of the improved road network come directly from the road project – we
know which new road links we build, what is their capacity, and which existing links are expanded.
So, to solve our problem, we need to find the traffic demands.

Future traffic demands: what is known. There exist tools and techniques for predicting
population growth in different zones, and for describing how this population growth will affect
the overall traffic demand. Texas Department of Transportation (TxDOT) have been using the
resulting predictions of daily O-D matrices corresponding to different future times (such as the
year 2030).

Future traffic demands: what is lacking. To get a better understanding of the future traffic
patterns, we must be able to describe how this daily traffic is distributed over different time intervals,
in particular, how much of this traffic occurs during the critical time intervals corresponding to the
morning rush hour. In other words, we need to “decompose” the daily O-D matrix into O-D matrices
corresponding to different time intervals, e.g., 1 hour or 15 minute intervals.

How to find traffic demands corresponding to different times of the day: first approxi-
mation. In the first approximation, we can determine these O-D matrices by simply assuming that
the proportion of drivers starts their trip at different times (such as 7 to 7:15 am, 7:15 to 7:20 am,
etc.) as now. This first approximation is described in the next chapter.

Limitation of the first approximation predictions– and the need for better predictions.
the problem with this first approximation is that the existing traffic pattern is based on the current
traffic congestion. For example, if traveling from zone A to zone B takes a long time (say, 1 hour),
drivers who need to drive from A to B and reach B by 9 am leave early, at 8 am, so as to be at
their destination on time. As a result, in the existing traffic pattern, we have a lot of drivers leaving
from A to B at 8 am.

If we simply use the existing travel pattern, we will therefore predict that in the future, a similarly
big portion of drivers going from A to B also leaves at 8 am.

If we build a new road segment that eases this congestion, then there is no longer a need for
these drivers to leave earlier. As a result, the actual O-D value corresponding to leaving at 8 am
will be much smaller than according to our first approximation prediction.
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To provide a more accurate prediction of the future traffic demand, we must therefore take into
account the road improvements. In the following sections,w e describe how this can be taken into
account.

Taking uncertainty into account. Finally, as we mentioned earlier, we need to take into account
the uncertainty which which we can predict travel times. This is taken into account in the final
sections of this paper.

4. How to Predict Future Traffic Demand: First Approximation

Main idea behind the first approximation: reminder. To predict the effect of different road
projects on the future traffic congestion, we need to know future traffic demand, i.e., we need to
know how many drivers will go from every zone to every other zones at different moments of time.

We usually have daily predictions, i.e., predictions describing the overall daily traffic for every
origin-destination (O-D) pair. Based on these daily O-D matrices, we must predict O-D matrices
corresponding to different time intervals.

It is reasonable to assume that in the planned future, the distribution of departure times will
be approximately the same as at present. Under this assumption, we can estimate the O-D matrix
corresponding to a certain time interval by simply multiplying the (future) daily O-D matrix by the
corresponding K-factor – portion of traffic which occurs during this time interval. These K-factors
can be determined by an empirical analysis of the current traffic: a K-factor corresponding to a
certain time interval can be estimated as a ratio between

− the number of trips which start at this time interval, and

− the overall number of trips.

Use of empirical K-factors and linear interpolation. At present, the empirical values of the
K-factor are only available for hourly intervals. If we want to find the K-factors corresponding to
half-hours or 15 minute intervals, it is reasonable to use linear interpolation. Let us illustrate linear
interpolation on a simple example. Let us assume that we know K-factors corresponding to the
hourly traffic, in particular, we know that:

− at 7:00 am, the K-factor is 6.0%, meaning that at this moment of time, the traffic volume (in
terms of vehicles per hour) is equal to 6.0% of the daily traffic volume (in terms of vehicles per
day); and

− at 8:00 am, the K-factor is 8.0%, meaning that at this moment of time, the traffic volume (in
terms of vehicles per hour) is equal to 8.0% of the daily traffic volume (in terms of vehicles per
day).

For example, if for some O-D pair, the daily traffic volume is 1,000 vehicles per day, then:

− at 7:00 am, the traffic volume will be 6.0% · 1000 = 60 vehicles per hour, and
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− at 8:00 am, the traffic volume will be 8.0% · 1000 = 80 vehicles per hour.

If we are interested in half-hour intervals, then we need to also estimate the traffic volume at the
intermediate moment of time 7:30 am. Linear interpolation means that as such an estimate, we use
the value (6.0 + 8.0)/2 = 7%. So, we get the following K-factors for the half-hour time intervals:

− at 7:00 am, the K-factor is 6.0%;

− at 7:30 am, the K-factor is 7.0%;

− at 8:00 am, the K-factor is 8.0%.

Similarly, to extrapolate into 15 minute intervals, we use (6.0 + 7.0)/2 = 6.5% for 7:15 am and
(7.0 + 8.0)/2 = 7.5% for 7:45 am. So, we get the following K-factors for the 15 minute time
intervals:

− at 7:00 am, the K-factor is 6.0%;

− at 7:15 am, the K-factor is 6.5%;

− at 7:30 am, the K-factor is 7.0%;

− at 7:45 am, the K-factor is 7.5%;

− at 8:00 am, the K-factor is 8.0%.

In the above example, in which for some O-D pair the daily traffic volume is 1,000 vehicles per day:

− at 7:00 am the traffic volume is 6.0% · 1000 = 60 vehicles per hour,

− at 7:15 am the traffic volume is 6.5% · 1000 = 65 vehicles per hour,

− etc.

5. How to Take Departure Time Choice into Account

Need to take departure time choice into consideration. To understand how different road
projects will affect the future traffic, we need to estimate the O-D matrices for different time
intervals. At present, we usually only have estimates for the daily O-D matrices. In the previous
section, we described how to use the current K-factors to divide the daily O-D matrices into O-D
matrices for different time intervals.

The resulting O-D matrices are, however, only a first approximation to the actual O-D matrices.
Indeed, the existing O-D matrices and the existing values of the K-factor are based on the experience
of the drivers under current driving conditions. A driver selects his or her departure time based on
the time that the driver needs to reach the destination (e.g., the work-start time), and the expected
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travel time. For example, if the driver needs to be at work at 8:00am, and the travel time to his or
her destination is 30 minutes, then the driver leaves at 7:30 am.

Population changes and new roads will change expected travel time. For example, if due to the
increased population and the resulting increase road congestion the expected travel time increases
to 45 minutes, then the same driver leaves at 7:15 am instead of the previous 7:30 am. So, the
corresponding entry in O-D matrix corresponding to 7:30 am will decrease while a similar entry in
the O-D matrix corresponding to 7:15 am will increase.

Similarly, if a new freeway decreases the expected travel time to 15 minutes, then the driver will
leave at 7:45 am instead of the original 7:30 am. In this case, the corresponding entry in O-D matrix
corresponding to 7:30 am will decrease while a similar entry in the O-D matrix corresponding to
7:45 am will increase.

In general, the change in a transport network and/or the change in travel time will change the
departure time choice and thus, change the resulting O-D matrix. Let us describe how we can take
this departure time choice into consideration.

The use of logit model: general idea. In transportation engineering, the most widely used
model for describing the general choice (especially the choice in transportation-related situations)
is the logit model. In the logit model, the probability of departure in different time intervals is
determined by the utility of different departure times to the driver. According to this model, the
probability Pi that a driver will choose the i-th time interval is proportional to exp(ui), where ui

is the expected utility of selecting this time interval. The coefficient at exp(ui) must be chosen
from the requirement that the sum of these probabilities be equal to 1. So, the desired probability
has the form Pi = exp(ui)/s, where s

def= exp(u1) + . . . + exp(un). (Motivation for this model is
presented in Appendix A.)

To apply the logit model, we must be able to estimate the utilities of different departure time
choices. According to (Noland and Small, 1995; Noland et al., 1998), the utility ui of choosing the
i-th time interval is determined by the following formula:

ui = −0.1051 · E(T )− 0.0931 · E(SDE)− 0.1299 · E(SDL)− 1.3466 · PL − 0.3463 · S

E(T )
,

where E(T ) is the expected value of travel time T , E(SDE) is the expected value of the wait time
SDE when arriving early, E(SDL) is the expected value of the delay SDL when arriving late, PL is
the probability of arriving late, and S is the variance of the travel time. If we denote departure time
by td, and the desired arrival time by ta, then we can express SDE as SDE = max(ta−(td +T ), 0),
and SDL as SDL = max((td + T ) − ta, 0). So, to estimate the values of the utilities, we must be
able to estimate the values of all these auxiliary characteristics.

How to estimate the expected travel time, expected wait and delay times, and the
probability of arriving late. The first of these auxiliary values – the expected value E(T ) of the
traffic time T – is the most straightforward to compute: we can find it by simply applying a standard
traffic assignment procedure (e.g., the one implemented in the standard package TransCAD) to the
original O-D matrices.
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To estimate the expected value E(SDE) of the wait time SDE and the expected value E(SDL)
of the time delay SDL, in addition to the travel time, we must also know the departure time td
and the desired arrival time ta.

Let us start our analysis with the departure time td. For simplicity, for all the traffic originating
during a certain time interval, as a departure time, we take the midpoint of the corresponding time
interval. For example, for all the traffic originating between 7:00 am and 7:15 am, we take 7:07.5 am
as the departure time.

The analysis of the desired arrival time ta is slightly more complicated. The desired arrival time
depends on the time of the day. In the morning, the desired arrival time is the time when the drivers
need to be at work or in school. During the evening rush hour, the desired arrival time is the time
by which the drivers want to get back home, etc.

In terms of traffic congestion, the most crucial time interval is the morning rush hour, when for
most drivers, the desired arrival time is the work-start time. In view of this, in the following text,
we will refer to all desired arrival times as work-start times.

The work-start time usually depends on the destination zone. For example, in El Paso, most
zones have the same work-start time with the exception of a few zones such as:

− the Fort Bliss zones where the military workday starts earlier, and

− the University zone(s) where the school day usually starts somewhat later.

For every zone, we therefore usually know the (average) work-start time, i.e., the (average) desired
arrival time for all the trips with the destination in this zone.

Of course, the actual work-start time for different drivers arriving in the zone may somewhat
differ from the average work-start time for this zone. To take this difference into consideration,
we assume that the distribution of the actual works-start time follows a bell-shaped distribution
around the average. We only consider discrete time moments, e.g., time moments separated by 15
minute time intervals. It makes sense to assume that:

− for the 40% of the drivers, the actual work-start time is the average for this zone,

− for 20%, the work-start time is 15 minute later,

− for another 20%, the work-start time is 15 minutes earlier,

− for 10%, it is 30 minutes later, and

− for the remaining 10%, it is 30 minutes earlier.

For example, if the average work-start time for a zone is 8:00 am, then the assumed work-start
times are as follows

− for 10% of the drivers, the work-start time is 7:30 am;

− for 20% of the drivers, the work-start time is 7:45 am;

− for 40% of the drivers, the work-start time is 8:00 am;
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− for 20% of the drivers, the work-start time is 8:15 am; and, finally,

− for 10% of the drivers, the work-start time is 8:30 am.

For each of these 5 groups, we can estimate the corresponding value of SDE as SDE(ta) =
max(ta − (td + T ), 0). To get the desired value of the expected wait time E(SDE), we need to
combine these values SDE(ta) with the corresponding probabilities. For example, when the average
work-start time is 8:00 am, the expected value of SDE is equal to

E(SDE) = 0.1 ·SDE(7:30)+0.2 ·SDE(7:45)+0.4 ·SDE(8:00)+0.2 ·SDE(8:15)+0.1 ·SDE(8:15).

Similarly, we can estimate the expected value E(SDL) of the delay SDL. By adding the probabil-
ities corresponding to different work-start times, we can also estimate the probability PL of being
late.

How to estimate the variance of the travel time. In the previous paragraphs, we described
how to estimate the expected values E(T ), E(SDE), E(SDL), and the probability PL. To compute
the desired utility value, we only need one more characteristic: the variance S of the travel time.
Let us analyze how we can estimate the variance S.

In the deterministic traffic assignment model, once we know the capacities of all the road links
and the traffic flows (i.e., the values of the O-D matrix), we can uniquely determine the traffic
times for all O-D pairs. In practice, the travel time can change from day to day. Some changes in
travel time are caused by a change in weather, by special events, etc.; the resulting deviations from
travel time are usually minor. The only case when travel times change drastically is when there is
a serious road incident somewhere in the network. Since incidents are the major source of travel
time delays, it is reasonable to analyze incidents to estimate the variance S of the travel time.

