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Across all branches of engineering, computational methods share the need for Reliable results. Reliability 
can be achieved only if all sources of errors, approximations, and uncertainty are accounted for.

These proceedings embody the papers presented at the NSF workshop on Modeling Errors and Uncertainty 
in Engineering Computations hosted by The Center for Reliable Engineering Computing at the Georgia 
Institute of Technology. This NSF workshop focuses on the integration of the treatment of modeling errors 
and uncertainty into engineering computations. Both this workshop and the activities of the Center focus on 
emerging technologies for reliable engineering analysis and design. Reliable engineering computing, as we 
understand it, requires that computing systems accommodate several sources of uncertainty and errors with 
a focus on self-validating methods.

The objective of the workshop is to promote cross-disciplinary research in the area of treatment of modeling 
errors and parameter uncertainty and their mitigation in engineering software. The participants represent a 
truly interdisciplinary group: mathematicians, computer scientists, risk analysts, and engineers from a wide 
distribution of engineering disciplines. The participants are from academia, research institutions and indus-
try and include both national and international experts.

The main topics of the workshop include: 

1.  Errors in algorithms and computations. 
2.  Mitigation of various sources of errors in engineering calculations. 
3.  Integrating the treatment of modeling errors and uncertainty into design. 

The work presented represent significant step towards achieving the goal of true reliability in engineering 
calculations.

The sponsors of this workshop are:
■ National Science Foundation
■ Sun Microsystems
■ Georgia Institute of Technology

The organizers appreciate the support of the sponsors: this workshop would not have occurred without their 
contributions and commitment.

Rafi L. Muhanna  
Robert L. Mullen
Editors
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Using Extended Interval Algebra in Discrete Mechanics  
 

Fulvio Tonon 
Department of Civil Engineering, University of Texas, Austin (USA), tonon@mail.utexas.edu 

 
Abstract: Discrete mechanics deals with discrete mechanical systems, such as cellular automata, 
in which time proceeds in integer steps and the configuration space is discrete. Directly modeling 
discrete mechanical systems is a well known alternative to starting from a continuous setting, 
discretizing the model, and finally force the model to the finite alphabet of a computer. The time 
evolution of discrete dynamical systems, however, can be calculated exactly. In order to take into 
account imprecision in the input data and the need to accommodate a finite alphabet, extended 
interval analysis is introduced in the discrete mechanical systems formulation developed by Baez 
and Gilliam. It is shown how the Euler-Lagrange equation must be modified when working with 
interval input.  
 

Keywords: Discrete mechanical systems, cellular automata, interval analysis. 
 
 

1. Introduction 
 

Baez and Gilliam (1994) and Gilliam (1996) developed an algebraic approach to the mechanics of 
discrete mechanical systems, that is, systems such as cellular automata (CA) (von Neumann, 
1951), in which time evolution proceeds in integer steps and the state space is a finite set. By 
substituting algebraic geometry concepts for differential geometry concepts, the authors derived 
an analog for the Euler-Lagrange equation, a version of Noether’s theorem, and symplectic 
techniques applicable to this context. They also gave a definition of complete integrability for a 
smooth mechanical system on a smooth real affine algebraic variety, and gave a criterion for the 
complete integrability of such systems. Additionally, they showed that, as the time steps of a 
discrete system decrease to zero, a solution of the discrete system converges uniformly to a 
solution of the corresponding continuous system. These Lagrangian and symplectic techniques 
allow one to use computers for exactly simulating discrete mechanical systems that take values in 
a commutative ring, k, as opposed to approximately simulating physical systems by numerically 
solving differential equations: let us expand on this crucial point.  

 

One of the first uses of digital computers was to approximately simulate physical systems by 
numerically solving differential equations. This approach leads to numerical computation that is 
at least three levels removed from the physical world represented by those differential equations: 
 

1) As a first step, one models a physical phenomenon using a differential equation (or a 
system of differential equations) or a variational principle. 

 _______________________________________________ 

© 2006 by authors. Printed in USA. 

REC 2006 – Fulvio Tonon 



2 Fulvio Tonon 

2) Then, one obtains the algebraic forms of the differential equation(s) or variational principle 
by forcing them into the mold of discrete time and space; and 

3) Finally, in order to commit those algebraic forms to algorithms, one projects real-valued 
variables onto finite computer words, thus introducing round-off during computation and 
truncation.  

 

Since at one end of the chain is the original physical system and at the other end is another 
physical system (a computer), physicists wondered whether there was a less roundabout approach 
to modeling physics (Toffoli, 1984; Toffoli and Margolus, 1987). Indeed, the moment one gives 
up symbolic manipulation as a major motive for using differential equations, one starts wondering 
whether one should keep them as a starting point for numerical modeling altogether. Adopting a 
totally different approach, CA have been proposed as a modeling tool that is isomorphic to the 
available and foreseeable computational resources (e.g., Toffoli and Margolus, 1987) and that is 
prototypical for complex interacting systems. Because of the intrinsic discreteness of CA, 
numerical integration is an exact process (there are no truncation or round-off errors), and thus 
the results that one obtains have the force of theorems. In other words, any properties that one 
discovers through simulation are guaranteed to be properties of the model itself rather than a 
simulation artifact (Toffoli, 1984). However, the lack of a rational and physics-based way to 
define evolution rules for CAs hindered their application to mechanics. Baez’s and Gilliam’s 
algebraic approach to discrete mechanical systems for the first time provides for this rational and 
physics-based way to define evolution rules, and shows how CAs can be seen as a subset of 
discrete mechanical systems. 

 

A large body of literature has been devoted to estimating the errors introduced in Step 2 
above. For example, Dow (1998), Oden et al. (2005) and a recent issue of the journal Computer 
Methods in Applied Mechanics and Engineering (2006) give a recent overview of results in the 
finite element discretization method. Peraire and coworkers have started developing algorithms 
for calculating guaranteed bounds on these errors (Sauer-Budge et al., 2004; Xuan et al., 2006); 
however (based on the published literature), their calculations are performed in floating-point 
arithmetic. Errors involved in step 3 have been vigorously attacked by the “reliable computing” 
community using interval analysis started by Warmus (1956) and Moore (1966); the reader I 
referred to the journal Reliable Computing (formerly Interval Computations) and to the web site 
(www.cs.utep.edu/interval-comp/main.html) for up-to-date information. Both types of errors are to be 
addressed during verification and validation of numerical models (Oberkampf et al., 2003). 

 

Discrete mechanical systems avoid these issues associated with Steps 2 and 3. On the other 
hand uncertainty may affect the available information on initial and boundary conditions, as well 
as information on a system’s parameters. Moreover, when using finite computer words for a 
physical quantity (even if it is known exactly), real values must be truncated. Therefore, it seems 
worthwhile to exactly extend such uncertain information to a system’s behavior: if this is not 
possible, guaranteed bounds on the system’s evolution should be calculated. In this paper, it is 
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assumed that information on a physical quantity of interest is given as an interval on k; we will 
refer to this assumption as imprecision. Generalized interval arithmetic (Dimitrova et al. 1992, 
Gardenes et al., 1980a and 1980b, 1981, 1982, 1986, 2001; Kaucher, 1973; Kaucher et al., 1977, 
1980, 1977; Markov 1992, 1995, 1997, Ortolf, 1969; Popova 1994, 2000, 2001, 2005; Popova 
and Ullrich, 1996, 1998; Ratschek, 1970, 1971; Spaniol, 1970) is used to extend information in a 
validated way because generalized interval arithmetic is an algebraically closed system. 

 

For completeness, Talasila et al. (2004a, 2004b) have attempted to extend Baez’s and 
Gilliam’s work to floating point numbers, but have eventually developed a different theory based 
on discrete calculus. Finally, a note of caution: the term “discrete mechanics” is also adopted in 
the literature to denote mechanical systems whose configuration space is continuous and whose 
evolution proceeds in finite time steps (e.g., Marsden and West, 2001 and references therein); 
these systems are frequently used to develop structure-preserving and numerically stable time 
integrators. 

 

In the following sections, some basic notions of discrete mechanics are recalled with more 
background definitions and explanation than in the available literature, so that these notions can 
be more easily grasped by an engineering audience. A simple example of a linear harmonic 
oscillator is used to highlight the properties of a discrete mechanical system. Likewise, the basic 
algebra of generalized intervals is reviewed. Subsequently, the discrete Euler-Lagrange equation 
is modified in order to work with generalized intervals and the harmonic oscillator example is 
extended to accommodate imprecise input values. 
 

2. Basic Notions in Discrete Mechanics (Gilliam, 1996; Lang, 2002) 
 

The configuration space of discrete mechanical systems is required to be no more than a ring or a 
group, without specific topological or analytical properties that allow for the use of the common 
concepts of tangent and cotangent vectors, spaces, bundles, etc. Since algebraic analogs for these 
concepts will be needed, let us review some basic definitions from abstract algebra. 

 
Recall that a group G is a set with an associative law of composition (x, y) → xy, having a 

unit element, and such that for every element x ∈ G, there exists an inverse element y ∈ G such 
that xy = yx = e. If the law of composition is also commutative, a commutative group is obtained. 
A homomorphism f : G → G’ is a mapping between two groups, G and G’, that preserves the 
product, i.e. f(xy) = f(x) f(y), and that maps the unit element of G into that of G’. An isomorphism 
is a bijective homomorphism: if there is an isomorphism between G and G’, then one writes 

to indicate that G and G’ are isomorphic. 'G G≅
 
A ring R is a set, together with two laws of composition called multiplication and addition, 

respectively, and written as a product and sum respectively, satisfying the following conditions: 
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− With respect to addition, R is a commutative group (zero denotes the additive unit element). 
− The multiplication is associative, and has a unit element (denoted as “1”). 
− For all x, y, z in R one has (distributivity) 

(x + y)z = xy + yz (1) 

 

Also recall that a module M over a ring R is a commutative group, usually written additively, 
together with an operation of R on M, such that, for all a, b ∈ R and x, y ∈ M one has 

( )a b x ax bx+ = +  and ( )a x y ax ay+ = +  (2) 

Finally, an algebra is a module M with a bilinear map (product) :g M M M× →  
 

Let { }iE  be family of commutative groups. Their direct sum G =  is the set of all 

sequences (σ
0

i
i E∞
=⊕

1, σ2,…, σp,…) where i Eiσ ∈ , and all but a finite number of σi’s are zero. The 

direct sum becomes a group when the sum of two elements is defined componentwise. A graded 

algebra is an algebra that can be written as G = , and such that for  and 

 in G, the product in G is defined as 

, in such a way that if 

0
i

i E∞
=⊕ ( )0 1, ,...s σ σ=

( 0 1, ,...r ρ ρ= )

)( 0 0 0 1 0 1, ,..., ,...i ji j psr yσ ρ σ ρ ρ σ ρ
+ =

= + ∑ p
p Eσ ∈  and , 

then the product 

q
q Eρ ∈

p q
p q Eσ ρ +∈ . Tensor algebras (e.g., [Error! Reference source not found.], 

page 76) are examples of graded algebras in which the product  p qσ ρ  is the outer product of 

tensors pσ  and qρ  of order p and q, respectively. Another example of graded algebra is the 

algebra of polynomial functions described below, in which the product  p qσ ρ  is the product of 

polynomials pσ  and qρ  of order p and q, respectively. 
 

In discrete mechanics, rather than working directly with configuration space, one works with 
the algebraic functions on the configuration space, which form a commutative algebra A over 
configuration space. For example, if the configuration space is an n-dimensional vector space 
over a field k, then one would use the algebra of polynomial functions in n variables over k, 

, where . The analog of a vector field 

on configuration space is then a derivation on A, that is, a k-linear map  such that 

[ ]1
0

,..., i
n i

k x x E
∞

=
= ⊕

1 1

: ;j
n n

ni
j j j j

j j
E x n iλ

= =

⎧ ⎫⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ kλ ∈

:v A A→
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( ) ( ) ( )v ab av b bv a= +  for all a, b ∈ A. In order to define differential forms on A, let us 

introduce the concept of differential. 
 

Let  be a graded algebra. The differential of 0
i

i
∞
=Ω = ⊕ Ω Ω  is a map  such that if :d Ω→Ω

pω∈Ω , then  

  ( ) ( ) ( ) (1
pd d d )ωμ ω μ ω= + − μ  (3) 

   (4) ( ) 0dd ω =

Let A be a commutative k-algebra (e.g., the algebraic functions on the configuration space). 

The algebraic differential forms ( ) ( )0
i

iA ∞
=Ω = ⊕ Ω A

A

 are the graded algebra, in which 

, in which the product is written as a wedge product, and which are generated by A 

and by the elements da, where , with the relations: 

( )0 AΩ =
a A∈

  ( )d a daλ λ= , ( )d a b da db+ = +  

( )d ab da b a db= ∧ + ∧ , a db db a∧ = ∧  

da db db da∧ = − ∧   0da da∧ =

for all a, b ∈ A, λ ∈ k, with the last necessary only if 2 has no multiplicative inverse in k.  

A p-form is an element of . ( )p AΩ
 

Since A is the equivalent of the configuration space, the space of histories is the algebra  

H = ( )1
0 ...T

TA A⊗ + = ⊗ ⊗ A  , where the algebras Ai are simply copies of A with Ai thought of as 

the functions on configuration space at time i. The Lagrangian for the system, L, is a fixed 
element of A ⊗ A. In the algebra H, the discrete analog for the action functional in classical 
mechanics is  

   (5) 
1

0

T

i
i

S
−

=

= ∑L

where , with L occupying the ith and (i+1)th slots.  1 ... ... 1i = ⊗ ⊗ ⊗ ⊗L L
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In order to derive Lagrange equations from S, one needs to differentiate S, and thus one needs 
1-forms on the space of histories H. Since for any algebra, A, one has that: 

( ) ( ) ( )1 1 1A A A A AΩ ⊗ = ⊗Ω ⊕Ω ⊗ A , by induction: 

  ( ) ( )1 1
01

... ...
T

ii
H A A

=
Ω = ⊗ ⊗Ω ⊗ ⊗⊕ TA  (6) 

Let where pi id p d= i: ( ) ( )1 1H HΩ →Ω  is the projection on the ith summand. The 

variation of S is effected by the operator 
1

1

T
ii

dδ −

=
= ∑ , which keeps the first and the second 

summand of H fixed. Now, since  L = a⊗b with a, b ∈ A: 

  

( ) ( )

( ) ( )( )
( ) ( )

1 1

1 ... ... 1 0 ... ... 0

0 ... ... 0 0 ... ... 0

0 ... 0 ... 0 0 ... 0 ... 0

i i i i

i i i i i

i i

d p d p d

p da b a db

da a

+ +

= ⊗ ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊕ ⊗ ⊗ ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊕ ⊗ ⊗ ⊗ ⊗ ⊗

L L L

 (7) 

and  

  
( ) ( )( )

( ) ( )
1

1 1
0 ... ... 0 0 ... ... 0

0 ... 0 ... 0 0 ... 0 ... 0

i i i i i i i

i i

d p da b a db

b db

− − −
= ⊗ ⊗ ⊗ ⊗ ⊗ ⊕ ⊗ ⊗ ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊕ ⊗ ⊗ ⊗ ⊗ ⊗

L
 (8) 

with  for j ≠ i, j ≠ i-1. 0j id =L
 

The variation of S is thus: 

  
1 1 1

1
0 0 1

T T T

i i i i i i
i i i

Sδ δ δ
− − −

d d −
= = =

= = = +∑ ∑ ∑L L L L

0

 (9) 

Finally, Eqs. (7) and (8) indicate that the last sum in Eq. (9) is actually a direct sum. Thus: 
 

  10 i i i iS d dδ −= ⇒ + =L L  (10) 

Eq. (10) is the Euler-Lagrange equation for discrete systems. This 1-form does not vanish on 
the whole space of histories H, but only on the trajectories that satisfy the equations of motion. 
Since the Lagrangian is an element of A ⊗ A, the equations of motion give the configuration at 
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1A
the i-th time step as a function of the previous two time steps i-1 and i-2. This is formalized as a 
homomorphism 2 0: A Aϕ → ⊗ , which defines a homomorphism 1 2 0: A A A A1Φ ⊗ → ⊗ : 

 and 1 1a a⊗ ⊗ ( )1 a ϕ⊗ a

1 0

)1

. One says that ϕ or Φ satisfies the equation of motion 

provided 

*d di i i−Φ + =L L ; (11) 

where ( ) (1 1
* 1 2 0: A A AΦ Ω ⊗ →Ω ⊗ A

2

 is the map induced by Φ, and di is the restriction of di 

on H to its sub-algebras  and 1A A⊗ 0 1A A⊗ . 
 

EXAMPLE (modified from Baez and Gilliam, 1994). Let the base ring k be the ring of 
rational numbers, , so that, in particular, 2 has an inverse. Consider the case of a particle in a 
polynomial potential constrained to move along a line with coordinate q. The algebra of functions 

on configuration space is [ ] { }2 2
0 0 1 0 2 0 1 2 0 3, , , : ,A k q q q q q qλ λ λ λ λ λ λ λ λ λ≅ = + + + + + 3 ... , so 

that [ ]1,A 2A k q⊗ ≅ q , the polynomials in 2 variables over k, and [ ]0 ,..., TH k q q≅ , the 

polynomials in T+1 variables over k. Consider the Lagrangian  (written here as a polynomial 

function) for a particle in a polynomial potential V as a function of consecutive positions  and 

 of the particle:  

iL

iq

1iq +

( ) ( )2
1

1
,

2i i i iiq q mq V q+= = −L L i  (12) 

where one defines , and where m is in k, and represents the mass of the particle. 

Since  

1ii i iq q q+= −

( )1 2d ,
ii q q q q= ∂L L d i

1dq−

)

 , i = 1, 2, one obtains: 

( ) ( )1 'i i i i i i i id m q q V q dq mq dq+= − − − =L  (13) 

Likewise 

( )1 1i i i i i id m q q mq− −= − =L  (14) 

The Euler-Lagrange equation is thus: 

( ) (1 'i i im q q V q−− = − , (15) 

which is the discrete analog for Newton’s law, and yields the time evolution map 
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( ) ( ) ( )1
2 1 0 1 1 0 1' 2 'q q q m V q q q m V qϕ −= + − = − − 1−  (16) 

and homomorphism Φ 

( )1 1q qΦ = , ( ) ( ) ( )1
2 2 1 02q q q q m Vϕ −Φ = = − − 1' q

d dq qΦ = ( )

 (17)  

( )* 1 1 , ( )1
* 2 1 0 1 1d 2d d '' dq q q m V q q−Φ = − −  (18) 

Let us check that the time evolution map satisfies the equation of motion: 

( ) ( )
( ) ( )( )( ) ( )

( )( ) ( )( ) ( )

1 1* 1 1 1 0 * 1 2 1 0 1 1

* 2 1 1 1 1 0 1

1
1 0 1 1 1 1 1 0 1

d d , d , d

' d d

2 ' ' d d

q qq q q q q q

m q q V q q m q q q

m q q m V q q V q q m q q q−

Φ + = Φ ∂ + ∂ =

= Φ − − − + −

= − − − − − + − =

L L L L

0

 

It can be seen that homomorphism Φ* pulls back   from 1 1d L ( )1
1 2A AΩ ⊗  to 

(1
0 1 )A AΩ ⊗ . In this simple case, this entails substituting the expression for the time evolution 

map (16) into the expression Euler-Lagrange equation (15). 
 

Figure 1 shows the evolution of a linear harmonic oscillator with: m = 1, q0 = 8; q1 = 16; V= 
½sq2 (where s is the spring stiffness), s = 1. The mass takes positions: {8, 16, 8, -8, -16, -8, 8, 16, 
8, -8…}, and the mass revisits the same location in space after 6 steps. Notice that this time 
integration is exact, and can be exactly reversed.  

 
 

 
i = 1 

 
i = 5 

 
i = 2 

 
i = 6 

 
i = 3 

 
i = 7 

 
i = 4 

 
i = 8 

Figure 1. Evolution of a linear harmonic oscillator with m = 1, q0 = 8; q1 = 16; V= ½sq2, s = 1. 

REC 2006 – Fulvio Tonon 
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However, if the ratio s/m is not an integer, then the mass never revisits the same location 
twice; for example, for s/m = 1/3, the coordinates of the particle are (all calculations in this paper 
were carried out using Mathematica exact arithmetic): {8, 16, 56/3, 136/9, 176/27, -344/81, -
3304/243, -13424/729, -37384\/2187, -66104/6561, 5936/19683, 624616/59049, 
3069656/177147…}. The numbers of digits in the numerator and denominator keep increasing at 
each time step as shown in Figure 2. In Figure 2, each digit in the [0, 9] range is assigned a color. 
Each digit of the numerator occupies a cell, and numerator digits for the i-th step occupy the first 
cells from the left of the (2i-1)-th row. Likewise, denominator digits for the i-th step occupy the 
first cells from the left of the 2i–th row. 

 
 
 
 
 

 
(a) 

 
(b) 

Figure 2. Graphical representation of the digits in the numerator and denominator of a particle coordinates. The particle 
is a linear harmonic oscillator with m = 1, q0 = 8; q1 = 16; V= ½sq2, s = 1/3. 

 (a) First 100 time steps; (b) First 1,000 time steps. 
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Since there is no periodicity in the pattern of digits, the CA depicted in Figure 2 belongs to 
the third CA class in the following Wolfram’s classification (Wolfram, 1985a, 1985b): 
1) Class 1: All components attain the same state; the final state is unique and unaffected by any 

change to the initial state; 
2) Class 2: Simple stable states or periodic and separated structures emerge; small changes in 

the initial state only affect a fixed finite region around the area in which the values were 
changed; 

3) Class 3: Chaotic non-periodic patterns are generated; a minimal perturbation to the initial 
state affects arbitrarily large regions; or 

4) Class 4: Complex, localized, propagating structures are formed; some perturbations to some 
initial configurations appear to propagate arbitrarily far, whereas others die out. 
 
