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Abstract. The monitoring of buildings, slide slopes and crustal movements is a central task of
geodetic engineering. The aim is the generation of meaningful motion and deformation models
in order to quickly and specifically initiate constructional or geotechnical safety measures. The
adequateness of the actions depends essentially on the quality of the observation and analysis
techniques. Therefore it is important to correctly derive the model parameters and their uncertainty
budget considering that the model parameters are typically estimated from a large number of hetero-
geneous and redundant observations by means of a least-squares adjustment. Here, the uncertainty
budget is assumed to comprise both random variability and remaining systematics (imprecision).
In practice, there are outliers in the data which have to be detected and eliminated. In conventional
techniques only random effects are taken into account. When imprecision is considered additionally,
the test strategies have to be extended accordingly. In this study imprecise extensions are obtained
for the estimated outliers which are tested statistically using one- and multidimensional hypotheses.
The applied procedure is outlined in detail showing both theory and numerical examples.

Keywords: outlier detection, imprecision, geodetic applications, adjustment, hypothesis testing

1. Introduction

In many engineering applications parameters are estimated from a large number of heterogeneous
and redundant observations by means of a least-squares adjustment. The quality of the estimated
parameters depends essentially on the adequate consideration of all uncertainties in the measure-
ment and analysis process and on the reliability of the observations. In this paper, the uncertainty
budget is assumed to comprise both random variability (stochastics) and remaining systematic
effects (imprecision).

The outliers in the data occurring in practice have to be detected and then removed. Therefore
the accordance of the collected data with the assumptions met in the model must be checked. This
requires one- and multidimensional hypotheses tests with imprecise extensions for outlier detection
and global tests based on estimated parameters and residuals (see Sections 4 and 5). In this study,
the classical test approaches are extended in order to take observation imprecision into account.
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The calculation of observation imprecision is based on correction and reduction models applied to
the raw observation data. It leads to intervals or fuzzy numbers for their description (see Section 2).
The influence of the observation imprecision on the estimated parameters is propagated in a least-
squares adjustment (see Section 3). The procedure and the criteria for the test decisions are shown
in the context of fuzzy theory. They can be directly applied to pure interval mathematics. The
presented approach is transferable to many other engineering applications.

Interval mathematic is an appropriate solution to describe observation imprecision by a real
interval [a] consisting of an upper bound au and a lower bound al or by a centre point am and
radius ar. The possibility of variation inside the interval demonstrates the absent knowledge about
the correct value, cf. (Schön and Kutterer, 2005b). Intervals can also be defined by a suitable
indicator function:

i[a](x) =
{

1, al ≤ x ≤ au

0, else. (1)

Fuzzy-theory was founded by (Zadeh, 1995). It is an extension of the classical set theory. In the
classical set theory the membership degree is either 1 (is element) or 0 (is not element). A fuzzy
set Ã is uniquely defined by its membership functions mÃ(x) over a classical set X (e. g. X = IR)
with a membership degree between 0 and 1:

Ã :=
{
(x,mÃ(x)) | x ∈ X

}
with mÃ : X → [0, 1]. (2)

Three basic notions are relevant in the following (see Fig. 1):

the α-cut Ãα :=
{
x ∈ X | mÃ(x) ≥ α

}
with α ∈ [0, 1], (3a)

the support supp(Ã) :=
{
x ∈ X | mÃ(x) > 0

}
, (3b)

the core core(Ã) := Ã1. (3c)

It is obvious that α-cuts are classical sets. In case of convex fuzzy sets (monotonously decreas-
ing reference functions), α-cuts are intervals. The integral over all α-cuts equals the membership
function of a fuzzy set:

mÃ(x) =
∫ 1

0
mÃα

(x)dα. (4)