For this analysis, we need to have a record of incidents which occurred during a certain period
of time (e.g., 90 days). The record of each incident typically includes the location and time of this
incident, and the number of lanes of the corresponding road which were closed because of this
incident. To estimate the variance S corresponding to a certain time interval (e.g., from 8:00 to
8:15 am), we should only consider the incidents which occurred during that time interval. Based on
the incident location, we can find the link on which this incident occurred. The incident decreases
the capacity of this link. This decrease can be estimated based on the original number of lanes and
on the number of lanes closed by this incident.

Comment. If all the lanes were closed by the incident, then the capacity of the link goes down to 0.
A reader should be cautioned that the TransCAD software tool does not allow us to enter 0 value
of a link capacity. To overcome this problem, we set the capacity to the smallest possible value
(such 1 vehicle per hour). For all practical purposes, this is equivalent to setting this capacity to 0.

Let us now provide heuristic arguments for estimating the decrease in capacity in situations
in which some lanes remain open. Let us start with the simplest case of a 1-lane road. In reality,
depending on the severity of an incident, the factor from 0 to 1 describing the decreased capacity
can take all possible values from the interval [0, 1]. In the incident record, we only mark whether
the incident actually led to the lane closure or not. In other words, instead of the actual value of
the capacity-decrease factor, we only keep, in effect, 0 or 1, with
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− 0 corresponding to the closed lane, and

− 1 corresponding to the open lane.

In yet another terms, we approximate the actual value of the factor by 0 or 1. It is reasonable to
assume that:

− factors 0.5 or higher get approximated by 1 (lane open), while

− factors below 0.5 are approximated by 0 (lane closed).

So, the incident records in which the lane remained open correspond to all possible values of the
capacity-decrease factor from the interval [0.5, 1]. As a reasonable average value of this factor for
the case when the lane remained open, we can therefore take the midpoint of this interval, i.e., the
value 0.75.

In multi-lane roads, an incident usually disrupts the traffic on all the lanes. It is therefore
reasonable to assume that if no lanes were closed, then the capacity of each lane was decreased
to 75% of its original value. Thus, for minor incidents in which no lanes were closed, we set the
resulting capacity to 3/4 of the original capacity of the link.

For a 2-lane road, if one lane is closed and another lane remain open, then we have one lane
with 0 capacity and one lane with 3/4 of the original capacity; the resulting capacity is 3/4 of the
capacity of a single lane, i.e., 3/8 of the original capacity of the 2-lane road.

For a 3-lane road, if one lane is closed this means that we retain only 2/3 of the incident-reduced
75% capacity, i.e., 1/2 of the original capacity. If two lanes are closed, this means that we retain
only 1/3 of the reduced capacity, i.e., 1/4 of the original capacity.

Similar values can be estimated for 4-lane roads and, if necessary, for roads with a larger number
of lanes.

For each recorded incident occurring at a given time interval, we replace the original capacity
in the incident-affected link by the correspondingly reduced value, and solve the traffic assignment
problem for thus reduced capacity. As a result, for each O-D pair, we get a new value of the travel
time.

− when the incident is far away from the route, this travel time may be the same as in the original
(no-incidents) traffic assignment;

− however, if the incident is close to the route (or on this route), this travel time is larger than
in the no-incidents case.

Thus, for each O-D pair and for each time interval, for each day d during the selected time period
P (e.g., 90 days), we have a value of the travel time t(d):

− if there was no incident on this day, the value of the travel time comes from the original traffic
assignment;

− for the days on which there was an incident during the given time interval, the travel time
comes from the analysis of the network with the correspondingly reduced capacity.
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Based on these values t(d), we compute the mean value E of the travel time as E =
1
P
·

P∑

d=1

t(d),

and then the desired variance S as S =
1
P
·

P∑

d=1

(t(d)−E)2.

How to take into account departure time choice when making traffic assignments: a
seemingly natural idea and its limitations. In the two previous text, we described how we
can compute the characteristics which are needed to estimate the utility related to each departure
time. Let us now assume that we know the original O-D matrices for each time interval i. For each
time interval i, we can use the corresponding O-D matrix and solve the traffic assignment problem
corresponding to this time interval. From the resulting traffic assignment, we can compute the values
of the desired auxiliary characteristics, and thus, estimate the expected utility ui of departing at
this time interval i. The logit formula Pi = exp(ui)/s, where s = exp(u1) + . . . + exp(un), enables
us to compute the probability Pi that the driver will actually select departure time interval i.

The probability Pi means that out of N drivers who travel from the given origin zone to the
given destination zone, N · Pi leave during the i-th time interval. The overall number of drivers
who leave from the given origin zone to the given destination zone can be computed by adding the
corresponding values in the original O-D matrices for all time intervals. Multiplying this sum by Pi,
we get the new value. These new values form the new O-D matrices for different time intervals i.

These new O-D matrices take into account the departure time choice. However, they are not
the ultimate O-D matrices. Indeed, since we have changed the O-D matrices, we thus changed the
traffic assignments at different moments of time; this will lead to different values of utilities ui and
probabilities Pi.

As an example, let us assume that there is an O-D pair for which the free-flow travel time is 30
minutes. Let us also assume that for the corresponding destination, everyone needs to be at work
at 8 am. Let us also assume that at present, there is not much traffic congestion between the origin
and destination zones, so everyone leaves around 7:30 am and gets to work on time. Since we are
estimating the distribution of traffic flow over time intervals based on the existing traffic, we will
thus conclude that

− in the O-D matrix corresponding to 7:30 am, we will have all the drivers, while

− in the O-D matrices corresponding to earlier time intervals, we will have no drivers at all.

Let us now apply these O-D matrices to the future traffic, when due to the population increase,
the traffic volume becomes much higher. Due to this higher traffic volume, the traffic time will
drastically exceed 30 minutes, so all the drivers leaving at 7:30 am will be, e.g., 15 minutes late.

On the other hand, drivers who happen to leave at 7:15 am encounter practically no traffic –
because there was no one needing to drive at this time in the original O-D matrix, so their travel
time is exactly 30 minutes, and they get to work by 7:45 am, 15 minutes earlier. As we have seen
in the above empirical formula (and in full accordance with common sense), the penalty for being
15 minutes late is much higher than the penalty of being 15 minutes early. As a result, the utility
corresponding to leaving at 7:15 am is higher than the probability of leaving at 7:30 am. Hence, in
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accordance with the logit formula, the probability that a driver will select to leave at 7:15 am is
much higher than the probability that this driver will leave at 7:30 am.

So, in the new O-D matrices, most drivers will leave at 7:15 am, and the values corresponding to
leaving at 7:30 am will be much lower. If the drivers really follow the pattern corresponding to the
new O-D matrix, then the traffic congestion corresponding to 7:30 am will be much lighter than
before, so the utility of leaving at 7:30 am will become higher and thus, the probability of leaving
at 7:30 am will increase again. It is reasonable to expect that if we repeat this procedure several
times, we will eventually reach the desired stable values of the O-D matrix.

Let us describe these ideas in precise term. In essence, we have described a procedure which
transforms the original set M of O-D matrices into a new set F (M) of O-D matrices, a set which
takes into account departure time choice based on the traffic assignments generated by the original
O-D matrices. To completely take into account the departure time choice means to find the O-D
matrices which already incorporate the departure time choice, i.e., the matrices M which do not
change after this transformation: F (M) = M .

At first glance, it seems reasonable to find these “stable” O-D matrices M by using a reasonable
iterative procedure:

− we start with the set of first-approximation O-D matrices M1 which are obtained by multiplying
the new O-D daily matrix by the original K-factors;

− then, we apply the transformation F again and again: M2 = F (M1), M3 = F (M2), . . . , until
the procedure converges, i.e., until the new set of matrices Mi+1 becomes close to the previous
set Mi.

This procedure seems even more reasonable if we recall that a similar iterative procedure is
successfully used in TransCAD to find the traffic assignment. However, we found out that this
seemingly reasonable procedure often does not converge.

This lack of convergence can be illustrated on a “toy” example in which we have a single origin,
single destination, and two possible departure times. Similarly to the above example, let us assume
that the work starts at 8 am, that the free-flow traffic time is 30 minutes, and that we consider two
possible departure times 7:30 am and 7:15 am. Again, just like in the above example, we assume
that the original O-D matrices are based on the existing low-congestion networks in which everyone
leaves at 7:30 am and nobody leaves at 7:15 am. In other words, we assume that the K-factor for
7:30 am is 1, and the K-factor for 7:15 am is 0. We also assume that there are high penalties for
being late and for spending too much time in traffic.

In accordance with the above iterative procedure, we start with the O-D matrices M1 in which
everyone leaves for work at 7:30 am, and nobody leaves for work at 7:15 am. The only difference
with the current situation is that we are applying the same K-factors to the future, more heavy
traffic.

− For those departing at 7:15 am, there is no traffic, so the travel time is equal to the free-flow
time of 30 minutes.

− The drivers departing at 7:30 am face a much heavier traffic, so we get a traffic congestion. As
a result of this congestion, the travel time increases to 45 minutes.
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So:

− drivers who leave at 7:15 am spend only 30 minutes in traffic and arrive 15 minutes early, while

− drivers who leave at 7:30 am spend 45 minutes on the road and are 15 minutes late.

Since we assumed that the penalties for being late are heavy, the expected utility of leaving at
7:15 am is much higher than the expected utility of leaving at 7:30 am. Thus, the probability of
leaving at 7:15 am is overwhelmingly higher than the probability of leaving at 7:30 am. As a result,
we arrive at the new O-D matrices M2 = F (M1) in which almost everyone leaves at 7:15 am and
practically no one leaves at 7:30 am.

For these new O-D matrices M2:

− for those departing at 7:30 am, there is no traffic, so the travel time is equal to the free-flow
time of 30 minutes;

− the drivers departing at 7:15 am face a much heavier traffic, so we get a traffic congestion; as
a result of this congestion, the travel time increases to 45 minutes.

So:

− drivers who leave at 7:30 am spend only 30 minutes in traffic and arrive on time, while

− drivers who leave at 7:15 am spend 45 minutes on the road.

Since we assumed that the penalties for spending extra time on the road are heavy, the expected
utility of leaving at 7:30 am is much higher than the expected utility of leaving at 7:15 am. Thus,
the probability of leaving at 7:30 am is overwhelmingly higher than the probability of leaving at
7:15 am. As a result, we arrive at the new O-D matrices M3 = F (M2) in which almost everyone
leaves at 7:30 am and practically no one leaves at 7:15 am.

In other words, we are back to the original O-D matrices M3 ≈ M1. These “flip-flop” changes
continue without any convergence. How can we modify the above idea so as to enhance convergence?

How to take into account departure time choice when making traffic assignments: a
more realistic approach. We started with the O-D matrices M1 which describe the existing
traffic behavior. We want to predict how a change in traffic volume and in road network will affect
the driver’s behavior. To do that, let us analyze

− how the actual drivers change their behavior if the road congestion and road conditions change,
and

− how we can simulate this behavior in a computer model so as to predict these changes.

At first, the drivers simply try to follow the same traffic patterns as before, i.e., depart at the same
times as before. In terms of the computer representation of the drivers’ behavior, this means that
the proportion of the drivers departing at different time intervals remains the same as in the original
traffic. In other words, this behavior corresponds to what we described as the first approximation
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M1 – when we take the new daily O-D matrix and multiply it by the K-factors corresponding to
the original traffic.

As we have mentioned, due to the change in traffic volume and in road capacity, this first-
approximation behavior may lead to congestions and delays. When drivers realize this, they will
change their departure time so as to avoid these new delays. The drivers will use the traffic patterns
and delays caused by M1 to decide on the new departure times. The resulting change in the O-D
matrix is what we described in the previous section as a transformation F . In other words, the
resulting O-D matrix is M2 = F (M1).

The change of departure times, as reflected by the move from the original O-D matrices M1 to
the new O-D matrices M2, will again change the traffic patterns and delay times, so again, there
will be a need to change the departure times based on the new traffic delays.

In these terms, the above iterative process Mi+1 = F (Mi) corresponds to the situation when
the drivers only use the experience of their most recent traffic behavior and ignore the rest of the
traffic history. Let us illustrate this idea on the above “toy” example.

