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Abstract. Reliability methods are probabilistic algorithms for quantifying the effect of uncertain-
ties in simulation input on response metrics of interest. In particular, they compute approximate
response function distribution statistics (probability, reliability, and response levels) based on speci-
fied probability distributions for input random variables. In this paper, recent algorithm research in
first and second-order reliability methods is overviewed for both the forward reliability analysis of
computing probabilities for specified response levels (the reliability index approach (RIA)) and the
inverse reliability analysis of computing response levels for specified probabilities (the performance
measure approach (PMA)). A number of algorithmic variations have been explored, and the effect
of different limit state approximations, probability integrations, warm starting, most probable point
search algorithms, and Hessian approximations is discussed. These reliability analysis capabilities
provide the foundation for reliability-based design optimization (RBDO) methods, and bi-level and
sequential formulations are presented. These RBDO formulations may employ analytic sensitivities
of reliability metrics with respect to design variables that either augment or define distribution
parameters for the uncertain variables. Relative performance of these reliability analysis and design
algorithms is presented for a number of benchmark test problems using the DAKOTA software, and
algorithm recommendations are given. These recommended algorithms are subsequently being ap-
plied to real-world applications in the probabilistic analysis and design of micro-electro-mechanical
systems, and initial experiences with this deployment are provided.
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1. Introduction

Reliability methods are probabilistic algorithms for quantifying the effect of uncertainties in simu-
lation input on response metrics of interest. In particular, they perform uncertainty quantification
(UQ) by computing approximate response function distribution statistics based on specified prob-
ability distributions for input random variables. These response statistics include response mean,
response standard deviation, and cumulative or complementary cumulative distribution function
(CDF/CCDF) response level and probability/reliability level pairings. These methods are often
more efficient at computing statistics in the tails of the response distributions (events with low
probability) than sampling-based approaches since the number of samples required to resolve a
low probability can be prohibitive. Thus, these methods, as their name implies, are often used in
a reliability context for assessing the probability of failure of a system when confronted with an
uncertain environment.

A number of classical reliability analysis methods are discussed in (Haldar and Mahadevan,
2000), including Mean-Value First-Order Second-Moment (MVFOSM), First-Order Reliability Method
(FORM), and Second-Order Reliability Method (SORM). More recent methods which seek to
improve the efficiency of FORM analysis through limit state approximations include the use of
local and multipoint approximations in Advanced Mean Value methods (AMV/AMV+ (Wu et
al., 1990)) and Two-point Adaptive Nonlinearity Approximation-based methods (TANA (Wang
and Grandhi, 1994; Xu and Grandhi, 1998)), respectively. Each of the FORM-based methods can
be employed for “forward” or “inverse” reliability analysis through the reliability index approach
(RIA) or performance measure approach (PMA), respectively, as described in (Tu et al., 1999).

The capability to assess reliability is broadly useful within a design optimization context, and
reliability-based design optimization (RBDO) methods are popular approaches for designing sys-
tems while accounting for uncertainty. RBDO approaches may be broadly characterized as bi-level
(in which the reliability analysis is nested within the optimization, e.g. (Allen and Maute, 2004)),
sequential (in which iteration occurs between optimization and reliability analysis, e.g. (Wu et al.,
2001; Du and Chen, 2004)), or unilevel (in which the design and reliability searches are combined
into a single optimization, e.g. (Agarwal et al., 2004)). Bi-level RBDO methods are simple and
general-purpose, but can be computationally demanding. Sequential and unilevel methods seek to
reduce computational expense by breaking the nested relationship through the use of iterated or
simultaneous approaches.

In order to provide access to a variety of uncertainty quantification capabilities for analy-
sis of large-scale engineering applications on high-performance parallel computers, the DAKOTA
project (Eldred et al., 2003) at Sandia National Laboratories has developed a suite of algorithmic
capabilities known as DAKOTA/UQ (Wojtkiewicz et al., 2001). This package contains the reliabil-
ity analysis capabilities described in this paper and enables the RBDO approaches, and is freely
available for download worldwide through an open source license.

This paper overviews recent algorithm research activities that have explored a variety of ap-
proaches for performing reliability analysis. In particular, forward and inverse reliability analyses
have been explored using multiple limit state approximation, probability integration, warm starting,
Hessian approximation, and optimization algorithm selections. These uncertainty quantification ca-
pabilities have also provided a foundation for exploring bi-level and sequential RBDO formulations.

REC 2006 - M. S. Eldred, B. J. Bichon, and B. M. Adams



Overview of Reliability Analysis and Design Capabilities in DAKOTA 3

Sections 2 and 3 describe these algorithmic components, Section 4 summarizes computational results
for four benchmark test problems, Section 5 presents initial deployment of these methodologies to
the probabilistic analysis and design of MEMS, and Section 6 provides concluding remarks.

2. Reliability Method Formulations

2.1. Mean Value

The Mean Value method (MV, also known as MVFOSM in (Haldar and Mahadevan, 2000)) is
the simplest, least-expensive reliability method because it estimates the response means, response
standard deviations, and all CDF/CCDF response-probability-reliability levels from a single evalu-
ation of response functions and their gradients at the uncertain variable means. This approximation
can have acceptable accuracy when the response functions are nearly linear and their distributions
are approximately Gaussian, but can have poor accuracy in other situations. The expressions for
approximate response mean µg, approximate response standard deviation σg, response target to
approximate probability/reliability level mapping (z̄ → p, β), and probability/reliability target to
approximate response level mapping (p̄, β̄ → z) are

µg = g(µx) (1)

σg =
∑

i

∑

j

Cov(i, j)
dg

dxi
(µx)

dg

dxj
(µx) (2)

βcdf =
µg − z̄

σg
(3)

βccdf =
z̄ − µg
σg

(4)

z = µg − σgβ̄cdf (5)

z = µg + σgβ̄ccdf (6)

respectively, where x are the uncertain values in the space of the original uncertain variables (“x-
space”), g(x) is the limit state function (the response function for which probability-response level
pairs are needed), and βcdf and βccdf are the CDF and CCDF reliability indices, respectively.

With the introduction of second-order limit state information, MVSOSM calculates a second-
order mean as

µg = g(µx) +
1

2

∑

i

∑

j

Cov(i, j)
d2g

dxidxj
(µx) (7)

This is commonly combined with a first-order variance (Eq. 2), since second-order variance involves
higher order distribution moments (skewness, kurtosis) (Haldar and Mahadevan, 2000) which are
often unavailable.