Figures 3a through 3c show all the positions occupied by the particle after 100, 1,000, and 

10,000 time steps. It can be seen that these positions are closer one to the other around the 
extremes of the current oscillation range (Figures 3a and 3b), where the particle velocity is 
smaller. The particle positions form clusters separated by empty segments (Figure 3b). After the 
first two steps and within 10,000 time steps, the particle never occupies a position having an 
integer coordinate: it is an open question whether it will eventually occupy integer coordinate 
positions. Another open question is whether the particle will visit all positions between the 
extremes reached, say, after 1,000 iterations, or there will always be “holes” in between.  

 
 
 
 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Cumulative positions occupied by a linear harmonic oscillator with m = 1, q0 = 8; q1 = 16; V= ½sq2, s = 1/3  
(same as in Figure 2). (a) First 100 time steps; (b) First 1,000 time steps; 
 (c) First 10,000 time steps (positions are indistinguishable at this scale). 

Additionally, it is not possible to determine a priori the maximum and minimum coordinates 
reached by the particle for an infinite number of time steps. For any finite number of time steps, 
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the maximum and minimum coordinates are not symmetric about zero. For example, the 
maximum (minimum, resp.) coordinate after 100 time steps is approximately equal to 
18.682435719981747 (-18.68289250959053), after 1,000 time steps it is approximately equal to 
18.683060458305423 (-18.68289250959053), after 10,000 time steps it is approximately equal to 
18.6839719940311 (-18.683972612054987). The maximum coordinate increases steadily, but the 
minimum coordinate remains constant between 100 and 1,000 time steps, and then it decreases 
further. Thus, even for a very simple linear harmonic oscillator without any forcing, it is 
impossible to find a shortcut to its range of oscillation: all we can do is to sit back and watch it 
evolve.  

 
Let us now introduce some basic concepts of extended interval algebra and then see how the 

discrete mechanics formulation described in this section must be modified in the presence of 
imprecision. 
 
 

3. Ordering of k and generalized interval arithmetic 
 
In order to work with intervals, we need to introduce the concept of ordering. Let k be a ring. An 
ordering of k is a subset P of k having the following properties (Lang, 2002): 

1) Given x∈k, either x∈P or x = 0, or -x∈P, and these possibilities are mutually exclusive. 
In other words, k is a disjoint union of P, {0}, and –P. 

2) If x, y ∈ P, then x + y and xy ∈ P. 

One also says that k is ordered by P and one calls P the set of positive elements. Let x, y ∈ k. 
Define x < y (or y > x) to mean that y-x ∈ P; define x ≤ y to mean x < y or x = y. Define x x=  if 

x>0, and x x= −  if x<0.  

 

In generalized interval arithmetic, the set of proper intervals { }[ , ] | ; ,x x x x x x k− + − + − +≤ ∈  is 

extended by the set { }[ , ] | ; ,x x x x x x k− + − + − +≥ ∈  of improper intervals, thus obtaining the set 

{ } 2[ , ] |; ,x x x x k k− + − += = ∈ ≅xD  of all ordered couples called generalized intervals (strictly 

speaking, generalized interval arithmetic is defined over the reals, but it is easy to see that the 
operations and properties used below are valid over any ordered ring, k). Denote the set of 

generalized intervals that involve zero by { }| x x− + 0= ∈xT D ≤ . In this paper, intervals are 

written in boldface type. 
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From a physical viewpoint, a proper interval, x, can also be seen as a set 

{ }[ , ] | ; ,x x x k x x x x x− + − + − += = ∈ ≤ ≤ ∈x k  of possible values of a physical quantity of 

interest, say X. Improper intervals are introduced to make interval algebra closed: if, at the end of 
a calculation sequence, X  turns out to be an improper interval, then this means that the possible 
set of values of X is the empty set (more refined semantics has been developed in modal interval 
analysis (Gardenes et al., 2001), but this is beyond the scope of this paper).  
The “dual” is an important operator that reverses the endpoints of the intervals. Let 

; its dual is defined as Dual(x) = [ , ]x x− += ∈x D [ , ]x x+ −
− = ∈x D . In order to simplify the 

formulae below, we use the functional notation introduced by Popova (2001). Define Λ = {+, -}, 
and, for μ and ν ∈Λ, define the (commutative) product λ = μν ∈Λ by λ = {+, if μ = ν, - 
otherwise}.  
For λ ∈Λ, define: 

 
ifif

and
ifif

x
x

x
λ

λ

λλ
λλ

+

−
−

= +⎧ ⎧= +
= =⎨ ⎨ = −= − ⎩⎩

x
x

x
.                                  (19) 

The direction of an interval, , its sign, ( )τ x ( )σ x , and its relative magnitude, ( )ν x , are defined 

as, respectively:  

( )
if

if

if

x x
x x
x x

τ

− +

− +

− +

⎧+ <
⎪= − >⎨
⎪± =⎩

x     ( )
( )

( )

if 0

if 0

x

x

τ

τ
σ

−⎧+ >⎪= ⎨
− <⎪⎩

x

x
x     ( )

if

if

if

x x

x x

x x

ν

+ −

+

+ −

⎧+ >
⎪⎪= − <⎨
⎪
± =⎪⎩

x − (20) 

Addition, multiplication, and subtraction of intervals are defined as follows: 

,x y x y− − + +⎡+ = + +⎣x y ⎤⎦ , for x, y ∈  (21) D
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\

,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

{ } { } ( ) ( )
( ) ( )

, , \

, \ ,

, ,

min , ,max , , ,

0 ,

x y x y

x y x y

x y x y

x y x y x y x y

σ σ σ σ

σ τ σ σ τ σ

σ σ τ σ σ τ

τ τ

τ τ

− −

−

−

− + + − − − + +

⎧⎡ ⎤ ∈⎣ ⎦⎪
⎪⎡ ⎤ ∈ ∈⎣ ⎦⎪
⎪= ⎡ ⎤⎨ ∈ ∈⎣ ⎦⎪
⎪⎡ ⎤ ∈ =⎣ ⎦⎪
⎪ ∈ = −⎩

y x y x

x y x x y x

y y x y y x

x y

x y

xy x y

x y x y

x y x y

D T

D T T

T D T

T

T

 (22) 

( 1) ,x y x y− + + −⎡− = + − = − −⎣x y x y ⎤⎦ , for x, y ∈ ;  D

-1 is the additive unit of 1∈k      (23) 

 
Addition and multiplication are commutative and associative, and have unit elements, namely  
[0, 0] for addition and [1, 1] for multiplication. Any element x ∈  has a unique inverse element 
for addition, namely 

D
−−x : . Additionally, conditional distributivity laws hold and have 

been summarized by Popova (2001). To illustrate, let us introduce a law, which will be used in 

the examples that follow. Denote 

0−− =x x

( ) ( )
( ) ( ) { }

\
ˆ

\ 0

if
if

σ
μ

ν τ
⎧ ∈⎪= ⎨ ∈⎪⎩

x x
x

x x x
D T

T
. For { }1 2, \∈x x D 0

2 )

 and 

, if , then  1= +s x x (\ \ k∈ ∈ ∪s yD DT, T

( ) ( ) ( ) ( ) ( )1 21 2 1 2ˆ ˆ ˆ ˆμ μ μ μ+ = +x s x sx x y x y x y  iff (24) 

either or 1 2, \∈x x D T,

{ } { } { }\ 0 for some 1, 2 and either 0or 0for all \ 0i ii x x− +∈ ∈ = = ∈x xT T . 

 
Thus,  is a conditional ring, and one could be tempted to blindly use all results derived by 

Baez and Gilliam (1994) using  as the ring in which the system takes values. However, since 
the addition unit of x is ,  unless x is degenerate, i.e. 

D
D

−−x 0− ≠x x ( )τ x =±, and only conditional 

distributivity applies. Finally, we will use the following properties: 
• An element x ∈ D\T   is a multiplication unit in  iff all x ∈ x are units in k; the 

multiplicative inverse of x is then x
D

_
-1 with 

1/ 1/ ,1/ ;1/ _ 1/ ,1/x x x+ − − +⎡ ⎤ ⎡= =⎣ ⎦ ⎣x x x ⎤⎦   
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• The dual operator is distributive with respect to finite addition 
( ( ) ( ) ( )Dual Dual Dual+ = +x y x y ) and multiplication 

( ( ) ( ) ( )Dual Dual Dual=xy x y ) and is an automorphism. 

Let ( ) :f x k k→ be a rational function. The generalized rational interval extension of f is 

the interval function  defined by the syntactic expression of f, where the 

variables in k are replaced by generalized intervals, and operations on k are replaced by the 
operations between generalized intervals described above. Likewise, the derivative 

, if it exists, is defined by the syntactic expression of f’, only replacing the 

argument x by its interval counterpart x, and its operations on k by their corresponding interval 
operations. The united extension, R

( ) :fR →x D D

( )' :fR →x D D

ƒ, is defined as the range of function values 

 ( ) ( ) ( )min ,maxf x x
R f x f x

∈ ∈
⎡=
⎣ x x

x ⎤
⎦

x

  

In general, . Similar definitions apply for multi-dimensional cases.  ( ) ( )ffR R⊇x
 
Since calculating the united extension is an NP-hard problem involving global optimization, 

generalized interval arithmetic will be used to carry out symbolic manipulations, and an algorithm 
due to Popova (2005) will be used to calculate interval extensions for the rational functions of 
interest in such a way that ( ) ( )ffR R=x x . The following thus rewrites Baez’s and Gilliam’s 

results using  as the ring in which the system takes values. Time evolution still proceeds in 
integer steps: if one is interested in the evolution of a system in the interval of time [i, i+n], such 
evolution is just the union of the results at each time step in [i, i+n]. Imprecision in time 
measurement is accounted for by allowing time-related quantities to be intervals, e.g., the initial 
velocity. Future research will deal with the case in which such physical quantities are measured in 
a time interval, e.g., the initial velocity measured between time steps i, and i+n.  

D

 
 

4. Euler-Lagrange equation 
 

As in Section 2, let A be a commutative algebra over  and let D ( ) ( )1

i
i

A A∞

=
Ω = Ω⊕  be the 

graded-commutative differential graded algebra on A with differential d, and product written as a 
wedge product. Let time take value in the discrete set {0, …, T} and Ai be a copy of A 
representing the system at time i. In order to satisfy Newton’s first and second laws, the Euler-
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Lagrange equation on the space of histories H = ( )1
0 ...T

TA A⊗ + = ⊗ ⊗ A  must be modified as 

follows: 

   (25) ( ) 1 0i i i iDual d d −+ =L L

where L ∈ A ⊗ A is the Lagrangian, 1 ... ... 1i = ⊗ ⊗ ⊗ ⊗L L  (in which L occupies the ith and 

(i+1)th slots); pi: ( ) ( )1 1H HΩ →Ω  is the projection on the ith summand of  

( ) ( )1 1
01

... ...
T

i Ti
H A A

=
Ω = ⊗ ⊗Ω ⊗ ⊗⊕ A , and i id p d= . The example that follows illustrates 

why the Dual operator is necessary in Eq. (25). 
 

Recall that the time evolution map is formalized as a homomorphism 
:  and 1 2 0 1: A A A AΦ ⊗ → ⊗ 1 1a a⊗ ⊗ ( )1 a ϕ⊗ a 1A, where 2 0: A Aϕ → ⊗  is a 

homomorphism that formalizes the equation of motion. Similarly to Section 2, ϕ or Φ satisfies 
the equation of motion provided 

( )* 1 1 1 0d dDual Φ + =L L 0

)1

; (26) 

where ( ) (1 1
* 1 2 0: A A AΦ Ω ⊗ →Ω ⊗ A  is the map induced by Φ.  

 
The Dual operator in Eq. (26) is necessary in order to ensure that distributivity be a necessary 

condition for the evolution map to satisfy the equation of motion, as shown in the following 
example. 
 

EXAMPLE (modified from Baez and Gilliam, 1994). Suppose 2 is a unit in k and that the 
algebra [ ]A q≅D , so that [ ]1 2,A A q q⊗ ≅D  and [ ]0 ,..., TH q q≅D , the polynomials in T+1 

variables over . Consider the Lagrangian  (written here as a polynomial function) for a 

particle in a polynomial potential V as a function of consecutive positions  and  of the 

particle:  

D iL

iq 1i+q

( ) ( )
2.

1

1
,

2i i i i+ i −
= = −q q mq V qL L  (27) 

where one defines  (so that 
.

1ii += −q q q _i

.

0i =q  iff 1i+ i=q q ), and where m is a unit in  

representing the mass of the particle. Notice that 

D

0i =L  iff ( )
2.1

2 ii =mq V q . Since  
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( )1 2d ,
ii q q= ∂ q qL L d i  , i = 1, 2 and the Dual operator is distributive with respect to sum and 

product, one obtains: 

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

1 _

1 _

' _

_ _ ' _ _ '

_ '

i i i i i i

i i i i i i i i

i i i i

Dual d Dual dq

dq dq dq dq

dq dq

+

+

= − − − =

= − − − = − − =

= − −

m q q V q

m q q V q m q V q

mq V q

L

i

1 q−

0

 

Likewise 

( )1 1_i i i i i id d− −= − =m q q mqL  

The Euler-Lagrange equation is thus: 

( ) ( )1_ 'i i i−− + =mq mq V q , (28) 

which correctly yields  iff ( )' 0i =V q 1i i−=q q (compare with Eq. (10)).  

 
The discrete analog for Newton’s second law is immediately derived: 

( ) ( ) ( ) ( ) ( )
( )
( )
( )

1 1

1
1

1
1

1
1

_ ' 0 _ _ '

_ _ ' _

_ '

_ _ '

i i i i i i

i i i

i i i

i i i

− −

−
−

−
−

−
−

− + = ⇔ = −

⇔ = −

⇔ − = −

⇔ − = −

mq mq V q mq mq V q

q q m V q

q q m V q

q q m V q

_

_

1
1

−

, 

which yields the time evolution map (compare with Eq. (16)) 

( ) ( ) ( )1
2 0 1 1 01 ' 2 _ 'ϕ −

−−
= + − = − −q q q m V q q q m V q  (29) 

and homomrphism Φ (compare with Eqs. (17) and (18)) 

( )1 1Φ =q q , ( ) ( ) ( )1
2 2 1 02ϕ −

− −Φ = = − −q q q q m V 1' q

d dq qΦ = ( )

 (30) 

( )* 1 1 , ( )1
* 2 1 0 1 1d 2d d '' dq q q q−

−− −m V qΦ =  (31)  

Let us check that the time evolution map satisfies the equation of motion: 
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( ) ( )( ) ( )

( ) ( )( )( )( ) ( )

( )( ) ( )( )( ) ( )

( )( ) ( )( )( ) ( )

1 1* 1 1 1 0 * 1 2 1 0 1 1

* 2 1 1 1 1 0 1

1
1 0 _ 1 1 1 1 1 0

_

1
1 0 _ 1 1 1 1 0 1

_

d d , d , d

' d d

2 ' ' d

' ' d d

q qDual Dual q q

Dual q q

q q

q q

− −−

−
− − −

−
− −−

Φ + = Φ ∂ + ∂ =

= Φ − − − + −

= − − − − − + −

= − − − − + −

q q q q

m q q V q m q q

m q q m V q q V q m q q

m q q m V q V q m q q

L L L L

1d−

 

whether or not this quantity is equal to zero depends on the actual input data, as the two following 
numerical examples of a harmonic oscillator show (assume k = ): 

1. Example 2a: assume , 0 [40,45]=q [ ]1 50,65=q ; ( ) 2
1

1
2

=V 1q sq ; s = [1/25, 6/25]; 

; m = [1, 2]. Then ( )1' =V q sq1 ( )( ) ( )1
1 0 _ 1 1' '−

− −
− − − −m q q m V q V q = [-38, -13] ⊂ 

( )1 0−− −m q q = [-40, -10] because only sub-distributivity holds.  As a result, 

( )* 1 1 1 0d dDual Φ + LL = [-3, 2], and thus generalized interval arithmetic leads to the 

conclusion that the time evolution map does not satisfy the equation of motion.  
2. Example 2b: assume 0 [11,000, 11,100]=q , [ ]1 10,000, 11,000=q ; 

( ) 2
1

1
2

=V 1q sq ; s = [1/5000, 3/5500]; ( )1' =V q sq1 ; m = [1, 2]. Then 

( )( ) ( )1
1 0 _ 1 1' '−

− −
− − − −m q q m V q V q = [100, 2000] = ( )1 0−− −m q q = [100, 2000] 

and the time evolution map satisfies the equation of motion.  
 

More in general, if Eq. (24) applies, then the time evolution map is satisfied using generalized 
interval arithmetic iff ( ) ( ) ( ) ( )1 2ˆ ˆ ˆ ˆANDμ μ μ μ= + =x s x s + , with 1 1 0−= −x q q , 

, and . If one defines the momentum as , 

then these conditions are equivalent to the momentum having the same sign, 

( )1
2 _ '−= −x m V q1 = −y m ( )1 _i i i i+= = −p mq m q q

σ  (Eq. (20)), as the 

spring force - ( )1' i+V q . If the time evolution map does not satisfy the equation of motion because 

only subdistributivity holds, then  pulls  back to a subset of *Φ i id L 1i id −− L . 

 
This shows that the imprecision in the input data together with subdistributivity may lead to a 

time evolution map that does not satisfy the equation of motion, which is nevertheless satisfied 
when no imprecision exists. In other terms, the time evolution map may not satisfy the equation 
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of motion in  even if it is always satisfied for every ring k. It may also happen that the time 
evolution map ceases to satisfy the equation of motion after a finite number of time steps: this 
occurs, for example, in Example 1b for i = 13. Let us analyze this crucial point in more detail.  

D

 
What is happening is overestimation caused by the multi-incidence of some variables in the 

expressions to be evaluated: a well known problem in interval analysis. Since the evolution map 
is always defined in terms of the previous two time steps (e.g., Eq. (29)), multi-incidence occurs 
in the computation of the flow as well. The dependency problem in range computation over a 
domain of proper intervals is eliminated using the algorithm developed by Popova (2005), which 
applies to rational functions such as those arising here by working on a polynomial configuration 
space. Within the Mathematica environment, this is efficiently accomplished by transforming the 
function to be evaluated using the IntervalComputations`Range package (2005), which 
takes into account the function’s monotonicity properties in each incidence.  

 
In the Example above, the described algorithm leads ( )* 1 1 1 0d dDual Φ +L L  to be identically 

equal to zero. As for the flow, steps 3 to 15 of the flow for Example 2b are given below as a way 
to exemplify: 

 

These ranges exactly correspond to those computed using the Mathematica global 
optimization functions Maximize and Minimize, thus confirming that ( ) ( )ffR R=x x . 

However, when using Mathematica global optimization functions, computational times are over 
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313 10⋅  times higher, and they could be impractically higher for more complex problems. As a 
way to interpret these results, recall that the time evolution map (Eq. (16)) is continuous in q1, q0, 
m and s. As a consequence, the meaning of interval qi calculated at the i-th step is as follows: the 
actual position of the particle at the i-th time step is a rational number in the interval qi. In a non-
degenerate interval qi there are infinite (albeit countable) possible positions. 

Similarly to the example in Section 2, the numbers of digits in the numerator and 
denominator increase at each time step. As time steps proceed, the shift to the left of the upper 
bound (slowest possible particle) is much smaller (1%) than the shift to the left undergone by the 
left bound (146%), which becomes negative at the 11th time step (fastest possible particle). At the 
15th time step, the width of the position interval is equal to about 15,475, whereas at the 1st time 
step it was equal to 1,000. Thus, the width has increased by about 150%. Figure 4 illustrates this 
behavior using some snapshots of the evolution of the configuration space. Notice that when the 
fastest particle bounces back to the right after the 80th step, the lower bound remains constant. 
The upper bound keeps decreasing because the slowest particle keeps marching to the left, until 
the fastest particle (which is now marching to the right) overcomes the slowest particle between 
i = 140 and i = 160, and makes the upper bound increase again.  

 
After the 160th time step, the interval never decreases because the fastest possible particle is 

always “much faster” than the slower possible particle. Similarly to the precise case of Section 2, 
it is impossible to determine the asymptotic values for the smallest and largest coordinates 
reached by the particle. Despite the fact that it is unknown whether the particle will actually visit 
all rational coordinate positions between the reached extremes (see Section 2), the continuity of 
the evolution map ensures that the particle may occupy any of the rational coordinate positions in 
the intervals depicted in Figure 4.     

 
i=1 

 
i=140 

 
i=20 

 
i=160 

 
i=40 

 
i=180 

 
i=60 

 
i=200 

 
i=80 

 
i=220 

Figure 4. Snapshots of the evolution of the configuration interval for the harmonic oscillator in Example 2a.  
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When the function’s monotonicity properties cannot be exploited because the hypotheses in 
(Popova, 2005) are not fulfilled, validated bounds on the system’s evolutions can be calculated by 
a discrete version of Taylor models. Taylor models have proven very effective in reducing 
overestimation in validated calculations of the flow for continuous systems (e.g., Makino, K. and 
Berz, 2004 and Berz and Makino, 1998 and references therein). The extension of Taylor models 
to discrete mechanics is the subject of current study.  

 
5. Conclusions 

 
Discrete dynamical systems that take values in a ring k allow for an exact integration of their time 
evolution. When the ring k is the ring of rational numbers, it may be impossible to determine a 
priori the evolution of even the simpler linear systems. 
  

When discrete dynamical systems take values in  (the set of extended intervals defined on 
a ring k), one finds that: 

D

• The definition of the Euler-Lagrange equation and of satisfaction of the equation of motion 
for the time evolution map must be modified by introducing the Dual operator for extended 
intervals. 

• When monotonicity can be exploited, exact bounds on the system evolution can be 
calculated very efficiently at each time step without the use of global optimization. When 
monotonicity cannot be exploited, validated bounds can be calculated, but more research is 
needed in this field, where Taylor models look very promising.   