In this example, the drivers used to go to work at 7:30 am. For the original traffic volume, this
was a reasonable departure time because it allowed them to be at work exactly at the desired time
8:00 am, and to spend as little time on the road as possible – exactly 30 minutes, the free-flow
traffic time.

When the traffic volume increases, in Day 1 of this new arrangement, the drivers follow the
same departure time as before, i.e., they all leave for work at 7:30 am. Since the traffic volume has
increased, this departure time no longer lead to the desired results – most of the drivers are 15
minutes late for work.

Since in the first day, most drivers were 15 minutes late, on the second day they leave 15 minutes
earlier, at 7:15 am, so as to be at work on time. They do reach work on time, but at the expense
of driving 15 minutes longer than they used to. A few drivers, however, still leave at 7:30 am. To
their pleasant surprise, they experience a smooth and fast ride and arrive at work exactly on time.

The other drivers learn about the negative experience of those who left at 7:15 am and of the
positive experience of those who left at 7:30 am. In our iterative model, we assume that when the
drivers decide on departure time at Day 3, they only take into account delays on the previous Day
2. Under this assumption, to select the departure time on Day 3, the drivers only use the Day 2
experience. On Day 2, departing at 7:30 am certainly led to much better results that leaving for
work at 7:15 am. So, under this assumption, on Day 3, most drivers will switch to 7:30 am departure
time. As a result, most of them will be again 15 minutes late for work, with the exception of those
who left home earlier, at 7:15 am. Since on Day 3, leaving at 7:15 am was clearly much preferable
than leaving for work at 7:30 am, on the next Day 4, most drivers will again leave at 7:15 am, etc.

In this analysis, we get the same non-converging fluctuations as we had in the previous section,
but this time, we understand the reason for these fluctuations: the fluctuations are caused by the
simplifying assumption that the drivers’ behavior is determined only by the previous moment of
time.

In reality, when the drivers choose departure times, they take into account not only the traffic
congestions on the day before, but also traffic congestions on several previous days. When a driver
adjusts to the new environment (e.g., to the new city), he or she takes into account not just a single
previous day, but rather all the previous days of driving in this new environment.
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It is reasonable to assume that all these previous days are weighted equally. Let us describe
this assumption in precise terms. We start with the set M1 of O-D matrices which describe the
number of drivers leaving at different time intervals on Day 1, when the drivers follow their original
departure times. Similarly to the above text, let us denote the set of O-D matrices describing the
drivers on Day i by Mi.

Suppose that we already know the O-D matrices M1, M2, . . . , Mi which describe the number
of drivers leaving at different time intervals at days 1, . . . , i. Since the drivers weigh all these
previous days equally, they estimate the expected traffic Ei as the average of the previous traffics:

Ei =
1
i
· (M1 + . . . + Mi).

The drivers use this expected traffic Ei to make their departure time choices. We have already
described the corresponding procedure, and we have denoted the resulting transformation of O-D
matrices by F . So, we can conclude that the O-D matrices Mi+1 corresponding to the new departure
times have the form Mi+1 = F (Ei).

Thus, we arrive at a new iterative procedure that takes into account departure time choice when
making traffic assignments. In this procedure,

− we start with the O-D matrices M1 which describe the original departure times; these O-D
matrices can be obtained if we multiply the daily O-D matrix by the original values of the
K-factors;

− then, for i = 2, 3, . . ., we repeat the following procedure: first, we compute the average Ei =
1
i
· (M1 + . . . + Mi), and then we compute Mi+1 = F (Ei);

− after the iterations stop, we use the resulting set of O-D matrices to describe the resulting
traffic assignments.

Our experiments on the “toy” road network and on the actual El Paso road network confirmed
that this procedure converges. An important question is when to stop iterations:

− The more iterations we perform, the closer we are to the desired “equilibrium” traffic assign-
ment.

− However, each iteration requires a reasonably large computation time on TransCAD, so it is
desirable to limit the number of iterations.

To find a reasonable stopping criterion, let us recall that the main objective of our task is to help
with traffic planning decisions. To help with these decisions, we must be able to predict future
consequences of different road improvement plans. Thus, the objective is to deal with the O-D
matrices which describe future drivers’ behavior. The only way to get such future matrices is by
prediction. Prediction cannot be very accurate. At best, we can predict the accuracy of the future
traffic with the accuracy of 10–15%. Thus, it makes sense to stop iterations when we have already
achieved this accuracy, i.e., when the difference between the O-D matrices Ei (based on which we
make the plans at moment i + 1) and the resulting matrices Mi+1 is smaller than (or equal to)
10–15% of the size of the matrices themselves.
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As a measure of the difference between the matrices Ei and Mi+1, it is reasonable to take the
root mean square difference, i.e., the value d(Ei,Mi+1) determined by the formula d2(Ei, Mi+1) =
1
N
·

N∑

j=1

(ej −mj)2, where N is the total number of components in the corresponding matrices (i.e.,

of all tuples consisting of a time interval and an O-D pair), and ej and mj are these components.
Similarly, as a measure of the size of a set E of matrices, it is reasonable to take its root mean

square value, i.e., the value v(E) determined by the formula v2(E) =
1
N
·

N∑

j=1

e2
j . To speed up

computations, we only compute the sizes v(M1) and v(M2) for the first two iterations, and use the
largest of the two resulting sizes as an estimate for the size in general. In other words, we stop when
d(Ei,Mi+1) ≤ 0.1 ·max(v(M1), v(M2)).

How to take into account departure time choice when making traffic assignments:
final idea and the resulting algorithm. In the previous text, we described the algorithm for
taking into account departure time choice when making traffic assignments. The advantage of this
algorithm is that it converges. However, from the computational viewpoint, this algorithm has a
serious limitation. To implement the above algorithm, we must store the sets of O-D matrices M1,
M2, . . . , Mi corresponding to different iterations. For a large city-wide road network, we need
to store information about many O-D pairs at several different time intervals. For example, the
standard El Paso network has 681 zones, so we need to store the information about each of the
681×681 O-D pairs at each of, say, 12 time intervals, and we most store as many different pieces of
this information as there are iterations – which may be in dozens. Storing, accessing, and processing
all this information requires a large amount of computation time.

It is therefore desirable to reformulate the above algorithm in such a way as to avoid this excessive
storage. We will show that such a simplification is indeed possible. The idea for this simplification

comes from the fact that once we know the previous average value Ei =
1
i
· (M1 + . . . + Mi), and

we have computed the new matrices Mi+1 = F (Ei), we do not need to repeat all the additions to

compute the new average Ei+1 =
1

i + 1
· (M1 + . . . + Mi + Mi+1).

Indeed, the expression for Ei+1 can be reformulated as follows:

Ei+1 =
1

i + 1
· ((M1 + . . . + Mi) + Mi+1),

and, by definition of Ei, we have M1 + . . . + Mi = i · Ei. Thus, to compute the new average Ei+1,
we can use the simplified formula

Ei+1 =
1

i + 1
· (i · Ei + Mi+1) = Ei ·

(
1− 1

i + 1

)
+ Mi+1 · 1

i + 1
.

Since Mi+1 = F (Ei), we can reformulate the iterative procedure in terms of the average matrices

Ei as follows: Ei+1 = Ei ·
(

1− 1
i + 1

)
+F (Ei) · 1

i + 1
. Taking into account that E1 = M1, we arrive

at the following algorithm:
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− we start with the O-D matrices E1 which describe the original departure times; these O-D
matrices can be obtained if we multiply the daily O-D matrix by the original values of the
K-factors;

− then, for i = 2, 3, . . ., we repeat the following procedure: first, we compute F (Ei), and then

Ei+1 = Ei ·
(

1− 1
i + 1

)
+ F (Ei) · 1

i + 1
;

− we stop when d(Ei, F (Ei)) ≤ 0.1 ·max(v(E1), v(E2)).

− after the iteration stop, we use the resulting set of O-D matrices Ei to describe the resulting
traffic assignments.

Comment. As we show in Appendix B, this iterative procedure is, in some reasonable sense, an
optimal algorithm for computing the fixed point of the mapping F .

6. Taking Uncertainty into Account

Need to consider uncertainty. In the previous text, we consider deterministic traffic models, in
which the link travel time is uniquely determined by the traffic volume. Real-life traffic, however,
is non-deterministic. To have more accurate predictions of travel times, we must take this non-
determinism into account and consider stochastic traffic models.

In a stochastic traffic model, the BPR formula only describes the average travel time t:

t = tf ·
[
1 + a ·

(
v

c

)β
]

.

The stochastic nature of traffic means the actual travel time t may differ from this average value t.
We must therefore describe not only how the average travel time t depends on tf , v, and c, but also
how the deviations t− t from this average depend on these parameters. For example, we may want
to describe how the standard deviation of the travel time t – or some other statistical characteristic
– depends on these parameters.

It turns out that several seemingly reasonable models of this dependence are faulty because the
predicted travel times drastically change when we simply subdivide the road links without making
any changes in the actual traffic.

In this text, we describe this phenomenon, and we describe how to set up this dependence in
such a way that a simple subdivision of a road link will no longer affect the resulting travel times.

We can have different subdivision into road links. Traffic networks in a big city are usually
very complicated, with lots of small roads. As a result, the fully detailed simulation of a traffic
network would require a large amount of computation time.

It is well known, however, that in practice, there is no need for such a detailed simulation: it is
well known that it is sufficient to divide the city into zones and consider only traffic between the
zones. The size of the zone depends on the amount and direction of traffic in this zone.
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Once we decided how to divide the city into zones, each major road is then naturally subdivided
into road links, i.e., pieces of this road within each zone.

In busy downtown areas, we may have a popular restaurant in one block and a big office in
a neighboring block, with completely different traffic patterns. So, in order to accurately predict
downtown-related traffic, we may need to have zones of the size of a few city blocks.

On the other hand, e.g., in a large residential area, we usually get the same pattern of traffic in
all its parts: traffic leaving to work in the morning and traffic coming back in the afternoon. As a
result, for such areas, it is sufficient to consider larger residential communities as single zones.

For deterministic traffic models, the resulting travel times do not change much if we
switch to a finer subdivision into zones: a known fact. Once we come up with zones which
provide a reasonable description of the traffic patterns, we can get reasonably good predictions of
the traffic volumes and travel times.

If we still have additional computational power, we can consider smaller-size zones. In this case,
the original road links are further subdivided into smaller-size links. If we use such a refined model,
we get an even more accurate prediction of the travel times.

However, we know that the estimates coming from the original model still provide a reasonably
accurate description of the travel times.

For deterministic traffic models, the resulting travel times do not change much if we
switch to a finer subdivision into zones: a mathematical explanation. For a deterministic
model, one of the reasons for this accuracy is that, because of the above formula for t, the travel
time t predicted by the model does not depend on how exactly we subdivide the road into road
links – as long as this subdivision remains reasonable in the sense that the traffic volume and the
traffic capacity does not change much within this link.

Indeed, let us assume that we start with a single link of length L in the original model and then
decided to subdivide it into several sublinks of length L1, . . . , Ln – for which L = L1 + . . . + Ln.
In the original model, the travel time t along this link is predicted directly – by using the above
formula

t = tf ·
[
1 + a ·

(
v

c

)β
]

.

In the new model, we predict individual travel times t1, . . . , tn along different sublinks and then
predict the resulting overall travel time as t1 + . . . + tn.

Let us show that in this case, the originally predicted travel time t is equal to the total travel
time t1 + . . . + tn predicted by the new model.

We assume that the traffic volume v and traffic capacity c are the same for all these sublinks,
the only think which is different is the free flow travel time. In other words, the predicted travel
times along sublinks take the form

ti = tfi ·
[
1 + a ·

(
v

c

)β
]

.

In general, the free flow travel time tf is determined by the length L of the road link and the speed

limit s along this link: tf =
L

s
. Similarly, for each sublink, we have tfi =

Li

s
.
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Since L = L1 + . . . + Ln, we conclude that tf = tf1 + . . . + tfn. Thus, we conclude that

t1 + . . . + tn = tf1 ·
[
1 + a ·

(
v

c

)β
]

+ . . . + tfn ·
[
1 + a ·

(
v

c

)β
]

=

(tf1 + . . . + tfn) ·
[
1 + a ·

(
v

c

)β
]

= tf ·
[
1 + a ·

(
v

c

)β
]

.