The first-order CDF probability p(g ≤ z), first-order CCDF probability p(g > z), βcdf , and βccdf
are related to one another through

p(g ≤ z) = Φ(−βcdf ) (8)
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p(g > z) = Φ(−βccdf ) (9)

βcdf = −Φ−1(p(g ≤ z)) (10)

βccdf = −Φ−1(p(g > z)) (11)

βcdf = −βccdf (12)

p(g ≤ z) = 1− p(g > z) (13)

where Φ() is the standard normal cumulative distribution function. A common convention in the
literature is to define g in such a way that the CDF probability for a response level z of zero (i.e.,
p(g ≤ 0)) is the response metric of interest. The formulations in this paper are not restricted to this
convention and are designed to support CDF or CCDF mappings for general response, probability,
and reliability level sequences.

2.2. MPP Search Methods

All other reliability methods solve a nonlinear optimization problem to compute a most probable
point (MPP) and then integrate about this point to compute probabilities. The MPP search is
performed in uncorrelated standard normal space (“u-space”) since it simplifies the probability
integration: the distance of the MPP from the origin has the meaning of the number of input
standard deviations separating the mean response from a particular response threshold. The trans-
formation from correlated non-normal distributions (x-space) to uncorrelated standard normal
distributions (u-space) is denoted as u = T (x) with the reverse transformation denoted as x =
T−1(u). These transformations are nonlinear in general, and possible approaches include the Rosen-
blatt (Rosenblatt, 1952), Nataf (Der Kiureghian and Liu, 1986), and Box-Cox (Box and Cox, 1964)
transformations. The nonlinear transformations may also be linearized, and common approaches for
this include the Rackwitz-Fiessler (Rackwitz and Fiessler, 1978) two-parameter equivalent normal
and the Chen-Lind (Chen and Lind, 1983) and Wu-Wirsching (Wu and Wirsching, 1987) three-
parameter equivalent normals. The results in this paper employ the Nataf nonlinear transformation
which occurs in the following two steps. To transform between the original correlated x-space
variables and correlated standard normals (“z-space”), the CDF matching condition is used:

Φ(zi) = F (xi) (14)

where F () is the cumulative distribution function of the original probability distribution. Then, to
transform between correlated z-space variables and uncorrelated u-space variables, the Cholesky
factor L of a modified correlation matrix is used:

z = Lu (15)

where the original correlation matrix for non-normals in x-space has been modified to represent the
corresponding correlation in z-space (Der Kiureghian and Liu, 1986).

The forward reliability analysis algorithm of computing CDF/CCDF probability/reliability levels
for specified response levels is called the reliability index approach (RIA), and the inverse reliability
analysis algorithm of computing response levels for specified CDF/CCDF probability/reliability lev-
els is called the performance measure approach (PMA) (Tu et al., 1999). The differences between the
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RIA and PMA formulations appear in the objective function and equality constraint formulations
used in the MPP searches. For RIA, the MPP search for achieving the specified response level z̄ is
formulated as

minimize uTu

subject to G(u) = z̄ (16)

and for PMA, the MPP search for achieving the specified reliability/probability level β̄, p̄ is formu-
lated as

minimize ±G(u)

subject to uTu = β̄2 (17)

where u is a vector centered at the origin in u-space and g(x) ≡ G(u) by definition. In the RIA
case, the optimal MPP solution u∗ defines the reliability index from β = ±‖u∗‖2, which in turn
defines the CDF/CCDF probabilities (using Eqs. 8-9 in the case of first-order integration). The
sign of β is defined by

G(u∗) > G(0) : βcdf < 0, βccdf > 0 (18)

G(u∗) < G(0) : βcdf > 0, βccdf < 0 (19)

where G(0) is the median limit state response computed at the origin in u-space (where βcdf =
βccdf = 0 and first-order p(g ≤ z) = p(g > z) = 0.5). In the PMA case, the sign applied to G(u)
(equivalent to minimizing or maximizing G(u)) is similarly defined by β̄

β̄cdf < 0, β̄ccdf > 0 : maximize G(u) (20)

β̄cdf > 0, β̄ccdf < 0 : minimize G(u) (21)

and the limit state at the MPP (G(u∗)) defines the desired response level result.
When performing PMA with specified p̄, one must compute β̄ to include in Eq. 17. While

this is a straightforward one-time calculation for first-order integrations (Eqs. 10-11), the use of
second-order integrations complicates matters since the β̄ corresponding to the prescribed p̄ is a
function of the Hessian of G (see Eq. 38), which in turn is a function of location in u-space. A
generalized reliability index (Eq. 50), which would allow a one-time calculation, may not be used
since equality with uTu is not meaningful. The β̄ target must therefore be updated in Eq. 17 as
the minimization progresses (e.g., using Newton’s method to solve Eq. 38 for β̄ given p̄ and κi).
This works best when β̄ can be fixed during the course of an approximate optimization, such as for
the AMV2+ and TANA methods described in Section 2.2.1. For second-order PMA without limit
state approximation cycles (i.e., PMA SORM), the constraint must be continually updated and the
constraint derivative should include ∇uβ̄, which would require third-order information for the limit
state to compute derivatives of the principal curvatures. This is impractical, so the PMA SORM
constraint derivatives are only approximated analytically or estimated numerically. Potentially for
this reason, PMA SORM has not been widely explored in the literature.
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2.2.1. Limit state approximations

There are a variety of algorithmic variations that can be explored within RIA/PMA reliability
analysis. First, one may select among several different limit state approximations that can be
used to reduce computational expense during the MPP searches. Local, multipoint, and global
approximations of the limit state are possible. (Eldred et al., 2005) investigated local first-order
limit state approximations, and (Eldred et al., 2006) investigated local second-order and multipoint
approximations. These techniques include:

1. a single Taylor series per response/reliability/probability level in x-space centered at the un-
certain variable means. The first-order approach is commonly known as the Advanced Mean
Value (AMV) method:

g(x) ∼= g(µx) +∇xg(µx)
T (x− µx) (22)

and the second-order approach has been named AMV2:

g(x) ∼= g(µx) +∇xg(µx)
T (x− µx) +

1

2
(x− µx)

T∇2xg(µx)(x− µx) (23)

2. same as AMV/AMV2, except that the Taylor series is expanded in u-space. The first-order
option has been termed the u-space AMV method:

G(u) ∼= G(µu) +∇uG(µu)
T (u− µu) (24)

where µu = T (µx) and is nonzero in general, and the second-order option has been named the
u-space AMV2 method:

G(u) ∼= G(µu) +∇uG(µu)
T (u− µu) +

1

2
(u− µu)

T∇2uG(µu)(u− µu) (25)

3. an initial Taylor series approximation in x-space at the uncertain variable means, with iterative
expansion updates at each MPP estimate (x∗) until the MPP converges. The first-order option
is commonly known as AMV+:

g(x) ∼= g(x∗) +∇xg(x
∗)T (x− x∗) (26)

and the second-order option has been named AMV2+:

g(x) ∼= g(x∗) +∇xg(x
∗)T (x− x∗) +

1

2
(x− x∗)T∇2xg(x

∗)(x− x∗) (27)

4. same as AMV+/AMV2+, except that the expansions are performed in u-space. The first-order
option has been termed the u-space AMV+ method.

