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Abstract: A significant amount of research efforts has been given to explore the mathematical 
basis for 3D dimensional and geometric tolerance representation, analysis, and synthesis. 
However, engineering semantics is not maintained in these mathematic models. It is hard to 
interpret calculated numerical results in a meaningful way. In this paper, a new semantic 
tolerance modeling scheme based on modal interval is proposed to improve interpretability of 
tolerance modeling. With logical quantifiers, semantic relations between tolerance specifications 
and implications of tolerance stacking are embedded in the mathematic model. The model 
captures the semantics of physical property difference between rigid and flexible materials as 
well as tolerancing intents such as sequence of specification, measurement, and assembly. 
Compared to traditional methods, the semantic tolerancing allows us to estimate true variation 
ranges such that feasible and complete solutions can be obtained. 
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1 Introduction 
 
Tolerance modeling forms an important link between design and manufacturing processes. A 
significant amount of research efforts has been given to explore the mathematical basis for 3D 
dimensional and geometric tolerance representation, analysis, and synthesis. Problems of 
tolerance relations can be mathematically formulated and solved in different ways. The typical 
methods for analysis include variational estimation, kinematic formulation, statistical 
approximation, and Monte Carlo simulation. However, current tolerance modeling methods do 
not represent the semantics of tolerance specifications well. 

First, traditional tolerance analysis methods assume objects have rigid geometry. Variance is 
increasingly “stack-up” as components are assembled. As shown in Figure 1, tolerance of 
assembly is always assumed to be larger than its subassembly. Rigid body tolerance analysis 
over-estimates variations of flexible materials, such as assemblies containing sheet metal, 
polymer, and plastic parts, which are common in aerospace, automobile, and electronics industry. 
For example, an airplane skin can be slightly warped, and yet it can be riveted in place. Similarly,  
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subassembly components of auto body with much larger variation than the specified can still  
 

achieve the final assembly specification. The conventional addition theorem of variance is no 
longer valid in these applications. Given the specification of an assembly, unreasonably tight 
tolerance requirements will be assigned to subassemblies and components during tolerance 
synthesis, as shown in Figure 2. The tolerance allocation based on the rigid body assumption 
increases manufacturing costs unnecessarily. These methods treat tolerances for rigid and 
compliant assemblies with the same scheme of +/- range. This does not capture the physical 
property difference between rigid and flexible materials and implied engineering meanings.  
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Figure 1. Tolerance ranges are monotonously increasing as assembly is built based on the rigid-body assumption 
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Figure 2. Tolerancing may become so tight that costs increase unnecessarily in flexible assembly based on current 

rigid-body tolerance synthesis schemes 

 
Second, current tolerance modeling and analysis methods do not maintain the semantics of 

tolerance specifications. Two types of variation, priori and posteriori, are not differentiated in 
current tolerance models. Priori variation is predetermined but unknown, such as tolerances of 
components from suppliers. On the other hand, posteriori variation is known and controllable, 
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such as tolerances of components built in-house. Engineering implication and tolerance allocation 
strategies are different for two types of variation. Priori variation is not controllable, while 
posteriori variation provides “buffers” in tolerance allocation. Further, how to interpret the 
numerical outputs with high and low bounds is important to understand the relation between 
tolerances. Numerical results of current methods are not interpretable. Engineering semantics 
needs to be maintained during mathematical computation. 

Third, accuracy of range estimation is essential in tolerance analysis. Basic questions include 
completeness and feasibility. Complete solution includes all possible occurrences, which is to 
check if an interval includes all possible results. Feasible solution does not include impossible 
occurrences, which is to check if the interval over estimates the range. Current methods except 
Monte Carlo simulation with extensive sampling do not always give true range. The worst-case 
method tends to over estimate because of dependency between variables. Statistical methods do 
not give true range but statistical intervals. The results from vector and kinematic approaches are 
numerical estimations from algebraic approximations such as linearization. True range estimation 
should be both complete and feasible.  

Instead of focusing only on mathematic and numerical convenience, a good mathematic 
model of tolerance should convey the full semantics of size and geometric tolerances and support 
analysis and synthesis with a simple yet comprehensive structure. Existing research does not 
concentrate on engineering semantics of tolerance zones. This leads to the problem that numerical 
solutions are not interpretable. 

In this paper, we propose a new scheme to represent and analyze tolerance based on modal 
interval analysis. Extended from traditional set-based interval, modal interval introduces logical 
quantifiers and provides interpretation of intervals. Tolerancing semantics thus can be integrated 
into numerical calculation. In addition to better interpretability, modal interval analysis also 
provides better variation estimation than traditional interval analysis. The remainder of the paper 
is organized as follows. Section 2 gives an overview of related work on tolerance modeling and 
interval analysis, and an introduction to modal interval. Section 3 and 4 present the concept of 
semantic tolerance modeling and its two basic properties: interpretability and optimality. Section 
5 describes analysis methods of the semantic tolerance model. 

 
 

2 Background 
 
2.1 3D TOLERANCE MODELING 
 
There is plenty of literature on tolerance modeling (Hong and Chang, 2002; ADCATS). We just 
have a brief overview of 3D geometric tolerance zone representation related to the tolerance 
semantics. In the variational approaches, tolerance zones are established in 3D Euclidean space 
by parameter variation of spatial constraints and equations. Requicha (1983) proposed to 
construct tolerance zones by offsetting the part’s nominal boundaries. Inui et al. (1993) 
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approximate tolerance zone using boundary offset and geometric constraints. Roy and Li (1998; 
1999) model tolerance zones of size, flatness, and parallelism in the variational form of plane 
equation. Teck et al. (2001) represent flatness of non-rectangular planar surfaces. Davidson et al. 
(Davidson et al., 2002; Mujezinovic et al., 2004) developed a hypothetical volume-based 
algebraic model to represent size, form, and orientation tolerances. Bhide et al. (2003) extended 
the method for cylindrical features. 

In the statistical approaches (Nigam and Turner, 1995; Gerth, 1997), linear tolerance stack-up 
can be estimated using root-sum-square methods while non-linear stack-up is approximated using 
Taylor series. Typically it is assumed that the parameters are independent and the random 
variables are normally distributed. While the root-sum-square gives optimistic estimation, 
alternatives were proposed to do adjustment and correction for shifts and drifts (Chase and 
Greenwood, 1988). Srinivasan and O’Connor (1994) model and analyze tolerance based on 
statistical tolerance zone in the mean-variance (μ-σ2) space, which is directly related to process 
capability indices in industry practices. Zhang et al. (1999) apply distribution function zone to 
tolerance synthesis. Different from other approaches, research in the statistical approach 
concentrates on dimensional tolerance stack-up and geometric tolerances are not modeled 
separately. 

In the kinematic approaches, geometrical variation and displacement are modeled 
mathematically in vectors and matrices. Vectorial tolerancing (Wirtz et al., 1993; Martinsen, 
1995) models size, form, location, and orientation tolerances in a unified vector format in order to 
provide an integrated quality control loop. Small displacement torsor method (Bourdet and Ballot, 
1995; Giordano and Duret, 1993) approximates rotation and translation displacement in the form 
of torsors. Matrix representation method (Whitney et al., 1994; Desrochers and Riviere, 1997) 
models displacement in the form of homogenous transformation matrices. Rivest et al. (1994) 
exploit the kinematic character of the link imposed by a tolerance between the datum and the 
toleranced feature. Chase et al. (Chase et al., 1996; Gao et al., 1998) perform analysis of 
assembly using small kinematic adjustment between components based on linear approximation 
of implicit dimensional constraint functions. Joskowicz et al. (Joskowicz et al. 1997; Sack and 
Joskowicz, 1998) compute contact tolerance zones of planar parametric parts within configuration 
space. The kinematic methods distinguish size and each type of geometric tolerances. However, 
relations between variations are not modeled, and estimation result is hard to interpret. 

