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Abstract: In engineering, most governing partial differential equations of physical systems are 
solved using finite element or finite difference methods. Applications of interval methods have 
been explored in finite element analysis to model systems with uncertainty in parameters and to 
account for the impact truncation error on solutions. An alternative to finite element analysis is 
boundary element method. The boundary element method uses singular functions to reduce the 
dimension of the domain by transforming the domain variables to variables on the boundaries. In 
this work, new methods using interval variables are developed to enhance boundary element 
method for considering impreciseness such as uncertain boundary conditions, truncation errors, 
integration errors and discretization errors. Exemplars are presented to illustrate the effectiveness 
and potential of interval approach in boundary element method analysis. 
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1. Introduction 
 
Boundary element analysis (BEA) is a method for obtaining approximate solution of partial 
differential equations. This method requires less meshing than finite element analysis and thus, it 
is comparatively faster in generating or refining the mesh. BEA is performed by transformation of 
the domain variables to the variables on the boundaries of the system. The domain transformation 
is constructed using singular solutions of the governing partial differential equation. Though 
extensions to non-linear problems can be of the domain, straight forward BEA   
________________________ 
© 2006 authors. Printed in USA 

REC 2006 – B.F. Zalewski, R.L. Mullen and R.L. Muhanna 

mailto:bxz10@case.edu
mailto:rlm@case.edu
mailto:rafi.muhanna@gtsav.gatech.edu


B.F. Zalewski, R.L. Mullen and R.L. Muhanna 
 

440 

formulations apply to linear problems. Then the transformed boundary integral equations are 
solved using collocation methods, i.e., source points are located sequentially at all boundary 
nodes that map the domain variables such that they coincide to their values at the nodes.  

 
Errors in BEA can be classified into the following sources: 
 
1) Uncertainty in the boundary conditions 
2) Uncertainty in parameters of the system 
3) Errors in integration 
4) Errors in the solution of the resulting linear system of equations 
5) Discretization errors. 
 
In this paper we will address the use of concepts from interval methods to address all of the 

above except for the issue of uncertainty in system parameters. If system parameters such as 
material properties change, one may need to develop a new analytical singular solution. When the 
boundary conditions are uncertain, the use of intervals to bound this uncertainty leads to a system 
of linear equations with an interval right hand side. The incorporation of this source of 
uncertainty can be treated is a manner similar to that used in finite element analysis (Mullen and 
Muhanna, 1999).    
 

Most boundary element programs use numerical quadrature to integrate terms in the resulting 
system of linear equations. In some problems, one can perform the integration explicitly; other 
BEA may require integration that may not be generally performed explicitly. One procedure to 
overcome this issue is to expand the mapping functions as a series, such as Taylor series 
expansion. This expansion, in fact, is an approximation of the function in the form of a 
polynomial, using the function’s derivatives evaluated at a point inside the domain of the 
function. The truncation error is considered as an interval variable obtained from the maximum 
Taylor series expansion remainder. Then, the BEA is performed in the presence of variation in 
the corresponding linear system of equations. Based on present error bounds, the enclosure on the 
bounds of the results is quantified. This procedure can lead to interval bounds on errors due to 
integration.     

 
Truncation errors in the solution of the resulting system of linear equations can be included in 

BEA using conventional interval methods for linear equations (Alefeld 1983, Gay 1982, Hansen 
1965, Jansson 1991, Moore 1979, Neumaier 1987, 1988, 1990, Rump 1990, Sunaga 1958).  

 
Finally we explore the bounding of discretization errors using local functions that are 

bounded by interval values. An example for a two dimensional Laplace equation using constant 
elements is presented. Sharp bounds require a method for solving parametrically constrained 
systems of linear equations.    
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2. Boundary Element Analysis of Laplace Equation 
 
2.1. BEA FORMULATION FOR LAPLACE EQUATION 
 
The theory of boundary elements is discussed in the books by Brebbia 1992 and Hartmann 1889. 
In the following, we will review a two dimension boundary element formulation for Laplace 
equation.  

 
The Laplace equation is: 
 

   0      Ωin   2 =∇ u
     uu ˆ=         (1) 1Γon

 qq
n
u

ˆ==
∂
∂

     2Γon

 
where  is the domain of the system, )(Ω )(Γ  is the boundary of the system and  and  are 
the values at the boundary.  

)ˆ(u )ˆ(q

 
To minimize the error introduced as the exact solution of  and  is approximated, 

orthogonalization of Eq. (1) with respect to a test function  is performed: 
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Twice integrating by parts on the left side of Eq. (2) and considering  and  
yields: 

wu =* nuq ∂∂= /**
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where )(ξ  is a source point.  
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The term  is the fundamental solution satisfying Laplace equation that represents a field 

generated by a singular source at some point 

)( *u
)(ξ . Hence, at a field point ,  must satisfy: )(x )( *u

 

  (5) 0)(*2 =−+∇ ξδ xu
 
The solution to Eq. (5) for a two-dimensional isotropic domain is: 
 

 )ln(
2
1* ru
π

−=  (6) 

 

 nx
r

q ⋅−−= )(
2

1
2

* ξ
π

 (7) 

 
where || ξ−= xr  is the distance between the source point )(ξ  and any point of interest . 