G(u) ∼= G(u∗) +∇uG(u
∗)T (u− u∗) (28)

and the second-order option has been named the u-space AMV2+ method:

G(u) ∼= G(u∗) +∇uG(u
∗)T (u− u∗) +

1

2
(u− u∗)T∇2uG(u

∗)(u− u∗) (29)
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5. a multipoint approximation in x-space. This approach involves a Taylor series approximation
in intermediate variables where the powers used for the intermediate variables are selected to
match information at the current and previous expansion points. Based on the two-point expo-
nential approximation concept (TPEA, (Fadel et al., 1990)), the two-point adaptive nonlinearity
approximation (TANA-3, (Xu and Grandhi, 1998)) approximates the limit state as:

g(x) ∼= g(x2) +
n

∑

i=1

∂g

∂xi
(x2)

x1−pi

i,2

pi
(xpi

i − x
pi

i,2) +
1

2
ε(x)

n
∑

i=1

(xpi

i − x
pi

i,2)
2 (30)

where n is the number of uncertain variables and:

pi = 1 + ln





∂g
∂xi

(x1)
∂g
∂xi

(x2)





/

ln

[

xi,1
xi,2

]

(31)

ε(x) =
H

∑n
i=1(x

pi

i − x
pi

i,1)
2 +

∑n
i=1(x

pi

i − x
pi

i,2)
2

(32)

H = 2

[

g(x1)− g(x2)−
n

∑

i=1

∂g

∂xi
(x2)

x1−pi

i,2

pi
(xpi

i,1 − x
pi

i,2)

]

(33)

and x2 and x1 are the current and previous MPP estimates in x-space, respectively. Prior to
the availability of two MPP estimates, x-space AMV+ is used.

6. a multipoint approximation in u-space. The u-space TANA-3 approximates the limit state as:

G(u) ∼= G(u2) +
n

∑

i=1

∂G

∂ui
(u2)

u1−pi

i,2

pi
(upi

i − u
pi

i,2) +
1

2
ε(u)

n
∑

i=1

(upi

i − u
pi

i,2)
2 (34)

where:

pi = 1 + ln

[

∂G
∂ui

(u1)
∂G
∂ui

(u2)

] /

ln

[

ui,1
ui,2

]

(35)

ε(u) =
H

∑n
i=1(u

pi

i − u
pi

i,1)
2 +

∑n
i=1(u

pi

i − u
pi

i,2)
2

(36)

H = 2

[

G(u1)−G(u2)−
n

∑

i=1

∂G

∂ui
(u2)

u1−pi

i,2

pi
(upi

i,1 − u
pi

i,2)

]

(37)

and u2 and u1 are the current and previous MPP estimates in u-space, respectively. Prior to
the availability of two MPP estimates, u-space AMV+ is used.

7. the MPP search on the original response functions without the use of any approximations.

The Hessian matrices in AMV2 and AMV2+may be available analytically, estimated numerically, or
approximated through quasi-Newton updates. The quasi-Newton variant of AMV2+ is conceptually

REC 2006 - M. S. Eldred, B. J. Bichon, and B. M. Adams



8 M. S. Eldred, B. J. Bichon, and B. M. Adams

similar to TANA in that both approximate curvature based on a sequence of gradient evaluations.
TANA estimates curvature by matching values and gradients at two points and includes it through
the use of exponential intermediate variables and a single-valued diagonal Hessian approximation.
Quasi-Newton AMV2+ accumulates curvature over a sequence of points and then uses it directly
in a second-order series expansion. Therefore, these methods may be expected to exhibit similar
performance.

The selection between x-space or u-space for performing approximations depends on where the
approximation will be more accurate, since this will result in more accurate MPP estimates (AMV,
AMV2) or faster convergence (AMV+, AMV2+, TANA). Since this relative accuracy depends
on the forms of the limit state g(x) and the transformation T (x) and is therefore application
dependent in general, DAKOTA/UQ supports both options. A concern with approximation-based
iterative search methods (i.e., AMV+, AMV2+ and TANA) is the robustness of their convergence
to the MPP. It is possible for the MPP iterates to oscillate or even diverge. However, to date,
this occurrence has been relatively rare, and DAKOTA/UQ contains checks that monitor for this
behavior. Another concern with TANA is numerical safeguarding. First, there is the possibility of
raising negative xi or ui values to nonintegral pi exponents in Eqs. 30, 32-34, and 36-37. This is
particularly likely for u-space. Safeguarding techniques include the use of linear bounds scaling for
each xi or ui, offseting negative xi or ui, or promotion of pi to integral values for negative xi or ui. In
numerical experimentation, the offset approach has been the most effective in retaining the desired
data matches without overly inflating the pi exponents. Second, there are a number of potential
numerical difficulties with the logarithm ratios in Eqs. 31 and 35. In this case, a safeguarding
strategy is to revert to either the linear (pi = 1) or reciprocal (pi = −1) approximation based on

which approximation has lower error in ∂g
∂xi

(x1) or
∂G
∂ui

(u1).

2.2.2. Probability integrations

The second algorithmic variation involves the integration approach for computing probabilities at
the MPP, which can be selected to be first-order (Eqs. 8-9) or second-order integration. Second-order
integration involves applying a curvature correction (Breitung, 1984; Hohenbichler and Rackwitz,
1988; Hong, 1999). Breitung applies a correction based on asymptotic analysis (Breitung, 1984):

p = Φ(−βp)
n−1
∏

i=1

1
√

1 + βpκi
(38)

where κi are the principal curvatures of the limit state function (the eigenvalues of an orthonormal
transformation of ∇2uG, taken positive for a convex limit state) and βp ≥ 0 (select CDF or CCDF
probability correction to obtain correct sign for βp). An alternate correction in (Hohenbichler and
Rackwitz, 1988) is consistent in the asymptotic regime (βp →∞) but does not collapse to first-order
integration for βp = 0:

p = Φ(−βp)
n−1
∏

i=1

1
√

1 + ψ(−βp)κi
(39)

where ψ() = φ()
Φ() and φ() is the standard normal density function. (Hong, 1999) applies further

corrections to Eq. 39 based on point concentration methods.
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To invert a second-order integration and compute βp given p and κi (e.g., for second-order PMA
as described in Section 2.2), Newton’s method can be applied as described in (Eldred et al., 2006).
Combining the no-approximation option of the MPP search with first-order and second-order inte-
gration approaches results in the traditional first-order and second-order reliability methods (FORM
and SORM). Additional probability integration approaches can involve importance sampling in the
vicinity of the MPP (Hohenbichler and Rackwitz, 1988; Wu, 1994), but are outside the scope of this
paper. While second-order integrations could be performed anywhere a limit state Hessian has been
computed, the additional computational effort is most warranted for fully converged MPPs from
AMV+, AMV2+, TANA, FORM, and SORM, and is of reduced value for MVFOSM, MVSOSM,
AMV, or AMV2.