 
Two interpretations of directed intervals have been used, namely directed interval as an 

ordered couple of elements of k and as a set of elements of k. The interpretation of directed 
intervals in terms of modal logic (Gardenes, 1986) opens the way to logical interpretations of 
mechanical systems (including cellular automata) and vice versa; this aspect will be investigated 
in the future. 
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Abstract: Systematic use of functional equations for fault-tolerant computation of numerical 
functions have been introduced by M. Blum (1989) and then independently by F. Vainstein 
(1991). The later has introduced definition of polynomially checkable (PC) functions – the 
functions for which functional equations are polynomials, and proved that the class of PC 
functions is large and includes many commonly used functions. The functional equations that are 
used to check computations of numerical functions are called checking polynomials. In this paper 
we discuss an algorithm for computing coefficients of these polynomials. By using this algorithm 
we obtain checking polynomials for the commonly used functions. 
Keywords: fault tolerance, algebraic methods, numerical functions, error checking, checking 
polynomials. 

 
 

1. Introduction 
 
Computers continue to take on more mission and safety critical operations in industrial, scientific, 
and consumer markets. Modern processors compute a wide range of numerical functions. 
Detecting and correcting errors due to numerical computations are critical aspects of processor 
design. 

There have been numerous approaches to fault tolerant computation of numerical functions. 
These include hardware, information, time, and software redundancy methods (Lala 2001). 
However, each of these methods comes at a significant price to the system in space or time. And 
while the dimensions of chip technology are continually reduced the complexity of the systems 
placed on chips continues to rise. 
The technique described here employs the algebraic concept of the transcendental degree of field 
extensions to exploit the structure of a specific numerical computation. This method requires 
significantly less hardware redundancy, offers good fault coverage, and has significant fault 
location capability (Vainstein 1993). 

 
________________________ 
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Algorithms used in numerical computations can be sophisticated and numerous 
implementations exist (Koren 2001; Muller 1997; Ercegovac, Lang et al 2000). Many 
considerations go into choosing a certain numerical algorithm based on specific application and 
design criteria. Contrary to the perception of many, the computation of numerical functions can 
be quite complex and susceptible to faults. 

In order to give the flavor of an algorithm for computing an elementary function, consider 
Wong and Goto’s algorithm for computing logarithms (Wong and Goto 1994).  This description 
is based on the presentation of this algorithm given by Muller in (Muller 1997). See Muller’s text 
for a complete description of the assumptions, details, and technical issues of the algorithm. 

 The notation 
[ ] baz −   

is the number obtained by zeroing all the bits of z but the bits a to b. For example, if 
, then .... 43210 mmmmmm =

[ ] ...000.0 32131 mmmm =−  

To compute the logarithm of a normalized IEEE-754 double precision floating-point number 
onentmx exp2×=  

We have to follow the steps below: 
1. Obtain factor  and 1K ( )1ln K from tables. 

2. Use a rectangular multiplier to multiply m by . Then  is chosen such that 

 is close to 1. And 
1K 2K

mKK 21 ( )[ ] 5612ln −K  is obtained from tables. 

3. Use a rectangular multiplier to multiply ( )1mK  by . As in the previous step 

 is obtained from tables. 
2K

( )[ ] 5613ln −K
4. Use a rectangular multiplier to multiply ( )21KmK  by . The result is 3K γ−1 , where 

. This result is close enough to 1 that a degree-3 Taylor polynomial 
approximation will give good accuracy. 

2420 −<≤ γ

5. Then, full multiplication and tables are used to compute 

[ ]
561

3
3325

561

2

3

2

−

−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

γ

γ

and
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6. And, finally, 

( ) ≈xln exponent ( ) [ ]
561

3
3325

561

2

321 32
lnlnln2ln

−

−

−

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−−−−−×

γγγKKK  

As we see from this example, even “simple” numerical functions such as the logarithmic 
function can be quite sophisticated and thus susceptible to faults. 

The method presented in this paper seeks to address the fault-tolerant needs of numerical 
algorithms with low processor overhead. To illustrate this method, let us consider an example. 

Suppose we have to compute the function   ]10,0[,5sin)( ∈= − xxexf x

Let  ;21  R,aa ∈
Denote by  ,5sin)0(0 xexff x−=+=

                   ),(5sin)( 1
)(

11
1 axeaxff ax +=+= +−

        ).(5sin)( 2
)(

22
2 axeaxff ax +=+= +−

Denote by  ;5sin  ;5cos  ;5sin  ;5cos 22221111
2211 aeqaepaeqaep aaaa −−−− ====

                  121221   ;  ; qCqBqpqpA =−=−=  

Then             0210 =++ CfBfAf
For every .   Rx  ∈
It is very important that A, B and C do not depend on x  and depend only on  

Taking (1) into consideration we can consider the following method for error detection. 
21  and aa

Denote the computed values of function at the points f 21 ,, axaxx ++  by 210

~
,

~
,

~ fff  

respectively.  Then if the computation is correct 

0
~~~

210 =++ fCfBfA  (Independently of x!)     (2) 
 

For error correction (single error in this case) we can proceed as follows. 

Consider 0
~~~

let  and 2  ; 21021 ≠++== fCfBfAaaaa     (3) 

Because one of .2 ,1 ,0  ;
~

=≠ iff ii  

Suppose for example that 221100

~
   ;

~
     ;

~ ffffff ==≠  

Then the correct value is given by the formula 

                       210

~~ f
A
Cf

A
Bf −−=        (4) 

Location of the error can be obtained by using (2) for the following triples: 
                           axaxxaxax 2                                    2 ++−−  
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                                 |_________________|          
                                                      |_______________|          
                                                                    |________________|      
 

It should be taken into consideration that computations are done in practice with a certain 
level of accuracy.  Hence the formula 2 should be substituted by the formula 