Allowing the boundary to be along  and rewriting Eq. (4) before the application of boundary 
conditions: 

)(x
)(x

 

       ,)(),()(),()( ** ∫∫
ΓΓ

Γ=Γ+
xx

xx dxqxudxuxqu ξξξ Ω∈ξ  (8) 

 
Integrating Eq. (8) such that the source point, )(ξ , is included on the circular boundary of radius 

)(ε , as 0→ε , results in the left side integral vanishing. For constant elements the right side 

integral results in )(
2
1 ξu− . Thus, Eq. (8) can be rewritten as: 

 

 ,)(),()(),()(
2
1 ** ∫∫

ΓΓ

Γ=Γ+
xx

xx dxqxudxuxqu ξξξ      Ω∈ξ  (9) 

 
2.2. CONSTANT ELEMENT BOUNDARY  DISCRETIZATION 
 
Any boundary Γ  can be discretized into boundary elements iΓ  consisting of nodes at which a 

value of either  or  is known and assumed polynomial shape functions between nodes. In 
this work, only boundary elements with constant shape functions are used. 

)(u )(q
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These elements contain one node per element, leading to the following discretization: 
 

 )()( xuxu iΦ=  (10) 

 
 )()( xqxq iΦ=  (11) 

 
where  and  are the vectors of nodal values of  and , respectively, at node  

and  is the vector of constant shape functions. The discretized Eq. (9) is written as: 

}{ iu }{ iq )(u )(q )(i
)(xΦ
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Eq. (12) is written in a matrix form: 
 
 GqHu =  (13) 
 
where matrix  satisfies the rigid body motion. Eq. (13) is rearranged and solved as: ][H
 
 fAx =  (14) 
 
The terms of  and  matrices can either be determined explicitly or are computed 
numerically, by numerical  integration using Taylor series expansion.  

][H ][G

 
 
 

3. Taylor Series Expansion 
 
A function can be expressed as a polynomial in terms of its derivatives at some point  using 
Taylor series expansion [Taylor, 1715]: 
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where . ∞→m
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 If the function has a finite amount of nonzero derivatives, it can be integrated exactly: 
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where  corresponds to the last nonzero derivative of the function. Since a function  is 
represented by a polynomial, its integration can be performed: 
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However, if the function has an infinite amount of nonzero derivatives, integration of the Taylor 
Series introduces truncation errors, since not all terms in the series can be accounted for. 
 
 
 
 

4. Error Analysis on Taylor Series Expansion 
 
A function can also be expressed using Taylor series expansion with remainder as: 
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where  corresponds to the  derivative of the function and and  is the series 

remainder as: 
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Thus, any function can be integrated exactly as: 
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Hence, truncation error can be defined as: 
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Integrating Eq. (19) yields: 
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However, the closed form solution of  cannot be obtained since ∫
x

ndxR )(ζ  is unknown. 

 
The truncation error can be represented by an interval variable. The interval number is a 

closed set as: 
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The maximum truncation error is found: 
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The bounds on the truncation error are computed: 
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These interval Taylor series expansion bounds are used in order to represent truncation error of 
 and  matrices when numerical integration is not used. The approximate terms of the 

 and  matrices for an element of length  are computed as: 
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5. Interval Boundary Element Formulation 
 
 
 The bounds on the exact value of the non-diagonal terms of  and  matrices are computed 

using Eqs. (26) and (25). The diagonal terms of the  matrix are computed such that the 

matrix  satisfies the rigid body motion constraint. The diagonal terms of the  matrix 

require special consideration since they contain singular integrals, as the distance |

][H ][G
][H

][H ][G
| ξ−= xr  

vanishes at the node. The approximate value of the diagonal terms is computed using Eq. (26).  
 

Since the function is singular at the node, { })(max ζnf  becomes infinite, Eq. (25) cannot be 
used to meaningfully determine the error bound. The closed form solution of the improper 
integral of the diagonal terms of the  matrix is found, whish is not necessarily in the domain 
of the actual problem. If the domain of the improper integral is different than that of the problem, 
the remaining domain is integrated numerically using Eq. (26) and the error found using Eq. (25). 
If the domain of the improper integral is that of the problem, the difference between the closed 
form solution and the numerical integration is considered as truncation error. 