In the Monte Carlo simulation approach (e.g. Turner and Wozny, 1987; Gao et al., 1995; 
Ashiagbor et al., 1998), no assumptions on independence and distribution are needed. Based on 
tolerance response relation, large amount of samples are randomly generated and evaluated in 
statistical estimation. The drawback is that the computational time for the required sampling 
process is high if good estimation is needed. It also depends on the pre-assumption of certain 
statistical distributions for input variables.  

 The above modeling and analysis methods have been widely accepted and used in 
commercial software such as Vis VSA® and CE/Tol®. However, it is not easy to interpret the 
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meanings of the specifications for each type of tolerances in component and assembly. 
Furthermore, the rigid-body assumption tends to over-estimate the variation of flexible materials.  
 
 
2.2 TOLERANCE ANALYSIS FOR FLEXIBLE ASSEMBLY 
 
There is relatively little research on tolerance analysis for flexible materials. Takezawa (1980) 
applied linear regression models to predict auto body panel (sheet metal parts) assembly variation 
using real production data, and he found variation of assembly could be smaller than individual 
parts. He concluded that “the conventional addition theorem of variance is no longer valid for 
deformable sheet metal assemblies”.  

Liu and Hu (1997) proposed a linear finite element structural model to predict variation of 
sheet metal joining based on the concepts of mechanistic variation simulation and influence 
coefficient. Monte Carlo simulation is used to randomly displace nodes in a finite element model 
and the variance of the assembly can be estimated (Liu et al., 1996). Long and Hu (1998) 
extended the method to include the variation of fixtures during assembly operations. Camelio et 
al. (2003) extended the method to multi-station assembly systems with compliant parts. Camelio 
et al. (2004) further applied principle component analysis to simplify covariance matrix in 
variance computation.  

Merkley et al. (Merkley et al., 1996; Merkley, 1998) developed a finite element tolerance 
analysis method for flexible assemblies based on linear elastic contact assumption. Polynomial 
interpolation is used to model geometric covariance between nodes, and stiffness matrix describes 
material covariance. Bihlmaier (1999) extended the method to consider autocorrelation in 
geometric covariance matrices.  

The above finite element approaches have been integrated into some commercial software 
such as vis VSA and CATIA-TAA. However, tradeoff between fidelity and performance is 
always related to finite element methods. The computation becomes very expensive if the 
variance estimation involves complex assemblies. In most cases, accurate calculation of structural 
deformation and stress distribution is not the main purpose of tolerance analysis. Confidence of 
producibility and associated cost analysis need to be estimated without significant computation.  

 
2.3 INTERVAL ANALYSIS 
 
Interval mathematics is a generalization in which interval numbers replace real numbers, interval 
arithmetic replaces real arithmetic, and interval analysis replaces real analysis. The real number 
system  is geometrically complete for numerical representation, but not practical for digital 
computing. Not only intervals solve the problem of representation for real numbers on a digital 
scale, but they are the most suitable way to represent uncertainties and errors in technical 
constructions, measuring, computations, and ranges of fluctuation and variation.  

R
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The set of intervals corresponding to real numbers is . Let )(RI ],[][ aaa = , ],[][ bbb =  be 
real intervals and  be one of the four basic arithmetic operations for real numbers, { }/,,, ⋅−+∈ . 
The corresponding operations for interval [a] and [b] are defined by 

{ }][],[][][ byaxyxba ∈∈= . 
Interval analysis has been extensively used in reliable computing in computer science. In 

engineering fields, methods of interval analysis have been used in computer graphics (Mudur and 
Koparkar, 1984; Toth, 1985; Moore and Wilhelms, 1988; Duff, 1992; Snyder, 1999), robust 
geometry construction and evaluation (Abrams et al., 1998; Shen and Patrikalakis, 1998; Tuohy 
et al., 1997; Wallner et al., 2000), set-based modeling (Finch and Ward, 1997), imprecise 
structural analysis (Rao and Berke, 1997), design optimization (Rao and Cao, 2002), finite-
element formulation and analysis (Muhanna and Mullen, 1999; 2001; Muhanna et al., 2004), 
solving soft geometric constraint and preference (Wang, 2004; Wang and Nnaji, 2006), and 
worst-case tolerance analysis and synthesis (Yang et al., 2000).  

Interval analysis has intrinsic uncertainty and variance properties for tolerance analysis. 
However, it is based on a worst-case scenario as in traditional linear stack-up methods. The 
results usually are pessimistic in this variance addition scheme if dependency exists between 
variables. In contrast, modal interval analysis is an extension of the traditional interval analysis, 
which differentiates semantics of interval specification in different application situations. 

 
2.4 MODAL INTERVAL ANALYSIS 
 
Modal interval analysis (MIA) (Gardenes et al., 2001; Popova, 2001; Armengol et al., 2001) is a 
logical and semantic extension of traditional interval analysis. MIA extends real numbers to 
intervals. Unlike classical interval analysis which identifies an interval by a set of real numbers, 
MIA identifies the intervals by the set of predicates which is fulfilled by the real numbers.  

Given the set of closed intervals of , , and the set of logical existential (E or ) and 
universal (U or ∀ ) quantifiers, a modal interval is defined by a pair: 

R )(RI ∃

),'(: XQXX =  
in which and . X' is the classic interval and Q)(' RIX ∈ { UE,X ∈Q }

)

X is one of the two modalities.  
Similar to the way in which real numbers are associated in pairs with same absolute value but 

opposite + and − signs, modal intervals are associated in pairs too. Each member of a pair is 
corresponding to the same closed interval of real line, but having opposite modalities of 
existential or universal. The quantifiers are operators which transform real predicates into interval 
predicates. They are written as  and , indicating both arguments, the 
real index x and the interval argument X'. The notations  and  are interpreted as 

 and (  respectively. 

)()E( xPx,X' )()U( xPx,X'
)E(x,X' )U(x,X'

( )X'x∈∃ X'x∈∀
The canonical notation for modal interval is 
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⎩
⎨
⎧

≥
≤

=
baab
baba

ba
 if    ) U,]',([
 if    )E ,]',([

:],[ . 

A modal interval  is called existential or proper interval whereas  is 
called universal or improper interval. The set of modal intervals is denoted by . The modal 
quantifier Q is associated with every real predicate P(.). For a variable  and 

, Q is interpreted by Q

)E ,]',([ ba ) U,]',([ ab
)(* RI

R∈x
)()Q,'( *

x RIX ∈ x as 
)()',(Q:)())Q,'( ,Q( xx xPXxxPXx = . 

Predicates of modal intervals are defined as the set of real predicates. 
{ })())Q,'(,Q(|)((.):)Q,'( xx xPXxPredPXPred R∈= . 

Based on the above semantic extension, basic arithmetic operations of modal interval are 
defined as follows. For A = [a1,a2] and B = [b1,b2], 

],[ 2211 babaBA ++=+ , ],[ 1221 babaBA −−=−  

 
The inclusion relation between modal intervals is defined as 

. Semantically, ( 22112121 ,],[],[ bababbaa ≤≥⇔⊆
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)0,0,0,0(],[
)0,0,0,0(],[
)0,0,0,0()],max(),,[min(
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) )()( BPredAPredBA ⊆⇔⊆ . If , 
the implication  is valid. The “less or equal” relation is defined as 

. Some modal interval operations are defined as 
, 

BA⊆
)(),(Q)(),(Q xPBxxPAx ⇒

( 22112121 ,],[],[ bababbaa ≤≤⇔≤ )
)],max(),,[min(:]),([ 212121 aaaaaaProp = )],min(),,[max(:]),([ 212121 aaaaaaImpr = , and 

2121 :]),([ aaaaidthW −= .  
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MIA is able to model problems on a logical basis and to obtain the interval functional 
evaluations for the mathematical model involved. Based on modal interval, we propose a new 
semantic tolerance modeling scheme, in which the implications of tolerance stacking can be 
embedded in the tolerance model. Accurate range estimation can be achieved compared to 
traditional worst-case interval methods. 