     |  210

~~~ fCfBfA ++   |  ,δ≤         (2’) 

where δ  is a small positive number specified by the precision of the computation. 
 
 

2. Polynomial checking 
 
For the readers convenience let us present the following definitions and results from the field 
extension theory (Lang 1992). 
Definition 1.  Let  be a field extension and  be the set of all polynomials in 

 over K.  The elements 

LK ⊂ ],....,[ 1 nTTK

nTT ,...,1 Laa n ∈  ,....1  are called algebraically dependent over K, if there 

exists a polynomial 0],,...,[ 1 ≠∈ PTTKP n , such that .0),...( 1 =naaP   The elements 

 are called algebraically independent over K, if they are not algebraically 

dependent.  By  we denote the quotient field of the ring  

Laa n ∈,...,1

),...,( 1 nTTK ].,...,[ 1 nTTK

Example 2.  Consider the field extension   Then the numbers .RQ ⊂ 2  and R∈3  are 

algebraically dependent over Q.   The numbers 1,  are 
algebraically independent over Q. 

.5),( 2
2

2
121 −+= TTTTP Rπ∈

Definition 2.  Let  be a field extension.  Transcendental degree (Tr.deg.) of this extension 
is by definition the maximum possible number of elements from L algebraically independent over 
K. 

LK ⊂

If Tr.deg. of  is equal to n and m>n, the any subset LK ⊂ { } Laa m ⊂,...,1  is algebraically 

dependent. 
Example 3.  Tr.deg. of  equals to 1. R(T)R ⊂
                     Tr.deg. of equals to 2. )R(x,eR x⊂
                     Tr.deg. of  equals to 0. )x,ex,  R(x,)x,eR(x, xx cossinsin ⊂
Definition 3.  A field L is called algebraically closed if any polynomial ][TLP∈  has a root in L. 
Example 4.  R is not algebraically closed.   does not have roots in R.  C is 
algebraically closed. 

1)( 2 += TTP

Definition 4.  A field K  is called an algebraic closure of field K is 
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1.  K  is algebraically closed. 

2. Tr.deg. of KK ⊂  is equal to 0. 

Theorem 1.  For any field K its algebraic closure K  exists and is unique up to isomorphism. 
Definition 5.  A function  is called polynomially checkable (PC) if there exists an 

integer k, such that for any 

Rf:R →
R,...,aa k ∈1  the functions 

)()(),...,()(),()( 110 kk axfxfaxfxfxfxf +=+==  are algebraically dependent, i.e. there 

exists a polynomial  such that ,0 ],...,TR[TP k∈ 0),...,( 0 =kffP  (for any ).  The 

polynomial P is called a checking polynomial of the function f. 
Rx∈

The computation of a PC function can be readily verified.  For a given value of x, denote by 

kfff ~
,....,

~
,

~
10  the values of f at the points ,,...,, 1 kaxaxx ++  respectively.  Then if all the 

values are computed correctly, the following equality holds: 

                0)
~

,...,
~

,
~

( 10 =kfffP                                                                        (5) 

This property provides a unified approach to the problem of error detection/correction in 
computation of numerical functions.  Indeed we can consider inequality similar to  )2( ′

               δ≤)
~

,...,
~

,
~

( 10 kfffP ,                                                                      )5( ′

where δ  is a small positive number specified by the precision of the computation.  In case of 
correct computation  is satisfied.  We have to note, however, that even if  is satisfied it 
doesn’t give us 100% warrantee that computation is correct.  There are some faults that cannot be 
detected by  

)5( ′ )5( ′

).5( ′
The first class of faults (we can call them software faults) are result of the fact that some 

other PC function  can have the same checking polynomial.  For instance if 

 where b is a constant, then g(x) and f(x) have the same checking polynomials.  
Preliminary results show that a PC function with bounded spectrum is uniquely defined by its 
checking polynomial (the set of shifts is fixed) and its values at a finite set of points.  This 
property can be used to fight the software faults. 

)(f )( xxg ≠
),(f )( bxxg +=

The second class of faults which can not be detected by using )5( ′ are hardware faults.  They 
are result of physical defects of a device which performs the calculation of function.  Random 
faults are hardware faults.  The fault coverage of random faults is calculated below for an 
important case.  It is shown in (Abamowitz and Stegun 1965) that the class of PC functions is 
very broad even for a small k. 
Denote by S the set of three functions:   Let denote by R(A) the field of all 

rational functions in  and by 

.sin,, xex x ;SA ⊆

Ag j ∈ R(A)its algebraic closure. 
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Example 5.  a) A = (x), R(A) = 
⎭
⎬
⎫

⎩
⎨
⎧

)(

)(

xQ
xP

i

i , where  are polynomials of one variable with real 

coefficients.  Its algebraic closure 

ji QP ,

)(AR  includes, as a special case any function g(x) which is a 

solution of an equation  where 

 are polynomials of one variable with real coefficients. 

0)(...)()()()( 0
1

1 =+++ −
− xPxgxPxgxP n

n
n

n

nixPi ,...,1,0),( =
 

In particular, R(A) includes the set of all functions that can be obtained by application of 
finite number of additions, subtractions, multiplications, divisions, and raising to a rational power 
to the function .)( xxg =  

b) { }
x),(eQ
x),(eP  ; R(A)x,eA x

i

x
ix

sin
sin

sin == , where  are polynomials of two variables with 

real coefficients. 

ji QP ,

Theorem 2  Let  belong to the field Rf:R → x).,(x,e,AR(A) x sin⊆   Then f is polynomially 

checkable with Ak = . 

Proof.  We prove the theorem for the case { }.sin,, xexA x=   For the other cases the proof is 
analogous. 

Let x),R(x,ef(x) x sin∈  and R ,a,aa ∈321 ; denote:  ),()(  ),()( 110 axfxfxfxf +==   

).()( ),()( 332 axfxfaxfxf +=+=  We have to show that are algebraically 

dependent.  This follows from the statements: 
30 ,..., ff

1) Tr.deg of x),R(x,eR x sin⊂  equals to 3. 

2) For every  x),R(x,ea)R,f(xa x sin∈+∈ . 

Indeed ⇔∈ x),R(x,ef(x) x sin  there exists a polynomial  such that x)[T],R(x,eA x sin∈
0)()()(...)()()( 01 =+++= xAxfxAxfxAfA n , where .Let us denote x),R(x,e(x)A x

i sin∈
)(...)()()( 0 xAxfxAx n ++=ρ .Then  

. )cossin00 xx,R(x,ea)(x,Aa)(xA...a)a)f(x(xAa)ρ(x x
in ∈+=+++++=+

Hence x),,R(x,ex)x,,R(x,e  But  ,).x,,R(x,ea)f(x xxx sincossincossin =∈+  

hence  x),R(x,ea)f(x x sin∈+  and, therefore, x).,R(x,e,f,f,ff x sin3210 ∈  

But the Tr.deg. of x),R(x,eR x sin⊂  equals to 3, hence  are algebraically dependent. 3210 ,f,fff
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Let f be the result of application of a finite number of additions, subtractions, 

multiplications, divisions and raising to a rational power to the following functions: 
Const,  where  are rational numbers. ),cos(),sin(,, jjii

x bxrbxrex ++ ji rr ,

Then f is a PC function with . 3≤k

Example 6. The function 
3

1
3245

425

3

))2(sin(

cos))
711

(sin(
)(

x

x

xexxxx

xxex

xf
+++

+++
=

π

 is a PC function with k=3. 

 
Example 7. Consider the function 

)(sin)(;

)4)53sin(3(cos)7sin(

) cos)((sin
)(

17

1

2

1

3

1

xRxf
xxx

xxxf ∈

−+−+

+
=  

Tr.deg. of extension x)R(R sin⊂ equals to 1, therefore f(x) is a PC function with k=1.   
Note.  The theorem 2 states that the class of PC functions is very big.  We have to note, however, 

that a number of commonly used functions like ln(x),  are non PC functions. )(cos),(sin 11 xx −−

 
 

3. Finding a Checking Polynomial by Least Square Estimation 
 
To find a checking polynomial we consider the following optimization problem. Let 

[ ] RBAf →,:  
Denote 

( ) ( ) ( ) ( )( )∫ −+−−+−=
B

A
kkk dxaxfaxfxf 2

01110 2,,, βααααβδ ……  

Find such 01 ,,, βαα k… , that ( k )ααβδ ,,, 10 …  takes minimal value. To solve this problem 

consider the following equations: 
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( )( )( )

( )( )

( )( )∫

∫

∫

=−−−−=
∂
∂

=−−−−=
∂
∂

=−−−−−=
∂
∂

B

A
kkk

k

B

A
kk

B

A
kk

dxfffxf

dxfffxf

dxffxf

02

02

012

011

1011
1

011
0

βααδ
α

βααδ
α

βααδ
β

…

#

…

…

 

Let us denote by ( )∫ ⋅=
B

A

dxgfgf , . Using this notation, we can express the system of 

equations in the form 
( )

1,,,,

1,,,,

1,,,,

,1,11,

0110

20212120

10111110

0110

kkkkkk

kk

kk

kk

fffffff

fffffff

fffffff

ABfff

βαα

βαα

βαα

βαα

+++=

+++=

+++=

−+++=

…
#

…

…

…

 

Solving this system we obtain kααβ ,,, 10 … . If ( ) 0,,, 10 =kααβδ …  then f is an LC function 

with the checking polynomial  
00110 =−−−− βαα kk fff …  

If ( ) 0,,, 10 ≠= δααβδ k…  then  does not have a checking polynomial of degree 1. However, 

if 

f
δ  is a small number the formula  

δβαα ≤−−−− kk fff
~

1

~

10

~

…  

can be used to verify the correctness of computations. A similar method can be used for obtaining 
a checking polynomial of degree > 1. 

Other methods for finding a checking polynomial are described in (Vainstein 1998). 
 
 

4. Numerical Results 
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A Matlab program was developed to implement the algorithm described using techniques from 
linear algebra. This program can determine the coefficients of the checking 
polynomial, kααβ ,,, 10 … , for various numerical functions. 

From the system of equations defined above, denote 

( )

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛ −

=

1,,,

1,,,

1,,,

,1,1

1

2212

1111

1

kkkk

k

k

k

fffff

fffff
fffff

ABff

A

…
####

…
…
…

. 

Define vector  as X

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

k

o

X

α

α
β

#
1 . 

And, define vector  as B

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

kff

ff

ff

f

B

,

,

,

1,

0

20

10

0

#
. 

First, the program computes the coefficients of matrix A and vector B using the trapezoidal 
integration method. Then, the equation BAX =  is solved by a reduced row echelon form 
method. The resulting values of vector X then give us the coefficients of the checking 
polynomial, kααβ ,,, 10 … . 

The values of kααβ ,,, 10 …  are then used to evaluate ( )kααβδ ,,, 10 …  as described above. 

This gives the value ofδ . 
In order to investigate the effect of increasing k, the program finds the values of  δ   for a 

given range of  values and determines which of these produces the minimum deviation. Shown 
below are the results from these computations for various numerical functions. 

k

In Table 1 and Figure 1 we see the algorithm’s results when applied to . ( ) ( )xxf ln=
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Function ( )xln  

Best  k 9  
Accuracy, δ  610063.1 −∗  

1α  13.636083507129 

2α  -48.3372588311351 

3α  33.8356474758064 

4α  104.402870905685 

5α  -173.871357832086 

6α  19.6783752309016 

7α  95.3406000928846 

8α  -40.7070503540183 

9α  -2.97970571433605 

oβ  0.0104815654867488

Stepsize,  h 0001.0  
Lower limit, A 1 
Upper limit,  B 100  

Table 1. Best results for ( ) ( )xxf ln= .  

 

 
Figure 1. Graph of the accuracy δ  versus  fork ( ) ( )xxf ln= . 
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These results show that, in the interval [ ]100,1 , and with a step size of , the 

checking polynomial of that returns the best accuracy, or minimum deviation

0001.0=h
( ) ( )xxf ln= δ , is 

the polynomial with values for kααβ ,,, 10 …  as given in Table 1. 

As a result of the computational experiments we observed that, as a rule, the deviation, δ , is 
decreasing with increasing k, for small values of k. However, as k continues to increase δ  
eventually begins to increase. The reason for this increase is the limited accuracy of computer 
arithmetic. In general, we are interested in the smallest value of k (since the overhead increases 
with k) that provides us with a satisfactory deviation. 

As another example, let’s consider a more complicated looking numerical function 

( ) ( )( ) ( ) xxxxxf +−−= cossincos      (6) 

The graph δ versus k for this function is shown below in Figure 3. 
 

 
Figure 3. Graph of the accuracy δ  versus k  for ( ) ( )( ) ( ) xxxxxf +−−= cossincos . 

We note in the results of Figure 3 the two important features mentioned above: the deviation 
initially decreases but then eventually increases with increasing k. 

Given in the table below are some other sample results. 
Function k δ  kααα ,,, 21 …  β  

)cos(x  2 1.5655594  2610−∗ 1.08060461 
-0.999999999 

-

4.6509012  1510−∗
2x  2 5.3305333  2010−∗ 2.00000000 

-1.00000000 
2.0000000 

x  6 3.5165389  910−∗ 17.6933009 
-82.75929 

-0.73834646 
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138.617962 
-51.0106681 
-69.7915475 
48.319250 

xe  2 5.4703917  2210−∗ 0.00810684622 
0.132352941 

-5.80812  1210−∗

( ) ⎥
⎦

⎤
⎢
⎣

⎡
++ 2

1
2 1log xx  

3 1.8593950  1010−∗ 1.67126425 
3.81365972      
-5.13358327 

2.2870721 

( )( ) ( ) xxxx +−− cossincos  7 7.6541494  1510−∗ -1.16902598 
-0.58592973 
-0.74339752 
-1.48341738 

-0.454274819 
-0.230924645 
0.684256990 

7.6417875 

Table 3. Sample results of the least square estimation method. All results for step size, h  0001.0=
These results in Table 3 give the values of kααβ ,,, 10 …  that define the checking polynomial 

of the form 
00110 =−−−− βαα kk fff …  

for each numerical function. 
A number of other common and specialized numerical functions were also tested. The results 

are shown in Table 4 below. Each of these functions were tested over a domain interval for which 
they are well behaved. 
 

Function k δ  

Airy Function: ( ) ∫
∞

∞−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

= dtezA
tzti

i
3

3

2
1
π

; for 1=i  

6 8.01855604514853  1310−∗

Bessel Function of 1st Kind: ( ) ( )
( )∑

+

⎟
⎠
⎞

⎜
⎝
⎛

++Γ
−

=
ν

ν

kk z
kk

zJ
2

1 2!1
1

 
7 6.77944398369068 1210−∗

Beta Function: ( ) ( ) ( )
( )aa

aadtttaaB aa

+Γ
ΓΓ

=−= ∫ −−
1

0

11 1),(  
5 1.94247036365353  910−∗

Scaled Complementary Error Function: ( ) ∫
∞

−=
x

tx dteexf
22 2

π
 

6 5.53736923276668 1110−∗
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Exponential Integral: ( ) ∫
∞ −

=
x

t

dt
t

exf  
5 1.09725876920181 1010−∗

Logarithm of the Gamma Function: 

( ) ( )∑
∞

=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−=Γ

1

log1loglog
k

zz
k
z

k
zz γ  

5 2.24588944104907  710−∗

Inverse Cosine: ( ) ( )21 1log
2

cos ziziz −++=− π
 

6 9.57918288982022  610−∗

Inverse Hyperbolic Cosine: ( ) ( )11logcosh 1 +−+=− zzzz  4 5.68478815529586  910−∗

Hyperbolic Cosine: ( )
2

cosh
zz eez

−+
=  

2 1.63905802795885 2110−∗

Inverse Tangent: ( ) ⎟
⎠
⎞

⎜
⎝
⎛
−
+

=−

zi
ziiz log

2
tan 1  

5 2.2975351543044  610−∗

Complete Elliptic Integral of the First Kind: 

( ) ∫
−−

==
1

0
22 11

1 dt
ztt

zK  

4 1.29605146674611 1110−∗

Riemann Zeta Function: ( ) ∑
∞

=

==
1

1

k
sk

sζ  
3 5.31429308150972  910−∗

Dawson’s Integral:  ( ) ∫ −−=
x

tx dteexF
0

22
7 1.48383522053584  610−∗

Fresnel Sine Integral: ( ) ∫ ⎟
⎠
⎞

⎜
⎝
⎛ ⋅=

x

dttxS
0

2

2
sin

π
 

6 4.04417425710405  510−∗

Table 4. Results for various functions (Abamowitz and Stegun 1965; Wolfram 1999). 
 
 

5. Conclusions and Future Work 
 
We have demonstrated that checking polynomials can be effectively used for fault tolerant 
computations. In particular, checking polynomials for some common numerical functions and 
some specialized functions have been found. 

A program was developed in Matlab that allow us to obtain an “approximate” checking 
polynomial for a wide range of numerical functions. 
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The examples considered showed that even for functions that do not appear simple an 
approximate checking polynomial provides a small value of deviation,δ . 

A future paper will describe a hardware implementation of this fault tolerance technique. 
Issues related to computational overhead and comparisons to overhead incurred by other methods 
will be discussed. 

We will also consider the problem of obtaining checking polynomials of degree greater than 
one. Once this theoretical foundation is established an approach such as that outlined in this paper 
will be developed for finding coefficients of higher degree checking polynomials. 
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Abstract. We present in this paper a library to compute with Taylor models, a technique extending
interval arithmetic to reduce decorrelation and to solve differential equations. Numerical software
usually produces only numerical results. Our library can be used to produce both results and proofs.
As seen during the development of Fermat’s last theorem reported by Aczel (1996), providing a proof
is not sufficient. Our library provides a proof that has been thoroughly scrutinized by a trustworthy
and tireless assistant. PVS is an automatic proof assistant that has been fairly developed and used
and that has no internal connection with interval arithmetic or Taylor models. We built our library
so that PVS validates each result as it is produced. As producing and validating a proof, is and
will certainly remain a bigger task than just producing a numerical result our library will never be
a replacement to imperative implementations of Taylor models such as Cosy Infinity. Our library
should mainly be used to validate small to medium size results that are involved in safety or life
critical applications.

Keywords: PVS, program verification, interval arithmetic, Taylor models.

1. Introduction

Taylor models, see for example (Makino and Berz, 2003) and references herein, have recently
emerged as a nice and convenient way to reduce decorrelation in interval arithmetic (Moore,
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(CNRS).

c© 2006 by authors. Printed in USA.

REC 2006 - Francisco Cháves and Marc Daumas



1966; Neumaier, 1990; Jaulin et al., 2001). Taylor models are even more attractive when one solves
initial value problems ODEs as they provide a validated built-in integration operator.

Yet, it is now beyond doubt that programs and libraries contain bugs, no matter how precisely
they have been specified and how thoroughly they have been tested (Rushby and von Henke,
1991; Ross, 2005). As a consequence, the highest Common Criteria Evaluation Assurance Level,
EAL 71, has only been awarded so far to products that provide validation using a formal tool,
specifically an automatic proof checker in first or higher order logic.

We present here our library of Taylor models in PVS (Owre et al., 1992). Working with an
automatic proof checker, we had to manage two tasks. The first task was to create a data type
and operations on this new type to allow users to define and evaluate expressions using Taylor
models. The second task was to provide proofs that each operator is correct and a strategy to
recursively analyze compound expressions. Both tasks rely on the recently published library on
interval arithmetic for PVS (Daumas et al., 2005). As many mathematical developments are not
yet available in PVS, we also had to develop an extended library on polynomials and prove a few
theorems of analysis and algebra.

Our library on Taylor models can be used to derive quickly more or less accurate bounds.
For example, users of formal tools have to provide proofs that radicals are non negative for all
expressions using square roots. Some proofs use intricate analysis but most of them are very simple
and interval arithmetic or low degree evaluations with Taylor models can produce appropriate
proofs. Our library can also be used to expertly derive computer validated proofs of difficult results
through an expert use of Taylor models.

The library will be available freely on the Internet as soon as it is stable. Side developments
are integrated as they are produced to NASA Langley PVS libraries2. Meanwhile, all files can be
retrieved from the author’s website.

http://perso.ens-lyon.fr/francisco.jose.chaves.alonso/pvs-files/

1.1. Working with an automatic proof checker

Software is used extensively for a wide array of tasks. Some pieces of software should never fail. The
ones used by transportation means (planes, buses, cars. . . ), for medical care (controlling pumps,
monitors, prescriptions. . . ) or in the army (parts of weapons, alarms. . . ) belong to the fast length-
ening list of life or safety critical applications. A mindless modification of one parameter reportedly
caused human losses in the Instituto Oncologico Nacional on Panama where eight people died and
twenty others were hurt (Gage and McCormick, 2004). Many lethal and costly failures (Information
Management and Technology Division, 1992; Lions and others, 1996) show beyond reasonable
doubts that traditional software verification is not sufficient to guarantee correct behavior.

PVS3 (Prototype Verification System) by Owre et al. (1992; 2001a; 2001b) is one environment
for the development and analysis of formal specifications that allows the elaboration of theories and
proofs. The system deals with theories where users develop definitions, axioms and theorems. To

1 http://niap.nist.gov/cc-scheme/.
2 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.
3 http://pvs.csl.sri.com/.
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verify that theorems are correct, PVS uses a typed higher order logic language where new types are
defined from a list of basic types including booleans, natural numbers, integers. . . The type system
allows the definition of functions, registers, tuples and abstract data types.

PVS uses predicate subtypes, subtypes where all objects satisfy a given predicate. For example
{x : real|x 6= 0} is the set of non–zero reals. Subtype predicates are used for operations that aren’t
defined for all possible inputs. This restriction is therefore visible in the signature of the operation.
For example the division is an operation of real numbers such that the type of the denominator is
a real number different from zero. As a result, all functions of PVS are total in the sense that the
domain and the signature must exclude explicitly any input where a function could not be defined.

As predicates used by the system to define types are arbitrary, type verification is undecidable
and it usually generates proofs obligations named type correctness conditions (TCCs). Users have
to provide proofs of generated TCCs with the help of PVS.

In PVS the λ operator defines anonymous functions. Expression λx.e is a function that has
parameter x and returns expression e. For example, the function that returns 0 for any value of its
single parameter could be defined as λx.0 and identity function that returns the same element that
is given as parameter is λx.x. Function λ k : nat. if k = 0 then 1 else 0 is the sequence
that for input 0, returns 1, and returns 0 for any other input.

Nowadays, systems such as PVS are fully able to certify that programs are corrects (Ross, 2005)
but programmers scarcely use them. Providing a formal proof of correct behavior is a difficult task,
it requires a specific training and user interfaces of proof assistants are of little help for all the
work that is not done automatically. Hope is that as more and more work is done automatically,
users will need only limited interactions with automatic proof checkers down to the point where no
interaction is required at all. This trend was recently coined as invisible formal methods (Tiwari et
al., 2003).

1.2. A few words about interval arithmetic

In interval arithmetic scalar variables x are replaced by pairs (a, b) with the semantic that x lies
in the interval [a, b]. Later on, we compute bounds rather than values. We use operators commonly
found in programming languages such as addition, subtraction, multiplication and so on (Jaulin et
al., 2001).

[a, b] + [a′, b′] = [a + a′, b + b′]
[a, b]− [a′, b′] = [a− b′, b− a′]

c · [a, b] = [c · a, c · b] c ≥ 0
[a, b] · [a′, b′] = [min{aa′, ab′, ba′, bb′},max{aa′, ab′, ba′, bb′}]

Working with automatic proof checkers, we convert operations into properties (Daumas et al.,
2005).

For all x ∈ [a, b], y ∈ [a′, b′] and c ∈ R





x + y ∈ [a, b] + [a′, b′]
x− y ∈ [a, b]− [a′, b′]
c · x ∈ c · [a, b]
x · y ∈ [a, b] · [a′, b′]
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Decorrelation is a problem intrinsic to interval arithmetic. There is decorrelation on interval
evaluation of any expression where one or more variables appear more than once. For example, the
most simple scalar expression

x− x

where x ∈ [0, 1], is replaced in interval arithmetic by

[0, 1]− [0, 1] = [−1, 1].

Everyone agrees that x − x lies in the interval [0, 0] but interval arithmetic produces the cor-
rect but very poor [−1, 1] interval. Decorrelation and other problems lead interval arithmetic to
overestimate the domain of results. Techniques are used intensively to produce constrained results.

One of such techniques is based on Taylor’s theorem with Lagrange remainder where f is n
times continuously derivable between x0 and x, f is n + 1 times derivable strictly between x0 and
x and 0 < θ < 1.

f(x) = f(x0) + (x− x0)f ′(x0) + (x−x0)2

2! f ′′(x0)

+ · · · + (x−x0)n

n! f (n)(x0)

+ (x−x0)n+1

(n+1)! f (n+1)(x0 + (x− x0)θ)

Adapting Taylor’s theorem to interval arithmetic, we obtain the formula below (Daumas et al.,
2005) for x and x0 in I.

f(x) ∈ f(x0) + (I − x0)f ′(x0) + (I−x0)2

2! f ′′(x0)

+ · · · + (I−x0)n

n! f (n)(x0)

+ (I−x0)n+1

(n+1)! f (n+1)(I)

Using Taylor’s theorem was appropriate in (Daumas et al., 2005) but it has many drawbacks:

− It is difficult to hide the use of Taylor’s theorem in order to provide invisible formal methods.
This is due to the large number of quantities involved in instantiating the theorem in its generic
form. Progress has been achieved by Muñoz after the publication of Daumas et al..

− To use Taylor’s theorem, one has to express the derivatives of function f .

− For large expressions, f alone might be too large to be expressed in PVS.

Taylor models presented in the rest of this text overcome all the previous drawbacks to the
price of a less accurate approximation. We have developed a set operations for PVS that includes
addition, negation, scalar multiplication, multiplication, reciprocal and exponential. We present our
developments in PVS, first quickly on polynomial functions and then on Taylor models. We finish
with concluding remarks and a few toy examples.
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2. Implementing polynomials in PVS

For the implementation of polynomials we considered a finite list of monomial functions, a finite
sequence of coefficients and an infinite power series with finite support. Finite lists or sequences
usually imply the construction of a new inductive type à la Coq4 (Bertot and Casteran, 2004).
We implemented polynomials as power series with finite support. This scheme is appropriate for a
proof system like PVS and is compatible with NASA series libraries5.

Working with sequences of coefficients rather than monomial functions means that we need the
powerseries function to evaluate polynomial P on input x. It also means that some theorems can
be established on finite support series rather than polynomial functions.

2.1. Finite support series

Our implementation of polynomials is outlined in Figure 1. It mostly describes mathematical
objects (definition, function, theorems...) with common words except for the notions introduced
in Section 1.1

We define predicate finite support (a,N) just after the preamble. Addition of sequences was
already defined and is imported from previous work in the preamble. We had to define a product
operator and a composition operator. The first operator applies to generic series. The second
operator requires that the first sequences a returns zero for indices above input d.

In the second half of Figure 1 we proved that negation, addition, multiplication by a scalar,
multiplication and composition return finite support series provided (both) inputs are finite support