In geodetic data analysis, fuzzy numbers and fuzzy intervals are meaningful as they are convex
fuzzy sets based on real numbers. Their core is either a single element (fuzzy number) which
may refer to a particular observed or derived value or a classical interval which refers to a set of
values (fuzzy intervals). In engineering applications LR- and LL-fuzzy numbers and intervals are
of particular interest. LR-fuzzy numbers and intervals are defined by their left and right reference
functions (see Eq. 5 for a LR-fuzzy interval). LR-fuzzy numbers or intervals with the same left and
right reference functions are called LL-fuzzy numbers or intervals.

mÃ(x) =





L
(

xm−x−r
cl

)
, x < xm − r

1, xm − r ≤ x ≤ xm + r

R
(

x−xm−r
cr

)
, x > xm + r

(5)
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Figure 1. Fuzzy set (LR-fuzzy interval)

with xm denoting the midpoint of the fuzzy interval, r its radius (see Fig. 1) and cl, cr the spread
parameters of the reference functions. L-fuzzy numbers are obtained for L = R and cl = cr.
For further information on interval mathematics see (Alefeld and Herzberger, 1983; Jaulin et. al.,
2001; Moore, 1979) and on fuzzy-theory, cf. (Bandemer and Näther, 1992; Dubois and Prade,
1980; Viertl, 1996) and (Zadeh, 1995). Studies of fuzzy data analysis in the geodetic context are
presented by, e. g., (Kutterer, 2002) and (Schön and Kutterer, 2005b).

2. Observation intervals by means of a sensitivity analysis

Recently, many procedures have been introduced to calculate observation intervals in engineering
applications, cf. e. g., (Braems et. al., 2000; Kieffer et. al., 2000; Morales and Son, 1998) and
(Muhanna and Mullen, 2001). In geodetic data analysis, observations have to be preprocessed
before they can be used for further calculation, e. g., in a least-squares adjustment. For this reason
the definition of the observation intervals in geodesy is based on the correction and reduction steps
for the raw observations which are based on observation error models. The applied procedure is
described in detail in (Schön, 2003). The basic aspects are briefly summarized in the following.

Due to the imperfect knowledge of the influence factors of the preprocessing steps, the reduced
observations are afflicted with two types of uncertainties: their stochastic behavior in terms of
random variability and several non reducible remaining systematics (observation imprecision). The
possible impact of remaining systematic effects is quantified by means of a sensitivity analysis of
observation error models. The factual range is assessed based on expert knowledge and empirical
studies. This procedure is in full accordance with international recommendations, cf. (ISO, 1995)
(GUM). Note that the treatment of systematic errors is different as the GUM proposes variance
propagation. An example for distance measurements was shown in (Schön, 2003). The computation
in case of GPS measurements was presented in (Schön and Kutterer, 2005b). In this study, four
types of observations are of particular interest: distance measurements ldist, direction measurements
ldir, zenith angle measurements lz and GPS measurements lGPS .
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3. Interval calculations for the parameters with a least-squares adjustment

The aim of geodetic applications is the estimation of parameters of interest from the observations,
e. g., point coordinates (see Sect. 6 and (Koch, 1999)), deformation fields or strain tensors. Like
in many other engineering application, the standard algorithm is a least-squares adjustment using
a large number of heterogeneous and redundant observations. The typically non-linear observation
equations are linearized in order to use linear model theory. The estimated parameters x̂ are
obtained as

dx̂ = (ATPA)+ATP(l− a0), (6a)
x̂ = x0 + dx̂, (6b)

with the n × u configuration matrix A, the number of unknown parameters u, the number of
observations n, the n × n weight matrix P (i. e. the inverse of the variance covariance matrix
(VCM) of the observations Cll), the n × 1 vector of observations l and the vector of approximate
values a0. In geodetic networks the normal equation matrix ATPA can be rank-deficient due to
an incomplete definition of the coordinate frame through the configuration. If for example such a
network is composed of distance observations only it is not possible to estimate coordinates which
are required in practice. The value of rank deficiency is denoted with d. This problem can be
overcome when the pseudoinverse matrix (ATPA)+ is used. A standard reference on parameter
estimation (and hypotheses tests) is (Koch, 1999).