So, the originally predicted travel time t is indeed equal to the total travel time t1+. . .+tn predicted
by the new model.

Stochastic case: brief introduction. In the deterministic case, the driver selects a route for
which the expected travel time is the shortest.

According to decision theory, in the general situation with stochastic uncertainty case, prefer-
ences of a person can be described by a special utility function which assigns, to each possible result
x, a number U(x) describing the “utility” of this result for this person; a person then selects an
action for which the expect value of utility is the largest.

In transportation situations, the main parameter of interest to the drive is the overall travel
time, so the utility depends on the travel time t: U = U(t). To make the stochastic formulation of
the transportation problems similar to the deterministic ones (in which the objective is to minimize
travel time), researchers usually replace the problem of maximizing utility with an equivalent
problem of minimizing disutility u(t) which is defined as u(t) = −U(t). Usually, an exponential
disutility function is used u(t) = A · exp(α · t); see, e.g., (Mirchandani and Soroush, 1987; Tatineni,
1996; Tatineni et al., 1997). The justification for using such functions is given in Appendix C.

Random deviations ti− ti for different links are usually caused by different reasons; so tradition-
ally, the travel times ti on different links t1, . . . , tn along the path are assumed to be independent
random variables. Thus, the expected disutility of a path

u = E[exp(α · t)] = E[exp(α · (t1 + . . . + tn)] = E[exp(α · t1) · . . . · exp(α · tn)]

can be represented as a product

u = E[exp(α · t1)] · . . . · E[exp(α · tn)].

Minimizing the product is equivalent to minimizing its logarithm, i.e., the sum

s = ln(E[exp(α · t1)]) + . . . + ln(E[exp(α · tn)]).

In the deterministic case, E[exp(α · t)] = exp(α · t) hence ln(E[exp(α · t)]) = α · t. So, to make
the problem more similar to the deterministic one, we can divide each logarithm by α – dividing
the minimizing function by a positive function does not change where the minimum is attained.

Thus, selecting of a route can be described in a form which is very similar to selecting a

deterministic route, but with t̃i
def=

1
α
· ln(E[exp(α · t1)]) instead of the original travel times.

We know that the deviations t − t are usually relatively small. Thus, to simplify the above
expression, we can substitute t = t+(t− t) into the formula, expand the functions exp(z) and ln(z)
into Taylor series and keep only the few first (major) terms in the expansion. Specifically, we have

exp(α · t) = exp(α · t) · exp(α · (t− t)).
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Here, the first factor does not depend on the random variable at all, so from the viewpoint of taking
an expected value, it is simply a constant:

E[exp(α · t)] = exp(α · t) · E[exp(α · (t− t))].

We use the Taylor expansion of the exponential function:

exp(z) = 1 + z +
z2

2!
+ . . . = 1 + z +

z2

2
+ . . .

Thus,

exp(α · (t− t)) ≈ 1 + α · (t− t) +
α2 · (t− t)2

2
,

and

E[exp(α · (t− t))] ≈ 1 + α · E[t− t] +
α2 · E[t− t)2]

2
.

By definition, E[t− t] = t− t = 0, and E[(t− t)2] is the variance V . Thus, in our approximation,

E[exp(α · t)] = exp(α · t) ·
(

1 +
α2

2
· V

)
.

So,
1
α
· ln(E[exp(α · t)]) = t̃ +

1
α
· ln

(
1 +

α2

2
· V

)
.

Using the Taylor expansion of the logarithm function ln(1 + z) = z + . . ., we conclude that

1
α
· ln(E[exp(α · t)]) = t̃ +

α

2
· V.

Thus, minimizing the sum of these logarithmic expressions is equivalent to minimizing the sum of
the expressions

t̃ = t +
α

2
· V.

In other words, to make stochasticity into account, to each link’s travel time, we add its variance
(with an appropriate weight α/2).

A seemingly natural description. In the case of the free flow traffic, there is no uncertainty;
uncertainty occurs only if we have some volume on the road link – i.e., when the travel time t exceeds
the free flow travel time tf . Intuitively, the larger this excess t− tf , the larger this uncertainty.

At first glance, it may seem natural to pick a proportion r0 (e.g., 20%) and assume that for
every link, the actual value t− tf can deviate by about ±20% (or whatever r is) from the average.

In more precise terms, the standard deviation σ
def=
√

V of the travel time is equal to r0 · (t− tf ).
Since σ =

√
V = r0 · (t− tf ), we conclude that V = r2

0 · (t− tf )2.

Problem with seemingly natural assumption. Let us show that this seemingly natural as-
sumption leads to counter-intuitive conclusions. Indeed, let us assume that we have two one-link
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routes of equal quality leading from point A to point B, with the same free flow time tf , same
capacity c, and the same traffic volume v. In this case, for both links, we have the same expected
travel time t and hence, the same variance – so, the values of the resulting minimized function are
the same for both routes:

t̃(1) = t̃(2) = t +
α

2
· r2

0 · (t− tf )2.

Intuitively, if we subdivide one of the links into two equal sublinks of equal length (without
changing anything of substance) we should end up with exactly the same selection. In reality, if we

subdivide the first link, then for this link, we will have both t and tf divided by 2: t1 = t2 =
t

2
and

tf1 = tf2 =
tf

2
. Hence, the variance V (proportional to (t − tf )2) will divide by 4. As a result, for

each of these links, we get

t̃1 = t̃2 =
t

2
+

α

2
· r2

0 ·
(t− tf )2

4
.

By adding these two values, we get the minimized value t̃ = t̃1 + t̃2 for the whole two-link route:

t̃ = t +
α

2
· r2

0 ·
(t− tf )2

2
.

In this expression, the term proportional to the variance is twice smaller than for the second route,
so this route will be selected.

Alternatively, if we keep the first route whole but subdivide the second route, we get a clear
preference for the second route. Thus, the route selection depends on the exact subdivision into
links – hence our seemingly natural assumption is really counter-intuitive.

Proposed solution. Our objective is to find a reasonable expression for the term

t̃ =
1
α
· ln(E[exp(α · t)]).

In general, this expression can depend on the free flow time tf and on the average time t.
As we have mentioned, in the absence of the traffic flow, when the travel time consists 100% of

the free flow time tf , there is no stochasticity. The larger the proportion of the excess time, i.e.,

the larger the ratio r
def=

t− tf

tf
, the more stochasticity there is. Thus, it is reasonable to describe

the desired expression for t̃ in terms of tf and r.
By definition of r, we have t− tf = r · tf hence f = (1+ r) · tf ; so, once we know the dependence

of t̃ on tf and t, we can find its dependence on tf and r as well. Thus, it is reasonable to claim that
t̃ = F (tf , r) for some yet-to-be-determined function F .

The first desired property of the function F is that if the average time coincides with the free
flow time, then there is no stochasticity, and t̃ = t. In other words, we must have F (t, 0) = t for
all t.

The second desired property is that when we subdivide a link into two sublinks, without changing
the flow or capacity (and hence, without changing the ratio r), then the sum of the resulting values
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t̃1 + t̃2 should be equal to the original value t̃: F (tf1 , r) + F (tf2 , r) = F (tf1 + tf2 , r). For each r, we
get an equation F ′(a + b) = F ′(a) + F ′(b) for a monotonic function F ′(a) def= F (a, r) hence (Aczel,
2006) F ′(a) = k ·a for some constant k(r) which may depend on r. The fact that F (t, 0) = t means
that k(0) = 1.

In other words, we conclude that t̃ = F (tf , r) = tf · k(r). We know that r = a ·
(

v

c

)β

, thus,

t̃ = tf · k
((

v

c

)β
)

.

Similarly to the above case, we can expand the dependence k(r) into Taylor series and keep the
first few terms in this expansion. Since k(0) = r, we conclude that k(r) = 1 + a1 · r + a2 · r2 + . . . ,
hence

t̃ = 1 + a1 · a ·
(

v

c

)β

+ a2 · a2 ·
(

v

c

)2β

.

Conclusion. The effect of stochasticity on the transportation problem can be described as follows:

− in the deterministic case, drivers select a route for which the overall travel time t = t1 + . . .+ tn

is the smallest, where ti = tfi ·
[
1 + a ·

(
vi

ci

)β
]

;

− in the stochastic case, drivers select a route for which the expression t̃ = t̃1 + . . . + t̃n is the

smallest, where t̃i = tfi ·
[
1 + a1 · a ·

(
vi

ci

)β

+ b ·
(

vi

ci

)2β
]

.

Thus, we can use the standard traffic assignment algorithms with a modified travel time function
to find the corresponding traffic assignment.

Comment. Our experiments show that a1 ≈ 1.4 and b · 0. So, to take the uncertainty into account,
it is sufficient to replace the original value a ≈ 0.15 in the BPR formula with the new value
a1 · a ≈ 0.21.
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Appendix

A. Logit Discrete Choice Model: Towards a New Justification

Traditional approach to decision making. In decision making theory, it is proven that under
certain reasonable assumption, a person’s preferences are defined by his or her utility function U(x)
which assigns to each possible outcome x a real number U(x) called utility; see, e.g., (Keeney and
Raiffa, 1976; Raiffa, 1970). In many real-life situations, a person’s choice s does not determine the
outcome uniquely, we may have different outcomes x1, . . . , xn with probabilities, correspondingly,
p1, . . . , pn.

For example, drivers usually select the path with the shortest travel time. However, when a
driver selects a path s, the travel time is often not uniquely determined: we may have different
travel times x1, . . . , xn with corresponding probabilities p1, . . . , pn.

For such a choice, we can describe the utility U(s) associated with this choice as the expected
value of the utility of outcomes: U(s) = E[U(x)] = p1 · U(x1) + . . . + pn · U(xn). Among several
possible choices, a user selects the one for which the utility is the largest: a possible choice s is
preferred to a possible choice s′ (denoted s > s′) if and only if U(s) > U(s′).

It is important to mention that the utility function is not uniquely determined by the preference
relation. Namely, for every two real numbers a > 0 and b, if we replace the original utility function
U(x) with the new one U ′(x) def= a · U(x) + b, then for each choice s, we will have

U ′(s) = E[a · U(x) + b] = a · E[U(x)] + b = a · U(s) + b

and thus, U ′(s) > U ′(s′) if and only if U(s) > U(s′).

Situations in which we can only predict probabilities of different decision. One important
application of decision making theory is predicting the user decisions. If we know the exact values
U(s) of the utilities, then we can predict the exact choice. For example, if the user has to choose
between alternatives s and s′, then the user chooses s if U(s) ≥ U(s′) and s′ if U(s) ≤ U(s′).

In practice, we do not know the exact values U(s) of the user’s utility, we only know the
approximate values V (s) ≈ U(s). Due to the difference between the observed (approximate) values
V (s) and the actual (unknown) values U(s), we are no longer able to uniquely predict the user’s
behavior: e.g., even when V (s) > V (s′), we may still have U(s) < U(s′), and thus, it is possible
that the user will prefer s.

If the differences V (s) − U(s) and V (s′) − U(s′) are small, then for V (s) À V (s′), we can be
reasonably sure that U(s) > U(s′) and thus, that the user will select s. Similarly, if V (s) ¿ V (s′),
we can be reasonably sure that U(s) < U(s′) and thus, that the user will select s′. However, when
the values V (s) and V (s′) are close, then there is a certain probability that U(s) > U(s′) and thus,
that the user will select s, and there is also a certain probability that U(s) < U(s′) and thus, that
the user will select s′.

In this situation, based on the (approximate) utility values V (s) and V (s′), we cannot exactly
predict whether the user will prefer s or s′ – because for the same values of V (s) and V (s′), the
user can prefer s and the user can also prefer s′. The best we can do in this situation is to predict
the probability P (s > s′) of selecting s over s′.
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Discrete choice: a formal description of the problem. Let us formulate the problem in precise
terms. We have n different alternatives s1, . . . , sn. For each of these alternative si, we know the
(approximate) utility value Vi

def= V (si). Based on these utility values V (s1), . . . , V (sn), we would
like to predict the probability pi that a user will select the alternative si.

Models used for such prediction are usually called discrete choice models (Train, 2003).

Invariance requirements in discrete choice models. As we have mentioned, the utility
function is not uniquely determined by the preference relation. Namely, whenever the original
utility function U(s) describes the user’s preference, then, for every a > 0 and b, the new function
U ′(s) = a · U(s) + b also describes the same preference. In other words, we can shift all the values
of the utility function u(s) → U(s) + b, and we can re-scale all the values U(s) → a · u(s), and the
resulting utility function will still describe the same preferences.