series. We also proved that Cauchy’s product is meaningful for finite support series. The meaning
of composition can only be assessed in regard to polynomial functions.

2.2. Polynomial

As we have mentioned earlier, we use polynomial (a, n) function to create a power series from
finite support sequence a based on powerseries(a)(x)(N) function implemented in previous work.
Extended results on polynomial functions are presented in Figure 2 based on NASA libraries.

polynomial(a, n)(x) =
n∑

k=0

ak · xk

We proved in this file that Cauchy’s multiplication applies to finite support series as well as
polynomial functions. We also proved that the series obtained from composing two finite support
series as defined in Section 2.1 defines the same polynomial function as the one that would be
obtained by composing the polynomial functions associated to the two initial series.

Technical results are also presented in this file to provide more insights to our development.

4 See for example http://www.lfcia.org/staff/freire/phd-gilberto/gilberto_phd_html/.
5 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.
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finite support: theory
begin

importing series@series, reals@sqrt, series@power series

a, b, c: var sequence[real]
N, M, L, n, m, l, i, j: var nat
x: var real

finite support(a: sequence[real], N: nat): boolean =
∀ (n: nat): n > N ⇒ a(n) = 0

cauchy(a, b: sequence[real])(n: nat): real =
Σ(0, n,

λ (k: nat):
if n ≥ k

then a(k)× b(n− k)
else 0
endif)

comp(a, b: sequence[real], d: nat): recursive sequence[real] =
if d = 0

then (λ n: if n = 0 then a(0) else 0 endif)
else let c = (λ n: if n = d then 0 else a(n) endif) in

a(d)× pow(b, d) + comp(c, b, d− 1)
endif
measure d

neg fs: lemma
finite support(a, N) ⇒ finite support(−a, N)

add fs: lemma
finite support(a, N) ∧ finite support(b, M) ∧ L ≥ max(N, M) ⇒
finite support(a + b, L)

scal fs: lemma
finite support(a, N) ⇒ finite support(x× a, N)

finite support mult: lemma
finite support(a, N) ∧ finite support(b, M) ⇒
finite support(cauchy(a, b), N + M)

finite support cauchy: lemma
finite support(a, N) ∧ finite support(b, M) ⇒
series(a)(N)× series(b)(M) =
series(cauchy(a, b))(N + M)

finite support comp: lemma
finite support(a, N) ∧ finite support(b, M) ⇒
finite support(comp(a, b, N), N ×M)

end finite support

Figure 1. Abridged and reordered theory on finite support series (see file finite support.pvs)
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polynomials ext: theory
begin

importing finite support, trig fnd@polynomial deriv

a, b, d: var sequence[real]
n, N, M, L: var nat
c: var real
x, y: var real

fs powerseq: lemma
finite support(a, N) ⇒ finite support(powerseq(a, x), N)

fs condition: lemma
finite support(a, N) ⇒
(∀ (i: posnat): a(N + i) = 0)

scal polynomial1: lemma
x× polynomial(a, N) = polynomial(x× a, N)

powerseries polynomial: lemma
polynomial(a, n)(x) = powerseries(a)(x)(n)

polynomial zero: lemma
polynomial((λ (n: nat): 0), N)(x) = 0

mul polynomial: lemma
finite support(a, N) ∧ finite support(b, M) ⇒
polynomial(a, N)(x)× polynomial(b, M)(x) =
polynomial(cauchy(a, b), N + M)(x)

pow polynomial: lemma
finite support(a, N) ⇒
polynomial(a, N)(x) ˆ∧ n =
polynomial(pow(a, n), n×N)(x)

comp polynomial: lemma
finite support(a, N) ∧ finite support(b, M) ⇒
polynomial(a, N)(polynomial(b, M)(x)) =
polynomial(comp(a, b, N), N ×M)(x);

geom polynomial: lemma
(1− x)× Σ(0, N, λ (i : nat) : x ˆ∧ i) =
1− x ˆ∧ (N + 1)

end polynomials ext

Figure 2. Abridged extensions to the theory on polynomial (see file polynomials ext.pvs)
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3. Taylor models

Taylor models (Makino and Berz, 2003) are pairs t = (P, I) where P are polynomial functions of
fixed degree N and I are intervals. N is a constant that cannot be changed during the evaluation
of expressions. In PVS, pairs are defined using components between (# and #). Components can
be addressed independently using quotes ‘, that are t‘P and t‘I.

Taylor model t is a correct representation of function f if it satisfies the containment predicate
stated Figure 3,

∀x ∈ J f(x)− t′P (x) ∈ t′I

where J is usually [−1, 1].
Our first task was to define operations on Taylor models. Addition, negation and multiplication

by a scalar are straight forward and can be read directly from Figure 3. Naive multiplication of
Taylor models creates polynomials of degree 2N . The high order terms of the polynomials must be
truncated and are accounted for in the interval part.

The inv reciprocal operator uses the following equality where r ∈ I, p(0) 6= 0 and p(x) has the
same sign as p(0).

1
p(x) + r

=
1

p(0)
· p(x)
p(x) + r

· 1

1−
(
1− p(x)

p(0)

) (1)

We define q(x) = 1 − p(x)
p(0) and we expand the last fraction of (??) using the geometrical series

∑N
i=0 qi truncated to keep only a polynomial of degree N .
Decorrelation forbids to evaluate the penultimate fraction of (??) directly and we defined a new

operator based on the lower bound and the upper bound of I/p(J) that returns directly

 1

1 + 1
lb′(I/p(J))

,
1

1 + 1
ub′(I/p(J))


 .

This operator cannot be replaced by a direct implementation of

1
1 + p(J)/I

or
1

1 + 1
I/p(J)

because I usually contains 0 preventing anyone to use it as a divisor.
We also implemented the exponential of Taylor models using the following equality where r ∈ I

and êx is a rational approximation of ex.

ep(x)+r = êp(0) · ep(x)−p(0) · ep(0)

êp(0)
· er

The polynomial part of the result is obtained by developing and truncating the exponential series
composed with p(x)−p(0). The interval part is set accordingly to account for all discarded quantities.

The five sharp lemmas of the second part of Figure 3, show that the containment predicate is
preserved by our operators. It means that we can deduce properties from evaluations of expressions
using Taylor models.
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taylor model[N: nat, (importing interval@interval) domInterval: Interval]: theory
begin

tm: type = [#P: fs type, I: Interval#]

tm equal: axiom
t = u ≡
polynomial(t‘P, N) = polynomial(u‘P, N) ∧ t‘I = u‘I;

t + u : tm: tm = (#P := t‘P + u‘P, I := t‘I + u‘I#);
−t: tm = (#P := −t‘P, I := −t‘I#);
c× t: tm = (#P := c× t‘P, I := [[c]]× t‘I#)
t× u: tm = (#P := trunc(cauchy(t‘P, u‘P ), N), I := ... #)
inv(t: {t: tm | same condition as below tm_inv_sharp }):

tm = (#P := ... , I := ... #)

containment(f: [domIntervalType → real], t: tm): bool =
∀ xu: (f(xu)− polynomial(t‘P , N)(xu)) ## t‘I

tm add sharp: lemma
containment(f, t) ∧ containment(g, u) ⇒ containment(f + g, t + u)

tm scal sharp: lemma
containment(f, t) ⇒ containment(x× f, x× t)

tm neg sharp: lemma
containment(f, t) ⇒ containment(−f, −t)

tm mult sharp: lemma
containment(f, t) ∧ containment(g, u) ⇒ containment(f × g, t× u)

tm inv sharp: lemma
∀ (f: [domIntervalType → nzreal],

t: {t: tm |
t‘P (0) 6= 0 ∧
(t‘I/intervalFromRealSeq(t‘P , N))‘lb 6= 0 ∧
(t‘I/intervalFromRealSeq(t‘P , N))‘ub 6= 0 ∧
(t‘I/intervalFromRealSeq(t‘P , N)) > −1}):

(∀ xu:
polynomial(t‘P, N)(xu) 6= 0 ∧
(f(xu)− polynomial(t‘P , N)(xu))/polynomial(t‘P , N)(xu)
6= 1
∧
polynomial(λ (i: nat):

if i = 0 then 0 else −t‘P (i)/t‘P (0) endif,
N)

(xu)
6= 1)

∧ Zeroless?([[t‘P (0)]]) ∧ Zeroless?( ... )
∧ Zeroless?(intervalFromRealSeq(t‘P, N)) ∧ containment(f, t)

⇒ containment(1/f, inv(t))

end taylor model

Figure 3. Abridged and reordered theory on Taylor models (see file taylor model.pvs)
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example: theory
begin

importing tm exp[5, 5, (#lb := −1, ub := 1#)]

ch(x: tm): tm =
(1/2)× (exp(x) + exp(−x))

sh(x: tm): tm =
(1/2)× (exp(x) +−exp(−x))

seq px: fs type =
λ (n: nat): if n = 1 then 1/1000 else 0 endif

tm x: tm = (#P := seq px, I := [[0]]#)

example1: tm = ch(2× tm x)× sh(3× tm x)

end example

Figure 4. A toy example of Taylor models (see file example.pvs)

In addition to prove mathematical theories, PVS provides a ground evaluator. It is an experi-
mental feature of PVS that enables the animation of functional specifications. To evaluate them,
the ground evaluator extracts Common Lisp code and then evaluates the code generated on PVS
underlying Common Lisp machine.

Uninterpreted PVS functions can be written in Common Lisp. PVS only trusts Lisp codes gen-
erated automatically from PVS functional specifications, then one can not introduce inconsistencies
in PVS. However, codes are not type-checked by PVS and can break inadvertently.

PVSio6 is a PVS package developed by Muñoz that extends the ground evaluator with a prede-
fined library including imperative programming language features. PVSio loads in emacs interface
using M-x load-prelude-library PVSio and then executes with M-x pvsio.

4. Toy example, concluding remarks and future work

Figure 4 show how easily we can define expressions. PVSio is used to evaluate Taylor model
expressions and Figure 5 shows the polynomial and interval parts of the Taylor model of degree 5
of

ch

(
2 · x

1000

)
· sh

(
3 · x

1000

)
= 3 · x

1000
+

21
2
·
(

x

1000

)3

+
521
40

·
(

x

1000

)5

+ r

6 http://research.nianet.org/ munoz/PVSio
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<PVSio> example1‘P(0);
==>
0
<PVSio> example1‘P(1);
==>
3/1000
<PVSio> example1‘P(2);
==>
0
<PVSio> example1‘P(3);
==>
21/2000000000
<PVSio> example1‘P(4);
==>
0
<PVSio> example1‘P(5);
==>
521/40000000000000000
<PVSio> example1‘I;
==>
(# lb := -1996666003792920908077809559596469417049924988435
67542489125827927772468257695416279793105352103584647/38763
49604747870233132233643700469577302245603256513727240130672
32422339563866364336668581220000000000000000000000000000,
ub := 1996666003792920908077809559596469417049924988435
67542489125827927772468257695416279793105352103584647/38763
49604747870233132233643700469577302245603256513727240130672
32422339563866364336668581220000000000000000000000000000 #)

Figure 5. Trace of our toy example of Taylor models

with
r ∈ 5150892483 · 10−28 · [−1, 1]

Coefficients are obtained from expressions example1‘P(0), P(1) down to P(5). The interval
part is example1‘I.

To conclude, we would like to say that they have three goals in presenting this report:

− Present an accurate report of the work involved including the training of a PhD
student to PVS. Though this development is significant, PVS validated projects can be
achieved in a reasonable time-frame provided appropriate tutoring is available.

− Provide a simple tutorial to our library on Taylor models. Readers should be able to
start validating their own results as soon as they have finished reading this paper.
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− Offer a first easy step to the usage of automatic proof checkers. It is always frustrating
to spend time on questions than can easily be solved by more or less elaborate techniques. As
we now provide a PVS library for interval arithmetic and for Taylor models, one should be
able to answer quickly to most of the easy questions about round-off, truncation and modeling
errors. Concentrating only on intricate questions is rewarding from the academia and ensures
financial support from the industry.

In the future, we will implement more operations on Taylor models like square root, sine, cosine,
and arctangent. We will also create PVS strategies to hide more and more details of Taylor models
to users. Our main goal remains to help provide invisible formal methods.
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Abstract: In this paper we study the reliability of calculations of the structural reliability. It 
compares the exact reliability expression within the Bernoulli-Euler column theory with its 
counterpart obtained via the finite difference expression in the buckling context.  
 
Keywords: Reliability, Probability of failure, Buckling 
 
 

1. Introduction 
 
The recent decade is characterized in intensive increase of application of probabilistic methods in 
engineering (Elishakoff et al, 2001; Arbocz at al, 1995, Chryssanthoupoulos,1998). The matter of 
the accuracy of the probabilistic design of structures, therefore, becomes of paramount 
importance. In probabilistic design the main quantity of interest is the structural reliability. Since 
its calculation involves the numerical calculation the natural question arises on the reliability of 
the reliability calculation. The paper by Elishakoff (1999) was apparently the first one to address 
this issue in the structural analysis context. Here we extend Ref. Elishakoff (2001)  for the 
buckling of structures. In particular, we deal with the reliability of finite difference method’s 
application to structural reliability evaluation. 

There are several studies that deal with the finite difference evaluation of the buckling 
phenomenon in deterministic setting. Namely, the papers by Falk (1956), Salvadori (1949), Wifi 
et al (1989) ought be mentioned. Seide (1975) was able, in his seminal paper, to evaluate the 
analytical expression for the buckling load, when the column is subdivided by N segments. The 
Seide’s formula is a central one in this investigation to study the reliability of the reliability 
evaluation.   

 
 
 
 

____________________________ 
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2. Recapitulation of Seide’s Solution 
 
The differential equation that governs the buckling of a column of  uniform stiffness subjected at 
the end by a compressive load P, reads: 

                                                  0
2

2

4

4

=+
dx

wdP
dx

wdEI                                                           (1) 

 
where EI is the bending stiffness of the column, x is the axial coordinate, w is the transversal 
displacement and P is the axial load. 

To solve complicated problems, the ordinary differential equations are usually replaced by a 
set of equivalent algebraic equations that are easier to solve than the differential one. One of such 
methods, known as finite-difference technique, is based on the fact that a derivative of a function 
at a point can be approximated by an algebraic expression consisting of the value of the function 
at that point and at several nearby points. Here, to study the reliability of reliability calculations, 
we investigate the case of an uniform column that possesses the exact solution, so a direct 
comparison is possible with the exact solution. We first recapitulate the solution derived by Seide 
(1995). 

  In particular, using first order central difference method, under the condition of uniform 
nodal points spacing and for any nodal point i the Eq(1) takes the following expression 
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where h is the length of each segment given by the ratio between the length of the bar L and the 
total number N of segments. 

To solve the difference equation (2) with constant coefficients we can express the solution in 
the following form:  

 
                                                                                                                                  (3) i

iw λA=
 
The introduction of the expression (3) into Eq. (2) leads to the resulting equation in λ: 
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Eq.4 has the following solutions: 
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The consideration that 
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allows to rewrite the solutions λ3,4 in Eq.(5) in a different way: 
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Thus the general solution for wi takes the form: 
 

                                                ϑϑ iAiAiAAwi sincos 4321 +++=                                       (8) 
 
in which A1, A2, A3   and A4 are arbitrary constants of integration and 
 

                                                        ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

EI
Ph
2

1cos
2
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Determination of the four constants of integration is obtained using the four boundary 

conditions, two at each end of the column. For a simply supported  column  at both edges we 
have: 

 
                                              w0= =0 ;     wNw -1= -w1 ;     = 1+Nw 1−− Nw                              

(10) 
                                

For a clamped columns at both ends the boundary conditions become: 
 

                                                 w0= =0 ;     wNw -1= w1 ;      =                                 (11) 1+Nw 1−Nw
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Let us concentrate on the case of a simply supported column. Introduction of the expression 
of displacement given by Eq.(8) into the boundary conditions (10) yields: 

 

                                               

0sincoscoscos

0sincos

0cos

0
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Since the system of equations (12) is homogeneous, the determinant of the coefficients of A1, A2, 
A3  and A4 must vanish. The condition to satisfy is the following: 
 

                                                        0sin
2

sin4
4

=⎟
⎠
⎞
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Eq.(13) implies: 
 

                                                                 0sin =ϑN                                                             (14) 
 
which has the solutions 

                                                               
                                                       πϑ kN =        k=1,2,3,…                                                (15) 

 
From Eq.(9) we can evaluate the expression for ϑcos  as follows: 
 

                                                       
EI

Ph
N
kπ

2
1coscos

2

−==ϑ                                                 (16) 

 
Using of  trigonometric relations  we obtain 
 

                                                            
N

kπ
EI

Ph
2

sin4 2
2

=                                                       (17) 

 
in which k should be set equal to unity for the smallest critical load. Keeping in mind that h is the 
length of each of the N segments and it is the ratio between the length L of the column and the 
total numbers of segments N, the critical load for a simply supported column at both ends is 
expressed as follows: 
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When N tends to infinity we obtain the well-known solution for critical load of a simply 

supported column. The expression (18) belongs to Seide (1975). 
 
 

3. Probabilistic Analysis of  Seide’s Result 
 
Next step is to consider the case in which the  elastic modulus of the column can be treated as a 
continuous random variable with probability distribution function with , assuming 
that the other parameters are deterministic quantities. 

)(eFE 0>e

The conventional requirement to avoid buckling phenomenon is that the critical load must be 
greater or equal than a fixed allowable value P0 

 

                                                                                                                                  (19) 0PPcr ≥
 
From the expression of Pcr given in Eq.(18) we see that if the modulus of elasticity E is a random 
variable, the  left hand side Pcr of Eq (19) also becomes a random variable. We are interested in 
the interval of possible values of E for which the Eq (19) is satisfied. From its definition the 
reliability R is the probability of the event specified in Eq (19): 
 

                                                         ( )0PPProbR cr ≥=                                                       (20) 
 
Introducing the expression of  Pcr given in (18), the Eq.(20) can be rewritten as follows: 
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or 
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Thus 
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Given the probability density function of the random variable E, Eq.(23) becomes:    
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where the reliability of the column equals one minus the probability distribution function  of 

the modulus of elasticity at the level 
EF

( ) ( ) ( )[ ]22
0

2 2sin2 NNIPL πππ . 
 
 

4. Probabilistic Design of the Column 
 

Once we know the expression of R we can pose the design problem of the column, under the 
consideration that the structure performs acceptably if the reliability exceeds or equals a codified 
reliability value r0  :  

 
                                                                                         ,         0rR ≥ 10 0 ≤< r                                                                                     (25) 

 
The same problem can be dealt with introduction of unreliability of the structure, defined as 

the probability of failure as follows 
 
                                                           01 pRPf ≤−=                                                            (26) 

 
where p0 is the level of unreliability which can be tolerated .When designing a structure the 
purpose is to keep the reliability as much as possible close at unity. If  the random variable E is 
characterized through its probability density function, we can express some specific design 
parameter, in particular the length of the bar L, as depending on number of elements N and on the 
value of r0. 

Since in buckling circumstances we know the exact expression for the critical load it is 
possible to also evaluate the exact reliability.  

We can, therefore, evaluate general expression for the “actual” reliability, according to 
parameters N and r0, that can be obtained substituting the parameter L deduced from approximate 
analysis in Eq.(24) into the expression of the exact value of critical load for a simply supported 
column.  
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Accuracy of FDM, in the stochastic setting, can be evaluate from the actual reliability values 
compared with the required r0. 

 
 

5. Example of the Exponentially Distributed Elasticity Modulus 
 
To give a numerical example let us consider the case of a fixed distribution for the random 
modulus of elasticity, in particular an exponential distribution expressed by:  
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Mathematical expectation and variance are respectively, aE /1][M = and Var[E]=1/a2. 

Keeping in mind Eq.(24) the approximate reliability takes the following form 
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By demanding that  Rappox equals its codified value r0 , we obtain for the designed quantity, 

namely the length L of the column the following expression : 
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The exact expression for critical load of a simply supported end is given by 22 LEIPcr π= . 

We define the exact reliability as the following expression: 
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Substitution of approximate value for the length (Eq.27) in the expression of exact reliability 

allows to evaluate the actual reliability as follows: 
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or 
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Evaluating Ractual for increasing number of N we obtain values that are always greater than r0 

or equal r0. 

In the Figures 1 the percentage errors between  Ractual  and r0 for increasing value of N and for 
r0 equal, respectively, to 0.90, 0.99, 0.999 and 0.9999 are depicted.  
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Fig. 1:Percentagewise difference between the codified and actual reliabilities 
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When the value of r0 is fixed in 0.90 (Fig.1a) the percentage error goes from 0.343.% for N=5 
(Ractual=0.903084) to 0.0864% for N=10 (Ractual=0.900778)  to 0.0385% for 
N=15(Ractual=0.900346).   
Keeping in mind the relation between reliability and probability of failure we can evaluate 
analogously the actual probability of failure for fixed values of  the tolerated one. 

 Fixing p0 equal respectively to 0.1, 0.01, 0.001 and 0.0001, the Fig.2 shows the percentage 
error between  Pf,actual  and p0 for increasing value of N. 
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Fig.2: Error in probability of failure: Modulus of elasticity random variable with Exponential Distribution 
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Fixing the number of elements at N=5, we get Pf,actual=0.0969159 for p0=0.1 (ε=3.08411%), 
Pf,actual=0.00967689 for p0=0.01 (ε=3.23112%), Pf,actual=0.000967547 for p0=0.001 (ε=3.245%) 
and Pf,actual=0.0000967533 for p0=0.0001 (ε=3.24672%). 
 

6. Conclusion 

In this paper the reliability of the reliability calculations was studied in the buckling context. The 
question that was posed here is as follows: Is actual probability of failure greater than, equal to, or 
less than the tolerable probability of failure that is pertinent to the ideal, error-free situation? 

In the example that is presented in this investigation the actual probability of failure turns out 
to be smaller than the tolerable level. This appears to be a good news for the reliability of the 
reliability calculation of the finite difference method. Whereas this conclusion cannot be extended 
to the other cases of the use of finite difference method, still it represents an interesting finding 
that was not anticipated a priori by the present investigators. 
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A Computational Environment for Interval Matrices in C++

Michael Nooner and Chenyi Hu∗

Computer Science Department, University of Central Arkansas

Abstract. It is often required to manipulate interval matrices in reliable scientific computing. A
portable computational environment for basic interval linear algebra subroutines (interval BLAS)
is needed. We report such a environment recently developed based on the interval BLAS standard
included in (Blackford and et al, 2001) and (Dongarra, J. et al, 2002).

The computational environment is object-oriented in ISO/ANSI standard C++. It consists of
arithmetic, fundamental and utility functions, and set operations among intervals, interval vectors,
and interval matrices. These operations are implemented as member functions of three classes:
Interval, IntervalVector, and IntervalMatrix. This package is portable and robust with built-in
error handling features. Instructions on package installation, testing, and usages are included. A
sample application program is attached as an appendix.

Keywords: Interval arithmetic, Interval BLAS, C++

1. Introduction

Ever since Ray Moore introduced interval arithmetic (Moore, 1979) in 1970’s, it has achieved nu-
merous successful applications in scientific computing (Hansen, 1992; Coliss and Kearfott, 1999; de
Korvin and Hu, 2004) and many of others. Similar to traditional floating point arithmetic, interval
linear algebra is fundamental to most calculations and often the computationally intense part
in applications of interval computing. Designers of computer programs involving linear algebraic
operations have frequently chosen to implement certain low level operations, such as the dot
product or the matrix vector product, as separate subprograms. This may be observed both in
many published codes and in codes written for specific applications at many computer installations
(K̊agström, 1998; Duff and Vömel, 2002; Duff and Heroux, 2002; Li and et al., 2002; Sun Studio,
2005). With the same motivation we develop the computing environment for interval matrices.

2. The Interval BLAS Standard

In the Basic Linear Algebra Subprograms Technical (BLAST) Forum (Blackford and et al, 2001), we
proposed an interval BLAS standard. Based on the standard, Sun Microsystems made its Fortran
95 implementation in its Sun Studio (Sun Studio, 2005; Walster, 2002). This software package is