In case of observation imprecision, we assume the vector of observations as a symmetric inter-
val [l], with its midpoints lm and interval radii lr, calculated by means of a sensitivity analysis
(see Sect. 2). The midpoint of the interval vector [l] is carrier of the randomness, the remaining
systematics of the analysis process are described by the vector of interval radii.

The observation imprecision is propagated to the coordinates by interval extension of the least-
squares estimator, cf. (Schön and Kutterer, 2005a),

[dx̂] = (ATPA)+ATP([l]− a0), (7a)
[x̂] = x0 + [dx̂], (7b)

with the assumed precise vector of approximate values and point matrices for A and P. The vector
a0 can also be chosen as an interval vector in order to take model uncertainties into account. Thus,
both observation imprecision and model uncertainties can be treated with interval mathematical
methods. Let y = l− a0 the vector of reduced observations (”observed minus computed”), then

[y] = [l]− a0 (8)

and

ym = lm − a0, (9a)
yr = lr. (9b)

The parameter vector can be split up in a centre xm and radius xr part:

x̂m = x0 + (ATPA)+ATPym, (10a)

x̂r = | (ATPA)+ATP | yr, (10b)
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where | · | denotes the element by element absolute value of the matrix. Note that the parameter
vector is exact component by component, but it overestimates the correct range, which is in general
a convex polytope (zonotope), see (Schön and Kutterer, 2005a).

The residuals v̂ are estimated and treated in a similar way. They are obtained as

v̂ = Adx̂− y (11)
= −Cv̂v̂Py,

with

Cv̂v̂ = Cll −A(ATPA)+AT , (12)

the VCM of v̂. The interval extension of v̂ in terms of the midpoint v̂m and the radius v̂r of the
residuals reads as (cf. (Kutterer, 2002)):

v̂m = −Cv̂v̂Pym, (13a)
v̂r = | −Cv̂v̂P | yr. (13b)

Then the minimum sum of the squared residuals is derived as

Ω =v̂TPv̂ = yTPCv̂v̂Py. (14)

4. One-dimensional hypothesis testing for outlier detection

This section presents hypotheses tests for imprecise data in the one-dimensional case. For a more
general context and for a more comprehensive field of engineering applications, the test is described
in fuzzy-theory. Intervals are special cases of fuzzy sets. Thus, the tests can be directly applied to
the examples given in Section 6. The presented test strategy is based on (Römer and Kandel, 1995)
and (Viertl, 1996). It is given in detail in (Kutterer, 2004).

4.1. Test strategy and general test decision criterion

First the regions of acceptance (Ã) and rejection (R̃ = Ã
C
) have to be described with fuzzy sets.

Here, the presentation is restricted to L-fuzzy intervals which are mostly relevant in the application.
Hence, the region of acceptance is given as:

mÃ(x) =





LA

(
−k−x

As

)
, x < −k

1, −k ≤ x ≤ k

LA

(
x−k
As

)
, x > k

(15)

with the constants k and As 6= 0 to control the shape of the region of acceptance.
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6 INGO NEUMANN, HANSJÖRG KUTTERER AND STEFFEN SCHÖN

Consequently, the L-fuzzy test statistic T̃ with midpoint Tm and radius r is introduced:

mT̃ (x) =





LT

(
Tm−r−x

Ts

)
, x < Tm − r

1, Tm − r ≤ x ≤ Tm + r

LT

(
x−Tm−r

Ts

)
, x > Tm + r

(16)

with Ts 6= 0 the spread parameter of the test statistics.
Then the degree of agreement γR̃(T̃ ) of the test statistic with the region of rejection and the

degree of disagreement δÃ(T̃ ) = 1 − γÃ(T̃ ) of the test statistics with the region of acceptance are
computed. With F (IR) the space of fuzzy sets over IR and F (IR × IR) the space of fuzzy sets over
IR× IR, the degree of agreement γ : F (IR× IR) → [0, 1] of a non empty fuzzy set M̃ ∈ F (IR) with
a fuzzy set Ñ ∈ F (IR) ist defined by:

γÑ (M̃) := γ(M̃, Ñ) =
h(M̃ ∩ Ñ)

h(M̃)
. (17)

The class of functions h : F (IR) → [0,∞) is defined by the conditions

Ũ = ® ⇔ h(Ũ) = 0, (18a)
Ũ ⊆ Ṽ ⇔ h(Ũ) ≤ h(Ṽ ), (18b)

with ® the empty set. Examples for the class of functions are given in Section 4.2.
Now, the hypotheses for the imprecise test statistics (T̃ ) have to be introduced. The hypotheses

considered here are:

H0 : E(Tm) = µ = µ0

HA : E(Tm) = µ = µ0 + δ, δ 6= 0
with Tm ∼ N(µ, 1)

The expected value of the midpoint of the test statistics Tm, which describes the stochastic behavior,
follows a standardized normal distribution N (under H0). The presented test strategy also allows to
handle empirical test values (e. g. t-distribution) and imprecise variances. The degree of rejectability
ρR̃(T̃ ) of the null hypothesis H0 is then given by

ρR̃(T̃ ) := min(γR̃(T̃ ), δÃ(T̃ )). (19)

It is compared with a precise critical value ρcrit, what leads to the test decision:

ρR̃(T̃ )
{ ≤

>

}
ρcrit ∈ [0, 1] =⇒

{
do not reject H0

reject H0
(20)

The imprecise test statistics T̃ is only rejected if it both agrees with R̃ and does not agree with Ã.
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Outlier Detection in Geodetic Applications with respect to Observation Imprecision 7

Figure 2. Geometric interpretation of the height criterion with a L-fuzzy test value (r = 0)

4.2. Two test decision criterions

Now a suitable choice for the class of functions h in Eq. (17) has to be introduced. Section 4.2.1
describes the height criterion and Section 4.2.2 the card criterion. The height criterion allows an
easy-to-handle test decision in case of complex fuzzy sets and the card criterion allows a better
description of the degree of agreement between two fuzzy sets from a practical point of view, cf.
(Kutterer, 2004).

4.2.1. The height criterion
For the height criterion, the function h in Equation (17) is defined as:

h(Ũ) = height(Ũ). (21)

If the region of acceptance (Ã) and the test statistics (T̃ ) are L-fuzzy intervals this leads to the
degree of rejectability:

ρR̃(T̃ ) = min (γR̃(T̃ ), δÃ(T̃ )) =

{
0, core(T̃ ) ∩ core(Ã) 6= ®

δÃ(T̃ ), core(T̃ ) ∩ core(Ã) = ® (22)

with δÃ(T̃ ) = 1-height(T̃ ∩ Ã) and γR̃(T̃ ) = height(T̃ ∩ R̃). The geometric interpretation of the test
is given in Figure 2. In the case of core(T̃ )∩core(Ã) 6= 0, the null hypothesis H0 cannot be rejected
(ρR̃(T̃ ) = 0). Here, an exemplary test scenario with Tm > 0 is considered.

In case of different types of reference functions for the test statistics and the region of acceptance,
the degree of rejectability under H0 can not be given explicitly, it has to be computed numerically.
Therefore the point of intersection xnum between the reference function of the test statistics and the
reference function for the region of acceptance is computed by root-finding, e. g. using a Newton-
or bisection algorithm (see (Jaulin et. al., 2001)).