][G

 
 Interval Boundary Element Analysis using the interval bound on the truncation error is 

performed as: 

 qGuH ~~~~ =  (27) 
 
Eq. (14) is rearranged as: 

 fxA ~~~ =  (28) 
 
The interval linear system of equation can be solved by Matlab Interval Toolbox [MATLAB 
6.5.1], which uses Newton-Krawczyk iteration. 
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6. Discretization error 
 
In the analysis of the discretiztion error, we will look for interval bounded unknown functions 
that will satisfy the continuous problem.   
 

 ∫∫
ΓΓ

Γ=Γ+ dxqxudxuxqu )(),()(),()(
2

1 ** ξξξ        Γ∈ξ  (29) 

 
The existence and uniqueness of the solution to the above problem for two dimensional Laplace 
equation when  or  (but not both) is given is well studied [Friedman 1976]. We will 

assume that the exact solution to Eq. (29) is  and .  
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The boundary  is subdivided into elements. For each element, we will seek the interval values 

 and  that bound the functions  and  over an element  (see Figure 2) such that: 
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If  or  are specified as boundary conditions, the bounds of the function are assumed to be 
given explicitly. Each term of the summation in Eq. (30) is represented graphically in Figure 1. 

)(u )(q

 

 
Figure 1. Integration from element B from point P on element A. 

 
 

 



B.F. Zalewski, R.L. Mullen and R.L. Muhanna 
 

448 

The integral of the product will be expanded to the product of two intervals:  the interval value of 
u or q and the interval bounds of the integral of the singular solution over the element for all 
values of )(ξ . For example: 
 

  (31) ∫∫
ΓΓ

Γ⊂Γ
ii

udxqdxuxq i
~),()(),( ** ξξ

 
if  has the same sign over the element. If not, the integration domain is subdivided into 

portions that have the same sign for . Then the integral is replaced by interval bounds. 

)( *q
)( *q

 

  (32) jjii uhudxq
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ξξ ~~
),(*

 
Eq. (31) is illustrated in Figure 2 schematically.  
 

 
 

Figure 2. Interval bounds on solution to an element. 
 
Thus, the interval bounds on the solution of Eq. (30) can be expressed as a generalized interval 
system of linear equations.    
 

For sharp bounds, the parametric dependence of each row of the  or  matrices on ][H ][G
)(ξ  must be included in the solution of the interval system. 
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7. Examples 
7.1.  EXAMPLE 1
 
The first example is a demonstration of the interval treatment of uncertain boundary conditions. 
The unit square domain of the problem as well as the BEA mesh is shown in Figure 3. The left 
and right hand sides have a zero flux boundary condition while the bottom is between a [0,1] 
potential and the top is at at a [1,2]  potential. 
 
 

 

1:1 ratio 

 
Figure 3. Boundary discretization using six constant boundary elements. 

 
 
Boundary Conditions: u1=[0,1], q2=0, q3=0, u4=[1,2], q5=0, q6=0 
 
 
The interval bounds are shown and compared with the combinatorial solution (Table 1) for the 
unknown boundary values. In this solution, the interval solution has significantly larger width 
compared with the combinatorial solution.    
 

We attribute this over estimation to the fact that right hand side in a boundary element 
solution includes terms that involve products of the interval boundary conditions with terms from 
the  or  matrices. Methods for preserving the parameterization of the right hand side 
vector need to be explored to provide sharper results. 

][H ][G
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Node Value 

 

 
Lower Bound 

 
Combinatorial 
Lower Bound 

 

 
Combinatorial 
Upper Bound 

 
Upper Bound 

q1 -2.5770 -2.0763 0.0000 0.5007 

q2 0.0922 0.2451 1.2451 1.3981 

u3 0.6019 0.7549 1.7549 1.9078 

u4 -0.5007 0.0000 2.0763 2.5770 

q5 0.6019 0.7549 1.7549 1.9078 

q6 0.0922 0.2451 1.2451 1.3981 

 
Table 1. Solutions to Laplace equation with uncertain boundary conditions. 

 
7.2.  EXAMPLE 2
 

The second example uses interval BEA to solve Laplace equation on a 2 x 1 domain using six 
constant boundary elements with a node located at the mid-point (Figure 4).  The sides of the 
domain have zero flux while the bottom is at zero potential and a potential of 50 is at the top.  In 
this example we will use a four point integration method based on a Taylor series to develop 
interval terms in the  and   matrices.   The interval system of equations is then solved 
using Matlab. 

][H ][G

 

 

1:2 ratio 

Figure 4. Boundary discretization using six constant boundary elements. 
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Boundary Conditions: u1=0, q2=0, q3=0, u4=50, q5=0, q6=0 
 
 
The solution obtained by exact integration is shown and compared to the bounds of the solution 
using the proposed method (Table 2). 
 