mostly based on the interval BLAS standard but implemented in C++. We need to briefly review
some basic definitions of the standard here.
∗ Partially supported by NSF/CISE/CCR grant 0202042

c© 2006 by authors. Printed in USA.

REC 2006 - Michael Nooner and Chenyi Hu



66 Michael Nooner and Chenyi Hu

A nonempty mathematical interval [a, b] is the set {x ∈ <|a ≤ x ≤ b} where a ≤ b. A machine
interval [a∗, b∗] is a mathematical interval whose endpoints are machine representable numbers. We
say that [a∗, b∗] is a machine representation of [a, b] if [a∗, b∗] contains [a, b] i.e. a∗ ≤ a and b ≤ b∗.
We say that the machine interval [a∗, b∗] is a tight representation of a mathematical interval [a, b] if
and only if a∗ is the greatest machine representable number which is less than or equal to a, and b∗
is the least machine representable number which is greater than or equal to b. The empty interval
∅, which does not contain any real number, is required in interval BLAS. In our implementation,
we use [1, -1] to represent the empty interval.

Interval vectors and interval matrices are vectors and matrices whose entries are intervals. Both
scalar (floating point number) and interval arguments are used for the specifications of routines
in this paper. We use boldface letters to specify interval arguments. We also use overline and
underline to specify the greatest lower bound and the least upper bound of an interval variable,
respectively. For example, if x is an interval vector, then x = [x, x].

Interval arithmetic on mathematical intervals is defined as follows.

Let a and b be two mathematical intervals. Let op be one of the arithmetic operations +,−,×,÷.
Then a op b ≡ {a op b : a ∈ a, b ∈ b}, provided that 0 6∈ b if op represents ÷.

Table I gives explicit definitions of these four basic interval arithmetic operations and other
operations on mathematical intervals used in this package. All operations inside a computer are
performed on machine intervals. Arithmetic on machine intervals must satisfy the following prop-
erty:

Containment Condition: Let a = [a, a] and b = [b, b] be intervals. Let c = [c, c] be the interval
result of computing a op b where op is defined in Table I. If c is nonempty, then c must contain
the exact mathematical interval a op b.

In other words, interval arithmetic on nonempty machine intervals requires that we round down
the lower bound and round up the upper bound to guarantee that the machine interval result
contains the true mathematical interval result. This is needed to propagate guaranteed error bounds.
To ensure our implementation satisfies the containment condition, we make use of the constants
DBL EPSILON and DBL MIN provided in < cfloat > within the ISO/ANSI standard C++. As
the default, our package uses double precision. Our testing shows that the rounding process we
used effects the sixteenth to eighteenth significant digits on machines with 64 bits representation
for the type double.

3. Functionality

This section reports the functionality (mathematical operations) and operators involving interval
vectors and interval matrices. We group the functionalities into two tables. Table II lists the func-
tionalities involving interval vectors. It includes basic algebraic operations, set operations, interval
matrix-vector operations, and utility operations (including data movement) for interval vectors.
Table III lists functionalities for interval matrix operations that include O(n2) and O(n3) algebraic
operations, set operations, and utility operations (including data movement) for interval matrices.
The LATEXputs the tables at the end of this paper.

REC 2006 - Michael Nooner and Chenyi Hu



A Computational Environment for Interval Matrices in C++ 67

Table I. Elementary interval operations

Operation a 6= ∅ and b 6= ∅ Operator

Addition a + b [a + b, a + b] +

Subtraction a− b [a− b, a− b] -

Multiplication a ∗ b [min{ab, ab, ab, ab}, max{ab, ab, ab, ab}] *

Division
a

b
, (0 6∈ b) [min{a/b, a/b, a/b, a/b}, max{a/b, a/b, a/b, a/b}] /

Intersection a ∩ b [max{a, b}, min{a, b}] if max{a, b} ≤ min{a, b}; &

Otherwise, ∅
Union a ∪ b [min{a, b}, max{a, b}] if a and b are not disjoint; |
Cancellation aª b [a− b, a− b] if (a− b) ≤ (a− b); Otherwise, ∅ cancel()

Convex hull a,b [min{a, b}, max{a, b}] hull()

Square root
√

a isqrt()

Exponential ea iexp()

Logarithm log10a ilog()

Power ab ipow()

Absolute value |a| max{|a|, |a|} iabs()

Trig functions isin() icos() itan()

iasin() iacos() iatan()

Disjoint test True if a ∩ b = ∅; False, otherwise disjoint()

Enclosure test True if a ≤ b and b ≤ a; False, otherwise encloses()

Interior test True if a < b and b < a; False, otherwise interior()

Midpoint a (a + a)/2 midpoint()

Width a a− a width()

Assignment a ← b =

Insertion operator for output <<

Extraction operator for input >>

Equality test True if a ≡ b and b ≡ a; False, otherwise ==

4. Package Contents

This package contains three main classes (Interval, IntervalVector, and IntervalMatrix), and aux-
iliary classes such as (IntervalVectorT, IntervalMatrixT, and INTERVAL EXCEPTION) for error
handling and performance enhancement.

4.1. The Interval Class

This class implements intervals and the fundamental operations among them. It is required by
operations among the interval vectors and matrices. The private data members of the Interval class
consists of the lower and upper bounds of a real interval with two double precision variables and a
string for error handling. There are three built in constructors for the Interval class. They initiate
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an interval object with zero to two double precision floating-point parameters (the interval [0, 0]
for zero parameter as default; directed rounding for single and double parameters).

The lower and upper bounds are accessed through the [ ] operator with index 1 or 2 respectively.
For example, x[1] and x[2] return the lower and upper bounds of an Interval object x. Arithmetic
operations of Interval objects are overloaded as arithmetic operators (+,−, ∗, /). Interval funda-
mental functions (Hu and Kearfott, 1993; Kearfott et al, 1994) are defined as friend functions (isqrt,
iexp, isin, icos, iatan, etc). The insertion and extraction operators in C++ are also overloaded for
the class. Table I lists the operators of this class.

4.2. The IntervalVector and IntervalMatrix classes

An instance of IntervalVector, as per the name, is a vector whose elements are Interval objects.
The IntervalVector class contains two private data members: an pointer of Interval type and an
integer that indicates the dimension of an instance. The vector’s dimension is set when the vector
is created and it is not resizable.

An IntervalMatrix object, as per the name, is a matrix whose elements are Interval objects. As
with the IntervalVector and Interval classes, the standard arithmetic operators are overloaded. The
dimensions of an interval matrix are set when it is created with the IntervalMatrix constructors
and is not resizable.

4.3. Error Handling and Auxiliary Classes

Error handling is done through exceptions. When an error occurs an INTERVAL EXCEPTION is
thrown. This INTERVAL EXCEPTION type is a structure with two fields. The first is a numeric
code that corresponds to the generated error type that allows for ease of programmatic error
handling. The other field is a string message that corresponds to that error. The last error can
be retrieved by calling the static getLastError() method of the Interval class. Similarly, the global
error can be set using Interval’s static method setError().

The setError() method takes two arguments. The first is the numeric code of the error that is to
be set. There are twenty-six predefined error codes. Each of them has a default error message. If you
send setError() an unknown code with no message, the global error’s message is set to “Unknown
Error!” A complete listing of all defined error codes and their associated messages can be found
in the library’s documentation for INTERVAL EXCEPTION. The second argument is an optional
string to use as a message. This will override the default message.

There are also two additional auxiliary template classes IntervalVectorT and IntervalMatrixT
in the package for type checking and declaration. The template classes check dimensions strongly
before assignment. For software robustness, the assignment operators for IntervalMatrix and In-
tervalVector classes do not check whether the source dimension matches the destination dimension
or not. Instead, the vector or matrix is simply resized. The template versions enable checking.
They require that the source and destination objects be of the same dimensions before allowing
assignment.

We have also made efforts to effectively manage the memory especially for intermediary results
in our implementation. Although this is opaque to general users, readers who are interested may
refer the source code for the details.
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5. Installation and Usage

5.1. Installation

The computational environment is available at www.geocities.com/mike nooner as a single zip file
containing the documentation, source code, test, a sample application program, a README and
a LICENSE file. After unzipping the downloaded package, one may install it by following the
installation instructions in the package. The package is ready to install directly on machines with
GCC or Microsoft Visual Studio .NET 2003. It can be installed on other platforms with C++
compilers in compliance with ISO/ANSI standard. However, some minor modifications may be
needed.

Included in the package, there are four sets of tests. The first three test whether the Interval,
IntervalVector, and IntervalMatrix classes function properly. With the -r option, the containment
condition is tested for matrix-matrix multiplication, matrix-vector multiplication, matrix scaled
accumulation, and vector scaled accumulation with randomly generated numbers. It is recom-
mended to run the standard test cases for the library using the packaged tester application. It is
recommended to pass the test output results in a file. Otherwise, the test outputs will be written
to the screen.

5.2. Using the Package

To use the library in your applications, there are four required steps.

1. Include the file IntBLAS.h

2. All the classes, functions, and global variables are in the intblas namespace. So, make the
appropriate using declaration(s).

3. You need to call the function INIT INTERVAL() before making use of any of the classes,
functions, or global variables. This function should ideally be called even before any declarations.

4. Finally, you will need to link to the intblas.lib static library.

A simple sample program, that performs level 0-3 interval basic linear algebra operations, is
attached as the Appendix with I/O data.

6. Conclusions and future work

The computational environment for interval matrices reported in this paper has various commonly
used functionalities in interval software development. It can be conveniently embedded into a
standard C++ environment. We plan to further test the package and enhance it with more features.
Using this package as a kernel, we are working on building applications for decision making systems
based on fuzzy logic, interval valued databases, and interval matrices (Collins and Hu, 2005; de

REC 2006 - Michael Nooner and Chenyi Hu



70 Michael Nooner and Chenyi Hu

Korvin et al, 2000; de Korvin and Hu, 2004; de Korvin et al, 2002). Suggestions, comments, and
error reports are very appreciated for further improvements of the package.
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Duff, I. S., Vömel, C. Algorithm 818: A reference model implementation of the sparse BLAS in fortran 95. ACM

Transactions on Mathematical Software, 28(2), 2002.
Duff, I. S., Heroux, M. A., Pozo, R. An overview of the sparse basic linear algebra subprograms: The new standard

from the BLAS technical forum. ACM Transactions on Mathematical Software, 28(2), 2002.
Hansen, E. Global optimization using interval analysis. Marcel Dekker, New York, 1992.
Hu, C., Kearfott B., and Awad, A. On Bounding the Range of Some Elementary Functions in FORTRAN-77. Interval

Computations, No.(3), 29-40, 1993.
Hu, C., Xu, S., and Yang, X. An Introduction to Interval Computation. Theory and Practice in System Science,

23(4), 59-62, 2003.
K̊agström, B., van Loan, C. .

Algorithm 784: GEMM-based level 3 BLAS: portability and optimization. ACM Transactions on Mathematical
Software, 24(3), 1998.

K̊agström, B., Ling, P., van Loan, C. GEMM-based level 3 BLAS: high-performance model implementations and
performance evaluation benchmark. ACM Transactions on Mathematical Software, 24(3), 1998.

Kearfott, B., Dawande,M., Du, K., and Hu, C. Algorithm 737: INTLIB: a Portable Fortran-77 Interval Standard
Function Library. ACM, Trans. on Math. Software, 20, 447-459, 1994.

Li, X., Demmel, J., and et al. Design, implementation and testing of extended and mixed precision BLAS. ACM
Transactions on Mathematical Software, 28(2), 2002.

Moore, R. E. Methods and Applications of Interval Analysis. Society for Industrial and Applied Mathematics, 1979.
Sun Studio, Sun Microsystems, Sun Performance Library User’s Guide. http://docs.sun.com/source/819-0498/, 2005.
Walster, W. Interval Version of the Basic Linear Algebra Subprogram Standard (BLAS).

http://www.sun.com/software/sundev/whitepapers/blas.pdf, 2002.

REC 2006 - Michael Nooner and Chenyi Hu



A Computational Environment for Interval Matrices in C++ 71

Appendix: A simple application with I/O

#include <iostream>
#include <iomanip>
#include <IntBLAS.h> //Include IntBLAS

using namespace std;
using namespace intblas; //The IntBLAS namspace

int main()
{
INIT_INTERVAL(); //Must initialize the library
Interval a( 10, 11), b ( 5.5 ), int_r;

//The output operators use the streams format
cout << setprecision( 25 ) << setiosflags( ios::scientific );

int_r = a * b;
cout << "\nLevel 0 example:[10,11]*[5.5, 5.5] =\n" << int_r << endl;

IntervalVector m( 3 ), n( 3 ), vec_r;
m[0] = 1.1; m[1] = 2.3; m[2] = 4;
n[0] = a; n[1] = b; n[2] = a+b;

//vec_r = 2*m + 3*n
vec_r = scaledAccumulation( m, n, 2, 3 );

cout << "\nLevel 1 example: 2*{1,2,4} + 3*{5,6,7} =\n" << vec_r << endl;

IntervalMatrix x( 3, 3 );
x[0][0] = 1, x[0][1] = 2, x[0][2] = b;
x[1][0] = a, x[1][1] = 4, x[1][2] = 6;
x[2][0] = 3, x[2][1] = 6, x[2][2] = Interval( 9.5 );

vec_r = x * m;
cout << "\nLevel 2 example: x * {1, 2, 4} =\n" << mat_r << endl;

IntervalMatrix y( 3, 3 ), mat_r;
y[0][0] = b, y[0][1] = 2, y[0][2] = 3;
y[1][0] = 2, y[1][1] = a, y[1][2] = 6;
y[2][0] = b, y[2][1] = 6, y[2][2] = int_r;

mat_r = x * y;

REC 2006 - Michael Nooner and Chenyi Hu



72 Michael Nooner and Chenyi Hu

cout << "\nLevel 3 example: x * y =\n" << mat_r << endl;

return 0;
}

The output of the above sample program:

Level 0 example:[10,11]*[5.5, 5.5] =
[5.4999999999999978683717927e+01, 6.0500000000000021316282073e+01]

Level 1 example: 2*{1,2,4} + 3*{5,6,7} =
{ [3.2199999999999981525888870e+01, 3.5200000000000017053025658e+01]
[2.1099999999999987210230756e+01, 2.1100000000000012079226508e+01]
[5.4499999999999957367435854e+01, 5.7500000000000042632564146e+01] }

Level 2 example: x * {1, 2, 4} =
{ [2.7699999999999977973175191e+01, 2.7700000000000020605739337e+01]
[4.4199999999999967315034155e+01, 4.5300000000000046895820560e+01]
[5.5099999999999951683093968e+01, 5.5100000000000051159076975e+01] }

Level 3 example: x * y =
| [3.9749999999999964472863212e+01, 3.9750000000000035527136788e+01]
[5.4999999999999957367435854e+01, 5.7000000000000049737991503e+01]
[3.1749999999999971578290570e+02, 3.4775000000000028421709430e+02] |
| [9.5999999999999928945726424e+01, 1.0150000000000008526512829e+02]
[9.5999999999999928945726424e+01, 1.0200000000000009947598301e+02]
[3.8399999999999960209606797e+02, 4.2000000000000045474735089e+02] |
| [8.0749999999999928945726424e+01, 8.0750000000000071054273576e+01]
[1.2299999999999988631316228e+02, 1.2900000000000011368683772e+02]
[5.6749999999999943156581139e+02, 6.1975000000000056843418861e+02] |
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Table II. Functionality Involving Interval Vectors:

Algebraic Operation Mathematical Definition Operator

Dot product r ← βr + αxT y scaledDot()

Vector norms r ← ||x||1, r ← ||x||2
r ← ||x||∞ norm()

Sum r ← ∑
i
xi vectorSum()

Max magnitude & location k,xk; k = arg maxi{|xi|, |xi|} max()

Min absolute value & location k,xk; k = arg mini{|xi|, |xi|} min()

Sum of squares (a,b) ← ∑
i
x2

i , a · b2 =
∑

i
x2

i sumOfSquares()

Reciprocal scale x ← x/α reciprocalScale()

Scaled interval vector accumulation y ← αx + βy scaledAccumulation()

Scaled interval vector accumulation w ← αx + βy scaledAccumulation()

Scaled interval vector cancellation y ← αxª βy scaledCancelation()

Scaled interval vector cancellation w ← αxª βy scaledCancelation()

Set Operation

Enclosed x is enclosed in y if x ⊆ y encloses()

Interior x is enclosed in the interior of y interior()

Disjoint x and y are disjoint if x ∩ y = ∅ disjoint()

Intersection y ← x ∩ y, z ← x ∩ y operator &

Hull the convex hull of x and y intervalHull()

Matrix-vector Operation

Matrix vector product y ← αAx + βy scaledVectorMult()

y ← αAT x + βy

Triangular solve x ← Tx,x ← TT x triangularMult()

x ← αT−1x,x ← αT−T x

Rank one updates A ← αxyT + βA rankeOneUpdate()

Utility Operation

Vector copy x ← y =

Insertion operator for output <<

Extraction operator for input >>

Swap y ↔ x swap()

Permute vector x ← Px permute()

Empty element k if xk = ∅; or −1 containsEmpty()

Left endpoint v ← x lowerBounds()

Right endpoint v ← x upperBounds()

Midpoint v ← (x + x)/2 midpoint()

Width v ← x− x width()

Construct x ← u, v constructor
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Table III. Functionality for Interval Matrices

Algebraic Operation Mathematical Definition Operator

Matrix norms r ← ||A||1, r ← ||A||F , norm()

r ← ||A||∞, r ← ||A||max

Diagonal scaling A ← DA,A ← AD diagonalScale()

Two sided diagonal scaling A ← D1AD2 diagonalScale2()

Two sided diagonal scaling A ← DAD diagonalScale2()

A ← A + BD

Matrix acc and scale B ← αA + βB, scaledAccumulation()

B ← αAT + βB accTranspose()

Matrix add and scale C ← αA + βB scaledAccumulation()

Matrix matrix product C ← αAB + βC, C ← αAT B + βC, operator *

C ← αABT + βC, C ← αAT BT + βC

C ← αBA + βC, C ← αBT A + βC, operator *

C ← αBAT + βC, C ← αBT AT + βC

Set Operation

Enclosed A is enclosed in B if A ⊆ B encloses()

Interior A is enclosed in the interior of B interior()

Disjoint A and B are disjoint if A ∩B = ∅ disjoint()

Intersection B ← A ∩B, C ← A ∩B operator &

Hull the hull of A and B intervalHull()

Utility Operations

Matrix copy B ← A operator =

B ← AT operator =

Matrix transpose A ← AT transpose()

Permute matrix A ← PA,A ← AP permute()

Empty element if A has an empty interval element containsEmpty()

Insertion operator for output <<

Extraction operator for input >>

Left endpoint C ← A lowerBounds()

Right endpoint C ← A upperBounds()

Midpoint C ← (A + A)/2 midpoint()

Width C ← A−A width()

Construct A ← B, C constructor
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Abstract. The monitoring of buildings, slide slopes and crustal movements is a central task of
geodetic engineering. The aim is the generation of meaningful motion and deformation models
in order to quickly and specifically initiate constructional or geotechnical safety measures. The
adequateness of the actions depends essentially on the quality of the observation and analysis
techniques. Therefore it is important to correctly derive the model parameters and their uncertainty
budget considering that the model parameters are typically estimated from a large number of hetero-
geneous and redundant observations by means of a least-squares adjustment. Here, the uncertainty
budget is assumed to comprise both random variability and remaining systematics (imprecision).
In practice, there are outliers in the data which have to be detected and eliminated. In conventional
techniques only random effects are taken into account. When imprecision is considered additionally,
the test strategies have to be extended accordingly. In this study imprecise extensions are obtained
for the estimated outliers which are tested statistically using one- and multidimensional hypotheses.
The applied procedure is outlined in detail showing both theory and numerical examples.

Keywords: outlier detection, imprecision, geodetic applications, adjustment, hypothesis testing

1. Introduction

In many engineering applications parameters are estimated from a large number of heterogeneous
and redundant observations by means of a least-squares adjustment. The quality of the estimated
parameters depends essentially on the adequate consideration of all uncertainties in the measure-
ment and analysis process and on the reliability of the observations. In this paper, the uncertainty
budget is assumed to comprise both random variability (stochastics) and remaining systematic
effects (imprecision).

The outliers in the data occurring in practice have to be detected and then removed. Therefore
the accordance of the collected data with the assumptions met in the model must be checked. This
requires one- and multidimensional hypotheses tests with imprecise extensions for outlier detection
and global tests based on estimated parameters and residuals (see Sections 4 and 5). In this study,
the classical test approaches are extended in order to take observation imprecision into account.
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The calculation of observation imprecision is based on correction and reduction models applied to
the raw observation data. It leads to intervals or fuzzy numbers for their description (see Section 2).
The influence of the observation imprecision on the estimated parameters is propagated in a least-
squares adjustment (see Section 3). The procedure and the criteria for the test decisions are shown
in the context of fuzzy theory. They can be directly applied to pure interval mathematics. The
presented approach is transferable to many other engineering applications.

Interval mathematic is an appropriate solution to describe observation imprecision by a real
interval [a] consisting of an upper bound au and a lower bound al or by a centre point am and
radius ar. The possibility of variation inside the interval demonstrates the absent knowledge about
the correct value, cf. (Schön and Kutterer, 2005b). Intervals can also be defined by a suitable
indicator function:

i[a](x) =
{

1, al ≤ x ≤ au

0, else. (1)

Fuzzy-theory was founded by (Zadeh, 1995). It is an extension of the classical set theory. In the
classical set theory the membership degree is either 1 (is element) or 0 (is not element). A fuzzy
set Ã is uniquely defined by its membership functions mÃ(x) over a classical set X (e. g. X = IR)
with a membership degree between 0 and 1:

Ã :=
{
(x,mÃ(x)) | x ∈ X

}
with mÃ : X → [0, 1]. (2)

Three basic notions are relevant in the following (see Fig. 1):

the α-cut Ãα :=
{
x ∈ X | mÃ(x) ≥ α

}
with α ∈ [0, 1], (3a)

the support supp(Ã) :=
{
x ∈ X | mÃ(x) > 0

}
, (3b)

the core core(Ã) := Ã1. (3c)

It is obvious that α-cuts are classical sets. In case of convex fuzzy sets (monotonously decreas-
ing reference functions), α-cuts are intervals. The integral over all α-cuts equals the membership
function of a fuzzy set:

mÃ(x) =
∫ 1

0
mÃα

(x)dα. (4)

In geodetic data analysis, fuzzy numbers and fuzzy intervals are meaningful as they are convex
fuzzy sets based on real numbers. Their core is either a single element (fuzzy number) which
may refer to a particular observed or derived value or a classical interval which refers to a set of
values (fuzzy intervals). In engineering applications LR- and LL-fuzzy numbers and intervals are
of particular interest. LR-fuzzy numbers and intervals are defined by their left and right reference
functions (see Eq. 5 for a LR-fuzzy interval). LR-fuzzy numbers or intervals with the same left and
right reference functions are called LL-fuzzy numbers or intervals.

mÃ(x) =





L
(

xm−x−r
cl

)
, x < xm − r

1, xm − r ≤ x ≤ xm + r

R
(

x−xm−r
cr

)
, x > xm + r

(5)
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Figure 1. Fuzzy set (LR-fuzzy interval)

with xm denoting the midpoint of the fuzzy interval, r its radius (see Fig. 1) and cl, cr the spread
parameters of the reference functions. L-fuzzy numbers are obtained for L = R and cl = cr.
For further information on interval mathematics see (Alefeld and Herzberger, 1983; Jaulin et. al.,
2001; Moore, 1979) and on fuzzy-theory, cf. (Bandemer and Näther, 1992; Dubois and Prade,
1980; Viertl, 1996) and (Zadeh, 1995). Studies of fuzzy data analysis in the geodetic context are
presented by, e. g., (Kutterer, 2002) and (Schön and Kutterer, 2005b).

2. Observation intervals by means of a sensitivity analysis

Recently, many procedures have been introduced to calculate observation intervals in engineering
applications, cf. e. g., (Braems et. al., 2000; Kieffer et. al., 2000; Morales and Son, 1998) and
(Muhanna and Mullen, 2001). In geodetic data analysis, observations have to be preprocessed
before they can be used for further calculation, e. g., in a least-squares adjustment. For this reason
the definition of the observation intervals in geodesy is based on the correction and reduction steps
for the raw observations which are based on observation error models. The applied procedure is
described in detail in (Schön, 2003). The basic aspects are briefly summarized in the following.

Due to the imperfect knowledge of the influence factors of the preprocessing steps, the reduced
observations are afflicted with two types of uncertainties: their stochastic behavior in terms of
random variability and several non reducible remaining systematics (observation imprecision). The
possible impact of remaining systematic effects is quantified by means of a sensitivity analysis of
observation error models. The factual range is assessed based on expert knowledge and empirical
studies. This procedure is in full accordance with international recommendations, cf. (ISO, 1995)
(GUM). Note that the treatment of systematic errors is different as the GUM proposes variance
propagation. An example for distance measurements was shown in (Schön, 2003). The computation
in case of GPS measurements was presented in (Schön and Kutterer, 2005b). In this study, four
types of observations are of particular interest: distance measurements ldist, direction measurements
ldir, zenith angle measurements lz and GPS measurements lGPS .
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3. Interval calculations for the parameters with a least-squares adjustment

The aim of geodetic applications is the estimation of parameters of interest from the observations,
e. g., point coordinates (see Sect. 6 and (Koch, 1999)), deformation fields or strain tensors. Like
in many other engineering application, the standard algorithm is a least-squares adjustment using
a large number of heterogeneous and redundant observations. The typically non-linear observation
equations are linearized in order to use linear model theory. The estimated parameters x̂ are
obtained as

dx̂ = (ATPA)+ATP(l− a0), (6a)
x̂ = x0 + dx̂, (6b)

with the n × u configuration matrix A, the number of unknown parameters u, the number of
observations n, the n × n weight matrix P (i. e. the inverse of the variance covariance matrix
(VCM) of the observations Cll), the n × 1 vector of observations l and the vector of approximate