LT

(
Tm − r − x

Ts

)
− LA

(
x− k

As

)
= 0 for k ≤ x ≤ Tm − r. (23)

REC 2006 - INGO NEUMANN, HANSJÖRG KUTTERER AND STEFFEN SCHÖN
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This numerical solution xnum > 0 can be used for the computation of the degree of rejectability
of the null hypothesis H0:

ρR̃(T̃ ) =

{
1, (T̃ ∩ Ã) = ®

1− LT

(
Tm−r−xnum

Ts

)
, (T̃ ∩ Ã) 6= ® (24)

Note that the numerical solution xnum is a function of the region of acceptance (As and k). The
test decision in case of T̃ ∩ Ã 6= ® is now based on the comparison of the degree of rejectability
with the critical value ρcrit, see Eq. (25). In any case the null hypothesis is rejected for T̃ ∩ Ã = ®.
If (T̃ ∩ Ã) 6= ®,

ρR̃(T̃ ) = 1− LT

(
Tm − r − xnum

Ts

)
> ρcrit =⇒ reject H0. (25)

If the reference functions for the region of acceptance and the test statistics are of same type, the
degree of rejectability of the null hypothesis H0 can be computed explicitly:

ρR̃(T̃ ) =

{
1, (T̃ ∩ Ã) = ®

1− LT

(
Tm−k−r
Ts+As

)
, (T̃ ∩ Ã) 6= ® (26)

In case of (T̃ ∩ Ã) 6= ®, the test decision is now described by:

ρR̃(T̃ ) = 1− LT

(
Tm − k − r

Ts + As

)
> ρcrit =⇒ reject H0. (27)

4.2.2. The card criterion
The card criterion is a second possibility for the function h in Equation (17):

h(Ũ) = card(Ũ) :=
∫

IR
mŨ (x)dx. (28)

The card criterion gives a suitable description of the agreement between two fuzzy sets, but the
computational complexity is much higher then using the height criterion, in particular for complex
fuzzy sets. The degree of rejectability of H0 has to be computed based on the cardinality of the
fuzzy sets resulting from the intersection of the test statistics and the region of acceptance (card(T̃∩
Ã)) and region of rejection (card(T̃ ∩ R̃)), respectively; see Eq. (29). Figure 3 shows a geometric
interpretation of the card criterion.

ρR̃(T̃ ) := min(γR̃(T̃ ), δÃ(T̃ )),

with γR̃(T̃ ) = card(T̃∩R̃)

card(T̃ )
and δÃ(T̃ ) = 1− card(T̃∩Ã)

card(T̃ )
.

(29)

In case of classical intervals for the regions of acceptance, the degree of rejectability of the null
hypothesis H0 is now easy to handle and reads:

ρR̃(T̃ ) = γR̃(T̃ ) = δÃ(T̃ ) =





1, (T̃ ∩ Ã) = ®
1− card(T̃∩Ã)

card(T̃ )
), (T̃ ∩ Ã) 6= ®.

(30)
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Figure 3. Geometric interpretation of the card criterion with a L-fuzzy test value (r = 0)

5. Global and multiple tests using α-cut optimization

5.1. The pure stochastic case

The pure stochastic case in multidimensional hypothesis is well known in many engineering appli-
cations, cf. (Koch, 1999). The test is based on a quadratic form zTMz with z a n×1 vector and M
a semi-positive definite symmetric matrix. With the expected value E(z) = µ and its VCM Czz,
the expected value of the quadratic form is given by:

E(zTMz) = trace(MCzz) + µTMµ. (31)

If MCzz is idempotent and z is normal distributed according to z ∼ N(µ,Czz), the quadratic form
zTMz follows a non-central χ2-distribution, cf. (Koch, 1999):

zTMz ∼ χ2(rank(M), µTMµ) = χ2(f, λ), (32)

with f = rank(M) the degrees of freedom and λ = µTMµ the non-centrality parameter.
From the results of a least-squares adjustment, the quadratic form may be given by the Equation