 

Node Value Lower Bound Solution with exact integration Upper Bound 

q1 -33.6604 -28.1967 -23.9615 

u2 11.1689 11.9357 12.4285 

u3 37.5192 38.0643 38.8833 

q4 23.4502 28.1967 34.1717 

u5 37.5192 38.0643 38.8833 

u6 11.1690 11.9357 12.4285 

 
Table 2. Solutions to Laplace equation in presence of truncation error. 

 
The results obtained by the present method shows that the presence of truncation errors in 
integration as well as in solution of the system of linear equations can be bounded using Interval 
Boundary Element Analysis.   
 
 
7.3.  EXAMPLE 3
 

The third example obtains the bounds on discretization error for the BEA of the Laplace 
equation. We consider a unit domain with zero flux on each side, a zero potential on the bottom 
and a unit potential on the top.  With the coarse meshes used as well as the need to improve the 
solution of a parameterized system of interval equations, we will present bounds calculated by a 
“brut force” construction of interval bounds by constructing terms in the  and  matrices 

by moving the point 

][H ][G
)(ξ  over the domain of an element to evaluate terms in Eq. (32).  Thus, the 

results represent the potential to efficiently calculate bounds only of  an optimal interval solution 
method to the parametric problem can be developed.   
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Three different meshes are considered and the solutions in presence of the discretization error 
are compared. 

 

1:1 ratio 

Figure 5. Boundary discretization using four constant boundary elements. 
 
Boundary Conditions: u1=0, q2=0, u3=1, q4=0 
 

 

1:1 ratio 

 
Figure 6. Boundary discretization using six constant boundary elements. 

 
Boundary Conditions: u1=0, q2=0, q3=0, u4=1, q5=0, q6=0 
 

 

1:1 ratio 

 
Figure 7. Boundary discretization using eight constant boundary elements. 

 

 
Boundary Conditions: u1=0, q2=0, q3=0, q4=0, u5=1, q6=0, q7=0, q8=0 
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The bounds of the interval BEA solution are shown and compared with a conventional BEA 
solution where the node of each element is located at its mid-point of the element for the three 
different meshes (Tables 3-5).  
 

 
Node Value 

 

 
Lower Bound 

 
Middle Value 

 
Upper Bound 

 
Width 

 
Mid-point Node 

Solution 
 

q1 -1.9896 -1.2512 -0.5129 1.4768 -1.1746 

u2 0.0000 0.5000 1.0000 1.0000 0.5000 

q3 0.5129 1.2512 1.98961 1.4768 1.1746 

u4 0.0000 0.5000 1.0000 1.0000 0.5000 

 
Table 3. Solutions to Laplace equation in presence of dicretization error for a four node mesh. 

 
 
 
 

 
Node Value 

 

 
Lower Bound 

 
Central Value 

 
Upper Bound 

 
Width 

 
Mid-point Node 

Solution 
 

q1 -1.4389 -1.0823 -0.7258 0.7131 -1.0382 

u2 -0.0793 0.2431 0.5655 0.6448 0.2451 

u3 0.4345 0.7569 1.0793 0.6448 0.7549 

q4 0.7258 1.0823 1.4389 0.7131 1.0382 

u5 0.4345 0.7569 1.0793 0.6448 0.7549 

u6 -0.0793 0.2431 0.5655 0.6448 0.2451 

 
Table 4. Solutions to Laplace equation in presence of dicretization error for a six node mesh. 
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Node Value 

 

 
Lower Bound 

 
Central Value 

 
Upper Bound 

 
Width 

 
Mid-point Node 

Solution 
 

q1 -1.2737 -1.0397 -0.8057 0.4680 -1.0161 

u2 -0.0731 0.1539 0.3808 0.4539 0.1639 

u3 0.2856 0.5000 0.7144 0.4288 0.5000 

u4 0.6192 0.8461 1.0731 0.4539 0.8361 

q5 0.8057 1.0397 1.2737 0.4680 1.0161 

u6 0.6192 0.8461 1.0731 0.4539 0.8361 

u7 0.2856 0.5000 0.7144 0.4288 0.5 

u8 -0.0731 0.1539 0.3808 0.4539 0.1639 

 
Table 5. Solutions to Laplace equation in presence of discretization error for a eight node mesh. 

 
The bounds on the discretization error are fairly sharp and enclose the exact solution for this 
problem.    In fact, for the edges of the 4 element mesh, the bounds are sharp.  In addition, the  
results show that the width of discretization error bounds reduces with mesh refinement.  
 
 
 

8. Conclusion 
 
In this work, new methods are presented to perform boundary element analysis in the presence of 
the truncation and discretization errors as well as uncertain boundary conditions.  The methods 
rely on interval methods to quantify local errors in BEA.   The examples presented demonstrate 
the potential of interval based boundary element methods to provide reliable engineering 
computations.  Further work is needed to optimally solve the parametric form of the interval 
equations to advance interval based BEA to a truly reliable and efficient engineering analysis 
tool.  
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