It is therefore reasonable to assume that if we shift the values of the approximate utility function,
i.e., if we replace the original values V (si) with the new values V ′(si) = V (si) + b, then we should
get the same preference probabilities:

pi(V (s1), V (s2) . . . , V (sn)) = pi(V (s1) + b, V (s2) + b, . . . , V (sn) + b).

In particular, if we take b = −V (s1), then we conclude that

pi(V (s1), V (s2) . . . , V (sn)) = pi(0, V (s2)− V (s1), . . . , V (sn)− V (s1)),

i.e., that the probabilities depend only on the differences between the utility values – but not on
the values themselves.

At first glance, it may seem reasonable to similarly require that the probability not change under
re-scaling. However, in this case, re-scaling does not make intuitive sense, because we have a natural
scale. For example, as a unit for such a scale, we can choose a standard deviation of the difference
U(s)−V (s) between the (unknown) actual utility U(s) and the (known) approximate value of this
utility V (s).

In line with this analysis, in discrete choice models, it is usually assumed that the probabilities
do not change with shift but it is not assumed that these probabilities are scale-invariant.

Logit: the most widely used discrete choice model. The most widely used discrete choice
model is a logit model in which

pi(V1, . . . , Vn) =
eβ·Vi

n∑
j=1

eβ·Vj

(1)

for some parameter β. This model was first proposes in (Luce, 1959).

Logit: original justification. In (Luce, 1959), this model was justified based on the assumption
of independence of irrelevant alternatives, according to which the relative probability of selecting
s1 or s2 should not change if we add a third alternative s3. In formal terms, this means that the
probability of selecting s1 out of two alternatives s1 and s2 should be equal to the conditional
probability of selecting s1 from three alternatives s1, s2, and s3 under the condition that either s1

or s2 are selected.
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It can be proven that under this assumption, the ratio pi/pj of the probabilities pi and pj should
only depend on Vi and Vj ; moreover, that we must have pi/pj = f(Vi)/f(Vj) for some function f(z).
The requirement that this ratio be shift-invariant then leads to the conclusion that f(z) = eβ·z for
some β – and thus, to the logit model.

Limitations of the original justification. At first glance, the above independence assumption
sounds reasonable (and it is often reasonable). However, there are reasonable situations where this
assumption is counter-intuitive; see, e.g., (Chipman, 1960; Debreu, 1960; Train, 2003).

For example, assume that in some cities, all the buses were originally blue. To get from point
A to point B, a user can choose between taking a taxi (s1) and taking a blue bus (s2). A taxi is
somewhat better to this user, so he selects a taxi with probability p1 = 0.6 and a blue bus with the
remaining probability p2 = 1− 0.6 = 0.4. In this case, the ratio p1/p2 is equal to 1.5.

Suppose now that the city decided to buy some new buses, and to paint them red. Let us also
suppose that the comfort of the travel did not change, the buses are exactly the same. From the
common sense viewpoint, it does not matter to the user whether buses are blue or red, so he should
still select a taxi with probability p1 = 0.6 and buses with probability 0.4. However, from the purely
mathematical viewpoint, we now have three options: taking a taxi (s1), taking a blue bus (s2), and
taking a red bus (s3). Here, the probability of taking a bus is now p2 + p3 = 0.4. Hence, p2 < 0.4
and so, the ratio p1/p2 is different from what we had before – contrary to the above independence
assumption.

Current justification. An alternative justification for logit started with the unpublished result
of Marley first cited in (Luce and Suppes, 1965). Marley has shown that if we assume that the
approximation errors ε(s) def= U(s) − V (s) are independent and identically distributed, and if this
distribution is the Gumbel distrubution, then the probability of selecting si indeed follows the logit
formula.

Gumbel distribution can be characterized by the cumulative distribution function F (ε) = e−e−ε
;

it is a known distribution of extreme values.
In 1974, McFadden (McFadden, 2001) showed that, vice versa, if we assumed that the ap-

proximation errors ε(s) are independent and identically distributed, and the choice probabilities
are described by the logit formula, then the errors ε(s) must follow the extreme value (Gumbel)
distribution.

This justification was one of the main achievements for which D. McFadden received a Nobel
prize in 2001 (McFadden, 2001).

Limitations of the current justification. The problem with this justification is that the logit
model is known to work well even in the cases when different approximation errors are differently
distributed; see, e.g., (Train, 2003).

For such situations, the only known alternative explanation is Luce’s original one. The main
limitation of this explanation was that it is based on the independence assumption. This is not so
critical if we have three or more alternatives. Indeed, in this case, the empirical logit formula (that
we are trying to explain) satisfies this assumption, so making this assumption in the situations
when the logit formula holds makes sense.
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This limitation, however, becomes crucial if we only consider the case of two alternatives. In this
case, the independence assumption cannot even be formulated and therefore, Luce’s justification
does not apply. So, we arrive at the following problem.

Formulation of the problem. We need to come up with a new distribution-free justification for
the logit formula, i.e., with a justification that does not depend on the assumption that approxi-
mation errors are independent and identically distributed. Such a justification is provided in this
paper.

Preliminary analysis. In accordance with the above formulation of the problem, we are interested
in the case of n = 2 alternatives s1 and s2. We know the approximate utility values V1 and V2,
and we know that the probability p1 of selecting the first alternative p1 should only depend on the
difference V1 − V2: p1 = F (V1 − V2) for some function F (z). Our objective is to find this function
F (z). Let us first describe reasonable properties of this function F (z).

When s2 is fixed (hence V2 is fixed) but the alternative s1 is improving (i.e., V1 is increasing),
then the probability of selecting s1 can only increase (or at least remain the same – e.g., if that
probability was already equal to 1, it cannot further increase). In other words, as the difference
V1 − V2 increases, the probability p1 = F (V1 − V2) should also increase (or at least remain the
same). Thus, it is reasonable to require that the function F (z) should be (non-strictly) increasing.

When s2 and V2 are fixed and s1 becomes better and better, i.e., V1 → +∞, then we should
select s1 with probability tending to 1. So, we must have F (z) → 1 as z → +∞.

Similarly, s2 and V2 are fixed, and s1 becomes worse and worse, i.e., V1 − V2 → −∞, then we
should prefer s2. So, we must have F (z) → 0 as z → −∞.

Since we only have two alternatives, the probability p1 = F (V1 − V2) and the probability p2 =
F (V2 − V1) must always add up to 1. Thus, we must have F (z) + F (−z) = 1 for all z.

So, we arrive at the following definition.

Definition 1. By a choice function, we mean a function F : R → [0, 1] which is (non-strictly)
increasing, and for which F (z) → 1 as z → +∞, F (z) → 0 as z → −∞, and F (z) + F (−z) = 1
for all z.

Main idea. Our main idea is as follows. Up to now, we have discussed how to describe the
user’s behavior, but often, the ultimate objective is how to modify this behavior. For example, in
transportation problems, the goal is often to use public transportation to relieve traffic congestion
and related pollution. In this case, the problem is not just to estimate the probability of people
using public transportation, but to find out how to increase this probability.

One way to increase this probability is to provide incentives. If we want to encourage people
to prefer alternative s1, then we can provide those who select this alternative with an additional
benefit of value v0. In this case, for alternatives si 6= s1, the corresponding utility Vi remains the
same, but for the alternative s1, we have a new value of utility V ′

1 = V1 + v0.
After this addition, the original probability

p1 = F (V1 − V2) (2)

of selecting the alternative s1 changes to a new value

p′1 = F (V ′
1 − V2) = F (V1 + v0 − V2). (3)

REC 2008 - Ruey L. Cheu, Vladik Kreinovich, et al.



28 Ruey L. Cheu, Vladik Kreinovich, et al.

These formulas can be simplified if we denote the difference V1−V2 between the approximate utility
values by ∆V . In these new notations, the original probability

p1 = F (∆V ) (4)

is replaced by the new probability
p′1 = F (∆V + v0). (5)

This change of probability can be described in general terms: we receive new information – that
there are now incentives. Based on this new information, we update our original probabilities pi of
selecting different alternatives si.

From the statistical viewpoint (see, e.g., (Jaynes and Bretthorst, 2003; Wadsworth, 1990)), when
we receive new information, the correct way of updating probabilities is by using the Bayes formula.
Specifically, if we have n incompatible hypotheses H1, . . . , Hn with initial probabilities

P0(H1), . . . , P0(Hn), (6)

then, after observations E, we update the initial probabilities to the new values:

P (Hi |E) =
P (E |Hi) · P0(Hi)

P (E |H1) · P0(H1) + . . . + P (E |Hn) · P0(Hn)
. (7)

Thus, we should require that the function F (z) be such for which the transition from the old
probability (4) to the new probability (5) can be described by the (fractionally linear) Bayes formula
(7).

From the main idea to the exact formulas. Let us formalize the above requirement. In the case
of two alternatives s1 and s2, we have two hypotheses: the hypothesis H1 that the user will prefer
s1 and the opposite hypothesis H2 that the user will prefer s2. Initially, we did now know about any
incentives, we only knew the approximate utility V1 of the first alternative and the approximate
utility V2 of the second alternative. Based on the information that we initially had, we concluded
that the probability of the hypothesis H1 is equal to p1 = p(H1) = F (∆V ) (where ∆V = V1 − V2),
and the probability of the opposite hypothesis H2 is equal to p2 = p(H2) = 1− p1.

Now, suppose that learn that there was no incentive to select alternative s2 and an incentive of
size v0 to select alternative s1. This new information E changes the probabilities of our hypotheses
H1 and H2. Namely, according to Bayes formula, after the new information E, the probability p1

should be updated to the following new value p′1 = P (H1 |E):

p′1 =
P (E |H1) · P (H1)

P (E |H1) · p1 + P (E |H2) · P (H2)
. (8)

The probability P (E |H1) is the conditional probability with which we can conclude that there
was an incentive of size v0 based on the fact that the user actually selected the alternative s1. This
conditional probability is, in general, different for different values v0. To take this dependence into
account, we will denote this conditional probability P (E |H1) by A(v0).

Similarly, the probability P (E |H2) is the conditional probability with which we can conclude
that there was an incentive of size v0 for alternative s1 based on the fact that the user actually
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selected the alternative s2. This conditional probability is also, in general, different for different val-
ues v0. To take this dependence into account, we will denote this conditional probability P (E |H2)
by B(v0).

If we substitute the expressions P (E |H1) = A(v0), P (E |H2) = B(v0), P (H1) = F (∆V ), and
P (H2) = 1− P (H1) = 1− F (∆V ) into the above formula (8), then we conclude that

p′1 =
A(v0) · F (∆V )

A(v0) · F (∆V ) + B(v0) · (1− F (∆V ))
. (9)

On the other hand, once we know that there was an incentive v0 to select the alternative s1

and no incentive for the alternative s2, then we have a better idea of the resulting utilities of
the user: namely, the new value of the approximate utility is V1 + v0 for alternative s1 and V2

for the alternative s2. In accordance with our expression for the choice probability based on the
approximate utility values, the new probability of selecting s1 should be equal to F ((V1 +v0)−V2),
i.e., to F (∆V + v0) (expression (4)).

If the probability update was done correctly, in full accordance with the Bayes formula, then
this new value (4) must be equal to the value (9) that comes from using the Bayes formula. So, we
arrive at the following definition:

Definition 2. A choice function F (z) is called Bayes correct if, for every v0, there exist values
A(v0) and B(v0) for which

F (∆V + v0) =
A(v0) · F (∆V )

A(v0) · F (∆V ) + B(v0) · (1− F (∆V ))
(10)

for all ∆V .

Comment. In other words, we require that the 2-parametric family of functions F =
{

A · F (∆V )
A · F (∆V ) + B

}

corresponding to Bayesian updates be shift-invariant under a shift ∆V → ∆V + v0.

Theorem 1. Every Bayes correct choice function F (z) has the form

F (∆V ) =
1

1 + e−β·∆V
(11)

for some real number β.

If we substitute ∆V = V1−V2 into this formula, and multiply the numerator and the denominator
of the resulting formula by eβ·V1 , then we conclude that for every Bayes correct choice function F (z),
we have

p1 = F (V1 − V2) =
eβ·V1

eβ·V1 + eβ·V2
. (12)

Thus, for the desired case of two alternatives, we indeed provide a new distribution-free justification
of the logit formula.