The purpose of semantic tolerance modeling is to capture logical therefore engineering 
meanings and implications in mathematical representation, which is to build a bridge between 
mathematic theory and engineering practice. Semantic tolerance modeling has two important 
characteristics: (1) Interpretability: being able to interpret tolerance intervals during analysis and 
synthesis processes and to provide the basic understanding of tolerancing semantics; and (2) 
Optimality: being able to analyze tolerance propagation and accumulation so that tolerances can 
be specified without losing the basic requirements of completeness and feasibility. Interpretability 
allows tolerance semantics to be embedded in interval results. Optimality assures tightness of 
variation estimation. The following sections will describe the properties of modal interval 
representation in semantic tolerancing.  

 
 

3 Interpretability 
 
The uniqueness of modal interval is the modal semantic extension. If a real relation 

 is extended to the interval relation ),,( 1 nxxfz = ),,)(( 1 nXXfFZ = , the interval 
relation Z  is interpretable if there is a semantic relation 

),,()),,)((,(Q),(Q),(Q 11111 nnznnn xxfzXXfFzXxXx = . 
A component x is uni-incident in a function f(X) if it occupies only one leaf of the syntax tree 

for the function. Otherwise, it is multi-incident. To reduce the interdependency effect of multi-
incidence, which usually over estimates interval function ranges, two interval extensions of real 
function , so-called semantic interval functions, are defined in min-max situation as: )(xf

)],(minmax),,(maxmin[:)(
''''

*
ipXxXxipXxXx

xxfxxff
iippiipp ∈∈∈∈

=X , 

)],(maxmin),,(minmax[:)(
''''

**
ipXxXxipXxXx

xxfxxff
ppiippii ∈∈∈∈

=X , 

where  is the component splitting corresponding to interval vector , with 
X

),( ip xx ),( ip XX=X
p and Xi are sub-vectors containing proper and improper components respectively. 

Important properties of interpretability are available and proved. 
Theorem 3.1 (Gardenes et al., 2001) Given a continuous function  and a modal 
vector , if there exists an interval , then  

RR →nf :
)(* nI R∈X )()( * RIF ∈X

),()',(E))(,(Q)',(U)()(*
ipiipp xxfzXxFzXxFf =⇔⊆ XXX . 
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Theorem 3.2 (Gardenes et al., 2001) Given a continuous function  and a modal 
vector , if there exists an interval , then 

RR →nf :
)(* nI R∈X )()( * RIF ∈X

),()',(E)))((,(Q)',(U)()(**
ipppii xxfzXxFDualzXxFf =⇔⊇ XXX , 

where Dual operator is defined as ],[:]),([ abbaDual = . 
 
3.1 UNI-INCIDENT INTERPRETATION 
 
Let  be a rational continuous function. Its modal rational extension 

 is simply replacing the real variables of f with modal interval variables. 
RR →nf :

)()(: ** RR IIfR n →
Theorem 3.3 (Gardenes et al., 2001) For a modal rational function , if all arguments of 

 are uni-incident, then 
)(XfR

)(XfR
)()()( *** XXX ffRf ⊆⊆ . 

 
From Theorems 3.1, 3.2, and 3.3, we know modal rational functions of uni-incident variables 

are interpretable. For example, yxyxf +=),(  is considered for X' = [1,3]' and Y' = [2,5]'. 
fR([1,3], [2,5]) = [1,3] + [2,5] = [3,8], 
fR([1,3], [5,2]) = [1,3] + [5,2] = [6,5], 
fR([3,1], [2,5]) = [3,1] + [2,5] = [5,6], 
fR([3,1], [5,2]) = [3,1] + [5,2] = [8,3], 

have the meanings of  
yxzzyx +=)]'8,3[,(E)]'5,2[,(U)]'3,1[,(U  or yxzzyx +=∈∃∈∀∈∀ ,]'8,3[,]'5,2[,]'3,1[ , 
yxzyzx +=)]'5,2[,(E)]'6,5[,(U)]'3,1[,(U  or yxzyzx +=∈∃∈∀∈∀ ,]'5,2[,]'6,5[,]'3,1[ , 
yxzzxy +=)]'6,5[,(E)]'3,1[,(E)]'5,2[,(U  or yxzzxy +=∈∃∈∃∈∀ ,]'6,5[,]'3,1[,]'5,2[ , 
yxzyxz +=)]'5,2[,(E)]'3,1[,(E)]'8,3[,(U  or yxzyxz +=∈∃∈∃∈∀ ,]'5,2[,]'3,1[,]'8,3[ , 

respectively. 
Different semantics of linear tolerance stack-up in assembly enclosure needs to be 

differentiated. For example, in Figure 3, dimensions a, b, and c in three components have relation 
a + b = c. According to different assembly sequences or manufacturing needs, we may specify 
tolerances in different ways. If Part A and B are provided by suppliers and Part C is built in house 
(Figure 3-b, Case I), the tolerance of c is determined by the tolerances of a and b. In this case, the 
semantics of “given A and B, C needs to fit A and B” is expressed as 

, which is different from the semantics of “given A, B and 
C need to fit A” when Part A is supplied and Part B and C are built in house (

cbaCcBbAa =+∈∃∈∀∈∀ ,',','
Figure 3-c, Case II). 

The relations between tolerances should be compatible with the semantics of specifications. In the 
semantic tolerance model, priori and posteriori tolerances are differentiated. In Case I, a and b 
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have priori tolerances, while c has a posteriori tolerance. With the modal extension, the semantics 
of specification sequence and rational can be embedded in the model. 

 

Dimensional relation a + b = c 

Part C 

Part A 
Part B 

c 

a b 

c 

a b 

Case I: given Part A and Part B, 
Part C needs to fit A and B. 

c 

a b 

Case II: given Part A, Part B and 
Part C need to fit A. 

c 

a b 

Case III: given Part C, Part A and 
Part B need to fit C. 

cbaCcBbAa =+∈∃∈∀∈∀ ,',',' cbaCcBbAa =+∈∃∈∃∈∀ ,',',' cbaBbAaCc =+∈∃∈∃∈∀ ,',','
(a) (b) (c) (d)  

Figure 3. Different types of semantics need to be captured, which are not differentiated in traditional modeling methods 

With the differentiation of priori and posteriori tolerances, strategy of tolerance allocation 
could vary in different scenarios. For example, in Figure 3-b, given two “uncontrollable” 
dimensions a and b, the “controllable” dimension ]8,3[]3,1[]5,2[ =+=+= bac . In Figure 3-c, 
one extra controllable dimension b allows a tighter tolerance of c. ]6,5[]1,3[]5,2[ =+=+= bac . 
The tolerance range of c is reduced from 5 to 1, which is smaller than the tolerance range of a. 
This implies that the principle of selective assembly can be applied to achieve assembly.  

 
3.2 MULTI-INCIDENT INTERPRETATION 
 
Theorem 3.4 (Gardenes et al., 2001) For a modal rational function , if there are multi-
incident improper arguments in  and  is obtained from X, by transforming, for every 
multi-incident improper component, all incidences but one into its dual, then   

)(XfR
)(XfR *TX

)()( ** TXX fRf ⊆ . 
 
Theorem 3.5 (Gardenes et al., 2001) For a modal rational function , if there are multi-
incident proper arguments in  and  is obtained from X, by transforming, for every 
multi-incident proper component, all incidences but one into its dual, then 

)(XfR
)(XfR **TX

)()( **** TXX fRf ⊇ . 
 