(14) that follows a central χ2(n− u + d, 0)-distribution (λ = 0) with n− u + d degrees of freedom:

yT (PCv̂v̂P)y ∼ χ2(f, 0) with f = n− u + d under the null hypothesis H0 : E(v̂) = 0. (33)

5.2. Global and multiple tests with observation imprecision

Now Eq. (14) has to be treated with fuzzy techniques with a given imprecise vector of reduced
observations ỹ, e. g. from Section 2. We consider intentionally point matrices for Cv̂v̂ and P. Each
kind of model uncertainty is transformed into the imprecise vector of observations, cf. (Schön and
Kutterer, 2005a). The fuzzy evaluation of the quadratic form

Ω =yT (PCv̂v̂P)y (34)

is based on Zadeh’s extension principle. If the quadratic form fulfills the criteria
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Figure 4. α-cut optimization for a point test

− convexity of the quadratic function (semi-positive definite matrix PCv̂v̂P)

− continuity onto mapping (e. g. no change of the algebraic sign)

− convex input fuzzy sets

the extension principle can be replaced by a min-max operator of an optimization problem, cf.
(Möller and Beer, 2004). The properties above are given in a least-squares adjustment with convex
fuzzy numbers or fuzzy vectors and play a key role for a strict realization of the extension prin-
ciple with an optimization problem. Furthermore, in case of a convex function local optimization
problems can be applied. We propose a recursive Newton algorithm for minimizing/maximizing
a quadratic function subject to bounds of the variables, cf. (Coleman and Li, 1996). In case of
observation intervals, the optimization algorithm has to be applied only once. For fuzzy input
variables the optimization algorithm is applied for a sufficient number of α-cuts of the input
variables to compute the min-max values for the associated α-cut of the fuzzy output variable.
The minimum and maximum values of each α-cut are given by Ωαmin and Ωαmax and the test
statistics is constructed as T̃ = Ω̃. Figure 4 shows an example of α-cut optimization for a point
test in the two-dimensional space.

Now the test strategy from Section 4 is applied, what leads for the card-criterion to the test
scenario given in Figure 5. The test hypotheses and the test decision, respectively, are given by:

H0 : E(v̂m) = 0
HA : E(v̂m) 6= 0

with Tm ∼ χ2(f, 0) and f = n− u + d

ρR̃(T̃ ) =
{ ≤

>

}
ρcrit ∈ [0, 1] =⇒

{
do not reject H0

reject H0
(35)
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Figure 5. χ2-test with the card criterion

In the case of ρR̃(T̃ ) > ρcrit, the null hypothesis H0 is rejected and one can assume, that there are
outliers in the observations. Further reasons for the rejection of the null hypothesis are non suitable
choices of the functional or stochastic modell-components. Therefore each observation or multiple
observations has to be tested using one- and multidimensional tests to detect the outliers in the
data.

Note, it is also possible to refer this problem directly to the influence factors of a sensitivity
analysis, even though it has not been shown formally.

6. Examples with geodetic applications

Now selected examples for outlier detection in a three dimensional geodetic network for the monitor-
ing of the lock Uelzen I are shown. We focus our presentation on the multidimensional case because
the one-dimensional is straightforward from the given test specifications. Due to the imprecise
vector of observations (see Sect. 2), the card criterion is used for the test decisions. The regions of
acceptance are given by classical intervals with a significance level of γ = 5%. The critical value ρcrit

is chosen as 0.5. Note that all numerical examples for the test statistics presented in this section
are based on the support of the test statistics (supp(T̃ )) in order to have a clearer representation.

