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Abstract: In transportation engineering, dynamic analysis is an essential procedure for designing 
reliable systems. However, in current procedures of dynamic analysis for transportation systems, 
the possible presence of uncertainty in the system’s mechanical properties and/or applied forces is 
not considered. In this work, a new method is developed for the dynamic analysis of continuous 
uncertain systems subjected to uncertain loads induced by passage of moving vehicles. First, an 
interval formulation is used to quantify the uncertainty present in the system’s mechanical 
characteristics and/or magnitude of dynamic force. Then, having the interval parameters, the 
bounds on modal responses of the continuous system are obtained leading to determination of the 
upper-bounds of total response that may be used for design purposes. An example problem that 
illustrates the behavior of the method and a comparison with Monte-Carlo simulations are 
presented. 
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1. Introduction 

 
In design of transportation facilities, the performance of the system must be guaranteed over its 
lifetime. Moreover, dynamic analysis is a fundamental procedure for designing reliable systems 
that are subjected to dynamic forces induced by passage of moving vehicles.  
 

However, in current procedures for dynamic analysis of transportation systems, the possible 
existence of uncertainty in either mechanical properties of the system or the characteristics of 
forcing function is generally not considered. These uncertainties can be attributed to physical 
imperfections, modeling inaccuracies and system complexities.  
 

Although, in a design process, uncertainty is accounted for by a combination of load 
amplification and strength reduction factors that are based on probabilistic models of historic 
data, consideration of the effects of uncertainty has been removed from current dynamic analysis  
of transportation systems.  
____________________________ 
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 In this work, a new method is developed to perform dynamic analysis of a continuous system 
subjected to a moving load in the presence of uncertainty in the system’s mechanical properties as 
well as uncertainty in the magnitude of dynamic loads. An interval formulation is used to 
represent the presence of uncertainty.  
 

Using interval calculation procedures, the upper bounds of system’s response are obtained 
which can be used for reliable design purposes. It is shown that this method can achieve the 
bounds of dynamic response without Monte-Carlo simulation procedure. 
 
 
 

2. Deterministic Dynamic Analysis 
 

The partial differential equation of motion for a flexural beam subjected to a load moving with 
constant velocity (Figure 1) is: 
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where, E is modulus of elasticity, I is the moment of inertia, u is the displacement, t  is time, m  
is mass per unit length,  is the magnitude of load, v is the velocity of the load and P δ is the 
Dirac-delta function. 

 
Figure 1. Simply-supported beam with moving load. 

 
Considering free vibration of the system and assuming a harmonic solution of the form: 

, in whichtiextxu ωϕ )(),( = )(xϕ a spatial function andω is the circular natural frequency, the 
linear eigenvalue problem is: 
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Applying boundary conditions for the simply-supported flexural Bernoulli beam, 
( 0)()()0()0( =′′==′′= LL ϕϕϕϕ ), the solution to the characteristic equation for natural 
circular frequencies and corresponding mass-orthonormalized eigenfunctions (mode shapes) are: 
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where,  is the mode number. n
 

The solution for the forced vibration may be expressed as: 
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Where, are the modal coordinates. )(tyn

 
Substituting Eq. (5) in the governing equation, Eq. (1), premultiplying by )(xnϕ , integrating 

over the domain, decoupling and adding modal damping ratio ( nζ ), the modal equation becomes: 
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where, LmPn /2=Γ is the modal participation factor.  

 
Defining a scaled generalized modal coordinate: 
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Eq. (7) is rewritten in terms of the scaled modal coordinate, , as:  )(tdn
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For each decoupled generalized modal equation, the maximum modal coordinate is obtained 

from the response spectrum (maximum ratio of dynamic to static response) for modal frequency 
and assumed modal damping ratio (Figure 2). 

 
  

Figure 2. A generic response spectrum. 
  

Then, the maximum modal displacement response is obtained as the multiplication of the 
maximum modal coordinate, modal participation factor, and mode shape as: 
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Finally, the total displacement response is obtained using superposition of modal maxima. 

The superposition can be performed by considering Square Root of Sum of Squares (SRSS) of 
modal maxima as (Rosenblueth 1962): 
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For practical purposes, the infinite series must be truncated. For systems with different 

patterns of load and boundary conditions, the same procedures can be used. 
3. Interval Variables 

 
The concept of interval numbers has been originally applied in the error analysis associated with 
digital computing.  Quantification of the uncertainties introduced by truncation of real numbers in 
numerical methods was the primary application of interval methods (Moore 1966).  
 

A real interval is a closed set defined by extreme values as (Figure 3): 
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Figure 3. An interval variable. 
 
 

In this work, the symbol (~) represents an interval quantity. One interpretation of an interval 
number is a random variable whose probability density function is unknown but non-zero only in 
the range of interval.  
 

