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Introduction

• Software failures occur repeatedly
• Patriot missile defense system
• Ariane 501 flight destruction
• Panama ION overdose of radiation

• Formal methods are a way to certify software
• Developments require expertise
• We lack more user-friendly interfaces
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Prior art

• Invisible formal methods by Tiwary, Shankar
and Rushby

• Guaranteed Proofs Using Interval Arithmetic
by Daumas, Melquiond and Muñoz.
http://research.nianet.org/ munoz/Interval/
• Interval splitting
• Taylor’s series expansions
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PVS . . .

Prototype Verification System is a specification
language integrated with support tools and a
theorem prover.

• The specification language is based on
classical, typed higher-order logic.

• The theorem prover provides a collection of
proof commands (rules and strategies) within
a sequent calculus framework

• http://pvs.csl.sri.com
http://shemesh.larc.nasa.gov/fm/fm-pvs.html
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Interval arithmetic

An interval I is a pair [a, b] that represents the set
{x|a ≤ x ≤ b} with the following operations:

• [a, b] + [a′, b′] = [a + a′, b + b′],

• [a, b] − [a′, b′] = [a − b′, b − a′],

• c · [a, b] = [c · a, c · b] for c ≥ 0,

• [a, b] · [a′, b′] =
[min{aa′, ab′, ba′, bb′}, max{aa′, ab′, ba′, bb′}],

• and many more (see for example the PVS
library)
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Interval arithmetic

Working with automatic proof checkers, we
convert operations into properties, x ∈ [a, b],
y ∈ [a′, b′] and c ∈ R:

• x + y ∈ [a, b] + [a′, b′],

• x − y ∈ [a, b] − [a′, b′],

• c · x ∈ c · [a, b],

• x · y ∈ [a, b] · [a′, b′].
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Applications

Interval Arithmetic as well as Taylor models can
be used for

• Self validation of arithmetic properties
• Optimization.
• Solution of systems of equations.
• Parameter estimation.
• . . . (see for examples the book by Jaulin et

al.)
• Bounds on round-off errors

• Forward error analysis
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Decorrelation . . .

. . . is a problem intrinsic to interval arithmetic.

x − x ∈ [0, 0] with x ∈ [0, 1]

is computed as

[0, 1] − [0, 1] = [−1, 1]

Taylor theorem has been used by Daumas et al.

to reduce decorrelation, associated with a theo-

rem prover (automation recently added).
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An example about decorrelation . . .

Assuming you know what Taylor models are,

sin x − x with x ∈ [−1/10, 1/10]

is replaced using Taylor models of degree 3 by

x3

3!
+ r r ∈ [−1/12000000, 1/12000000]
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Taylor theorem (real)

Let f be (n+1) times continuously derivable
between x0 and x,

f(x) =f(x0) + (x − x0)f
′(x0) +

(x − x0)
2

2!
f ′′(x0) + · · ·

+
(x − x0)

n

n!
f (n)(x0)

+
(x − x0)

n+1

(n + 1)!
f (n+1)(x0 + (x − x0)θ)

where 0 < θ < 1
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Taylor theorem (interval)

Let f be (n+1) times continuously derivable in the
interior of I,

f(x) ∈f(x0) + (I − x0)f
′(x0) +

(I − x0)
2

2!
f ′′(x0) + · · ·

+
(I − x0)

n

n!
f (n)(x0)

+
(I − x0)

n+1

(n + 1)!
f (n+1)(I)

where x ∈ I, x0 ∈ I
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Key theories required

To develop Taylor models we have introduced a

theory of finite support series and we have ex-

tended the theory of polynomials of NASA LaRC.
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Taylor models

Taylor models have been introduced by Lanford,
developed by Eckmann, Koch and Wittwer. They
have been used by Makino, Berz et al, to reduce
decorrelation.
A Taylor model is a pair (p, I) associated to each
function A such that A = p(x) + r, r ∈ I.

p(x) polynomial part with fixed degree N ,

x ∈ J usually fixed to [0, 1] or [−1, 1]

r ∈ I interval part
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Properties of Taylor models