Figure 6.a shows the lock and Figure 6.b the geometric configuration of the geodetic monitoring
network. The network is composed of eight control points around the lock and four object points
(101-104) on top of the lock. The aim is the formulation of a meaningful deformation model for
the object points in order to quickly and specifically initiate constructional or geotechnical safety
measures. Therefore different measurements between the network points are carried out with special
geodetic equipment such as GPS receivers and automatic tacheometers. Typical geodetic examples
for the collected measurements are horizontal directions, zenith angles, distances and GPS baselines.
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Table I. Interval radii and standard deviations of the observations

Distances Directions Zenith angles GPS baselines

lr 2.0 mm 0.3 mgon 0.5 mgon 0.2 mm

σ 5.0 mm 1.0 mgon 3.0 mgon 3.0 mm

a. The lock Uelzen I b. The geodetic monitoring network

Figure 6. Lock Uelzen

After the computation of the observation intervals based on the uncertainty of the measurements
and the preprocessing steps (cf. Sect. 2), the uncertainty budget is transferred to the parameters of
interest (cf. Sect. 3). Here, the parameters of interest are the 3-d point coordinates of the geodetic
network points which are estimated in a least-squares adjustment. The orders of magnitude of the
interval radii and the standard deviations of the observations are given in table I (for the presented
examples).

6.1. Problem definition

Outliers in the collected measurements may falsify point coordinates. Consequently they don’t show
the actual movements of the lock points. This may prevent a proper initiation of constructional or
geotechnical safety measures. For this reason, the outliers in the data have to be detected and then
removed. A general strategy which is typically used in Geodesy were presented by (Baarda, 1968).
This strategy uses standardized residuals for the test decision in the one-dimensional case (data
snooping):

T =
v̂i

σv̂i

∼ N(0, 1) with H0 : E(v̂i) = 0, HA : E(v̂i) 6= 0 (36)

with the estimated residual v̂i, its standard deviation σv̂i and the standardized normal distribution
N(0, 1). In the multidimensional case the given vector of observations is tested within a quadratic
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form (cf. Section 5.1 and (Koch, 1999)). The test statistics is then given by:

T = v̂TPv̂ ∼ χ2(f, 0) with H0 : E(v̂) = 0, HA : E(v̂) 6= 0, (37)

with f = n− u + d the degree of freedom.
If the value of the test statistics T exceeds the chosen fractile value, the null hypothesis H0 is
rejected and the outlier is considered as revealed. This strategy is standard in geodesy.

6.2. One-dimensional case (distance)

The first example is a one-dimensional test for the observed distance between the control point
910 and the object point 103. The midpoint v̂m and the radius v̂r of the residuals are computed
according to the Eq. (13a) and (13b). Each observation i is tested individually and the midpoint
Tmi and the radius ri of the test statistics in the imprecise case read as:

Tmi =
v̂mi√
Cv̂v̂ii

under H0 : E( v̂mi ) = 0, HA : E( v̂mi ) 6= 0 (38)

ri =
v̂ri√
Cv̂v̂ii

⇒ supp(T̃i) = [Tmi − ri, Tmi + ri] (39)

In this case, the numerical values for the observed distance between the points 910 and 103 are
obtained by

Tm910−103 =
v̂m910−103√
Cv̂v̂910−103

=
0.0101m
0.0047m

= 2.131 (40)

r910−103 =
v̂r910−103√
Cv̂v̂910−103

=
0.0041m
0.0047m

= 0.865 ⇒ supp(T̃910−103) = [1.266, 2.996]. (41)

Now, the test decision based on the z1− γ
2

fractile value for the two-sided hypothesis test with
γ = 5% reads:

ρR̃(T̃ ) = 0.60 > ρcrit = 0.5 =⇒ reject H0. (42)

Obviously in case of ρcrit = 0.5 the test is rejected, if the midpoint of the symmetric test statistics is
outside the region of acceptance Tm > z1− γ

2
. In case of ρcrit > 0.5 the midpoint of the test statistics

may be outside without rejecting the test, this is caused by taking observation imprecision into
account. In case of classical regions of acceptance, the value ρcrit must not be chosen too small
because observation imprecision is an additive term of uncertainty.