2.2.3. Hessian approximations

To use a second-order Taylor series or a second-order integration when second-order information
(∇2xg, ∇

2
uG, and/or κ) is not directly available, one can estimate the missing information using

finite differences or approximate it through use of quasi-Newton approximations. These procedures
will often be needed to make second-order approaches practical for engineering applications.

In the finite difference case, numerical Hessians are commonly computed using either first-order
forward differences of gradients using

∇2g(x) ∼=
∇g(x + hei)−∇g(x)

h
(40)

to estimate the ith Hessian column when gradients are analytically available, or second-order
differences of function values using

∇2g(x) ∼=
g(x+hei+hej)−g(x+hei−hej)−g(x−hei+hej)+g(x−hei−hej)

4h2
(41)

to estimate the ijth Hessian term when gradients are not directly available. This approach has the
advantage of locally-accurate Hessians for each point of interest (which can lead to quadratic con-
vergence rates in discrete Newton methods), but has the disadvantage that numerically estimating
each of the matrix terms can be expensive.

Quasi-Newton approximations, on the other hand, do not reevaluate all of the second-order
information for every point of interest. Rather, they accumulate approximate curvature information
over time using secant updates. Since they utilize the existing gradient evaluations, they do not
require any additional function evaluations for evaluating the Hessian terms. The quasi-Newton
approximations of interest include the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

yTk sk
(42)

which yields a sequence of symmetric positive definite Hessian approximations, and the Symmetric
Rank 1 (SR1) update

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

(yk −Bksk)T sk
(43)
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which yields a sequence of symmetric, potentially indefinite, Hessian approximations. Bk is the
kth approximation to the Hessian ∇2g, sk = xk+1 − xk is the step and yk = ∇gk+1 − ∇gk is the
corresponding yield in the gradients. The selection of BFGS versus SR1 involves the importance of
retaining positive definiteness in the Hessian approximations; if the procedure does not require it,
then the SR1 update can be more accurate if the true Hessian is not positive definite. Initial scalings
for B0 and numerical safeguarding techniques (damped BFGS, update skipping) are described in
(Eldred et al., 2006).

2.2.4. Optimization algorithms

The next algorithmic variation involves the optimization algorithm selection for solving Eqs. 16
and 17. The Hasofer-Lind Rackwitz-Fissler (HL-RF) algorithm (Haldar and Mahadevan, 2000)
is a classical approach that has been broadly applied. It is a Newton-based approach lacking
line search/trust region globalization, and is generally regarded as computationally efficient but
occasionally unreliable. DAKOTA/UQ takes the approach of employing robust, general-purpose
optimization algorithms with provable convergence properties. This paper employs the sequential
quadratic programming (SQP) and nonlinear interior-point (NIP) optimization algorithms from
the NPSOL (Gill et al., 1998) and OPT++ (Meza, 1994) libraries, respectively.

2.2.5. Warm Starting of MPP Searches

The final algorithmic variation involves the use of warm starting approaches for improving com-
putational efficiency. (Eldred et al., 2005) describes the acceleration of MPP searches through
warm starting with approximate iteration increment, with z/p/β level increment, and with design
variable increment. Warm started data includes the expansion point and associated response values
and the MPP optimizer initial guess. Projections are used when an increment in z/p/β level
or design variables occurs. Warm starts were consistently effective in (Eldred et al., 2005), with
greater effectiveness for smaller parameter changes, and are used for all computational experiments
presented in this paper.

3. Reliability-Based Design Optimization

Reliability-based design optimization (RBDO) methods are used to perform design optimization
accounting for reliability metrics. The reliability analysis capabilities described in Section 2 provide
a rich foundation for exploring a variety of RBDO formulations. (Eldred et al., 2005) inves-
tigated bi-level, fully-analytic bi-level, and first-order sequential RBDO approaches employing
underlying first-order reliability assessments. (Eldred et al., 2006) investigated fully-analytic bi-
level and second-order sequential RBDO approaches employing underlying second-order reliability
assessments. These methods are overviewed in the following sections.

3.1. Bi-level RBDO

The simplest and most direct RBDO approach is the bi-level approach in which a full reliability
analysis is performed for every optimization function evaluation. This involves a nesting of two
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distinct levels of optimization within each other, one at the design level and one at the MPP search
level.

Since an RBDO problem will typically specify both the z̄ level and the p̄/β̄ level, one can use
either the RIA or the PMA formulation for the UQ portion and then constrain the result in the
design optimization portion. In particular, RIA reliability analysis maps z̄ to p/β, so RIA RBDO
constrains p/β:

minimize f

subject to β ≥ β̄

or p ≤ p̄ (44)

And PMA reliability analysis maps p̄/β̄ to z, so PMA RBDO constrains z:

minimize f

subject to z ≥ z̄ (45)

where z ≥ z̄ is used as the RBDO constraint for a cumulative failure probability (failure defined as
z ≤ z̄) but z ≤ z̄ would be used as the RBDO constraint for a complementary cumulative failure
probability (failure defined as z ≥ z̄). It is worth noting that DAKOTA is not limited to these types
of inequality-constrained RBDO formulations; rather, they are convenient examples. DAKOTA
supports general optimization under uncertainty mappings (Eldred et al., 2002) which allow flexible
use of statistics within multiple objectives, inequality constraints, and equality constraints.

An important performance enhancement for bi-level methods is the use of sensitivity anal-
ysis to analytically compute the design gradients of probability, reliability, and response levels.
When design variables are separate from the uncertain variables (i.e., they are not distribution
parameters), then the following first-order expressions may be used (Hohenbichler and Rackwitz,
1986; Karamchandani and Cornell, 1992; Allen and Maute, 2004):

∇dz = ∇dg (46)

∇dβcdf =
1

‖ ∇uG ‖
∇dg (47)

∇dpcdf = −φ(−βcdf )∇dβcdf (48)

where it is evident from Eqs. 12-13 that ∇dβccdf = −∇dβcdf and ∇dpccdf = −∇dpcdf . In the case
of second-order integrations, Eq. 48 must be expanded to include the curvature correction. For
Breitung’s correction (Eq. 38),

∇dpcdf =











Φ(−βp)
n−1
∑

i=1











−κi

2(1 + βpκi)
3

2

n−1
∏

j=1
j 6=i

1
√

1 + βpκj











− φ(−βp)
n−1
∏

i=1

1
√

1 + βpκi











∇dβcdf (49)

where ∇dκi has been neglected and βp ≥ 0 (see Section 2.2.2). Other approaches assume the curva-
ture correction is nearly independent of the design variables (Rackwitz, 2002), which is equivalent
to neglecting the first term in Eq. 49.
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To capture second-order probability estimates within an RIA RBDO formulation using well-
behaved β constraints, a generalized reliability index can be introduced where, similar to Eq. 10,

β∗cdf = −Φ−1(pcdf ) (50)

for second-order pcdf . This reliability index is no longer equivalent to the magnitude of u, but
rather is a convenience metric for capturing the effect of more accurate probability estimates. The
corresponding generalized reliability index sensitivity, similar to Eq. 48, is

∇dβ
∗
cdf = −

1

φ(−β∗cdf )
∇dpcdf (51)

where ∇dpcdf is defined from Eq. 49. Even when ∇dg is estimated numerically, Eqs. 46-51 can be
used to avoid numerical differencing across full reliability analyses.