From Theorems 3.1, 3.2, 3.4, and 3.5, modal rational functions of multi-incident variables are 
interpretable with some modification. For example, )/(),( yxxyyxf +=  is extended to 

 and . ]3,1[−=X ]7,15[=Y
]5.1,5.0[])7,15[]3,1/([]7,15[]3,1[)( −=+−×−=XfR  

is not interpretable, whereas  
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]5.3,16667.1[])15,7[]3,1/([]7,15[]3,1[)( * −=+−×−=XTfR ,  
]21429.3,07143.1[])7,15[]3,1/([]15,7[]3,1[)( * −=+−×−=XTfR , 
]16667.1,388889.0[])7,15[]1,3/([]7,15[]3,1[)( ** −=+−×−=XTfR , 

]5.1,5.4[])7,15[]3,1/([]7,15[]1,3[)( ** −=+−×−=XTfR  
are interpretable. They are interpreted as 

)/()]'5.3,16667.1[,(E)]'15,7[,(E)]'3,1[,(U yxxyzzyx +=−− , 
)/()]'21429.3,07143.1[,(E)]'15,7[,(E)]'3,1[,(U yxxyzzyx +=−− , 
)/()]'16667.1,388889.0[,(E)]'15,7[,(E)]'3,1[,(U yxxyzzyx +=−− , 

)/()]'15,7[,(E)]'5.4,5.1[,(U)]'3,1[,(U yxxyzyzx +=−−  
respectively.  

Combining the first three results, we have 
)/()]'16667.1,388889.0[,(E)]'15,7[,(E)]'3,1[,(U yxxyzzyx +=−− , 

In assembly, parametric relations with multi-incident variables are common. Compared to 
traditional tolerance modeling, semantic tolerance modeling allows us to interpret explicit 
algebraic relations with the interpretability properties of modal intervals. Different numerical 
values can also be selected in order to derive specific semantics.  

 
3.3 RIGIDITY INTERPRETATION 
 
While existential intervals are looked as “fluctuation” or “autonomous” ranges, universal 
intervals are regard as “regulating” or “feedback” ranges. In material property domain, tolerance 
range for rigid material is corresponding to existential interval and flexible material is to universal 
interval.  
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φ 

e
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r

 
Figure 4. variations of size and geometry, shape deformation, and kinematics form a closed loop in assembly 

In the one-way clutch example of Figure 4, the distance vector b, the length of the spring s, 
and the radius of the ball r satisfy the relation r+s=b. If ranges [5.2,5.7]' and [7.8,8.0]' are given to 
r and b respectively, the range for spring length s can be [2.1,2.8]', as in relation 

BSR ==+=+ ]8.7,0.8[]1.2,8.2[]7.5,2.5[ . 
It is interpreted as 

bsrsbr =+)]'8.2,1.2[,(E)]'0.8,8.7[,(U)]'7.5,2.5[,(U . 
The spring provides a “cushion” to absorb variance. If a larger range [7.8,8.5]' is allowed for b, 
no flexible material is required to absorb variance. Rigid material instead of spring for s can be 
chosen, as in relation 

BSR ==+=+ ]5.8,8.7[]8.2,6.2[]7.5,2.5[ . 
It is interpreted as 

bsrbsr =+)]'5.8,8.7[,(E)]'8.2,6.2[,(U)]'7.5,2.5[,(U . 
As illustrated in Figure 5, the semantic difference between rigid and flexible material is 

differentiated by interval modality. Selection of rigid or flexible materials is integrated into 
algebraic relation. 
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[a, b]

Rigid

a

b

Flexible

a=b 
(pointwise)

a>b 
(improper)

a<b 
(proper)

 
Figure 5. Rigidity diagram 

 
3.4 SEMANTIC TOLERANCING 
 
With modal extension, engineering semantics such as sequences of specification, manufacturing, 
and assembly, as well as material properties can be captured. Tolerance semantics can be grouped 
into existential and universal categories, including tolerancing intent, specification precedence 
and dependency, as well as differentiation of constraint and preference. Taxonomy of 
specification semantics thus can be developed. Some examples of such semantics are listed in 
Table 1. Semantic pairs exist in the domains of supply management, manufacturing and assembly 
sequences, etc.  
 

Table 1. Examples of tolerance semantics 

Domain Existential or Proper category Universal or Improper category 
Su Pre-determpply management ined, Uncontrollable, Supplied Un-determined, Controllable, Built 
M  anufacturing sequence Working dimension, Clearance Balance dimension, Stock removal 
Assembly sequence tual condition size Fit, Bonus tolerance Place, Vir
M Ri Flaterial property gid, Wearable exible, Deformable 
Process control Open loop, Manual mode Closed loop, Auto mode 

 
 

 Optimality 
 

or every , if  the modal  rational extension  satisfy 
 is called optimal. In other words, if the evaluation of a modal 

rational function  is both complete  is optimal for X. Optimal functions 
ive tight bounds of complete estimation.  

 

4

F )(* nI R∈X )(XfR
)*(*)()(* XXX ffRf == , (.)fR

)(XfR  and feasible, fR(.)
g
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4.1 UNI-INCID ALITY 

Theorem 4.1 (Ar l et al., 2001) If all arguments of )(XfR  are uni-incident and they have 
the same modality, 

)(* Xf

ENT OPTIM
 

mengo

XX ffR )*(*)(= = . 

For example,  is optimal for X = [1,3] and Y = [2,5]. The true range of the 
 = ([1

] is optimal. However,  is not optimal.  is not 
optimal for X = [1,3] and Y = [5,2]. 

4.2 DENT OPTIMALIT

rom X, by transform ulti-in
ual if the corresponding incidence has a mononicity sense 

o th then 
XDXX ffR

 
 2)(),( yxyxf +=

function Rf = [9,64]. The natural extension is fR([1,3], [2,5]) ,3] + [2,5])2 = [9,64]. Similarly, 
f([3,1], [5,2]) = [64,9 22 2),( yxyxyxg ++= ),( yxf

 
MULTI-INCI Y 

 
Theorem 4.2 (Armengol et al., 2001) If )(XfR  are totally monotonous for all of its multi-
incident arguments, and XD is obtained f ing, for every m cident 
component, all incidences into its d
contrary t e global one, 

*f )*(*)()( = = .  

 
[])15,7[]1,3/([]7,15[]3,1[)(

 
For example, )/(),( yxxyyxf +=  is extended to X = [1,3] and Y = [15,7]. The partial 

derivatives of f with respect to x and y are all positive within the domain. The partial derivatives 
of f with respect to the first incidences of x and y are positive, and negative respect to the second 
incidences of x and y. Therefore,

.0 ]1.2,9375× + ==XDfR  
is o d to 1/(1),(ptimal, compare ]1.2,9375.0[])7,15/[1]3,1/[1/(1)/1/ =+=+=YXgR

lity of odal interval in range estimation, a comp ison of MIA method 
et al., 1997) (as im ® 

y clutch example is made, as shown in Figure 6 and Table 2. Compared 
 the methods of DLM with Root-Sum-Square (RSS) and Worst-Case (WC), MIA gives accurate 

YX .  
 