6.3. Multiple tests (GPS baseline)

Second, a multiple test for a GPS baseline between the points 907 and 908 is presented. According
to the pure stochastic case (see (Koch, 1999)), the imprecise quadratic form for the test reads as:

Ω =yT (PCv̂v̂P)(B(BTPB)−1BT )(PCv̂v̂P)y with y ∈ ỹ (43)
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and

BT =




0 0 · · · 0 1 0 0 0 · · · 0 0
0 0 · · · 0 0 1 0 0 · · · 0 0
0 0 · · · 0 0 0 1 0 · · · 0 0


 . (44)

∆xGPS ∆yGPS ∆zGPS

The relevant VCM of the observation to be tested in a multiple hypothesis has to be selected from
the data. For this reason, the matrix B is introduced, which is in case of GPS baselines defined
by Eq. (44). Hence, the asymmetric imprecise test statistics T̃ can be computed by means of the
optimization algorithm (cf. Section 5.2 and (Coleman and Li, 1996)):

supp(T̃ ) = supp(Ω̃) = [9.907, 10.291] with Tm = 10.097 ∼ χ2(p, 0) (45)
H0 : E(v̂mGPS ) = 0 and HA : E(v̂mGPS ) 6= 0

The test decision with the fractile value χ2
p,1−γ = 7.814 (with p = 3 the number of simultaneously

tested observations) reads as:

ρR̃(T̃ ) = 1.0 > ρcrit = 0.5 =⇒ reject H0 (46)

The GPS baseline between the points 907 and 908 is revealed as an outlier and removed from the
data. In case of GPS observations in small geodetic networks (< 5km) with less changes in altitude,
the observation imprecision is small. For this reason the spreads of the test statistics are tight and
close to symmetric.

6.4. Global test in least squares adjustments

In the last example we compute the imprecise global test in least-squares adjustment. The starting
procedure is the fuzzy evaluation of Eq. (34) with the described optimization method. The imprecise
test statistics T̃ is then given by

supp(T̃ ) = supp(Ω̃) = [306.756, 315.851] with T̃m = 310.211 ∼ χ2(f, 0) (47)
H0 : E(v̂m) = 0 and HA : E(v̂m) 6= 0

and the fractile value for the test decision reads as (γ = 5%):

χ2
f,1−γ = 310.396 (f =271) (48)

Hence, the test decision

ρR̃(T̃ ) = 0.579 > ρcrit = 0.5 =⇒ reject H0, (49)

shows, that with the given significance level of γ = 5% the global test is rejected, although the
midpoint of the specified test statistics is inside of the region of acceptance (ρcrit = 0.5). The
test rejection is caused by the assymmetric imprecise test statistics which considers the quadratic
impact of the imprecise influence parameters on the specified test statistic.
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7. Conclusions

In this study, one and multidimensional hypotheses tests in case of observation imprecision are devel-
oped. The consideration of observation imprecision is an independent extension of the classical test
approach. New approaches for outlier detection are shown, based on the intervals or fuzzy numbers
of the observations. The presented test strategy allows to handle with all types of uncertainty,
given as imprecise vectors of observations and can be applied to least-squares adjustments in many
engineering applications. Thus, it is an essential observation-based contribution to the quality
management in engineering.

Furthermore, this paper shows that an automated joint treatment of stochasticity and impre-
cision from the original observation up to the target parameters is possible. It turns out that
remaining systematics have to be taken into account in geodetic data analysis. This allows an
improved interpretation of the parameters of interest.

Finally, the presented test strategy allows a numerical calculation of the fractile value z
1−αimpr

2

of the standard normal distribution. The evaluation of type I and type II errors in the imprecise
case is possible.

The main focus of the following studies lies on the analysis and reanalysis of simulated and
real data sets in order to make more improved decisions, in e.g. about the critical value ρcrit.
In addition, more extensive works in numerical computations with the card criterion and in the
comparison between the height and card criterion has to be done.
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