When the design variables are distribution parameters of the uncertain variables, ∇dg is ex-
panded with the chain rule and Eqs. 46 and 47 become

∇dz = ∇dx∇xg (52)

∇dβcdf =
1

‖ ∇uG ‖
∇dx∇xg (53)

where the design Jacobian of the transformation (∇dx) may be obtained analytically for uncor-
related x or semi-analytically for correlated x (∇dL is evaluated numerically) by differentiating
Eqs. 14 and 15 with respect to the distribution parameters. Eqs. 48-51 remain the same as before.
For this design variable case, all required information for the sensitivities is available from the MPP
search.

Since Eqs. 46-53 are derived using the Karush-Kuhn-Tucker optimality conditions for a converged
MPP, they are appropriate for RBDO using AMV+, AMV2+, TANA, FORM, and SORM, but not
for RBDO using MVFOSM, MVSOSM, AMV, or AMV2.

3.2. Sequential/Surrogate-based RBDO

An alternative RBDO approach is the sequential approach, in which additional efficiency is sought
through breaking the nested relationship of the MPP and design searches. The general concept
is to iterate between optimization and uncertainty quantification, updating the optimization goals
based on the most recent probabilistic assessment results. This update may be based on safety
factors (Wu et al., 2001) or other approximations (Du and Chen, 2004).

A particularly effective approach for updating the optimization goals is to use the p/β/z sensitiv-
ity analysis of Eqs. 46-53 in combination with local surrogate models (Zou et al., 2004). In (Eldred
et al., 2005) and (Eldred et al., 2006), first-order and second-order Taylor series approximations
were employed within a trust-region model management framework (Giunta and Eldred, 2000) in
order to adaptively manage the extent of the approximations and ensure convergence of the RBDO
process. Surrogate models were used for both the objective function and the constraints, although
the use of constraint surrogates alone is sufficient to remove the nesting.
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In particular, RIA trust-region surrogate-based RBDO employs surrogate models of f and p/β
within a trust region ∆k centered at dc. For first-order surrogates:

minimize f(dc) +∇df(dc)
T (d− dc)

subject to β(dc) +∇dβ(dc)
T (d− dc) ≥ β̄

or p(dc) +∇dp(dc)
T (d− dc) ≤ p̄

‖ d− dc ‖∞ ≤ ∆k (54)

and for second-order surrogates:

minimize f(dc) +∇df(dc)
T (d− dc) +

1
2(d− dc)

T∇2
d
f(dc)(d− dc)

subject to β(dc) +∇dβ(dc)
T (d− dc) +

1
2(d− dc)

T∇2
d
β(dc)(d− dc) ≥ β̄

or p(dc) +∇dp(dc)
T (d− dc) +

1
2(d− dc)

T∇2
d
p(dc)(d− dc) ≤ p̄

‖ d− dc ‖∞ ≤ ∆k (55)

For PMA trust-region surrogate-based RBDO, surrogate models of f and z are employed within a
trust region ∆k centered at dc. For first-order surrogates:

minimize f(dc) +∇df(dc)
T (d− dc)

subject to z +∇dz(dc)
T (d− dc) ≥ z̄

‖ d− dc ‖∞ ≤ ∆k (56)

and for second-order surrogates:

minimize f(dc) +∇df(dc)
T (d− dc) +

1
2(d− dc)

T∇2
d
f(dc)(d− dc)

subject to z +∇dz(dc)
T (d− dc) +

1
2(d− dc)

T∇2
d
z(dc)(d− dc) ≥ z̄

‖ d− dc ‖∞ ≤ ∆k (57)

where the sense of the z constraint may vary as described previously. The second-order information
in Eqs. 55 and 57 will typically be approximated with quasi-Newton updates.

4. Benchmark Problems

(Eldred et al., 2005) and (Eldred et al., 2006) have examined the performance of first and second-
order reliability analysis and design methods for four analytic benchmark test problems: lognormal
ratio, short column, cantilever beam, and steel column.

4.1. Reliability analysis results

Within the reliability analysis algorithms, various limit state approximation (MVFOSM, MVSOSM,
x-/u-space AMV, x-/u-space AMV2, x-/u-space AMV+, x-/u-space AMV2+, x-/u-space TANA,
FORM, and SORM), probability integration (first-order or second-order), warm starting, Hessian
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Table I. RIA results for short column problem.

RIA SQP Function NIP Function CDF p Target z

Approach Evaluations Evaluations Error Norm Offset Norm

MVFOSM 1 1 0.1548 0.0

MVSOSM 1 1 0.1127 0.0

x-space AMV 45 45 0.009275 18.28

u-space AMV 45 45 0.006408 18.81

x-space AMV2 45 45 0.002063 2.482

u-space AMV2 45 45 0.001410 2.031

x-space AMV+ 192 192 0.0 0.0

u-space AMV+ 207 207 0.0 0.0

x-space AMV2+ 125 131 0.0 0.0

u-space AMV2+ 122 130 0.0 0.0

x-space TANA 245 246 0.0 0.0

u-space TANA 296* 278* 6.982e-5 0.08014

FORM 626 176 0.0 0.0

SORM 669 219 0.0 0.0

approximation (finite difference, BFGS, or SR1), and MPP optimization algorithm (SQP or NIP)
selections have been investigated. A sample comparison of reliability analysis performance, taken
from the short column example, is shown in Tables I and II for RIA and PMA analysis, respectively,
where “*” indicates that one or more levels failed to converge. Consistent with the employed
probability integrations, the error norms are measured with respect to fully-converged first-order
results for MV, AMV, AMV2, AMV+, and FORM methods, and with respect to fully-converged
second-order results for AMV2+, TANA, and SORM methods. Also, it is important to note that
the simple metric of “function evaluations” is imperfect, and (Eldred et al., 2006) provides more
detailed reporting of individual response value, gradient, and Hessian evaluations.