Proof. It is known that many formulas in probability theory can be simplified if instead of the
probability p, we consider the corresponding odds

O =
p

1− p
. (13)
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(If we know the odds O, then we can reconstruct the probability p as p = O/(1 + O).) The right-
hand side of the formula (10) can be represented in terms of odds O(∆V ), if we divide both the
numerator and the denominators by 1− F (∆V ). As a result, we get the following formula:

F (∆V + v0) =
A(v0) ·O(∆V )

A(v0) ·O(∆V ) + B(v0)
. (14)

Based on this formula, we can compute the corresponding odds O(∆V + v0): first, we compute the
value

1− F (∆V + v0) =
B(v0)

A(v0) ·O(∆V ) + B(v0)
, (15)

and then divide (14) by (15), resulting in:

O(∆V + v0) = c(v0) ·O(∆V ), (16)

where we denoted c(v0)
def= A(v0)/B(v0). It is known (see, e.g., (Aczel, 2006)) that all monotonic

solutions of the functional equation (16) are of the form O(∆V ) = C · eβ·∆V . Therefore, we can
reconstruct the probability F (∆V ) as

F (∆V ) =
O(∆V )

O(∆V ) + 1
=

C · eβ·∆V

C · eβ·∆V + 1
. (17)

The condition F (z)+F (−z) = 1 leads to C = 1. Dividing both the numerator and the denominator
of the right-hand side by eβ·∆V , we get the desired formula (11). Q.E.D.

B. Towards an Optimal Algorithm for Computing Fixed Points

Many practical situations eventually reach equilibrium. In many real-life situations, we have dy-
namical situations which eventually reach an equilibrium.

For example, in economics, when a situation changes, prices start changing (often fluctuating)
until they reach an equilibrium between supply and demand.

In transportation, as we have mentioned, when a new road is built, some traffic moves to this
road to avoid congestion on the other roads; this causes congestion on the new road, which, in its
turn, leads drivers to go back to their previous routes, etc. (Sheffi, 1985).

It is often desirable to predict the corresponding equilibrium. For the purposes of the long-
term planning, it is desirable to find the corresponding equilibrium. For example, for the purposes
of economic planning, it is desirable to know how, in the long run, oil prices will change if we start
exploring new oil fields in Alaska. For transportation planning, it is desirable to find out to what
extent the introduction of a new road will relieve the traffic congestion, etc.

In order to describe how we can solve this practically important problem, let us describe this
equilibrium prediction problem in precise terms.

Finding an equilibrium as a mathematical problem. To describe the problem of finding the
equilibrium state(s), we must first be able to describe all possible states. In this paper, we assume
that we already have such a description, i.e., that we know the set X of all possible states.
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We must also be able to describe the fact that many states x ∈ X are not equilibrium states. For
example, if the price of some commodity (like oil) is set up too high, it will become profitable to
explore difficult-to-extract oil fields; as a new result, the supply of oil will increase, and the prices
will drop.

Similarly, as we have mentioned in the main text, if too many cars move to a new road, this road
may become even more congested than the old roads initially were, and so the traffic situation will
actually decrease – prompting people to abandon this new road.

To describe this instability, we must be able to describe how, due to this instability, the original
state x gets transformed in the next moment of time. In other words, we assume that for every
state x ∈ X, we know the corresponding state f(x) at the next moment of time.

For non-equilibrium states x, the change is inevitable, so we have f(x) 6= x. The equilibrium
state x is the state which does not change, i.e., for which f(x) = x. Thus, we arrive at the following
problem: We are given a set X and a function f : X → X; we need to find an element x for which
f(x) = x.

In mathematical terms, an element x for which f(x) = x is called a fixed point of the mapping
f . So, there is a practical need to find fixed points.

The problem of computing fixed points. Since there is a practical need to compute the fixed
points, let us give a brief description of the existing algorithms for computing these fixed points.
Readers interested in more detailed description can look, e.g., in (Berinde, 2002).

Straightforward algorithm: Picard iterations. At first glance, the situation seems very simple
and straightforward. We know that if we start with a state x at some moment of time, then in
the next moment of time, we will get a state f(x). We also know that eventually, we will get an
equilibrium. So, a natural thing to do is to simulate how the actual equilibrium will be reached.

In other words, we start with an arbitrary (reasonable) state x0. After we know the state xk

at the moment k, we predict the state xk+1 at the next moment of time as xk+1 = f(xk). This
algorithm is called Picard iterations after a mathematician who started efficiently using it in the
19 century.

If the equilibrium is eventually achieved, i.e., if in real life the process converges to an equilibrium
point x, then Picard’s iterations are guaranteed to converge. Their convergence may be somewhat
slow – since they simulate all the fluctuations of the actual convergence – but eventually, we get
convergence.

Situations when Picard’s iterations do not converge. In some important practical situations,
Picard iterations do not converge.

The main reason is that in practice, we can have panicky fluctuations which prevent convergence.
Of course, one expects fluctuations. For example, if the price of oil is high, then it will become
profitable for companies to explore and exploit new oil fields. As a result, the supply of oil will
drastically increase, and the price of oil will go down. Since this is all done in a unplanned way, with
different companies making very rough predictions, it is highly probable that the resulting oil supply
will exceed the demand. As a result, prices will go down, oil production in difficult-to-produce oil
areas will become unprofitable, supply will go down, etc.

Such fluctuations have happened in economics in the past, and sometimes, not only they did
not lead to an equilibrium, they actually led to deep economic crises.

REC 2008 - Ruey L. Cheu, Vladik Kreinovich, et al.



32 Ruey L. Cheu, Vladik Kreinovich, et al.

As we have seen, similar situations happen in transportation as well.

How can we handle these situation: a natural practical solution. If the natural Picard
iterations do not converge, this means that in practice, there is too much of a fluctuation. When at
some moment k, the state xk is not an equilibrium, then at the next moment of time, we have a state
xk+1 = f(xk) 6= xk. However, this new state xk+1 is an not necessarily closer to the equilibrium: it
“over-compensates” by going too far to the other side of the desired equilibrium.

For example, we started with a price xk which was too high. At the next moment of time, instead
of having a price which is closer to the equilibrium, we may get a new price xk+1 which is too low
– and may even be further away from the equilibrium than the previous price.

In practical situations, such things do happen. In this case, to avoid such weird fluctuations and
to guarantee that we eventually converge to the equilibrium point, a natural thing is to “dampen”
these fluctuations: we know that a transition from xk to xk+1 has gone too far, so we should only
go “halfway” (or even smaller piece of the way) towards xk+1.

How can we describe it in natural terms? In many practical situations, there is a reasonable
linear structure on the set X on all the states, i.e., X is a linear space. In this case, going from
xk to f(xk) means adding, to the original state xk, a displacement f(xk) − xk. Going halfway
would then mean that we are only adding a half of this displacement, i.e., that we go from xk to

xk+1 = xk +
1
2
· (f(xk)− xk), i.e., to

xk+1 =
1
2
· xk +

1
2
· f(xk).

The corresponding iteration process is called Krasnoselskii iterations. In general, we can use a
different portions α 6= 1/2, and we can also use different portions αk on different moments of time.
In general, we thus go from xk to xk+1 = xk + αk · (f(xk)− xk), i.e., to

xk+1 = (1− αk) · xk + αk · f(xk).

These iterations are called Krasnoselski-Mann iterations.

Practical problem: the rate of convergence drastically depends on αi. The above con-
vergence results show that under certain conditions on the parameters αi, there is a convergence.
From the viewpoint of guaranteeing this convergence, we can select any sequence αi which satisfies
these conditions. However, in practice, different choice of αi often result in drastically different rate
of convergence.

To illustrate this difference, let us consider the simplest situation when already Picard iterations
xn+1 = f(xn) converge, and converge monotonically. Then, in principle, we can have the same
convergence if instead we use Krasnoselski-Mann iterations with αn = 0.01. Crudely speaking, this
means that we replace each original step xn → xn+1 = f(xn), which bring xn directly into xn+1, by
a hundred new smaller steps. Thus, while we still have convergence, we will need 100 times more
iterations than before – and thus, we require a hundred times more computation time.

Since different values αi lead to different rates of convergence, ranging from reasonably efficient
to very inefficient, it is important to make sure that we select optimal values of the parameters αi,
values which guarantee the fastest convergence.
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First idea: from the discrete iterations to the continuous dynamical system. In this
section, we will describe the values αi which are optimal in some reasonable sense. To describe this
sense, let us go back to our description of the dynamical situation. In the above text, we considered
observations made at discrete moments of time; this is why we talked about current moment of time,
next moment of time, etc. In precise terms, we considered moments t0, t1 = t0 + ∆t, t2 = t0 + 2∆t,
etc.

In principle, the selection of ∆t is rather arbitrary. For example, in terms of prices, we can
consider weekly prices (for which ∆t is one week), monthly prices, yearly prices, etc. Similarly, for
transportation, we can consider daily, hourly, etc. descriptions. The above discrete-time description
is, in effect, a discrete approximation to an actual continuous-time system.

Similarly, Krasnoselski-Mann iterations xk+1−xk = αk ·(f(xk)−xk) can be viewed as a discrete-
time approximations to a continuous dynamical system which leads to the desired equilibrium.

Specifically, the difference xk+1 − xk is a natural discrete analogue of the derivative
dx

dt
, the values

αk can be viewed as discretized values of an unknown function α(t), and so the corresponding
continuous system takes the form

dx

dt
= α(t) · (f(x)− x). (18)

A discrete-time system is usually a good approximation to the corresponding continuous-time
system. Thus, we can assume that, vice versa, the above continuous system is a good approximation
for Krasnoselski-Mann iterations.

In view of this fact, in the following text, we will look for an appropriate (optimal) continuous-
time system (18).

Scale invariance: natural requirement on a continuous-time system. In deriving the contin-
uous system (18) from the formula for Krasnoselski-Mann iterations, we assumed that the original
time interval ∆t between the two consecutive iterations is 1. This means, in effect, that to measure
time, we use a scale in which this interval ∆t is a unit interval.

As we have mentioned earlier, the choice of the time interval ∆t is rather arbitrary. If we make a
different choice of this discretization time interval ∆t′ 6= ∆t, then we would get a similar dynamical
system, but described in a different time scale, with a different time interval ∆t′ taken as a measuring
unit. As a result of “de-discretizing” this new system, we would get a different continuous system
of type (18) – a system which differs from the original one by a change in scale.

In the original scale, we identified the time interval ∆t with 1. Thus, the time t in the original
scale means physical time T = t ·∆t. In the new scale, this same physical time corresponds to the

time t′ =
T

∆t′
= t · ∆t

∆t′
.

If we denote by λ =
∆t′

∆t
the ratio of the corresponding units, then we conclude that the time t

in the original scale corresponds to the time t′ = t/λ in the new scale. Let us describe the system
(18) in terms of this new time coordinate t′. From the above formula, we conclude that t = λ · t′;
substituting t = λ · t′ and dt = λ · dt′ into the formula (18), we conclude that

1
λ
· dx

dt′
= α(λ · t′) · (f(x)− x),
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i.e., that
dx

dt′
= (λ · α(λ · t′)) · (f(x)− x). (19)

It is reasonable to require that the optimal system of type (18) should not depend on what
exactly time interval ∆t we used for discretization.

Conclusion: optimal Krasnoselski-Mann iterations correspond to αk = c/k. Since a change
of the time interval corresponds to re-scaling, this means the system (18) must be scale-invariant,
i.e., to be more precise, the system (19) must have exactly the same form as the system (18) but
with t′ instead of t, i.e., the form

dx

dt′
= α(t′) · (f(x)− x). (20)

By comparing the systems (19) and (20), we conclude that we must have

λ · α(λ · t′) = a(t′)

for all t′ and λ. In particular, if we take λ = 1/t′, then we get α(t′) =
α(1)
t′

, i.e., α(t′) = c/t′ for

some constant c (= α(1)).
With respect to the corresponding discretized system, this means that we take αk = α(k) = c/k.

Comment. The formula αk = c/k is not exact: it comes form approximating the actual continuous
dependence by a discrete one. This approximation makes asymptotic sense, but this formula cannot
be applied for k = 0. To make this formula applicable, we must start with k = 1 – or, equivalently,
start with k = 0 (since this is how most descriptions of iterations work), but use the expression
αk = c/(k + 1) instead.