4.3 EXAMPLE A: TRUE RANGE ESTIMATION OF ONE-WAY CLUTCH 
 
To illustrate the optima m ar

plemented in CE/Toland Direct Linearization Method (DLM) (Chase 
package) for the one-wa
to
estimation of true variation range.  
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 φ 
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b 
a 

r re
ra

−
+

= −1cosφ

22 )()( rareb +−−=

φL 

φU 

bL 
bU 

 
Figure 6. Modal interval makes complex algebraic relations with multi-incident variables interpretable. Interpretations 

are corresponding to different value sets 

 
Table 2. Result comparison between MIA and DLM method 

Input Output: position of roller (b)    True Range is [4.0838,5.4405] 
Hub Height (a) Ring Radius (e) Roller Radius (r) DLM with Root-Sum-

Square (as in CE/Tol®) 
DLM with Wo
Case (as in C

rst-
E/Tol®) 

MIA 

[27.595, 27.695] [50.7875, 50.8125] [11.42, 11.44] [4.3585, 5.2625] [4.1368, 5.4842] [4.0838, 5.4405] 
 

 
4.4 EXAMPLE B: HARD DISK TRACKS 
 

igure 7 shows an example of hard disk tolerance analysis simulation. To seek tracks, the arm of 
ementally. Each disk surface may have tens of thousands 

acks. Thus, precise movement at high speed is critical to find correct tracks given uncertainty 

F
the hard drive moves certain angles incr
tr
involved in control and geometric variations. A traditional interval model to estimate the distance 
from each track to disk center is based on  

2
sin4

2
cos 22

1
Δ

−+
Δ

=+ kkk RLRR  

for L = [42.00, 42.02] mm, Δ = [0.0002, 0.00021], and R0 = [10.35, 10.37] mm. The over-
estimation of the range grows as the track number increases. How r, the optimal modal interval 
model based on  

eve

2
sin)]([4

2
cos 22

1
Δ

−+
Δ

=+ kkk RDualLRR  

gives a tighter range estimate, as compared in Figure 7-d.  
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l r 
θ 

2
sin4

2
cos 22

1
δδ

kkk rlrr −+=+
l: arm length 

rk: distance from track k to disk center  

θ: arm angle

δ: arm angle increment for each track 

r: distance to disk center 
(track number)

rk+1: distance from track k+1 to disk 

l 

rk+1 

rk 

δ 
δ/2

track k
track k+1

(a) In hard disk, precise arm movement is required to seek tracks (c) Incremental relation between track distances 

(b) Illustration of distance relation between adjacent tracks (d) Tighter variation estimation based on modal 
interval compared to traditional worst-case estimation 

Comparison of Rk tightness

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000
Track number k

W
id

th
 o

f R
k 

(m
m

)

Traditional

Modal Interval

 
Figure 7. Modal interval gives interpretable and tighter variation estimation result in track distance simulation 

 
4.5 EXAMPLE C: PROCESS CONTROL SIMULATION 
 
A third example of optimality is a derivative process control simulation, which shows the 
significant difference between modal interval and traditional interval methods, as compared in 
Figure 8. With uncertainty involved in parameters, the tooling speed range estimation with 
respect to time based on MIA optimal extension 

]))(([1))](([)()1( 0 ad VkVdual
S

kVdualVKkVkV −−−+=+   

is much better than that of the worst-case traditional interval extension  

])([1)]([)()1( 0 ad VkV
S

kVVKkVkV −−−+=+ .  
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kd: action factor of controller  

s: sensitivity factor of sensor 
va: sensor shift due to surroundings 

(a) A simple derivative controller model 
(b) Comparison of interval models with 
classic interval and modal interval  

(c) Optimal variation estimation based on modal interval 
compared to classic interval methods 

( ) ( )ad vv
s

vvk
dt
dv

−−−=
1

0

v: sensored tooling speed  
v0: nominal control speed 

])([1
)]([)()1( 0

a

d

VkV
S

kVVKkVkV

−−

−+=+

]))(([1
))](([)()1( 0

a

d

VkVdual
S

kVdualVKkVkV

−−

−+=+

Kd = [0.004,0.005]  Va = [2,3]  
S = [1000,1001]      V0 = [240,241]
V(0) = [3,3]  

Comparison of Tightness of V

-200

-100
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100

200

300

400

500

600

700

0 100 200 300 400 500 600
Iteration

Lbound-MIA
Ubound-MIA
Lbound-Classic
Ubound-Classic
Real Value Upper Bound-MIA

Lower Bound-MIA

Real Value

Upper Bound-Classic Interval

Lower bound-Classic Interval 

 
Figure 8. Modal interval shows optimal estimation of variation in a process control simulation 

 
 

5 Closed-Loop Tolerance Analysis 
 
Besides the semantic completion described in Section 3, MIA has the good property of structural 
completion. Traditional set-based interval analysis is not complete. The group properties of 
addition and multiplication operations are lost. There is no interval [x,y] such that 

 and the equation 0],[],[ =+ yxba ],[],[],[ dcyxba =+  has an interval solution only when 
. For example, cdab −≤− ]7,2[],[]3,1[ =+ yx  has solution ]6,1[]3,1[]7,2[],[ −=−=yx  instead 

of [1,4]. In contrast, arithmetic operations in MIA are complete. 
 
5.1 CLOSENESS OF MIA ARITHMETIC OPERATIONS 
 
In MIA, it is easy to find true solution for equation BXA =+ , which is , and )(AdualBX −=

BAX = , which is . Thus, )(/ AdualBX = ]7,2[],[]3,1[ =+ yx  has the true solution 
]4,1[]1,3[]7,2[])3,1([]7,2[],[ =−=−= dualyx . 

Given that a and b have values from intervals [2,4]' and [-2,6]', finding the interval estimation 
X for the equation  is interpreted as bax =

baxbaXx =− )]'6,2[,(E)]'4,2[,(E)',(U . 
Therefore, X will be the proper interval solution of the equation 

]6,2[]2,4[ −=× X . 
Thus, 

]3,1[])2,4([/]6,2[ −=−= dualX . 
The optimality of MIA arithmetic allows us to overcome the over-estimation barrier in worse-

case stack-up. True range estimation can be achieved without extensive computation as in 
simulation approach. In addition, the estimated 3D variation vectors from size, geometry, and 
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kinematic tolerances such as the one in Figure 4 should be closed in a complete assembly, that is, 
tolerance ranges Ri in x, y, and z directions should satisfy =0. This constraint in 
turn helps to estimate ranges more accurately. Traditional methods do not consider the closeness 
constraint. The closeness of MIA arithmetic operations provides the fundamentals for the 
soundness of semantic tolerancing.  

),,,( 21 nRRRf

 
5.2 TOLERANCE ANALYSIS 
 
Tolerance formulation and numerical methods based on MIA arithmetic operations maintain the 
completeness of interval computation. During the tolerance and kinematic chain formulation, if 
explicit functions are available in tolerance analysis, such as in Section 4, accurate and 
interpretable variation ranges can be estimated. If only implicit functions are available, methods 
to solve modal interval systems are needed.  

An interval system of MIA linear equations BXA =⋅ , where nnijA ×= )(A  and , is 
closely associated with two relations 

1)( ×= niBB
BXA ⊆⋅  and BXA ⊇⋅ .  

BXABXABXA ⊇⋅⊆⋅⇔=⋅  and . 
If a Jacobi interval operator is defined as 

( )niA
ADual

XDualADualB
X ii

ii

ji
jiji

i ,,1 and 0
)(

)()(
:)( =∉

×−

=ℑ
∑
≠ , 

the following theorem is the foundation of solving MIA linear systems optimally. 
 
Theorem 5.1 (Sainz et al., 2002a; 2002b) (1) If X is a solution to BXA ⊆⋅ ,  is a solution 
to . (2) If X is a solution to 

)(Xℑ
BXA ⊇⋅ BXA ⊇⋅ , )(Xℑ  is a solution to BXA ⊆⋅ . 

 
The Jacobi algorithm to solve MIA linear systems is listed in Figure 9. By means of the 

Jacobi interval operator associated with the linear system AX = B, it is possible to get a sequence 
of interval vectors , , …, which satisfies  )( )0()1( XX ℑ= )( )1()2( XX ℑ=

⊆⊇⊆⊇⊆⊇ + )12()2()2()1()0( kk XXXXX , 
such that  is a solution of )2( kX BXA ⊇⋅ , and  is a solution of )12( +kX BXA ⊆⋅ . 