Overall, reliability analysis results for the lognormal ratio, short column, and cantilever test
problems indicate several trends. MVFOSM, MVSOSM, AMV, and AMV2 are significantly less
expensive than the fully-converged MPP methods, but come with corresponding reductions in
accuracy. In combination, these methods provide a useful spectrum of accuracy and expense that
allow the computational effort to be balanced with the statistical precision required for particular
applications. In addition, support for forward and inverse mappings (RIA and PMA) provide the
flexibility to support different UQ analysis needs.

Relative to FORM and SORM, AMV+ and AMV2+ has been shown to have equal accuracy
and consistent computational savings. For second-order PMA analysis with prescribed probability
levels, AMV2+ has additionally been shown to be more robust due to its ability to better manage
β̄ udpates. Analytic Hessians were highly effective in AMV2+, but since they are often unavailable
in practical applications, finite-difference numerical Hessians and quasi-Newton Hessian approxi-
mations were also demonstrated, with SR1 quasi-Newton updates being shown to be sufficiently
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Table II. PMA results for short column problem.

PMA SQP Function NIP Function CDF z Target p

Approach Evaluations Evaluations Error Norm Offset Norm

MVFOSM 1 1 7.454 0.0

MVSOSM 1 1 6.823 0.0

x-space AMV 45 45 0.9420 0.0

u-space AMV 45 45 0.5828 0.0

x-space AMV2 45 45 2.730 0.0

u-space AMV2 45 45 2.828 0.0

x-space AMV+ 171 179 0.0 0.0

u-space AMV+ 205 205 0.0 0.0

x-space AMV2+ 135 142 0.0 0.0

u-space AMV2+ 132 139 0.0 0.0

x-space TANA 293* 272 0.04259 1.598e-4

u-space TANA 325* 311* 2.208 5.600e-4

FORM 720 192 0.0 0.0

SORM 535 191* 2.410 6.522e-4

accurate and competitive with analytic Hessian performance. Relative to first-order AMV+ per-
formance, AMV2+ with analytic Hessians had consistently superior efficiency, and AMV2+ with
quasi-Newton Hessians had improved performance in most cases (it was more expensive than AMV+
only when a more challenging second-order p̄ problem was being solved). In general, second-order
reliability analyses appear to serve multiple synergistic needs. The same Hessian information that
allows for more accurate probability integrations can also be applied to making MPP solutions
more efficient and more robust. Conversely, limit state curvature information accumulated during
an MPP search can be reused to improve the accuracy of probability estimates.

For nonapproximated limit states (FORM and SORM), NIP optimizers have shown promise in
being less susceptible to PMA u-space excursions and in being more efficient than SQP optimizers in
most cases. Warm starting with projections has been shown to be consistently effective for reliability
analyses, with typical savings on the order of 25%. The x-space and u-space linearizations for AMV,
AMV2, AMV+, AMV2+, and TANA were both effective, and the relative performance was strongly
problem-dependent (u-space was more efficient for lognormal ratio, x-space was more efficient for
short column, and x-space and u-space were equivalent for cantilever). Among all combinations
tested, AMV2+ (with analytic Hessians if available, or SR1 Hessians if not) is the recommended
approach.

An important question is how Taylor-series based limit state approximations (such as AMV+ and
AMV2+) can frequently outperform the best general-purpose optimizers (such as SQP and NIP).
The answer likely lies in the exploitation of the structure of the RIA and PMA MPP problems.
By approximating the limit state but retaining uTu explicitly in Eqs. 16 and 17, specific problem
structure knowledge is utilized in formulating a mixed surrogate/direct approach.
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Table III. Analytic bi-level RBDO results, short column test problem.

RBDO Function Objective Constraint

Approach Evaluations Function Violation

RIA z̄ → p x-space AMV+ 149 217.1 0.0

RIA z̄ → p x-space AMV2+ 129 217.1 0.0

RIA z̄ → p FORM 911 217.1 0.0

RIA z̄ → p SORM 1204 217.1 0.0

RIA z̄ → β x-space AMV+ 72 216.7 0.0

RIA z̄ → β x-space AMV2+ 67 216.7 0.0

RIA z̄ → β FORM 612 216.7 0.0

RIA z̄ → β SORM 601 216.7 0.0

PMA p̄, β̄ → z x-space AMV+ 100 216.8 0.0

PMA p̄→ z x-space AMV2+ 98 216.8 0.0

PMA β̄ → z x-space AMV2+ 98 216.8 0.0

PMA p̄, β̄ → z FORM 285 216.8 0.0

PMA p̄→ z SORM 306 217.2 0.0

PMA β̄ → z SORM 329 216.8 0.0

4.2. RBDO results

These reliability analysis capabilities provide a substantial foundation for RBDO formulations, and
bi-level and sequential RBDO approaches have been investigated. Both approaches have utilized
analytic gradients for z, β, and p with respect to augmented and inserted design variables, and
sequential RBDO has additionally utilized a trust-region surrogate-based approach to manage the
extent of the Taylor-series approximations. A sample comparison of RBDO performance, taken
again from the short column example, is shown in Tables III and IV for bi-level and sequential
surogate-based RBDO, respectively.

Overall, RBDO results for the short column, cantilever, and steel column test problems build
on the reliability analysis trends. Basic first-order bi-level RBDO has been evaluated with up to 18
variants (RIA/PMA with different p/β/z mappings for MV, x-/u-space AMV, x-/u-space AMV+,
and FORM), and fully-analytic bi-level and sequential RBDO have each been evaluated with up to
21 variants (RIA/PMA with different p/β/z mappings for x-/u-space AMV+, x-/u-space AMV2+,
FORM, and SORM). Bi-level RBDO with MV and AMV are inexpensive but give only approximate
optima. These approaches may be useful for preliminary design or for warm-starting other RBDO
methods. Bi-level RBDO with AMV+ was shown to have equal accuracy and robustness to bi-level
FORM-based approaches and be significantly less expensive on average. In addition, usage of β in
RIA RBDO constraints was preferred due to it being more well-behaved and more well-scaled than
constraints on p. Warm starts in RBDO were most effective when the design changes were small,
with the most benefit for basic bi-level RBDO (with numerical differencing at the design level),
decreasing to marginal effectiveness for fully-analytic bi-level RBDO and to relative ineffectiveness
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Table IV. Surrogate-based RBDO results, short column test problem.