Reasonable choice of the constant c and its interpretation. As we have mentioned, a
reasonable idea is to use Picard iterations. This is not always a good idea, because we may get wild
fluctuations. However, it makes some sense to start with the Picard iteration first, to get away from
the initial state.

Picard iterations correspond to αk = 1; so, if we want α0 = 1, i.e., c/(0 + 1) = 1, we must take
c = 1. The resulting iterations take the form

xk+1 =
(

1− 1
k + 1

)
· xk +

1
k + 1

· f(xk).

This formula (corresponding to c = 1) has a natural commonsense interpretation.
Namely, in Picard iterations, as a next iteration xk+1, we take f(xk). When there are wild

oscillations, these iterations do not converge. We expect, however, that these oscillations are going
on around the equilibrium point. So, while the values xi are oscillating and not converging at all,
their averages

x0 + . . . + xk

k + 1
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and the corresponding values
f(x0) + . . . + f(xk)

k + 1
will be getting closer and closer to the desired equilibrium. Thus, if we want to enhance convergence,
then, instead of taking f(xk) as the next iteration, it makes sense to take an average of the previous
values of f(xk):

xk+1 =
f(x0) + . . . + f(xk−1) + f(xk)

k + 1
.

Let us show that this idea leads exactly to our choice αk = 1/(k + 1). Indeed, from xk =
f(x0) + . . . + f(xk−1)

k
, we conclude that f(x0)+ . . .+f(xk−1) = k ·xk, hence f(x0)+ . . .+f(xk−1)+

f(xk) = k · xk + f(xk) and thus,

xk+1 =
f(x0) + . . . + f(xk−1) + f(xk)

k + 1
=

k · xk + f(xk)
k + 1

=
(

1− 1
k + 1

)
· xk +

1
k + 1

· f(xk).

This selection seems to work well. The choice ak = 1/k have been successfully used and
shown to be efficient. We have shown this on the example of our transportation problem. For other
examples, see, e.g., (Su and Qin, 2006) and references therein.

C. Exponential Disutility Functions in Transportation Modeling: Justification

Stochastic approach, and the need to use utility or disutility functions. In real life, travel
times are non-deterministic (stochastic): on each link, for the same capacity and flow, we may have
somewhat different travel times (Sheffi, 1985).

In other words, for each link, the travel time ti is no longer a uniquely determined real number,
it is a random variable whose characteristics may depend on the capacity and flow along this link.
As a result, the overall travel time t is also a random variable.

If we take this uncertainty into account, then it is no longer easy to predict which path will be
selected: if we have two alternative paths, then it often happens that with some probability, the
time along the first path is smaller, but with some other probability, the first path may turn out
to be longer. How can we describe decision making under such uncertainty?

In decision making theory, it is proven that under certain reasonable assumption, a person’s
preferences are defined by his or her utility function U(x) which assigns to each possible outcome
x a real number U(x) called utility; see, e.g., (Keeney and Raiffa, 1976; Raiffa, 1970). In many
real-life situations, a person’s choice s does not determine the outcome uniquely, we may have
different outcomes x1, . . . , xn with probabilities, correspondingly, p1, . . . , pn. For example, when a
driver selects a path s, the travel time is often not uniquely determined: we may have different travel
times x1, . . . , xn with corresponding probabilities p1, . . . , pn. For such a choice, we can describe the
utility U(s) associated with this choice as the expected value of the utility of outcomes: U(s) =
E[U(x)] = p1 · U(x1) + . . . + pn · U(xn). Among several possible choices, a user selects the one
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for which the utility is the largest: a possible choice s is preferred to a possible choice s′ (denoted
s > s′) if and only if U(s) > U(s′).

For the applications presented in this paper, it is important to emphasize that the utility function
is not uniquely determined by the preference relation. Namely, for every two real numbers a > 0
and b, if we replace the original utility function U(x) with the new one V (x) def= a · U(x) + b, then
for each choice s, we will have

V (s) = E[a · U(x) + b] = a · E[U(x)] + b = a · U(s) + b

and thus, V (s) > V (s′) if and only if U(s) > U(s′).
In transportation, the main concern is travel time t, so the utility depends on time: U = U(t).

Of course, all else being equal, the longer it takes to travel, the less preferable the choice of a path;
so, the utility function U(t) must be strictly increasing: if t < t′, then U(t) > U(t′).

In general, decision making is formulated in terms of maximizing a utility function U(x). In
traditional (deterministic) transportation problems, however, decision making is formulated in
terms of minimization: we select a route with the smallest possible travel time. Thus, when people
apply decision making theory in transportation problems, they reformulate these problems in terms
of a disutility function u(x) def= −U(x). Clearly, for every choice s, we have

u(s) def= E[u(x)] = E[−U(x)] = −E[U(x)] = −U(s).

So, selecting the route with the largest value of expected utility U(s) is equivalent to selecting the
route with the smallest value of expected disutility u(s). In line with this usage, in this paper, we
will talk about disutility functions.

Since a disutility function U(t) is strictly decreasing, the corresponding utility function u(t) =
−U(t) must be strictly increasing: if t < t′ then u(t) < u(t′).

Disutility functions traditionallly used in transportation: description and reasons. In
transportation, traditionally, three types of disutility functions are used; see, e.g., (Mirchandani
and Soroush, 1987; Tatineni, 1996; Tatineni et al., 1997).

First, we can use linear disutility functions u(t) = a · t + b, with a > 0. As we have mentioned,
multiplication by a constant a > 0 and addition of a constant b does not change the preferences,
so we can safely assume that the utility function simply conincides with the travel time u(t) = t.

Second, we can use risk-prone exponential disutility functions

u(t) = −a · exp(−c · t) + b

for some a > 0 and c > 0. This is equivalent to using u(t) = − exp(−c · t).
Third, we can use risk-averse exponential disutility functions

u(t) = a · exp(c · t) + b

for some a > 0 and c > 0. This is equivalent to using u(t) = exp(c · t).
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Several other possible disutility functions have been proposed, e.g., quadratic functions u(t) =
t + c · t2; see, e.g., (Mirchandani and Soroush, 1987).

In practice, mostly linear and exponential functions are used. Actually, a linear function can be
viewed as a limit of exponential functions:

t = lim
α→0

1
α
· (exp(α · t)− 1),

so we can say that mostly exponential functions are used.
The main reason for using exponential disutility functions is that these functions are in accor-

dance with common sense (Mirchandani and Soroush, 1987; Tatineni et al., 1997). Indeed:

− functions − exp(−c · t) indeed lead to risk-prone behavior, i.e., crudely speaking, a behavior
in which a person, when choosing between two paths, one with a deterministic time t1 and
another with a stochastic time t2, prefers the second path if there is a large enough probability
that t2 < t1 – even when the average time of the second path may be larger t̄2 > t1;

− functions exp(c · t) indeed lead to risk-averse behavior, i.e., crudely speaking, a behavior in
which a person, when choosing between two paths, one with a deterministic time t1 and another
with a stochastic time t2, prefers the first path if there is a reasonable probability that t2 > t1
– even when the average time of the second path may be smaller: t̄2 < t1.

This accordance, however, does not limit us to only exponential functions: e.g., quadratic functions
are also in reasonably good accordance with common sense.

However, there is another common sense requirements that leads to linear or exponential func-
tions.

A common sense assumption about the driver’s preferences. Let us assume that we have
several routes going from point A to point B, and a driver selected one of these routes as the best
for him/her. For example, A may be a place at the entrance to the driver’s department, and B is
a similar department at another university located in a nearby town.

Let us now imagine a similar situation, in which the driver is also interested in reaching the
point B, but this time, the driver starts at some prior point C. At this point C, there is only one
possible way, and it leads to the point A; after A, we still have several possible routes. We can also
assume that the time t0 that it takes to get from C to A is deterministic. For example, C may be
a place in the parking garage from where there is only one exit.
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s s s
C A B

It is reasonable to assume that if the road conditions did not change, then, after getting to the
point A, the driver will select the exact same route as last time, when this driver started at A.

Comment. Similarly, if two routes from A to B were equally preferable to the driver, then both
routes should be equally preferable after we add a deterministic link from C to A to both routes.

In the deterministic case, this assumption is automatically satisfied. In the deterministic
case, the travel time along each route is deterministic, and the driver selects a route with the
shortest travel time.

Let us assume when going from A to B, the drive prefers the first route because its travel time
t1 is smaller than the travel time t2 of the second route: t1 < t2. In this case, next time, when the
travel starts from the point C, we have time t1 + t0 along the first route and t2 + t0 along the second
route. Since we had t1 < t2, we thus have t1 + t0 < t2 + t0 – and therefore, the driver will still select
the first route.

s s s
C A B

t0
t1

t2

In the stochastic case, this assumption is not necessarily automatically satisfied. In the
stochastic case, when going from A to B, the driver selects the first route if E[u(t1)] < E[u(t2)],
where u(t) is the corresponding disutility function.

Next time, when the driver goes from C to B, the choice between the two routes depends on
comparing different expected values: E[u(t1 + t0)] and E[u(t2 + t0)], where t0 is the (deterministic)
time of traveling from C to A. In principle, it may be possible that E[u(t1)] < E[u(t2)] but

E[u(t1 + t0)] > E[u(t2 + t0)].

Let us describe a simple numerical example when this counter-intuitive phenomenon happens.
In this example, we will use a simple non-linear disutility function: namely, the quadratic function
u(t) = t2. Let us assume that the first route from A to B is deterministic, with t1 = 7, and the
second route from A to B is highly stochastic: with equal probability 0.5, we may have t2 = 1 and
t2 = 10. In this case, E[u(t1)] = t21 = 49 and

E[u(t2)] = E[t22] =
1
2
· 12 +

1
2
· 102 = 0.5 + 50 = 50.5.

Here, E[u(t1)] < E[u(t2)], so the driver will prefer the first route.
However, if we add the same constant time t0 = 1 for going from C to A to both routes,

then in the first route, we will have t1 + t0 = 7 + 1 = 8, while in the second route, we will have
t2 + t0 = 1 + 1 = 2 and t2 + t0 = 10 + 1 = 11 with equal probability 0.5. In this case,

E[u(t1 + t0)] = (t1 + t0)2 = 82 = 64,
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while
E[u(t2 + t0)] =

1
2
· 22 +

1
2
· 112 = 2 + 60.5 = 62.5.

We see that here, E[u(t2 + t0)] < E[u(t1 + t0)], i.e., the drive will select the second route instead of
the first one.

This counter-intuitive phenomenon does not happen for linear or exponential disutility
functions. Indeed, for a linear disutility function u(t) = t, we have u(t1 + t0) = t1 + t0 = u(t1)+ t0;
therefore, E[u(t1+t0)] = E[u(t1)]+t0 and similarly, E[u(t2+t0)] = E[u(t2)]+t0. Thus, if the driver
selected the first route, i.e., if E[u(t1)] < E[u(t2)], then by adding t0 to both sides of this inequality,
we can conclude that E[u(t1 + t0)] < E[u(t2 + t0)] – i.e., that, in accordance with common sense,
the same route will be selected if we start at the point C.

For the exponential disutility function u(t) = exp(α · t), we have u(t1 + t0) = exp(α · (t1 + t0)) =
exp(α · t1) · exp(α · t0) and therefore, u(t1 + t0) = u(t1) · exp(α · t0). Similarly, for the exponential
disutility function u(t) = − exp(α·t), we have u(t1+t0) = − exp(α·(t1+t0)) = − exp(α·t1)·exp(α·t0)
and thus, u(t1 + t0) = u(t1) · exp(α · t0);

For both types of exponential disutility function, we have E[u(t1 + t0)] = exp(α · t0) · E[u(t1)]
and similarly, E[u(t2 + t0)] = exp(α · t0) · E[u(t2)]. Thus, if the driver selected the first route,
i.e., if E[u(t1)] < E[u(t2)], then by multiplying both sides of this inequality by the same constant
exp(α·t0), we can conclude that E[u(t1+t0)] < E[u(t2+t0)] – i.e., that, in accordance with common
sense, the same route will be selected if we start at the point C.

Resulting justification of exponential utility fuinctions. It turns out linear and exponential
disutility functions are the only ones which are consistent with the above common sense requirement
– for every other disutility function, a paradoxical counter-intuitive situation like the one described
above is quite possible.