Another interpretation of an interval number includes intervals of confidence for α -cuts of 
fuzzy sets. The interval representation transforms the point values in the deterministic system to 
inclusive set values in the system with bounded uncertainty. 
 
 
 

4. Interval Dynamic Analysis 
 

The partial differential equation of motion for a flexural beam subjected to a load moving with 
constant velocity with interval uncertainty in modulus of elasticity and magnitude of load is: 
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where,  and . ],[
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Then, the interval eigenvalue problem becomes: 
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Applying boundary conditions, the solution for natural circular frequencies and 

corresponding mode shapes are: 
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Eq. (15) can be rewritten as: 
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This shows that the lower bound of modulus of elasticity (or in general stiffness) yields the 

lower bound of natural circular frequency and similarly, the upper bound of modulus of elasticity 
yields the upper bound of natural circular frequency. This leads to an evident realization of 
monotonic behavior of natural circular frequencies due to variation in stiffness in continuous 
dynamic systems. 
 

In discrete systems, because of the complexity of the eigenvalue problem, this realization is 
not straightforward. Modares and Mullen (2004) proved this monotonic behavior of natural 
frequencies in discrete systems using monotonicity of eigenvalues for symmetric matrices 
subjected to non-negative definite perturbations. 
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The interval modal coordinate is determined using the excitation response spectrum evaluated for 
the corresponding interval of natural circular frequency and assumed modal damping ratio 
(Figure  4). 
 

 
Figure 4.  Determination of nd~ corresponding to a nω~  for a generic response spectrum 

 
 

Having the interval modal coordinate, the maximum (upperbound) modal coordinate  

is determined as: 
max,nd
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 The interval modal participation factor is: 
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Therefore, the maximum modal coordinate is:  
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Then, the maximum modal displacement response is obtained as the multiplication of 

maximum modal coordinate, maximum modal participation factor and mode shape as: 
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Finally, the total displacement response is obtained using superposition of modal maxima. 
Using SRSS, the total response is:  
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5. Numerical Example 
 
The example obtains the bounds on dynamic mid-span displacement for a continuous flexural 
simply-supported beam with interval uncertainty in the modulus of elasticity and magnitude of 
moving load. 
 

 
 

Figure 5. Flexural beam with uncertainty in modulus of elasticity  
and magnitude of moving load. 

 
The beam’s length is , mass is ftL 200= gkipsm /11=  per foot, the moment of inertia is 

, assumed modal damping ratio 4700 ftI = %1=ζ ,  and uncertain modulus of elasticity is 

. The moving load’s velocity is2/576000])1.1,9.0([ ftkipsE = mphv 55=  , and its parametric 

uncertain magnitude of load is . PP ]1.1,9.0[
~ =

 
 
5.1.  SOLUTION 
 
The problem is solved using the present method and the results are compared with Monte-Carlo 
simulation solution using bounded uniformly distributed random variables in 10000 simulations.  
 

The solution for bounds on modal natural circular frequencies is summarized in table (1). 
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Lower Bound 
Present Method 

 

Lower Bound 
Monte-Carlo 
Simulation 

 

 

Upper Bound 
Monte-Carlo 
Simulation 

 

Upper Bound 
Present Method 

)( 2n
nω  1.41717 1.41718 1.56673 1.56675 

 
Table1. Bounds on Natural Circular frequencies 

 
 

The response spectrum for the first (fundamental) mode is obtained and shown in figure (6). 
 

 
 

Figure 6. Response spectrum for fundamental mode of the example problem. 

 
 

The upperbounds the mid-span displacement response for the fundamental mode is 
summarized in table (2). 
 
 

 
 

Upper Bound 
Monte-Carlo Simulation 

 

 

Upper Bound 
Present Method 

P
u1  8.06557e-004 8.12128e-004 

 
Table2. Upper bounds of displacement response  
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The first-mode beam response is depicted in figure (7). 
 

 
 

Figure 7. Beam deflection for the fundamental mode response of the example problem. 
 
 

The results show that using the proposed method, the system’s physics is preserved and also, 
the obtained sharp solutions are upper-bounds to solutions obtained by methods that produce 
inner-bound results such as Monte-Carlo simulation. 
 
 
 

6. Conclusions 
 
A new method for dynamic analysis of transportation systems with uncertainty in the mechanical 
characteristics of the system as well as the properties of the moving load is developed. 
 

This computationally efficient method shows that implementation of interval analysis in a 
continuous dynamic system preserves the problem’s physics and the yields sharp and robust 
results. This may be attributed to completeness of the closed-form solution in continuous dynamic 
systems. 
 

The results show that obtaining bounds does not require expensive stochastic procedures such 
as Monte-Carlo simulations. 

 
The simplicity of the proposed method makes it attractive to introduce uncertainty in analysis 

of continuous dynamic systems. 
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