RBDO Function Objective Constraint

Approach Evaluations Function Violation

RIA z̄ → p x-space AMV+ 75 216.9 0.0

RIA z̄ → p x-space AMV2+ 86 218.7 0.0

RIA z̄ → p FORM 577 216.9 0.0

RIA z̄ → p SORM 718 216.5 1.110e-4

RIA z̄ → β x-space AMV+ 65 216.7 0.0

RIA z̄ → β x-space AMV2+ 51 216.7 0.0

RIA z̄ → β FORM 561 216.7 0.0

RIA z̄ → β SORM 560 216.7 0.0

PMA p̄, β̄ → z x-space AMV+ 76 216.7 2.1e-4

PMA p̄→ z x-space AMV2+ 58 216.8 0.0

PMA β̄ → z x-space AMV2+ 79 216.8 0.0

PMA p̄, β̄ → z FORM 228 216.7 2.1e-4

PMA p̄→ z SORM 128 217.2 0.0

PMA β̄ → z SORM 171 216.8 0.0

for sequential RBDO. However, large design changes were desirable for overall RBDO efficiency
and, compared to basic bi-level RBDO, fully-analytic RBDO and sequential RBDO were clearly
superior.

In second-order bi-level and sequential RBDO, the AMV2+ approaches were consistently more
efficient than the SORM-based approaches. In general, sequential RBDO approaches demonstrated
consistent computational savings over the corresponding bi-level RBDO approaches, and the com-
bination of sequential RBDO using AMV2+ was the most effective of all of the approaches. With
initial trust region size tuning, sequential RBDO computational expense for these test problems was
shown to be as low as approximately 40 function evaluations per limit state (35 for a single limit state
in short column, 75 for two limit states in cantilever, and 45 for a single limit state in steel column).
Finally, second-order RBDO with probability constraints was shown to be more challenging and
expensive, but could be more precise in achieving the desired probabilistic performance.

5. Application to MEMS

In this section, we consider the application of DAKOTA’s reliability algorithms to the design of
micro-electro-mechanical systems (MEMS). In particular, we summarize initial results for one of
the applications described in (Adams et al., 2006). These application studies provide essential
feedback on the performance of algorithms for real-world design applications, which may contain
computational challenges not well-represented in analytically defined test problems.
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Pre-fabrication design optimization of microelectromechanical systems (MEMS) is an impor-
tant emerging application of uncertainty quantification and reliability-based design optimization.
Typically crafted of silicon, polymers, metals, or a combination thereof, MEMS serve as micro-
scale sensors, actuators, switches, and machines with applications including robotics, biology and
medicine, automobiles, RF electronics, and optical displays (Allen, 2005). Design optimization of
these devices is crucial since fabrication costs, even for prototypes, can be prohibitive. There is
considerable uncertainty in the micromachining and etching processes used to manufacture MEMS
and consequently in the behavior of the finished products. RBDO coupled with computational
mechanics models of MEMS offers a means to quantify this uncertainty and determine a priori the
most reliable and/or robust design that meets performance criteria.

Of particular interest is the design of MEMS bistable mechanisms which toggle between two
stable positions, making them useful as micro switches, relays, and nonvolatile memory. We focus on
shape optimization of compliant bistable mechanisms, where instead of mechanical joints, material
elasticity enables the bistability of the mechanism (Jensen et al., 2001). Figure 1 contains an
electron micrograph of a MEMS compliant bistable mechanism in one of its stable positions. One
achieves transfer between stable states by applying force to the center shuttle of the device via an
electrostatic actuator, heat source, or other means to cause the flexible “legs” (horizontal beams)
of the system to buckle through their instability and relax toward the other stable equilibrium.

129

stochastic method for compliant MEMS design. This technique takes advantage of mod-

ern reliability-based design methods.

Reliability assessment requires an accurate knowledge of the distributional form of

the uncertainties, clearly defined metrics and performance specifications, and a valid

model. In MEMS, these conditions are rarely ever met, so the reliability or probability of

success can be a subjective metric. More work is needed to characterize uncertainties, val-

idate models, and demonstrate the importance of considering uncertainty during design.

7.2  FCBM Model and Uncertainties

 Bistable mechanisms are advantageous for use in microsystems because power is

only required during actuation of the device. This makes them useful in a wide range of

applications, including components in switches and relays (Gomm et al., 2002; Kruglick

and Pister, 1998), optical switches (Hoffman et al., 1999b; Jang et al., 1996), nonvolatile

memory (Hälg, 1990), and discrete sensors (Saif, 2000).

Figure 7.1 shows a scanning electron micrograph of a fully compliant bistable

mechanism (FCBM) fabricated using the SUMMiT V� process. The device is shown in

Figure 7.1   Scanning electron micrograph of a fully compliant bistable mechanism in its 
second stable position. Position measurements are made using the attached vernier.

Figure 1. Electron micrograph of MEMS bistable mechanism. Source: J.W. Wittwer, Ph.D. dissertation.

Successful bistable switch actuation in this manner depends on the relationship between force
and vertical displacement for the manufactured switch. In Figure 2 we present a schematic of a
typical force–displacement curve for a bistable mechanism. The switch characterized by this curve
has three equilibria: E1 and E3 are stable equilibria whereas E2 is an unstable equilibrium (arrows
indicate stability). A device with such a force–displacement curve could be used as a switch or
actuator by setting it to position E3 as shown in Figure 1 (requiring large force Fmax) and then
actuating by applying the small force Fmin in the opposite direction to transfer through E2 toward
the equilibrium E1. One could utilize this force profile to complete a circuit by placing a switch
contact near the displaced position corresponding to maximum (closure) force as illustrated in
Figure 2.

The design considered in this work is similar to the electron micrograph in Figure 1, for which
design optimization has been considered in (Jensen et al., 2001) and design under uncertainty

REC 2006 - M. S. Eldred, B. J. Bichon, and B. M. Adams



Overview of Reliability Analysis and Design Capabilities in DAKOTA 19
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contact
switch

Figure 2. Schematic of force–displacement curve for bistable MEMS mechanism. Arrows indicate stability.

with mean value methods has been investigated in (Wittwer, 2005; Wittwer, 2006). The primary
structural difference in (Adams et al., 2006) is in the shape of the legs, and Figure 3 shows a detail
of the design of one of these legs.

Figure 3. Sample of tapered beam leg for bistable mechanism.

The design criteria used for this bistable switch include

− minimize the magnitude of the force Fmin required to actuate the switch (drive Fmin toward
zero), while maintaining its bistability (Fmax > 0, Fmin < 0)

− at least 50µN force at switch contact (to reliably attain closure), but no more than 150µN (to
avoid contact damage)

− point of instability E2 no more than 8µm

− maximum stress no more than 1200 MPa

The force-displacement profile of bistable MEMS devices is highly sensitive to design geometry, so
one can vary manufactured geometry in order to achieve various design criteria. However, due to
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manufacturing processes, fabricated geometry can deviate significantly from design-specified beam
geometry. As a consequence of photo masks used in the process, fabricated in-plane geometry
edges (contributing to widths and lengths) are 0.1± 0.08µm less than specified. Uncertainty in the
manufactured geometry can lead to substantial uncertainty in the positions of the stable equilibria
and in the maximum and minimum force on the force–displacement curve. The manufactured
thickness of the device is also uncertain, though this does not contribute as much to variability in the
force–displacement behavior. Uncertain material properties such as Young’s modulus and residual
stress also influence the characteristics of the fabricated beam. For this application, we consider two
uncertain variables: ∆W (edge bias on beam widths, which yields effective manufactured widths
of Wi + ∆W, i = 0, . . . , n) and Sr (residual stress in the manufactured device), with distributions
shown in Table V.