• Reduce decorrelation
• Integration is an operation native to Taylor

models and can be applied to solve ODEs
• sin, cos, exp and any analytic function is easily

handled with Taylor models.
• No need to develop explicitly the derivative of

the function to be studied.
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Addition of Taylor models

Let A = p(x) + r and B = q(x) + s, r ∈ I, s ∈ I ′

be Taylor models, the addition

A + B

=p(x) + q(x) + r + s

has the associated Taylor model

(p(x) + q(x), I + I ′).
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Multiplication of Taylor models (1/2)

Let A = p(x) + r an B = q(x) + s, r ∈ I, s ∈ I ′ be
Taylor models, the multiplication

A · B

=(p(x) + r)(q(x) + s)

=p(x)q(x) + p(x) · s + q(x) · r + r · s

almost has the associated Taylor model
(p(x) · q(x), p(J) · I ′ + q(J) · I + I · I ′)

where x ∈ J
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Multiplication . . . (truncated) (2/2)

Let A = p(x) + r and B = q(x) + s, r ∈ I, s ∈ I ′

be Taylor models, and t = trunc(p · q,N) the
multiplication

A · B

=t(x) + (p · q − t)(x) + p(x) · s + q(x) · r + r · s

has the associated Taylor model

(t(x), (pq − t)(J) + p(J) · I ′ + q(J) · I + I · I ′).
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Inverse

Let A = p(x) + r, r ∈ I be a Taylor model,
q(x) = 1 − p(x)

p(0) , t = trunc(
∑N

i=0 qi, N),
we use the series:

N
∑

i=0

xi =
1 − xN+1

1 − x

and the equality:

1

p(x) + r
=

1

p(0)
·

p(x)

p(x) + r
·

1

1 −
(

1 − p(x)
p(0)

)
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Inverse

To bound the second term, we define the new
operator

I ′ = [
1

1 + 1
(I/p(J))

,
1

1 + 1
(I/p(J))

]

We cannot use directly

1

1 + p(J)/I
nor

1

1 + 1
I/p(J)

because I can contain 0.
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Inverse

1/A has the associated Taylor model

(

1

p(0)
t,

1

p(0)

(

N
∑

i=0

qi − t

)

(J)+

1

p(0)

(

q(J)N+1

1 − q(J)
· (1 − I ′) −

(

N
∑

i=0

qi(J)

)

· I ′

))
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Exponential

Let A = p(x) + r, r ∈ I be a Taylor model,

• q(x) = p(x) − p(0),

• t = trunc(
∑N

i=0
qi

i! , N),

• e0 =
∑Ne

i=0
p(0)i

i! ,

• Ne the order of approximation of exponential
• Exp(e,Ne) a function that bounds exp(e) in an

interval using an approximation of order Ne.

The Taylor model of exp(A) is:
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Exponential

(e0 · t,
(

N
∑

i=0

qi(x)

i!
− t

)

(J)

+e0 · ([1] ∪ Exp(q(0), Ne)) ·
q(J)N+1

(N + 1)!

+(Exp(p(0), Ne) − e0) · Exp(q(J), Ne)

+Exp(p(J), Ne) · (Exp(I,Ne) − 1))
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Containment property

Going from evaluation to theorems

containment(f, t) =

∀x ∈ J.f(x) − t‘P (x) ∈ t‘I

We have proved that each operation preserves
the containment property.
taylor_model.pvs and tm_exp.pvs files available
from http://perso.ens-lyon.fr/francisco.jose.chaves.alonso/pvs-files/
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Toy example

In addition to prove mathematical theories PVS
can animate them using the PVS ground
evaluator.