Let us describe this result in precise terms.

Definition 3. By a disutility function, we mean a strictly increasing function u(t) from non-
negative real numbers to real numbers.

Definition 4. We say that two disutility functions u(t) and v(t) are equivalent if there exist real
numbers a > 0 and b such that v(t) = a · u(t) + b for all t.

Definition 5. We say that a disutility function is consistent with common sense if it has the
following property: let t1 and t2 be random variables with non-negative values, and let t0 be an
arbitrary (deterministic) non-negative real number; then,

− if E[u(t1)] < E[u(t2)], then E[u(t1 + t0)] < E[u(t2 + t0)];

− if E[u(t1)] = E[u(t2)], then E[u(t1 + t0)] = E[u(t2 + t0)].

Theorem 2. A disutility function is consistent with common sense if and only if it is equivalent to
either the linear function u(t) = t, or to an exponential function u(t) = exp(c · t) or − exp(−c · t).
Proof. Under an additional conditions of differentiability of the function u(t), this result has been
proven in (Pratt, 1964). For reader’s convenience, we provide a new proof which does not require
differentiability.
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1◦. We already know that linear and exponential disutility functions are consistent with common
sense in the sense of Definition 5. It is therefore sufficient to prove that every disutility function
u(t) which is consistent with common sense is equivalent either to a linear one or to an exponential
one.

2◦. Let u(t) be a disutility function which is consistent with common sense. By definition of
computational simplicity, for every random variables t1, once we know the values u1 = E[u(t1)]
and t0, we can uniquely determine the value E[u(t1 + t0)]. Let us denote the value E[u(t1 + t0)]
corresponding to u1 and t0 by F (u1, t0).

3◦. Let t′1 be a non-negative number. For the case when t1 = t′1 with probability 1, we have
u′1 = E[u(t1)] = u(t′1). In this case, t1 + t0 = t′1 + t0 with probability 1, so E[u(t1 + t0)] = u(t′1 + t0).
Thus, in this case, u(t′1 + t0) = F (u′1, t0), where u′1 = u(t′1).

4◦. Let us now consider the case when t1 is equal to t′1 with some probability p′1 ∈ [0, 1], and to
some smaller value t′′1 < t′1 with the remaining probability p′′1 = 1− p′1. In this case,

u1 = E[u(t1)] = p′1 · u(t′1) + (1− p′1) · u(t′′1).

We have already denoted u(t′1) by u′1; so, if we denote u′′1
def= u(t′′1), we can rewrite the above

expression as
u1 = p′1 · u′1 + (1− p′1) · u′′1.

In this situation, t1 + t0 is equal to t′1 + t0 with probability p′1 and to t′′1 + t0 with probability 1−p′1.
Thus,

E[u(t1 + t0)] = p′1 · u(t′1 + t0) + (1− p′1) · u(t′′1 + t0).

We already know that u(t′1 + t0) = F (u′1, t0) and u(t′′1 + t0) = F (u′′1, t0). So, we can conclude that

E[u(t1 + t0)] = p′1 · F (u′1, t0) + (1− p′1) · F (u′′1, t0). (21)

On the other hand, by the definition of the function F as F (u1, t0) = E[u(t1 + t0)], we conclude
that

E[u(t1 + t0)] = F (u1, t0),

i.e.,
E[u(t1 + t0)] = F (p′1 · u′1 + (1− p′1) · u′′1, t0). (22)

Comparing the expressions (21) and (22) for E[u(t1 + t0)], we conclude that

F (p′1 · u′1 + (1− p′1) · u′′1, t0) = p′1 · F (u′1, t0) + (1− p′1) · F (u′′1, t0).

Let us analyze this formula. For every value u1 ∈ [u′′1, u′1], we can find the probability p′1 for which
u1 = p′1 · u′1 + (1 − p′1) · u′′1: namely, the desired equation means that u1 = p′1 · u′1 + u′′1 − p′1 · u′′1;
rearranging the terms, we get u1−u′′1 = p′1 ·(u′1−u′′1) and hence, the value p′1 =

u1 − u′′1
u′1 − u′′1

. Substituting

this expression into the above formula, we conclude that for a fixed t0, the function F (u1, t0) is a
linear function of u1:

F (u1, t0) = A(t0) · u1 + B(t0)
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for some constants A(t0) and B(t0) which, in general, depend on t0.

5◦. We have already shown, in Part 3 of this proof, that u(t′1 + t0) = F (u′1, t0). Thus, we conclude
that for every t′1 ≥ 0 and t0 ≥ 0, we have

u(t′1 + t0) = A(t0) · u(t′1) + B(t0).

6◦. For an arbitrary function u(t), by introducing an appropriate constant b = −u(0), we can always
find an equivalent function v(t) for which v(0) = 0. So, without losing generality, we can assume
that u(0) = 0 for our original disutility function u(t).

Since the disutility function is strictly increasing, we have u(t) > 0 for all t > 0.
For t′1 = 0, the above formula takes the form u(t0) = B(t0). Substituting this expression for

B(t0) into the above formula, we conclude that

u(t′1 + t0) = A(t0) · u(t′1) + u(t0).

7◦. The above property has to be true to arbitrary values of t′1 ≥ 0 and t0 ≥ 0. Swapping these
values, we conclude that

u(t0 + t′1) = A(t′1) · u(t0) + u(t′1).

Since t′1 + t0 = t0 + t′1, we have u(t′1 + t0) = u(t0 + t′1), hence

A(t0) · u(t′1) + u(t0) = A(t′1) · u(t0) + u(t′1).

Moving terms proportional to u(t′1) to the left hand side and terms proportional to u(t0) to the
right hand side, we conclude that

(A(t0)− 1) · u(t′1) = (A(t′1)− 1) · u(t0). (23)

In the following text, we will consider two possible situations:

− the first situation is when A(t0) = 1 for some t0 > 0;

− the second situation is when A(t0) 6= 1 for all t0 > 0.

In the first situation, A(t0) = 1 for some t0 > 0. For this t0, the equation (23) takes the form
(A(t′1)− 1) ·u(t0) = 0 for all t′1. Since u(t0) > 0 for t0 > 0, we conclude that A(t′1)− 1 = 0 for every
real number t′1 ≥ 0, i.e., that the function A(t) is identical to a constant function 1.

So, we have two possible situations:

− the first situation is when A(t0) = 1 for some t0 > 0; we have just shown that in this case,
A(t) = 1 for all t; in the following text, we will show that in this situation, the disutility
function u(t) is linear;

− the second situation is when A(t0) 6= 1 for all t0 > 0; we will show that in this situation, the
disutility function u(t) is exponential.
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8◦. Let us first consider the situation in which A(t) is always equal to 1. In this case, the above
equation takes the form

u(t0 + t′1) = u(t0) + u(t′1).

In other words, in this case,
u(t1 + t2) = u(t1) + u(t2)

for all possible values t1 > 0 and t2 > 0.
In particular, for every t0 > 0, we get:

− first, u(2t0) = u(t0) + u(t0) = 2u(t0),

− then u(3t0) = u(2t0) + u(t0) = 2u(t0) + u(t0) = 3u(t0), and,

− in general, u(k · t0) = k · u(t0) for all integers k.

For every integer n and for t0 = 1/n, we have u(n·t0) = u(1) = n·u(1/n), hence u(1/n) = u(1)/n.
Then, for an arbitrary non-negative rational number k/n, we get

u(k/n) = u(k · (1/n)) = k · u(1/n) = k · (1/n) · u(1) = k/n · u(1).

In other words, for every rational number r = k/n, we have u(r) = r · u(1).
Every real value t can be bounded, with arbitrary accuracy, by rational numbers kn/n and

(kn + 1)/n: kn/n ≤ t ≤ (kn + 1)/n, where kn/n → t and (kn + 1)/n → t as n → ∞. Since the
disutility function u(t) is strictly increasing, we conclude that u(kn/n) ≤ u(t) ≤ u((kn + 1)/n). We
already know that for rational values r, we have u(r) = r · u(1), so we have

kn/n · u(1) ≤ u(t) ≤ (kn + 1)/n · u(1).

In the limit n →∞, both sides of this inequality converge to t · u(1), hence u(t) = t · u(1).
So, in this case, we get a linear disutility function.

9◦. Let us now analyze the case when A(t) 6= 1 for all t > 0. Since the values u(t) are positive for
all t > 0, we can divide both sides of the equality

(A(t0)− 1) · u(t′1) = (A(t′1)− 1) · u(t0)

by u(t0) and u(t′1), and conclude that

A(t0)− 1
u(t0)

=
A(t′1)− 1

u(t′1)
.

The ratio
A(t)− 1

u(t)
has the same value for arbitrary two numbers t = t0 and t = t′1; thus, this ratio

is a constant. Let us denote this constant by k; then, A(t)−1 = k ·u(t) for all t > 0. Since A(t) 6= 1,
this constant k is different from 0.

Substituting the resulting expression A(t) = 1 + k · u(t) into the formula u(t′1 + t0) = A(t0) ·
u(t′1) + u(t0), we conclude that

u(t′1 + t0) = u(t0) + u(t′1) + k · u(t0) · u(t′1),
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i.e., that
u(t1 + t2) = u(t1) + u(t2) + k · u(t1) · u(t2)

for arbitrary numbers t1 > 0 and t2 > 0.

10◦. Let us now consider a re-scaled function v(t) def= 1 + k · u(t).
For this function v(t), from the above formula, we conclude that

v(t1 + t2) = 1 + k · u(t1 + t2) = 1 + k · (u(t1) + u(t2)) + k2 · u(t1) · u(t2).

On the other hand, we have

v(t1) · v(t2) = (1 + k · u(t1)) · (1 + k · u(t2)) =

1 + k · (u(t1) + u(t2)) + k2 · u(t1) · u(t2).

The expression for v(t1 + t2) and for v(t1) · v(t2) coincide, so we conclude that

v(t1 + t2) = v(t1) · v(t2)

for all possible values t1 > 0 and t2 > 0.

11◦. When k > 0, then the new function v(t) is an equivalent disutility function. We know that
u(0) = 0 hence v(0) = 1 + k · 0 = 1. Since v(t) is a strictly increasing function, we thus conclude
that v(t) ≥ v(0) > 0 for all t ≥ 0.

Thus, we can take a logarithm of all the values, and for the new function w(t) def= ln(v(t)), get
an equation

w(t1 + t2) = ln(v(t1 + t2)) = ln(v(t1) · v(t2)) = ln(v(t1)) + ln(v(t2)) = w(t1) + w(t2),

i.e., w(t1 + t2) = w(t1) + w(t2) for all t1 and t2. The function w(t) is increasing – as the logarithm
of an increasing function. Thus, as we have already shown, w(t) = c · t for some c > 0.

From the logarithm w(t) = ln(v(t)), we can reconstruct the original disutility function v(t) as
v(t) = exp(w(t)). Since w(t) = c · t, we conclude that the disuility function v(t) has the desired
risk-averse exponential form

v(t) = exp(c · t).

12◦. When k < 0, the new function is strictly decreasing (and is thus not a disutility function; its
opposite −v(t) is a disutility function).

For the function v(t), we cannot have v(t0) = 0 for any t0 – because otherwise we would have

v(t) = v(t0 + (t− t0)) = v(t0) · v(t− t0) = 0

for all t ≥ t0 which contradicts to our conclusion that the function v(t) should be strictly decreasing.
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13◦. For the function v(t), we cannot have v(t0) < 0 for any t0 > 0 – because otherwise, we would
have v(2t0) = v(t0)2 > 0 hence v(2t0) > v(t0) – which, since 2t0 > t0, also contradicts to our
conclusion that the function v(t) should be strictly decreasing.

We thus conclude that v(t) > 0 for all t.

14◦. Thus, we can take a logarithm of all the values, and for the new function w(t) def= ln(v(t)), get
the equation w(t1 + t2) = w(t1) + w(t2) for all t1 and t2. The function w(t) is decreasing – as the
logarithm of a decreasing function. Thus, w(t) = −c · t for some c > 0.

From the logarithm w(t) = ln(v(t)), we can reconstruct the original function v(t) as v(t) =
exp(w(t)) = exp(−c · t), and the disutility function u(t) as −v(t) = − exp(−c · t).

So, we conclude that the disuility function v(t) has the desired risk-prone exponential form
v(t) = − exp(−c · t).

The theorem is proven.
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