values a0. In geodetic networks the normal equation matrix ATPA can be rank-deficient due to
an incomplete definition of the coordinate frame through the configuration. If for example such a
network is composed of distance observations only it is not possible to estimate coordinates which
are required in practice. The value of rank deficiency is denoted with d. This problem can be
overcome when the pseudoinverse matrix (ATPA)+ is used. A standard reference on parameter
estimation (and hypotheses tests) is (Koch, 1999).

In case of observation imprecision, we assume the vector of observations as a symmetric inter-
val [l], with its midpoints lm and interval radii lr, calculated by means of a sensitivity analysis
(see Sect. 2). The midpoint of the interval vector [l] is carrier of the randomness, the remaining
systematics of the analysis process are described by the vector of interval radii.

The observation imprecision is propagated to the coordinates by interval extension of the least-
squares estimator, cf. (Schön and Kutterer, 2005a),

[dx̂] = (ATPA)+ATP([l]− a0), (7a)
[x̂] = x0 + [dx̂], (7b)

with the assumed precise vector of approximate values and point matrices for A and P. The vector
a0 can also be chosen as an interval vector in order to take model uncertainties into account. Thus,
both observation imprecision and model uncertainties can be treated with interval mathematical
methods. Let y = l− a0 the vector of reduced observations (”observed minus computed”), then

[y] = [l]− a0 (8)

and

ym = lm − a0, (9a)
yr = lr. (9b)

The parameter vector can be split up in a centre xm and radius xr part:

x̂m = x0 + (ATPA)+ATPym, (10a)

x̂r = | (ATPA)+ATP | yr, (10b)
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where | · | denotes the element by element absolute value of the matrix. Note that the parameter
vector is exact component by component, but it overestimates the correct range, which is in general
a convex polytope (zonotope), see (Schön and Kutterer, 2005a).

The residuals v̂ are estimated and treated in a similar way. They are obtained as

v̂ = Adx̂− y (11)
= −Cv̂v̂Py,

with

Cv̂v̂ = Cll −A(ATPA)+AT , (12)

the VCM of v̂. The interval extension of v̂ in terms of the midpoint v̂m and the radius v̂r of the
residuals reads as (cf. (Kutterer, 2002)):

v̂m = −Cv̂v̂Pym, (13a)
v̂r = | −Cv̂v̂P | yr. (13b)

Then the minimum sum of the squared residuals is derived as

Ω =v̂TPv̂ = yTPCv̂v̂Py. (14)

4. One-dimensional hypothesis testing for outlier detection

This section presents hypotheses tests for imprecise data in the one-dimensional case. For a more
general context and for a more comprehensive field of engineering applications, the test is described
in fuzzy-theory. Intervals are special cases of fuzzy sets. Thus, the tests can be directly applied to
the examples given in Section 6. The presented test strategy is based on (Römer and Kandel, 1995)
and (Viertl, 1996). It is given in detail in (Kutterer, 2004).

4.1. Test strategy and general test decision criterion

First the regions of acceptance (Ã) and rejection (R̃ = Ã
C
) have to be described with fuzzy sets.

Here, the presentation is restricted to L-fuzzy intervals which are mostly relevant in the application.
Hence, the region of acceptance is given as:

mÃ(x) =





LA

(
−k−x

As

)
, x < −k

1, −k ≤ x ≤ k

LA

(
x−k
As

)
, x > k

(15)

with the constants k and As 6= 0 to control the shape of the region of acceptance.
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Consequently, the L-fuzzy test statistic T̃ with midpoint Tm and radius r is introduced:

mT̃ (x) =





LT

(
Tm−r−x

Ts

)
, x < Tm − r

1, Tm − r ≤ x ≤ Tm + r

LT

(
x−Tm−r

Ts

)
, x > Tm + r

(16)

with Ts 6= 0 the spread parameter of the test statistics.
Then the degree of agreement γR̃(T̃ ) of the test statistic with the region of rejection and the

degree of disagreement δÃ(T̃ ) = 1 − γÃ(T̃ ) of the test statistics with the region of acceptance are
computed. With F (IR) the space of fuzzy sets over IR and F (IR × IR) the space of fuzzy sets over
IR× IR, the degree of agreement γ : F (IR× IR) → [0, 1] of a non empty fuzzy set M̃ ∈ F (IR) with
a fuzzy set Ñ ∈ F (IR) ist defined by:

γÑ (M̃) := γ(M̃, Ñ) =
h(M̃ ∩ Ñ)

h(M̃)
. (17)

The class of functions h : F (IR) → [0,∞) is defined by the conditions

Ũ = ® ⇔ h(Ũ) = 0, (18a)
Ũ ⊆ Ṽ ⇔ h(Ũ) ≤ h(Ṽ ), (18b)

with ® the empty set. Examples for the class of functions are given in Section 4.2.
Now, the hypotheses for the imprecise test statistics (T̃ ) have to be introduced. The hypotheses

considered here are:

H0 : E(Tm) = µ = µ0

HA : E(Tm) = µ = µ0 + δ, δ 6= 0
with Tm ∼ N(µ, 1)

The expected value of the midpoint of the test statistics Tm, which describes the stochastic behavior,
follows a standardized normal distribution N (under H0). The presented test strategy also allows to
handle empirical test values (e. g. t-distribution) and imprecise variances. The degree of rejectability
ρR̃(T̃ ) of the null hypothesis H0 is then given by

ρR̃(T̃ ) := min(γR̃(T̃ ), δÃ(T̃ )). (19)

It is compared with a precise critical value ρcrit, what leads to the test decision:

ρR̃(T̃ )
{ ≤

>

}
ρcrit ∈ [0, 1] =⇒

{
do not reject H0

reject H0
(20)

The imprecise test statistics T̃ is only rejected if it both agrees with R̃ and does not agree with Ã.
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Figure 2. Geometric interpretation of the height criterion with a L-fuzzy test value (r = 0)

4.2. Two test decision criterions

Now a suitable choice for the class of functions h in Eq. (17) has to be introduced. Section 4.2.1
describes the height criterion and Section 4.2.2 the card criterion. The height criterion allows an
easy-to-handle test decision in case of complex fuzzy sets and the card criterion allows a better
description of the degree of agreement between two fuzzy sets from a practical point of view, cf.
(Kutterer, 2004).

4.2.1. The height criterion
For the height criterion, the function h in Equation (17) is defined as:

h(Ũ) = height(Ũ). (21)

If the region of acceptance (Ã) and the test statistics (T̃ ) are L-fuzzy intervals this leads to the
degree of rejectability:

ρR̃(T̃ ) = min (γR̃(T̃ ), δÃ(T̃ )) =

{
0, core(T̃ ) ∩ core(Ã) 6= ®

δÃ(T̃ ), core(T̃ ) ∩ core(Ã) = ® (22)

with δÃ(T̃ ) = 1-height(T̃ ∩ Ã) and γR̃(T̃ ) = height(T̃ ∩ R̃). The geometric interpretation of the test
is given in Figure 2. In the case of core(T̃ )∩core(Ã) 6= 0, the null hypothesis H0 cannot be rejected
(ρR̃(T̃ ) = 0). Here, an exemplary test scenario with Tm > 0 is considered.

In case of different types of reference functions for the test statistics and the region of acceptance,
the degree of rejectability under H0 can not be given explicitly, it has to be computed numerically.
Therefore the point of intersection xnum between the reference function of the test statistics and the
reference function for the region of acceptance is computed by root-finding, e. g. using a Newton-
or bisection algorithm (see (Jaulin et. al., 2001)).

LT

(
Tm − r − x

Ts

)
− LA

(
x− k

As

)
= 0 for k ≤ x ≤ Tm − r. (23)
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This numerical solution xnum > 0 can be used for the computation of the degree of rejectability
of the null hypothesis H0:

ρR̃(T̃ ) =

{
1, (T̃ ∩ Ã) = ®

1− LT

(
Tm−r−xnum

Ts

)
, (T̃ ∩ Ã) 6= ® (24)

Note that the numerical solution xnum is a function of the region of acceptance (As and k). The
test decision in case of T̃ ∩ Ã 6= ® is now based on the comparison of the degree of rejectability
with the critical value ρcrit, see Eq. (25). In any case the null hypothesis is rejected for T̃ ∩ Ã = ®.
If (T̃ ∩ Ã) 6= ®,

ρR̃(T̃ ) = 1− LT

(
Tm − r − xnum

Ts

)
> ρcrit =⇒ reject H0. (25)

If the reference functions for the region of acceptance and the test statistics are of same type, the
degree of rejectability of the null hypothesis H0 can be computed explicitly:

ρR̃(T̃ ) =

{
1, (T̃ ∩ Ã) = ®

1− LT

(
Tm−k−r
Ts+As

)
, (T̃ ∩ Ã) 6= ® (26)

In case of (T̃ ∩ Ã) 6= ®, the test decision is now described by:

ρR̃(T̃ ) = 1− LT

(
Tm − k − r

Ts + As

)
> ρcrit =⇒ reject H0. (27)

4.2.2. The card criterion
The card criterion is a second possibility for the function h in Equation (17):

h(Ũ) = card(Ũ) :=
∫

IR
mŨ (x)dx. (28)

The card criterion gives a suitable description of the agreement between two fuzzy sets, but the
computational complexity is much higher then using the height criterion, in particular for complex
fuzzy sets. The degree of rejectability of H0 has to be computed based on the cardinality of the
fuzzy sets resulting from the intersection of the test statistics and the region of acceptance (card(T̃∩
Ã)) and region of rejection (card(T̃ ∩ R̃)), respectively; see Eq. (29). Figure 3 shows a geometric
interpretation of the card criterion.

ρR̃(T̃ ) := min(γR̃(T̃ ), δÃ(T̃ )),

with γR̃(T̃ ) = card(T̃∩R̃)

card(T̃ )
and δÃ(T̃ ) = 1− card(T̃∩Ã)

card(T̃ )
.

(29)

In case of classical intervals for the regions of acceptance, the degree of rejectability of the null
hypothesis H0 is now easy to handle and reads:

ρR̃(T̃ ) = γR̃(T̃ ) = δÃ(T̃ ) =





1, (T̃ ∩ Ã) = ®
1− card(T̃∩Ã)

card(T̃ )
), (T̃ ∩ Ã) 6= ®.

(30)
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Figure 3. Geometric interpretation of the card criterion with a L-fuzzy test value (r = 0)

5. Global and multiple tests using α-cut optimization

5.1. The pure stochastic case

The pure stochastic case in multidimensional hypothesis is well known in many engineering appli-
cations, cf. (Koch, 1999). The test is based on a quadratic form zTMz with z a n×1 vector and M
a semi-positive definite symmetric matrix. With the expected value E(z) = µ and its VCM Czz,
the expected value of the quadratic form is given by:

E(zTMz) = trace(MCzz) + µTMµ. (31)

If MCzz is idempotent and z is normal distributed according to z ∼ N(µ,Czz), the quadratic form
zTMz follows a non-central χ2-distribution, cf. (Koch, 1999):

zTMz ∼ χ2(rank(M), µTMµ) = χ2(f, λ), (32)

with f = rank(M) the degrees of freedom and λ = µTMµ the non-centrality parameter.
From the results of a least-squares adjustment, the quadratic form may be given by the Equation

(14) that follows a central χ2(n− u + d, 0)-distribution (λ = 0) with n− u + d degrees of freedom:

yT (PCv̂v̂P)y ∼ χ2(f, 0) with f = n− u + d under the null hypothesis H0 : E(v̂) = 0. (33)

5.2. Global and multiple tests with observation imprecision

Now Eq. (14) has to be treated with fuzzy techniques with a given imprecise vector of reduced
observations ỹ, e. g. from Section 2. We consider intentionally point matrices for Cv̂v̂ and P. Each
kind of model uncertainty is transformed into the imprecise vector of observations, cf. (Schön and
Kutterer, 2005a). The fuzzy evaluation of the quadratic form

Ω =yT (PCv̂v̂P)y (34)

is based on Zadeh’s extension principle. If the quadratic form fulfills the criteria
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Figure 4. α-cut optimization for a point test

− convexity of the quadratic function (semi-positive definite matrix PCv̂v̂P)

− continuity onto mapping (e. g. no change of the algebraic sign)

− convex input fuzzy sets

the extension principle can be replaced by a min-max operator of an optimization problem, cf.
(Möller and Beer, 2004). The properties above are given in a least-squares adjustment with convex
fuzzy numbers or fuzzy vectors and play a key role for a strict realization of the extension prin-
ciple with an optimization problem. Furthermore, in case of a convex function local optimization
problems can be applied. We propose a recursive Newton algorithm for minimizing/maximizing
a quadratic function subject to bounds of the variables, cf. (Coleman and Li, 1996). In case of
observation intervals, the optimization algorithm has to be applied only once. For fuzzy input
variables the optimization algorithm is applied for a sufficient number of α-cuts of the input
variables to compute the min-max values for the associated α-cut of the fuzzy output variable.
The minimum and maximum values of each α-cut are given by Ωαmin and Ωαmax and the test
statistics is constructed as T̃ = Ω̃. Figure 4 shows an example of α-cut optimization for a point
test in the two-dimensional space.

Now the test strategy from Section 4 is applied, what leads for the card-criterion to the test
scenario given in Figure 5. The test hypotheses and the test decision, respectively, are given by:

H0 : E(v̂m) = 0
HA : E(v̂m) 6= 0

with Tm ∼ χ2(f, 0) and f = n− u + d

ρR̃(T̃ ) =
{ ≤

>

}
ρcrit ∈ [0, 1] =⇒

{
do not reject H0

reject H0
(35)

REC 2006 - INGO NEUMANN, HANSJÖRG KUTTERER AND STEFFEN SCHÖN



Outlier Detection in Geodetic Applications with respect to Observation Imprecision 85

Figure 5. χ2-test with the card criterion

In the case of ρR̃(T̃ ) > ρcrit, the null hypothesis H0 is rejected and one can assume, that there are
outliers in the observations. Further reasons for the rejection of the null hypothesis are non suitable
choices of the functional or stochastic modell-components. Therefore each observation or multiple
observations has to be tested using one- and multidimensional tests to detect the outliers in the
data.

Note, it is also possible to refer this problem directly to the influence factors of a sensitivity
analysis, even though it has not been shown formally.

6. Examples with geodetic applications

Now selected examples for outlier detection in a three dimensional geodetic network for the monitor-
ing of the lock Uelzen I are shown. We focus our presentation on the multidimensional case because
the one-dimensional is straightforward from the given test specifications. Due to the imprecise
vector of observations (see Sect. 2), the card criterion is used for the test decisions. The regions of
acceptance are given by classical intervals with a significance level of γ = 5%. The critical value ρcrit

is chosen as 0.5. Note that all numerical examples for the test statistics presented in this section
are based on the support of the test statistics (supp(T̃ )) in order to have a clearer representation.

Figure 6.a shows the lock and Figure 6.b the geometric configuration of the geodetic monitoring
network. The network is composed of eight control points around the lock and four object points
(101-104) on top of the lock. The aim is the formulation of a meaningful deformation model for
the object points in order to quickly and specifically initiate constructional or geotechnical safety
measures. Therefore different measurements between the network points are carried out with special
geodetic equipment such as GPS receivers and automatic tacheometers. Typical geodetic examples
for the collected measurements are horizontal directions, zenith angles, distances and GPS baselines.
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Table I. Interval radii and standard deviations of the observations

Distances Directions Zenith angles GPS baselines

lr 2.0 mm 0.3 mgon 0.5 mgon 0.2 mm

σ 5.0 mm 1.0 mgon 3.0 mgon 3.0 mm

a. The lock Uelzen I b. The geodetic monitoring network

Figure 6. Lock Uelzen

After the computation of the observation intervals based on the uncertainty of the measurements
and the preprocessing steps (cf. Sect. 2), the uncertainty budget is transferred to the parameters of
interest (cf. Sect. 3). Here, the parameters of interest are the 3-d point coordinates of the geodetic
network points which are estimated in a least-squares adjustment. The orders of magnitude of the
interval radii and the standard deviations of the observations are given in table I (for the presented
examples).

6.1. Problem definition

Outliers in the collected measurements may falsify point coordinates. Consequently they don’t show
the actual movements of the lock points. This may prevent a proper initiation of constructional or
geotechnical safety measures. For this reason, the outliers in the data have to be detected and then
removed. A general strategy which is typically used in Geodesy were presented by (Baarda, 1968).
This strategy uses standardized residuals for the test decision in the one-dimensional case (data
snooping):

T =
v̂i

σv̂i

∼ N(0, 1) with H0 : E(v̂i) = 0, HA : E(v̂i) 6= 0 (36)

with the estimated residual v̂i, its standard deviation σv̂i and the standardized normal distribution
N(0, 1). In the multidimensional case the given vector of observations is tested within a quadratic
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form (cf. Section 5.1 and (Koch, 1999)). The test statistics is then given by:

T = v̂TPv̂ ∼ χ2(f, 0) with H0 : E(v̂) = 0, HA : E(v̂) 6= 0, (37)

with f = n− u + d the degree of freedom.
If the value of the test statistics T exceeds the chosen fractile value, the null hypothesis H0 is
rejected and the outlier is considered as revealed. This strategy is standard in geodesy.

6.2. One-dimensional case (distance)

The first example is a one-dimensional test for the observed distance between the control point
910 and the object point 103. The midpoint v̂m and the radius v̂r of the residuals are computed
according to the Eq. (13a) and (13b). Each observation i is tested individually and the midpoint
Tmi and the radius ri of the test statistics in the imprecise case read as:

Tmi =
v̂mi√
Cv̂v̂ii

under H0 : E( v̂mi ) = 0, HA : E( v̂mi ) 6= 0 (38)

ri =
v̂ri√
Cv̂v̂ii

⇒ supp(T̃i) = [Tmi − ri, Tmi + ri] (39)

In this case, the numerical values for the observed distance between the points 910 and 103 are
obtained by

Tm910−103 =
v̂m910−103√
Cv̂v̂910−103

=
0.0101m
0.0047m

= 2.131 (40)

r910−103 =
v̂r910−103√
Cv̂v̂910−103

=
0.0041m
0.0047m

= 0.865 ⇒ supp(T̃910−103) = [1.266, 2.996]. (41)

Now, the test decision based on the z1− γ
2

fractile value for the two-sided hypothesis test with
γ = 5% reads:

ρR̃(T̃ ) = 0.60 > ρcrit = 0.5 =⇒ reject H0. (42)

Obviously in case of ρcrit = 0.5 the test is rejected, if the midpoint of the symmetric test statistics is
outside the region of acceptance Tm > z1− γ

2
. In case of ρcrit > 0.5 the midpoint of the test statistics

may be outside without rejecting the test, this is caused by taking observation imprecision into
account. In case of classical regions of acceptance, the value ρcrit must not be chosen too small
because observation imprecision is an additive term of uncertainty.

6.3. Multiple tests (GPS baseline)

Second, a multiple test for a GPS baseline between the points 907 and 908 is presented. According
to the pure stochastic case (see (Koch, 1999)), the imprecise quadratic form for the test reads as:

Ω =yT (PCv̂v̂P)(B(BTPB)−1BT )(PCv̂v̂P)y with y ∈ ỹ (43)
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and

BT =




0 0 · · · 0 1 0 0 0 · · · 0 0
0 0 · · · 0 0 1 0 0 · · · 0 0
0 0 · · · 0 0 0 1 0 · · · 0 0


 . (44)

∆xGPS ∆yGPS ∆zGPS

The relevant VCM of the observation to be tested in a multiple hypothesis has to be selected from
the data. For this reason, the matrix B is introduced, which is in case of GPS baselines defined
by Eq. (44). Hence, the asymmetric imprecise test statistics T̃ can be computed by means of the
optimization algorithm (cf. Section 5.2 and (Coleman and Li, 1996)):

supp(T̃ ) = supp(Ω̃) = [9.907, 10.291] with Tm = 10.097 ∼ χ2(p, 0) (45)
H0 : E(v̂mGPS ) = 0 and HA : E(v̂mGPS ) 6= 0

The test decision with the fractile value χ2
p,1−γ = 7.814 (with p = 3 the number of simultaneously

tested observations) reads as:

ρR̃(T̃ ) = 1.0 > ρcrit = 0.5 =⇒ reject H0 (46)

The GPS baseline between the points 907 and 908 is revealed as an outlier and removed from the
data. In case of GPS observations in small geodetic networks (< 5km) with less changes in altitude,
the observation imprecision is small. For this reason the spreads of the test statistics are tight and
close to symmetric.

6.4. Global test in least squares adjustments

In the last example we compute the imprecise global test in least-squares adjustment. The starting
procedure is the fuzzy evaluation of Eq. (34) with the described optimization method. The imprecise
test statistics T̃ is then given by

supp(T̃ ) = supp(Ω̃) = [306.756, 315.851] with T̃m = 310.211 ∼ χ2(f, 0) (47)
H0 : E(v̂m) = 0 and HA : E(v̂m) 6= 0

and the fractile value for the test decision reads as (γ = 5%):

χ2
f,1−γ = 310.396 (f =271) (48)

Hence, the test decision

ρR̃(T̃ ) = 0.579 > ρcrit = 0.5 =⇒ reject H0, (49)

shows, that with the given significance level of γ = 5% the global test is rejected, although the
midpoint of the specified test statistics is inside of the region of acceptance (ρcrit = 0.5). The
test rejection is caused by the assymmetric imprecise test statistics which considers the quadratic
impact of the imprecise influence parameters on the specified test statistic.
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7. Conclusions

In this study, one and multidimensional hypotheses tests in case of observation imprecision are devel-
oped. The consideration of observation imprecision is an independent extension of the classical test
approach. New approaches for outlier detection are shown, based on the intervals or fuzzy numbers
of the observations. The presented test strategy allows to handle with all types of uncertainty,
given as imprecise vectors of observations and can be applied to least-squares adjustments in many
engineering applications. Thus, it is an essential observation-based contribution to the quality
management in engineering.

Furthermore, this paper shows that an automated joint treatment of stochasticity and impre-
cision from the original observation up to the target parameters is possible. It turns out that
remaining systematics have to be taken into account in geodetic data analysis. This allows an
improved interpretation of the parameters of interest.

Finally, the presented test strategy allows a numerical calculation of the fractile value z
1−αimpr

2

of the standard normal distribution. The evaluation of type I and type II errors in the imprecise
case is possible.

The main focus of the following studies lies on the analysis and reanalysis of simulated and
real data sets in order to make more improved decisions, in e.g. about the critical value ρcrit.
In addition, more extensive works in numerical computations with the card criterion and in the
comparison between the height and card criterion has to be done.
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Römer, Chr. and Kandel, A.: Statistical tests for Fuzzy Data, in: Fuzzy Sets and Systems Vol. 72, 1995, pp. 1-26.
Schön, S.: Analyse und Optimierung geodätischer Messanordnungen unter besonderer Berücksichtigung des Intervall-
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Modeling Hysteresis in CLIP – The Tank Flow Problem
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Abstract.
Hickey and Wittenberg (Hickey and Wittenberg, 2004) study the “Two Tanks Problem”, a

hybrid system described by Stursberg et al. (Stursberg et al., 1997). In this paper, we expand on
the use of CLIP (Hickey, 2000) (a Constraint Logic Programming over Intervals and Functions
language) to formally describe more complex systems. We add complexity in several forms. The
simplest is to have a larger system. We move from a system with two tanks to one with four tanks,
and we add non-linear valves to the pipes connecting the tanks. This example easily generalizes to
an N-tanks problem where the tanks, connected by pipes, form an arbitrarily complex graph. The
more important addition is the refinement of the model in several places. We rigorously model a
valve in which the flow varies exponentially with the valve position over much of the valve’s range,
and then discontinuously as the valve is almost closed. We introduce hysteresis in our analysis to
avoid an infinite loop of zero-time transitions, and we discuss why our techniques should not have
trouble with “Zeno” transitions.

The possibility of Zeno behaviour (Zhang et al., 2001) can arise either from physical reasons (a
value near zero, so the sign of the changes is hard to know) or for modeling reasons (the system
is near the boundary between two behaviour regimes, and while both regimes describe similar
behaviour near the boundary, the model might switch between the two regimes infinitely often in
a finite time). An elegant feature of our model is that we use the same technique of hysteresis
to prevent the Zeno behaviour from either cause. This is easily done in CLIP by changing the
conditions for a state change from one to the other to include hysteresis.

Keywords: Hybrid Systems, CLP, Intervals, Interval Arithmetic

1. Introduction

We use CLIP (a CLP language over analytic functions) to rigorously model hybrid systems. This
paper extends our earlier work by using hysteresis to preserve the rigor of the model in the face of
both non-analytic points and so called “Zeno” behaviour of a model.

There are two reasons for a point in the family of ODEs which describe a system to be non-
analytic. One is simply that the ODE is non-analytic, and the other is that the system changes
from a regime in which one ODE applies to a regime in which a different ODE applies. In a hybrid
system, an ODE change can occur either because of a state change (the digital controller changes
state) or because of what we call a “regime change” which is a point in which the system evolves
from one regime to another - perhaps because a level passes a critical point.

c© 2006 by authors. Printed in USA.
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A separate problem for hybrid systems is what are called “Zeno” systems. A Zeno system is one
in which the model makes an infinite number of state changes in a finite amount of simulated time.
This obviously causes the model to fail.

1.1. Hybrid Systems

A Hybrid System is a system composed of a digital part (typically a small computer) and an analog
part (typically a physical system with sensors and actuators). The field of hybrid systems is the
study of systems in which discrete events and continuous dynamic events interact. All computer
controlled or monitored processes in the real world are hybrid systems. As a field of study, “Hybrid
Systems” has come to include the study of the analog part of a system in an area where reliability
is at a premium, typically because of the cost (in lives or money) of a failure of such a system.
Some hybrid systems papers study only the analysis of the analog part of a system. Hybrid
systems research grew out of real time computation, control theory, and program verification.
Hybrid systems research strives to prove properties such as stability about complex safety critical
systems. In the chemical engineering literature, hybrid systems are sometimes called “combined
discrete/continuous processes”. An important use of hybrid systems is to prove “safety properties”,
which are statements of the form “measurement x is within range [a, b] such as “the water level in
this tank never overflows”. Because safety properties are constraints, they fit naturally in a CLP
approach. One widely studied hybrid system is the tank flow problem introduced by Kowalewski
et al. (Kowalewski et al., 1999). It is this system that we discuss here.

The history of hybrid systems starts with Fahrland’s 1970 paper (Fahrland, 1970) which asked
“Why limit the modeling to either discrete event or continuous when situations are evolving that
require more interdisciplinary solutions”. Very little was done for the next twenty years, and
Fahrland’s work is rarely cited. Fahrland may have been influenced by Roger Brockett who was
also at Case Institute of Technology, and who later did some seminal work on hybrid systems.
The first conference on the subject was the 1991 REX workshop titled Real Time: Theory in
Practice (de Bakker et al., 1991) where the term “hybrid automata” was introduced. Since that