Table V. Uncertain variables used in RBDO.

variable mean std. dev. distribution

∆w -0.2 µm 0.08 normal

Sr -11 Mpa 4.13 normal

Given 13 geometric design variables d describing lengths, widths, and orientations of the legs
and the two specified uncertain variables x, we perform a reliability-based design optimization to
compute a design that is reliably bistable, but requires minimum force to actuate. The limit state
for this problem is

g(x) = Fmin(x) (58)

and we define failure to be lack of bistability (Fmin ≥ 0) and require a reliability index βccdf ≥ 2.
The RBDO problem utilizes an RIA z̄ → β approach:

max Fmin(d,x)
s.t. 2 ≤ βccdf (d,x)

50 ≤ Fmax(d,x) ≤ 150
E2(d,x) ≤ 8
Smax(d,x) ≤ 1200

(59)

although a PMA β̄ → z approach could also be used. The use of the Fmin metric in both the
objective function and the reliability constraint results in a powerful problem formulation since, in
addition to yielding a design with specified reliability, it also produces a robust design. By forcing
Fmin toward zero while requiring two standard deviations of surety, the optimization problem
favors designs with less variability in Fmin. This renders the design performance less sensitive to
the uncertainties in the problem.

We solve the optimization problem by applying DAKOTA’s bi-level RBDO approach in com-
bination with mesh generation using CUBIT and finite element analysis using Adagio. Adagio is
a quasi-static nonlinear mechanics code, implemented in Sandia National Laboratories’ SIERRA
framework of multiphysics codes (Edwards, 2004), that is used to simulate the elastic deformation of
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the device through discrete displacement steps to produce a force–displacement curve. We compare
three reliability analysis methods for this MEMS application: (1) MVFOSM (no MPP search), (2)
AMV+, and (3) FORM. The latter two are advantaged by their ability to provide (semi)analytic
derivatives of reliability metrics with respect to design variables for the optimizer (see Section 3.1),
whereas the former is much less expensive per reliability analysis but must resort to numerical design
derivatives due to the use of σg (analytic derivatives of Eq. 2 with respect to d are impractical to
evaluate).

Results for the three methods are presented in Table VI and the optimal force–displacement
curves are shown in Figure 4. Optimization with MVFOSM offers substantial improvement over
the initial design, yielding a design with a substantially smaller minimum force and tighter re-
liability constraint β. However, since mean value analyses estimate reliability based solely on
evaluations at the means of the uncertain variables, they can yield inaccurate reliability metrics
in cases of nonlinearity or nonnormality. In this example, the actual verified reliability of the
optimal MVFOSM-based design is only 1.75, less than the prescribed reliability of β = 2. The
optimal designs for the AMV+ and FORM-based RBDO methods were indistinguishable from
each other, but relative to MVFOSM-based RBDO, yield a more conservative value of Fmin due to
the improved estimation of β. In each of the three cases, the variability in Fmin has been reduced
from approximately 5.7 to 4.6 µN per (verified) input standard deviation, resulting in designs that
are less sensitive to the input uncertainties.

Table VI. RBDO results (MVFOSM and first-order MPPmethods) for MEMS bistable mechanism.

lower RBDO upper MVFOSM MVFOSM AMV+/FORM AMV+/FORM

bound metric bound initial optimal initial optimal

Fmin (µN) -23.03 -8.08 -23.03 -9.37

2 β 5.66 2.00 4.02 2.00

50 Fmax (µN) 150 67.35 50.0 67.35 50.0

E2 (µm) 8 4.06 3.85 4.06 3.76

Smax (MPa) 1200 396 313 396 323

Verified β 4.02 1.75

In Figure 5,we see the results of parameter studies for the metric Fmin(d,x) as a function of
the uncertain variables x for two different sets of design variables d. Since the uncertain variables
are both normal, the transformation to u-space used by AMV+ and FORM is linear. The former
design variable set corresponds to the optimal values obtained from MVFOSM-based RBDO, and
in this case the limit state is relatively linear and well-behaved in the range of interest. First-
order probability integrations should be sufficiently accurate. For the second design variable set,
however, multiple computational challenges are evident. In this case, the limit state has significant
nonlinearity (requiring more sophisticated probability integrations) and its simulation can be seen to
be unreliable in the left tail of the edge bias (resulting from too flimsy a structure). This highlights a
number of difficulties common in engineering applications: highly nonlinear limit states, nonsmooth
and multimodal limit states, and simulation failures caused by, e.g., evaluations in the tails of input
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Figure 4. Optimal force-displacement curves resulting from RBDO of MEMS bistable mechanism.

distributions. These difficulties must be mitigated through a combination of algorithm research,
problem formulation, and simulation refinement.
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Figure 5. Contour plot of Fmin(d,x) as a function of uncertain variables for different design variable sets. Dashed
line shows where limit state Fmin = 0.
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6. Conclusions

This paper has overviewed recent algorithm research in first and second-order reliability methods.
A number of algorithmic variations have been presented, and the effect of different limit state
approximations, probability integrations, warm starting, most probable point search algorithms,
and Hessian approximations has been discussed. These reliability analysis capabilities provide the
foundation for reliability-based design optimization (RBDO) methods, and bi-level and sequential
formulations have been presented. These RBDO formulations employ analytic sensitivities of relia-
bility metrics with respect to design variables that either augment or define distribution parameters
for the uncertain variables.

Relative performance of these reliability analysis and design algorithms has been measured for
a number of benchmark test problems using the DAKOTA software. The most effective techniques in
these computational experiments have been AMV2+ for reliability analysis and sequential/surrogate-
based approaches for RBDO. Continuing efforts in algorithm research will build on these successful
methods through investigation of sequential RBDO with mixed surrogate and direct models (for
probabilistic and deterministic components, respectively) and second-order RIA RBDO formula-
tions employing generalized reliability indices.

These reliability analysis and design algorithms are now being applied to real-world applications
in the shape optimization of micro-electro-mechanical systems, and initial experiences with this
deployment are presented. Issues identified in deploying reliability methods to complex engineering
applications include highly nonlinear, nonsmooth/noisy, and multimodal limit states, and potential
simulation failures when evaluating parameter sets in the tails of input distributions. To miti-
gate these difficulties, a combination of continuing algorithm research, enhancements in problem
formulation, and refinements to modeling and simulation capabilities is recommended.
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