The Jacobi algorithm does not necessarily converge. The sufficient condition for convergence 
is described in Theorem 5.2.  
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Theorem 5.2 (Sainz et al., 2002a) For system AX = B, if Prop(A) is a strictly diagonally 

dominant interval matrix, 1
)(

)(
<<

∑
≠ α

ii

ij
ij

AWidth

AWidth
, there exists a limit  satisfying 

. 

∞X

)( ∞∞ ℑ= XX
 

Input: modal interval matrix A, modal interval vector B 
Output: modal interval vector X that satisfies AX = B 
 
1. Initial estimation of )0(Y  such that 

)()( )0( BYA PropImpr ⊆⋅ ; 

2.  )( )0()0( YX ℑ= , which is the initial solution for BXA ⊇⋅ ; 

3. Iterate the follows for p times: )( )1()( −ℑ= tt XX .  
Figure 9. Jacobi algorithm to solve linear systems of modal intervals [Error! Bookmark not defined.] 

 
If A is not strictly diagonally dominant, general interval methods such as in references 

(Neumaier, 1990; Hansen, 1992; Ning and Kearfott, 1997) can be used to solve interval linear 
equations. However, the interpretability is compromised.  

When variation functions are nonlinear, a linearization process may be used to reduce the 
complexity of direct computation of nonlinear functions. This linear approximation changes 
semantics relation between variables. Again, as a result of linearization, the tolerance 
interpretability and optimality principles generally do not apply to the numerical results. 

 
5.3 EXAMPLE D: STACKED BLOCK ASSEMBLY – NONLINEAR 
 
A closed vector loop defines relations among size, geometry, and kinematic variations. The sum 
of vector components in each translational or rotational direction should be equal to zero. Figure 
10 shows an example of stacked block assembly. With known size tolerances, the kinematic 
variation of the stacked blocks can be calculated with three loops. The parameter values and 
formulation of loops are listed in Table 3. 
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(b) vector loop 1 (c) vector loop 2 (d) vector loop 3 (a) known parameters   
Figure 10. Stacked block assembly 

 
Table 3. The variation formulation of loops 

Known size
tion 125.0905.335.022.2415.006.4

125.0675.10075.0805.62.062.6
±=±=±=
±=±=±=

fed
cba 

varia  

Unknown 
ki

?2965.27?1894.2?0477.10?6705.8?7181.18 54321 ±=±=±=±=±= uuuuu
nematic 

variation 
?2761.105?2761.105?7243.74?7243.74 4321 ±−=±−=±−=±= φφφφ

Loop 1 

⎪
⎩

⎪
⎨

=−+++++=
=−+++++++=

036090909090
0)180sin()180sin()90sin(

123

12122232

φφ
φφφφ

F
uaauuF  

⎧ =++++++= 0)180cos()180cos()90cos( 212221 φφφφ aauF

Loop 2 
⎪
⎧

=++++++=
=−+++++= 0)90cos()90cos()cos( 322424

φφφφ
φφφφ

dubuF
fdubF

 
⎪
⎩

⎨
=+−++−+= 018090909090

0)90sin()90sin()sin(

326

3224235

φφF

Loop 3 
⎪
⎨

⎧
=++++++=
−−+++++=

018090909090
0)90sin()90sin()sin(

0)90cos()90cos()cos(

429

4225238

422527

φφ
φφφφ

φφφφ

F
cubuF

fecubF
 

⎪
⎩ =+−++−+=

=

 
To solve nonlinear functions 0),( =ksF , where s is a size variation vector and k is a 

linearization process by Taylor’s expansion kinematic variation vector, 

 0=Δ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
⎥⎦⎢⎣∂ ××

k
iii

i

jij k
F

s
  Δ⎥

⎤
⎢
⎡∂ siF

with respect to nominal values is condu re interval linear method is used to estimate the 
variation. The results fro method (Chase et al., 
1997) are compared in Table 4. 

cted befo
m the MIA linearization method and the DLM 
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Table 4. Comparison of MIA linearization and DLM 

MIA Linearization DLM Worst-Case DLM Statistical 

]0.0228-   0.0228,[
]0.0228-   0.0228,[
]0.0228-   0.0228,[
]0.0228-   0.0228,[
]0.5209-   0.5209,[
]2729.0-   ,2729.0[
]3137.0-   ,3137.0[
]4672.0-   ,4672.0[
]5420.0-   ,5420.0[1

=
=

u
u

4

3

2

1

5

4

3

2

=Δ

=Δ
=Δ
=Δ

=Δ
=Δ

=Δ
Δ
Δ

φ
φ
φ
φ
u
u
u

 

4

3

2

1

5

4

3

2

=Δ

=Δ
=Δ
=Δ

=Δ
=Δ

=Δ
Δ
Δ

φ
φ
φ
φ
u
u
u
u
u

 

]

4

3

2

1

5

4

3

2

1

=Δ

=Δ
=Δ
=Δ

=Δ
=Δ

=Δ
Δ
Δ

φ
φ
φ
φ
u
u
u
u
u

 

]0.8156   -0.8156,[
]0.8156   -0.8156,[
]0.8156   -0.8156,[
]0.8156   -0.8156,[
]0.5174   -0.5174,[
]0.2384   -0.2384,[
]0.2942   -0.2942,[
]0.3899   -0.3899,[
]0.5421   -0.5421,[1

=
=

]0.4784   -0.4784,[
]0.4784   -0.4784,[
]0.4784   -0.4784,[
]0.4784   -0.4784,[
]0.3836   -0.3836,[
]0.1411   -0.1411,[
]0.1844   -0.1844,[

0.2725   -0.2725,[
]0.2998   -0.2998,[

=
=

 
5.4 EXAMPLE E: STACKED BLOCK ASSEMBLY – LINEAR 

o  example are known, 
ol lving. This linear problem can 

size variation 0.4=d

 
Supp se that the limits of angle variation in previous stacked block assembly
he t erance analysis problem is then reduced to linear equation sot

be solved using the Jocobi algorithm, and the result is interpretable, as listed in Table 5. 
Table 5. Linear problem in stacked block assembly 

Known  125.0675.10075.0805.62.062.6 ±=±=±= cba
125.0905.335.022.2415.06 ±=±=± fe

 

Known 

kinematic 
variation 

4281.02761.1054281.02761.105
4281.07243.744281.07243.74

43

21
±−=±−=

±−=±=
φφ
φφ  

Unknown 

kinematic 
va

?2965.27?1894.2 54 ±=

riation 

?0477.10?6705.8?7181.18 321 =±=±=±= uuu ± uu  

Linear 
equations 

⎪
⎪
⎪

⎩

⎪
⎨

=−−++
=−++

=−+++

0)cos()90cos(
0)cos()90cos(

0)sin()90sin(

225

224

2243

febu
fbu

dbuu

φφ
φφ

φφ   
⎪
⎪
⎧

=−+++
=+++++−

0)180cos()90cos(
0)180sin()90sin(

222

23221

aau
auuu
φφ

φφ
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡−

]7879.25,8754.26[
]9179.1,3054.2[
]3888.10,8602.10[

]0652.8,6659.8[
]5922.6,1804.6[

]9667.0,9626.0[0000
0]9667.0,9626.0[000
0]2707.0,2562.0[100
000]9667.0,9626.0[0
001]2707.0,2562.0[1

5
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3

2

1

U
U
U
U
U

 

Result of 
Jacobi algorithm 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

]6762.26,9196.27[
]98397.1,39497.2[
]85174.9,2466.10[
]34302.8,0026.9[
]7335.18,7024.18[
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3

2

1

U
U
U
U
U

 

Interpretation 
of result 

]9196.27,6762.26[,()]'39497.2,98397.1[,()]'2466.10,85174.9[,()]'0026.9,34302.8[,(
)]'8480.104,7042.105[,()]'8480.104,7042.105[,(

)]'2962.74,1524.75[,()]'1524.75,2962.74[,()]'03.4,78.3[,(]'57.24,87.23[,(
)]'21.4,91.3[,()]'8.10,55.10[,()]'88.6,73.6[,()]'82.6,42.6[,()]'7335.18,7024.18[,(

5432
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6 Conclusion 

 
A semantic tolerance modeling scheme based on modal interval is proposed to enrich the 
modeling and analysis structure for tolerances such that tolerancing semantics can be embedded 
in mathematic representation in order to support better design and manufacturing specifications.  