• An experimental feature of PVS 3.x
• Extracts Common Lisp code from PVS

functional specifications and evaluates them.
• PVSio an alternative interface to the ground

evaluator available from
http://research.nianet.org/˜munoz/PVSio

A library of Taylor Models for PVS automatic proof checker – p.26



Toy example ch
(

2 · x
1000

)

· sh
(

3 · x
1000

)

example: THEORY

BEGIN

IMPORTING tm_exp
[

5,5,(#lb := −1, ub := 1#)
]

ch(x: tm): tm = (1/2) × (exp(x) + exp(−x))
sh(x: tm): tm = (1/2) × (exp(x) + −exp(−x))
seq_px: fs_type =

λ (n: nat): IF n = 1 THEN 1/1000
ELSE 0 ENDIF

tm_x: tm = (#P := seq_px, I :=
[[

0
]]

#)
example1: tm = ch(2 × tm_x) × sh(3 × tm_x)

END example
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Toy example

<PVSio> example1‘P(0);
==>
0
<PVSio> example1‘P(1);
==>
3/1000
<PVSio> example1‘P(2);
==>
0
<PVSio> example1‘P(3);
==>
21/2000000000
. . .
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Toy example

<PVSio> example1‘I;
==>
(# lb := -1996666003792920908077809559596469417049924988435
67542489125827927772468257695416279793105352103584647/
38763496047478702331322336437004695773022456032565137
27240130672324223395638663643366685812200000000000000
00000000000000,
ub := 1996666003792920908077809559596469417049924988435
67542489125827927772468257695416279793105352103584647/
38763496047478702331322336437004695773022456032565137
27240130672324223395638663643366685812200000000000000
00000000000000 #)
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Toy example

The Taylor model of degree 5 of

ch
(

2 ·
x

1000

)

· sh
(

3 ·
x

1000

)

=3 ·
x

1000
+

21

2
·
( x

1000

)3

+
521

40
·
( x

1000

)5

+ r

with
r ∈ 5150892483 · 10−28 · [−1, 1]
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Conclusions

• We have developed a theory for Taylor
models in PVS with the operations of
addition, negation, multiplication by scalar,
multiplication, inverse and exponential.
Work in progress (sqrt, atan, . . . )
Work to do (strategies similar to the ones for
interval arithmetic)

• We have developed a theory of finite support
series and extended the theory of
polynomials compatible with the PVS series
of NASA LaRC.
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Thank you for your attention

http://perso.ens-lyon.fr/francisco.jose.chaves.alonso/
fjchaves@ens-lyon.fr

http://perso.ens-lyon.fr/marc.daumas/
Marc.Daumas@LIRMM.fr
Marc.Daumas@Univ-Perp.fr
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Finite support theory

Let a : N → R be a sequence, a has finite
support N if

∀n : n > N ⇒ a(n) = 0

finite_support(a,N) ⇒ finite_support(−a,N)

finite_support(a,N) ∧ finite_support(b,M) ∧

L ≥ max(N,M) ⇒ finite_support(a + b, L)

. . .
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More interesting lemmas

We have proved the convergence of a series with
finite support:

finite_support(a,N)

⇒ convergence(series(a), series(a)(N))
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A great lemma

We have independently proved the correctness
of Cauchy product for series with finite support:

finite_support(a,N) ∧ finite_support(b,M)

⇒

(

N
∑

k=0

ak

)

·

(

M
∑

k=0

bk

)

=
N+M
∑

n=0

n
∑

k=0

ak · bn−k
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Polynomials in PVS

We have demonstrated that the polynomials are
power series of finite support sequences:

polynomial(a,N)(x) : real = powerseries(a)(x)(N)
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Multiplication and Power

finite_support(a,N) ∧ finite_support(b,M)

⇒ polynomial(a,N)(x) ∗ polynomial(b,M)(x)

= polynomial(cauchy(a, b), N + M)(x)

finite_support(a,N)

⇒ polynomial(a,N)(x)n =

polynomial(pow(a, n), n ∗ N)(x)
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Composition of polynomials

We define the composition of polynomials:
comp(a : sequence[real], b : sequence[real], d : nat )

: RECURSIVE sequence[real] =

IF d = 0 THEN

(LAMBDA n : IF n = 0 THEN a(0) ELSE 0 ENDIF)

ELSE

LET c = (LAMBDA n : IF n = d THEN 0 ELSE a(n) ENDIF)

IN a(d) * pow(b, d) + comp(c, b, d-1)

ENDIF

MEASURE d
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Composition of polynomials

And we prove composition is correct

finite_support(a,N) ∧ finite_support(b,M)

⇒ polynomial(a,N)(polynomial(b,M)(x)) =

polynomial(comp(a, b,N), N ∗ M)(x)
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