The new semantic tolerancing method captures engineering and logic relation between 
specifications and prevents the degeneracy of engineering semantics during mathematic 
calculation. Priori and posteriori variations in tolerance specification are differentiated. The 
model captures the semantics of physical property difference between rigid and flexible materials 
as well as tolerancing intents such as sequence of specification, measurement, and assembly. 
Compared to traditional methods, the semantic tolerancing allows us to estimate true variation 
ranges such that feasible and complete solutions can be obtained.  

Future research may include tolerance chain formulation with the consideration of geometric 
tolerances and interaction between tolerances, optimization approach to solve linear and nonlinear 
modal interval equations, as well as tolerance synthesis based on global optimization methods of 
interval analysis.  
 

REC 2006 - Wang 



23 Semantic Tolerance Modeling based on Modal Interval Analysis 
 
 

References 
 
Abrams, S.L., Cho, W., Hu, C.Y., Maekawa, T., Patrikalakis, N.M., Sherbrooke, E.C., and Ye, X. 

(1998) Efficient and reliable methods for rounded-interval arithmetic. Computer-Aided 
Design, 30(8), 657-665 

ADCATS, ADCATS Bibliography for Tolerance Work, 
http://adcats.et.byu.edu/WWW/bibliographies/DocList.html 

Armengol, J., Vehi, J., Trave-Massuyes, L., and Sainz, M.A. (2001) Application of modal 
intervals to the generation of error-bounded envelopes. Reliable Computing, 7(2), 171-185 

Ashiagbor, A., Liu, H. C., Nnaji, B.O. (1998) Tolerance control and propagation for the product 
assembly modeler. International Journal of Production Research, 36(1), 75-94 

Bhide, S., Davidson, J.K., and Shah, J.J. (2003) A new mathematical model for geometric 
tolerances as applied to axes. in ASME Proceedings of Design Engineering Technical 
Conferences / Design Automation Conference, Sept 2-6, 2003, Chicago, Illinois, Paper No. 
DETC2003/DAC-48736 

Bihlmaier, B.F. (1999) Tolerance Analysis of Flexible Assemblies Using Finite Element and 
Spectral Analysis, M.S. thesis, Department of Mechanical Engineering, Brigham Young 
University 

Bourdet, P. and Ballot, E. (1995) Geometric behavior for computer aided tolerancing. in 
CIRP/JSPE/ASME Proceedings of the 4th CIRP Seminar on Computer Aided Tolerancing, 
April 5-6, 1995, University of Tokyo, Tokyo, Japan, pp.143-154 

Camelio, J., Hu, S.J., and Ceglarek, D. (2003) Modeling variation propagation of multi-station 
assembly systems with compliant parts. ASME Journal of Mechanical Design, 125(4), 673-
681 

Camelio, J., Hu, S.J., and Marin, S.P. (2004) Compliant assembly variation analysis using 
component geometric covariance. ASME Journal of Manufacturing Science and Engineering, 
126(2), 355-360 

Chase, K.W. and Greenwood, W.H. (1988) Design issues in mechanical tolerance analysis. 
Manufacturing Review, 1(1), 50-59 

Chase, K.W., Magleby, S.P., Gao, J., and Sorensen, C.D. (1996) Including geometric feature 
variations in tolerance analysis of mechanical assemblies. IIE Transactions, 28(10) 795-807 

Chase, K.W., Magleby, S.P., Gao, J. (1997) Tolerance analysis of two- and three- dimensional 
mechanical assemblies with small kinematic adjustments. in Advanced Tolerancing 
Techniques, ed. by H.C. Zhang, New York: John Wiley & Sons, pp.103-137 

Desrochers, A. and Riviere, A. (1997) A matrix approach to the representation of tolerance zones 
and clearances. International Journal of Advanced Manufacturing Technology, 13, 630-636 

Davidson, J.K., Mujezinovic, A., and Shah, J.J. (2002) A new mathematical model for geometric 
tolerances as applied to round faces. ASME Journal of Mechanical Design, 124(4) 609-622 



24 Wang 

Duff, T. (1992) Interval arithmetic and recursive subdivision for implicit functions and 
Constructive Solid Geometry. Computer Graphics, 26(2), 131-138 

Finch, W.W. and Ward, A.C. (1997) A set-based system for eliminating infeasible designs in 
engineering problems dominated by uncertainty. in ASME Proceedings of Design 
Engineering Technical Conference, Sept.14-17, 1997, Sacramento, CA, paper no. 
DETC97/DTM-3886 

Gao, J., Chase, K.W., and Magleby, S.P. (1995) Comparison of assembly tolerance analysis by 
direct linearization and modified Monte Carlo simulation methods, in ASME Proceedings of 
the 1995 Design Technical Conference – 21st Design Automation Conference, DE-Vol.82, 
pp.353-360 

Gao, J., Chase, K.W., and Magleby, S.P. (1998) General 3-D tolerance analysis of mechanical 
assemblies with small kinematic adjustments. IIE Transactions, 30(4), 367-377 

Gardenes, E., Sainz, M.A., Jorba, L., Calm, R., Estela, R., Mielgo, H., and Trepat, A. (2001) 
Modal intervals. Reliable Computing, 7(2), 77-111 

Gerth, R.J. (1997) Tolerance analysis: A tutorial of current practice. in Advanced Tolerancing 
Techniques, ed. by Zhang, H.C., New York: John Wiley & Sons, pp.65-99 

Giordano, M. and Duret, D. (1993) Clearance space and deviation space. in CIRP Proceeding of 
the 3rd Seminars on Computer Aided Tolerancing, April 27-28, 1993, Cachan, France, pp. 
179-196 

Hansen, E.R. (1992) Bounding the Solution of Interval Linear Equations. SIAM Journal on 
Numerical Analysis, 29(5), 1493-1503 

Hong, Y.S. and Chang, T.-C. (2002) A comprehensive review of tolerancing research. 
International Journal of Production Research, 40(11), 2425-2459 

Inui, M., Otto H., and Kimura, F. (1993) Algebraic interpretation of geometric tolerances for 
evaluating geometric uncertainties in solid modeling. in ACM Proceedings of the 2nd 
Symposium on Solid Modeling and Applications, pp.377-386 

Joskowicz, L., Sacks, E., and Srinivasan, V. (1997) Kinematic tolerance analysis. Computer-
Aided Design, 29(2), 147-157 

Liu, S. and Hu, S. (1997) Variation simulation for compliant sheet metal assemblies using finite 
element methods. ASME Journal of Manufacturing Science and Engineering, 119(3), 368-
374 

Liu, S.C., Hu, S.J., and Woo, T.C. (1996) Tolerance analysis for sheet metal assemblies. ASME 
Journal of Mechanical Design, 118, 62-67 

Long, Y. and Hu, S. (1998) A unified model for variation simulation of sheet metal assemblies. in 
Geometric Design Tolerancing: Theories, Standards, and Applications, ed. by H.A. 
Elmaraghy, London: Chapman & Hall, pp.208-219 

Martinsen, K. (1995) Statistical process control using vectorial tolerancing. in CIRP/JSPE/ASME 
Proceedings of the 4th CIRP Seminar on Computer Aided Tolerancing, April 5-6, 1995, 
University of Tokyo, Tokyo, Japan, pp.195-210 

REC 2006 - Wang 



25 Semantic Tolerance Modeling based on Modal Interval Analysis 
 
Merkley, K.G. (1998) Tolerance Analysis of Compliant Assemblies, Ph.D. thesis, Department of 

Mechanical Engineering, Brigham Young University 
Merkley, K.G., Chase, K.W., Perry, E. (1996) An introduction to tolerance analysis of flexible 

assemblies. in Proceedings of the 1996 MSC World Users Conference, Newport Beach, CA, 
MacNeal_Schwendler Corp. 

Moore, M. and Wilhelms, J. (1988) Collision detection and response for computer animation. 
Computer Graphics, 22(4), 289-298 

Mudur, S.P. and Koparkar, P.A. (1984) Interval methods for processing geometric objects. IEEE 
Computer Graphics & Applications, 4(2), 7-17 

Muhanna, R.L. and Mullen, R.L. (1999) Formulation of fuzzy finite-element methods for solid 
mechanics problems. Computer-Aided Civil & Infrastructure Engineering, 14, 107-117 

Muhanna, R.L. and Mullen, R.L. (2001) Uncertainty in mechanics problems - interval-based 
approach. ASCE Journal of Engineering Mechanics, 127(6), 557-566 

Muhanna, R.L., Mullen, R.L., and Zhang, H. (2004) Interval finite element as a basis for 
generalized models of uncertainty in engineering mechanics. in Proceedings of NSF 
Workshop on Reliable Engineering Computing  (REC’04), September 15-17, 2004, Georgia 
Institute of Technology, Savannah, GA, ed. by R.L. Muhanna and R.L. Mullen, pp.353-370 

Mujezinovic, A., Davidson, J.K., and Shah, J.J. (2004) A new mathematical model for geometric 
tolerances as applied to polygonal faces. ASME Journal of Mechanical Design, 126(3) 504-
518 

Neumaier, A. (1990) Interval Methods for Systems of Equations (Cambridge: University Press) 
Nigam, S.D. and Turner, J.U. (1995) Review of statistical approaches to tolerance analysis. 

Computer-Aided Design, 27(1) 6-15 
Ning, S. and Kearfott, R.B. (1997) A Comparison of Some Methods for Solving Linear Interval 

Equations. SIAM Journal on Numerical Analysis, 34(4), 1289-1305 
Popova, E.D. (2001) Multiplication distributivity of proper and improper intervals. Reliable 

Computing, 7(2), 129-140 
Rao, S.S. and Berke, L. (1997) Analysis of uncertain structural systems using interval analysis. 

AIAA Journal, 35(4), 727-735 
Rao, S.S. and Cao, L. (2002) Optimum design of mechanical systems involving interval 

parameters. ASME Journal of Mechanical Design, 124, 465-472 
Requicha, A.A.G. (1983) Toward a theory of geometric tolerancing. International Journal of 

Robotics Research, 2(2), 45-60 
Rivest, L., Fortin, C., and Morel, C. (1994) Tolerancing a solid model with a kinematic 

formulation. Computer-Aided Design, 26(6), 465-476 
Roy, U. and Li, B. (1998) Representation and interpretation of geometric tolerances for 

polyhedral objects – I Form tolerances. Computer-Aided Design, 30(2), 151-161 
Roy, U. and Li, B. (1999) Representation and interpretation of geometric tolerances for 

polyhedral objects – II Size, orientation and position tolerances. Computer-Aided Design, 
31(4), 273-285 



26 Wang 

Sacks, E. and Joskowicz, L. (1998) Parametric kinematic tolerance analysis of general planar 
systems. Computer-Aided Design, 30(9), 707-714 

Sainz, M.A., Gardenes, E., and Jorba, L. (2002a) Formal solution to systems of interval linear or 
non-linear equations. Reliable Computing, 8(3), 189-211 

Sainz, M.A., Gardenes, E., and Jorba, L. (2002b) Interval estimations of solution sets to real-
valued systems of linear or non-linear equations. Reliable Computing, 8(4), 283-305 

Shen, G. and Patrikalakis, N.M. (1998) Numerical and geometric properties of interval B-Splines. 
International Journal of Shape Modeling, 4, 31-62 

Snyder, J. (1999) Generative Modeling for Computer Graphics and CAD: Symbolic Shape 
Design Using Interval Analysis, Cambridge: Academic Press 

Srinivasan, V. and O’Connor, M.A. (1994) On interpreting statistical tolerancing. Manufacturing 
Review, 7(4), 304-311 

Takezawa, N. (1980) An improved method for establishing the process wise quality standard”, 
Reports of Statistical and Applied Research, Union of Japanese Scientists and Engineers 
(JUSE), 27(3), 63-76 

Teck, T.B., Senthil Kumar, A., and Subramaian, V. (2001) A CAD integrated analysis of flatness 
in a form tolerance zone.  Computer-Aided Design, 33(11) 853-865 

Toth, D.L. (1985) On ray tracing parametric surfaces. Computer Graphics, 19(3), 171-179 
Tuohy, S.T., Maekawa, T., Shen G., and Patrikalakis, N.M. (1997) Approximation of measured 

data with interval B-Splines. Computer-Aided Design, 29(11), 791-799 
Turner, J.U. and Wozny, M.J. (1987) Tolerances in computer-aided geometric design. The Visual 

Computer, 3, 214-226 
Wallner, J., Krasauskas, R., and Pottmann, H. (2000) Error propagation in geometric 

constructions. Computer-Aided Design, 32(11), 631-641 
Wang, Y. (2004) Solving interval constraints in computer-aided design. in Proceedings of NSF 

Workshop on Reliable Engineering Computing  (REC’04), September 15-17, 2004, Georgia 
Institute of Technology, Savannah, GA, ed. by R.L. Muhanna and R.L. Mullen, pp.251-267 

Wang, Y. and Nnaji, B.O. (2006) Solving interval constraints by linearization in computer-aided 
design. Reliable Computing, accepted 

Whitney, D.E., Gilbert, O.L., and Jastrzebski, M. (1994) Representation of geometric variations 
using matrix transforms for statistical tolerance analysis in assemblies. Research in 
Engineering Design¸ 6, 191-210 

Wirtz, A., Gachter, C., and Wipf, D. (1993) From unambiguously defined geometry to the perfect 
quality control loop. Annals of the CIRP, 42(1) 615-618 

Yang, C.C., Marefat, M.M., and Ciarallo, F.W. (2000) Interval constraint networks for tolerance 
analysis and synthesis. Artificial Intelligence for Engineering Design, Analysis and 
Manufacturing, 14, 271-287 

Zhang, C., Luo, J., and Wang, B. (1999) Statistical tolerance synthesis using distribution function 
zones. International Journal of Production Research, 37(17), 3995-4006 

 

REC 2006 - Wang 


	1 Introduction
	2 Background
	2.1 3D Tolerance Modeling
	2.2 Tolerance Analysis for Flexible Assembly
	2.3 Interval Analysis
	2.4 Modal Interval Analysis

	3 Interpretability
	3.1 Uni-incident Interpretation
	3.2 Multi-incident Interpretation
	3.3 Rigidity Interpretation
	3.4 Semantic Tolerancing

	4 Optimality
	4.1 Uni-incident Optimality
	4.2 Multi-incident Optimality
	4.3 Example A: true range estimation of one-way clutch
	4.4 Example B: hard disk tracks
	4.5 Example C: process control simulation

	5 Closed-Loop Tolerance Analysis
	5.1 Closeness of MIA arithmetic operations
	5.2 Tolerance Analysis
	5.3 Example D: stacked block assembly – nonlinear
	5.4 Example E: stacked block assembly – linear

	6 Conclusion