time, real time systems and hybrid systems work has diverged, with real time work focusing more
on the computer with its latency issues, and hybrid systems focusing more on accurate modeling of
the analog part of the system. While it’s not clear how to put a real time model (explicit limits on
the time for processing) in the standard formalism for hybrid automata, the techniques introduced
in this thesis can easily model digital components as long as their latency can be bounded.

There has been considerable research on developing formal models of hybrid systems. Among
others, Davoren and Nerode developed logics (Davoren and Nerode, 2000), Maler et al. (Maler et al.,
1991), Lynch et al. (Lynch et al., 1999; Lynch et al., 2001), Henzinger et al. (Henzinger, 1996), and
Alur et al. (Alur et al., 1995) developed formal models. From our point of view, a limitation of
these models is the difficulty in applying them to real systems, and the amount of overhead that
must be relied on to trust the results.

1.2. Earlier Interval and CLP Approaches to Hybrid Systems

We are not the first to apply interval arithmetic techniques to the problem of rigorously modeling
hybrid systems. HyperTech (Henzinger et al., 2000) took a major step towards reliability of their
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results by using interval arithmetic ODE solving as a tool to add rigor to the very successful HyTech
system. Our system merges, for the first time, the rigor of the formal model approaches and the
practicality of the more engineering-based approaches by employing validated ODE solving. Our
approach has several advantages over earlier interval models:

− CLIP is declarative, so that it describes the system being modeled directly.

− CLIP is logic based, so it can be viewed directly as a theorem prover using CLP logic.

− CLIP is constraint based. It doesn’t require one to fully specify a system. CLIP allows one to
understand some properties of a system based on initial assumptions.

Others have used constraint logic programming to model and analyze hybrid systems. Gupta et
al. (Gupta et al., 1995)(Gupta et al., 1996) introduced a ground breaking approach called “hybrid
cc” which allowed one to formally describe hybrid systems using a logic programming language with
constraints. Urbina (Urbina, 1996) has pioneered another approach using CLP(R)(Jaffar et al.,
1992) to model and analyze hybrid systems. Delzanno and Podelski (Delzanno and Podelski, 1999;
Delzanno and Podelski, 2001) have explored analyzing hybrid systems using CLP(Q,R) (Holzbaur,
1995), a system which handles linear constraints with real and/or rational coefficients, as well as
Boolean constraints. Their approach is to define a translator from Shankar’s guarded command
language (Shankar, 1993) to CLP(Q,R).

2. CLIP

CLP(I) is an interval-based constraint logic programming (CLP) language whose domain is the
set of real numbers. The class of CLP languages (and their syntax and semantics) was introduced
by Jaffar and Lassez in 1987 (Jaffar and Lassez, 1987). Jaffar and Maher provide an excellent
survey (Jaffar and Maher, 1994) of the fundamental concepts of CLP. The idea of calculating over
intervals of reals comes from Moore’s 1966 book on Interval Arithmetic (Moore, 1966). The idea of
combining CLP and Interval Arithmetic was first conceived by Cleary (Cleary, 1987) but the first
production quality CLP(I) interpreter was the BNR Prolog system developed by Older, Vellino, and
Benhamou (Research, 1988), (Benhamou and Older, 1997),(Older and Vellino, 1993). BNR Prolog
was designed to be verifiably correct in the sense that the intervals it returned were mathematically
guaranteed to contain all solutions to the underlying arithmetic constraints. The system however
was proprietary and the underlying algorithms were never published in the scientific literature.

CLIP was originally developed as an open source implementation of CLP(I) by Qun Ju and Tim
Hickey (Hickey and Ju, ) (Hickey and Ju., 1997) CLIP has subsequently been extended by Tim
Hickey, who added the CLP(F) language, which provides constraints over functions. CLIP is built on
top of Prolog (Prolog 95, 1995), (Deransart et al., 1996), and currently runs on GNU Prolog (Diaz,
2002) and ALS Prolog. The fundamental philosophy is to have a relatively small base of sound
primitive constraint contractors which are simple enough so that one can argue convincingly, if not
formally prove, that they are correct, and then build more complex solvers on top of the proven
system. Since the complex solvers built on CLIP primitives are made up of sound simple solvers,
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they are also sound. An important feature of CLP languages is that they are theorem provers, so
that each answer generated by a CLP program has a direct interpretation as a theorem about the
underlying domain.

CLIP can be considered to be a constraint engine over intervals and functions which interfaces
to the Prolog engine (a constraint solver over general finite domains). The CLP(F) language solves
analytic constraints by soundly approximating sufficiently differentiable functions by power series
with remainder terms and introducing arithmetic constraints among the Taylor coefficients of the
functions at the endpoints, at points in the interval, and over the entire range.

3. Generalized Tank Flow Problem

In a hybrid system, the interface between the analog and the digital part involves imperfect hardware
whose description must include error bars. The models of system behaviour are often particularly
imprecise near boundaries. We use intervals to handle the issue of imprecision in measurements,
and use intervals in a novel way to rigorously model the behaviour of systems near boundary points.
We start by adding valves to the model. We note that the model in Kowalewski et al. has the
behaviour of the valve discontinuous at 0 (by 5% of full flow), and show how a broad constraint
describes that.

In (Wittenberg, 2004) we showed how CLIP could model the simple two tanks problem. In
this paper, we show how the CLIP model can easily be extended to the “tank flow problem”, an
extension of the two tanks system to an arbitrary number of tanks, and to model it more rigorously
than other methods can. Here, we consider a four tank version with valves between each pair of
tanks and at the output.

3.1. Mathematics of the Tank Flow Problem

The problem we study is diagrammed in Fig. 1 and the parameters and variables are shown in
Table I. The problem can be described as follows: There are n tanks, numbered from 1 to n, with
the bottom of each tank lower than the bottom of the previous tank. The depth of the water in
tank j at time t is given by Dj(t) The depths Dj are measured from the bottom of their respective
tanks. The altitude of the bottom of tank j is Hj above an arbitrary horizontal datum, perhaps
sea level. Each tank j has a horizontal pipe leaving from the bottom of the tank. The flow through
that pipe is Ij , and there is a valve Vj on the pipe. There is a constant inflow of water into tank 1
(the uppermost tank) where the flow rate is given by a constant f00.

The general equation for flow through a pipe is that the rate of flow is proportional to pipe
coefficient times the square root of the height difference of the water levels at each end. Specifically,
the flow Ij(t) through pipe j connecting tank j to tank j + 1 is governed by a pair of ODEs in the
resistance Rj(t) to flow.

Rj(t) is a function of the pipe coefficient Cj , valve coefficient Ej , and the valve position Pj(t))
and to the square root of the pressure difference. The pipe coefficient Cj describes how easily water
flows through the pipe when the valve is in the fully open position. The valve coefficient Ej is the
exponent describing how much the valve cuts off the flow as a function of the valve position. The
pressure difference is proportional to the difference in water heights on each end of the pipe.
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Figure 1. Diagram of Tank Flow system for n = 4

Table I. Parameters and Variables

Hj Height of tank j above sea level

Vj inverse of time for valve j to open or close (valve speed)

Cj pipe coefficient of pipe j when the valve is fully open

Ej exponent for describing the valve’s behaviour

Pj(t) position of valve j. 0 is fully closed, 1 is fully open

Mj(t) valve motion – closing, opening, halted

Rj(t) program variable for valve regime - shut, transition, normal

Dj(t) Depth of water in tank j at time t (measured from bottom of tank.)

Ij(t) rate of flow through pipe j at time t

If the water level in the lower tank is below the pipe bringing water in, there is no back pressure
in the pipe, so we can ignore the water level in the lower tank. If the water level in the lower tank is
higher than the input pipe, we have to include the effect of back pressure on the flow through the
pipe. Therefore, we have a pair of ODEs for each pipe. One ODE of the pair holds when the water
in the lower tank (j +1) is below the level of the connecting pipe (Dj+1(t) < Hj −Hj+1), the other
member of the pair holds when the water level is above the connecting pipe (Dj+1(t) > Hj−Hj+1).
When the water level is equal to the height of the connecting pipe, the ODEs are the same, so we
choose one arbitrarily. Later (Section 5.2) we will show how to rigorously handle this point where
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the ODEs change, and which is therefore not analytic. Note that even if the water level is above
both ends of a pipe, if the water levels (measured from sea level) are equal, the ODE is non-analytic
because the square root1 function’s derivative is infinite at 0.

In our simulation, later tanks do not have higher water level than earlier tanks, so we do not
consider “backwards” flow, though it is a simple extension.

We handle these two different reasons for an ODE to be non-analytic in exactly the same manner,
described in Section 5.

The valve decreases the flow by a fraction which decreases exponentially with the valve position.
Recall that since Dj is the depth in a tank, Ij−1 the flow into that tank, and Ij the flow out,
D′

j = Ij−1− Ij Define HDiffj to be the the difference in altitude between the bottom of tank j and
the bottom of tank j + 1 That is: HDiffj = Hj −Hj+1 The ODEs for flows in pipe j are:

Ij(t) =





0 Pj(t) = 0
eEj ·(1−Pj(t))

3 · Cj

√
Dj(t)−Dj+1(t) + HDiffj Dj+1(t) > HDiffj

eEj ·(1−Pj(t))
3 · Cj

√
Dj(t) Dj+1(t) ≤ HDiffj

Where Pj is the position of the valve; Cj is the pipe coefficient; the value under the radical is the
effective difference in height between the water levels of the two tanks, and the exponential term
is the fraction by which the valve decreases the flow.

4. Handling State Changes

A hybrid system of any size will have different ODEs to describe it at different times. Writing each
ODE explicitly (as we did for a simpler example in (Hickey and Wittenberg, 2004)) is impractical
because of a combinatorial explosion in the number of ODEs. To avoid this problem, we parameterize
the ODEs describing the system, so a state change is modeled by a change in some of the parameters
to an ODE rather than by making a different ODE active.

The ODEs governing a hybrid system can change for either of two reasons. The first is if the
digital part of the system has a state change which affects the ODEs. We call this a program control
change. The other is if the continuous system evolves in such a way as to change the ODEs, such
as evolving to a point where a tank overflows, or the water level in a tank rises above the input
pipe to that tank, causing back pressure. We call these events regime changes. One case of regime
change is when a valve that had been opening (or closing) becomes fully open (or closed). That
affects the ODEs, by changing the rate at which the valve position changes, not by changing the
water flow directly. A helpful feature of CLP(F) is that we can model changes in ODEs caused by
program control and those caused by regime changes in exactly the same way.

1 We really want a function which is the positive square root of a positive number, and the negative square root
of the absolute value of a negative number to properly describe the fluid flow. This function is also not analytic at 0.
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Figure 2 is a state diagram for each valve except the last in the tank flow problem. (The last
valve has no lower tank, so the level in the lower tank can’t rise above the height of the pipe.) The
states are described by two ternary variables, M (valve motion regime) describes the motion of the
valve as one of (opening, closing, halted), while R (valve position regime) is one of (shut,
trans, normal). When R takes the value shut it means that the valve is closed, normal means
that the valve is open, and not too near the closed position. When R takes value trans the valve
is in a transitional region and is nearly, but not quite closed. The transitional region is used to
model the regime where the ODEs are not well understood, so we use a simple over-approximation
constraint in that regime.

shut
opening

trans
opening

normal
opening

normal
halted

normal
closing

trans
closing

shut
halted

Change Regimestate changeProgram

Figure 2. State diagram for ODEs

5. Unavoidable Sources of Error

An important issue in modeling hybrid systems is to realize that almost none of the parameters are
known exactly. This is true both of the parameters to the differential equations which describe the
system – These parameters are often determined by curve fitting to a set of measured points or are
calculated from physical models which include simplifying abstractions, and of measurements taken
by sensors in the system – These are measured with some accuracy, which is often specified as an
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error-bar.2 Because CLP(F) treats everything as an interval, it models these error bars naturally.
If a CLP(F) program shows that a system has a safety property (proves that it avoids a region),
that proof is valid even when each parameter takes the worst possible value within the given error
bars. To deal with this issue by sensitivity analysis (sensitivity analysis conference, 2004; Arsham,
; Taylor, 1997) on the inputs would be extremely difficult.

One of the problems in rigorous modeling is that often there are areas where one’s original
model breaks down for some reason. This can occur at an area where the physics are unclear, a
point where the defining functions are not analytic, or perhaps a function which is poorly defined
at a limit point. The point of this paper is that CLIP makes it simple to use hysteresis to deal with
all of these problems.

5.1. Dealing with Poorly Defined Regions

Ideally a modeling system allows stepwise refinement of the model. We demonstrate this in CLP(F)
by adding valves to our model of the tank flow system. Adding the valves to the model was easy
despite using a rather complex model of the valve’s behaviour.

One problem which is rarely addressed in modeling hybrid systems is modeling the area around
where a component or valve changes state. Using constraints, we can provide a rigorous answer
by describing the output of the component while it changes state as being between the output it
has in one state and the output it has in the other, and keeping that constraint for however long
the component takes to change state. If more precision is required, one can add a description of
the component’s behaviour during the state transition. Since the description consists of upper and
lower bounds for the component’s output, one can progressively refine the bounds as one learns
more about the component’s behaviour.

In many systems, the physics in some regions is not well-understood. Most hybrid system
techniques ignore this and simply assume that the ODEs which work in most areas work near
boundaries as well. For example, in the tank flow problem when a tank is almost empty, the flow
from it may be irregular and come in discrete drops rather than as a continuous flow. At these
points, we don’t claim to understand the details of the flow, but we can model them rigorously by
writing constraints which clearly include any possible behaviour of the flow. We don’t consider an
empty tank in this case, except to constrain our description of the system to cases in which the
water level in each tank is at least E, where E is a negligibly small positive value.

A further problem is that even away from boundary conditions, the physics of the system may
not be understood perfectly. In most cases, one measures a value (here, the flow through a valve as
a function of how open the valve is) at several points, uses physical theory to decide what form the
curve should be (in this case, an exponential of the valve position), and then uses a least-squares fit
to find a curve which best describes the measurements. There is, of course, error in the measurement
of each point, so the coefficients for the exponential curve have some (hard to calculate) error bars.
In addition, the behaviour when the valve is almost closed does not follow the exponential decay
curve, and is extremely difficult to measure precisely.

2 Note that the problem of imperfect measurement is inherent in the physical world. Heisenberg’s uncertainty
principle prohibits perfect measurement, and Burridan’s principle (Lamport, 1986) further limits the speed at which
one can usefully take measurements.
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For example Kowalewski et al. (Kowalewski et al., 1999) describe a valve by a function Ki(P )
giving the pipe coefficient and valve coefficient of the valve as an observed function of how open
the valve is. For the first valve, the function they give (converted to our notation) is:

K1(P1) =

{
1.85 · 10−4 · e−3.1·1−P 3

1 m5/2

s if 0 < P1 ≤ 1
0m5/2

s if P1 = 0

and for the second valve, they give:

K2(P2) =

{
2.26 · 10−4 · e−5.7·1−P 3

2 m5/2

s if 0 < P2 ≤ 80
0m5/2

s if P2 = 0

In neither case do they give error bars. The valve position is described by a real number in [0, 1]
with 0 corresponding to fully closed and 1 to fully open. Figure 3 shows a graph of R vs. P for
valve 1. The curve is an exponential decay, whose value when the valve is almost closed is about
5% of the flow when the valve is wide open, but they define the flow for a fully closed valve as 0.
By straightforward calculation, we find that R1(1) ≈ 1.85 · 10−4, while R1(ε) ≈ 8.570 · 10−6 (this
is about 5% of full flow), and R1(0) is defined to be zero. It is likely that this is not fully correct,
as a discontinuity of that magnitude is not common. We model this discontinuous point by having
three constraints for three different regimes. When the valve is fully closed, R is 0. When the valve
position is above the transition region, R is given by the ODE above. The interesting case is when
the valve position is in the transition region. We model this case with a constraint which says that
if the valve position P is near 0 (here we specify < 0.02), R is small. To choose the upper end of
R’s range, we choose a value slightly above the calculated value of R at any point in P ’s range for
that region. The choice of where the transition region ends is somewhat arbitrary.

Figure 4 shows how we rigorously model this system for P near 0. For the part of the curve
where the equations are reliable, we enclose the specified curve on each side by the ODE describing
the valve. Because the parameters of the ODE are intervals, the value of the function at any point
is an interval. In the area where the curve is discontinuous, we use a constraint which includes all
possible values the function could take. This introduces some uncertainty into the formal model, but
that uncertainty was already present in the description of the physical system. Using constraints
makes that uncertainty explicit, and models it rigorously.

5.2. Dealing with Regime Change Points

One of the advantages of using CLP(F) is that one can often use one technique to handle multiple
issues. In section 5.1 we use separate ODEs, often with rather simple-minded constraints, to deal
with regions where the physics is unclear. Here we use a similar system to deal with non-analytic
(or even discontinuous) points in an ODE.

When the water level in the lower tank is above the input pipe (in regime above), one set of
ODEs holds, when the level is below the input pipe (in regime below), another set of ODEs holds.
We model this by having a regime change at that point. An obvious problem arises: Our model
would allow an infinite number of transitions (each taking zero time) between the two states, and
therefore never get to calculating the change in water level which would move clearly into one state
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Figure 3. Relative flow as a function of valve position for valve 1 – function from Kowalewski et al.
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(Actually, since CLPs are non-deterministic, there would be an infinite path and also a one-step
path out of that condition). We handle this by creating a special artificial state near for water levels
near the boundary. We then artificially put in hysteresis, so that on leaving that middle state, one
cannot immediately re-enter it. This problem is related to the problem of Zeno automata, discussed
in Section 7.

This example clarifies two issues, as there are two separate reasons for using near state between
above and below. The first reason is that as the water in the lower tank reaches the level of the
pipe the physics get a little unclear - what happens when the water covers half the pipe? This issue
is clearer in the case where the ODEs are discontinuous, as in section 5.1. The second issue is that
in order to model a change of ODEs, we need two regimes, with appropriate transitions between
them. This issue arises even when the physics are clear, such as when one has a pipe between two
tanks and the relative water levels in the two tanks is changing. At the point where the water levels
are equal, the ODE is non-analytic (because the square root function is non-analytic at 0), so we
would have to have a change of regimes. If the rule for a regime change was simply that the water
levels were equal, when the levels became equal there would be a legal infinite path of zero-time
changes from one regime to the other. One could look at the derivative to know which direction
the regime change goes in, but if the water level is almost constant, the derivative will be near
zero, and the same issue is still there. To avoid this case, we artificially add hysteresis to an already
artificial regime change.

6. Overview of Code for Tank Flow

The complete program for the n=4 case of the tank-flow problem is in the Appendix of(Wittenberg,
2004). Here we discuss some of the more interesting snippets from the code.

6.1. Evolve and Iterate

We model a hybrid system in CLP(F) by modeling a series of steps. A step begins either at a
specified initial state, or when the previous step ends, and ends when either the length of the
step (amount of time simulated) reaches a maximum step size delta, or a change of ODEs occurs
(whether caused by program control or a regime change). The following part of the program is the
main code, which runs the system through one step, increments the state counter, and continues.

evolve(S0,C,N,S2) :-
evolve0(S0,C,N,S1),
enforce_ODEs(S1,C,S2),
copy_discrete_state(S1,S2).

evolve(S0,C,N,S2) is true if and only if the system described by C can evolve to a boundary state
S1 in N steps and then evolve from state S1 to state S2.

evolve0(S0,_C,N,S1) :- {N=0},eqstate(S0,S1).
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evolve0(S0,C,N,S2) :-
opt_next_step(S0,C,S1),
print(ons(S0,C,S1)),nl,nl,
{N=M+1},
evolve0(S1,C,M,S2).

A direct reading of the program is as follows: In zero steps, the system does not change state.
The evolve0 predicate says that a system can evolve from S0 to S2 if S1 is the next step from S0,
N = M + 1, and the system can evolve from S1 to S2 in M steps. The variable C in all cases is the
set of constants which describe the system parameters.

% next_step(InitialState, ProblemConstants, FinalState)
next_step(S0,C,S1) :-
enforce_ODEs(S0,C,S1),
find_state_change(S0,C,S1).

The call to next step states that the ODEs are followed (enforce ODEs), and finally that
system has run to an appropriate point (find state change). All the variables in the states (S0,
S1) and the constants term (C) are variables over the reals. Variables over functions are used in
enforce ODEs to specify constraints over the real variables in S0, C, S1.

6.2. Finding State or Regime Changes

In each case, the step ends when any of the requirements becomes true. Figure 5, shows how
find state change is defined to be true when any one of the following happen:

− One of the find flow state change predicates becomes true because the water level in one
of the tanks goes from above the input pipe in state S0 to below in state S1, or vice versa (one
of the tanks changes regime)

− one of the find valve state change predicates becomes true, because the valve position is
such that a change in regime occurs at state S1

− one of the find program state change predicates becomes true because the program (ie. the
digital part of the hybrid system) changes state at state S1

− find step change is true because state S1 is Delta time after state S0 and no other state
changes have occurred.

The CLP(F) code to check for this (excerpted in Figure 5 looks rather repetitive. This is true
only because in this example we use the same behaviour for each valve and for each tank. In a
less symmetric case, this code would not grow, but there might have to be multiple versions of
find ?? state change to describe the different behaviours.
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find_state_change(S0,C,S1) :-
% TANK FLOW REGIME CHANGE

find_flow_state_change(r1,h1,h2,d2,C,S0,S1);
find_flow_state_change(r2,h2,h3,d3,C,S0,S1);
find_flow_state_change(r3,h3,h4,d4,C,S0,S1);

% VALVE REGIME CHANGE
find_valve_state_change(p1,vr1,vm1,C,S0,S1);
find_valve_state_change(p2,vr2,vm2,C,S0,S1);
find_valve_state_change(p3,vr3,vm3,C,S0,S1);
find_valve_state_change(p4,vr4,vm4,C,S0,S1);

% PROGRAMMED STATE CHANGES
find_program_state_change(v1,d2,C,S0,S1);
find_program_state_change(v2,d3,C,S0,S1);
find_program_state_change(v3,d4,C,S0,S1);

% no regime or state changes before the time limit is reached
find_step_size_change(S0,C,S1).

Figure 5. Code to Find State Changes

6.3. Enforcing ODEs

One section describes all of the analog parts of the system. It consists of three large assertions.
The first (and largest) section is purely bookkeeping. All of the ODEs are in the last two parts of
enforce ODEs. In order to make the lists of parameters smaller, we use lists to keep all variables
of each type together. lookup, evalall, and decls are helper functions to deal with the lists.

The bookkeeping section states that the individual variables correspond to what the lists say
they are, and constrains the domain and range of the functions. It uses lookup to bind the values
of constants (from C), and conditions at the start of the step (from S0), and the end of the step
(from S1) to variables. Then it uses decls to declare several function variables (and their domains)
at once, and finally specifies which ODEs each tank should obey while in the state specified by S0.
Figure 6 shows sections of the first part of enforce ODEs. Much of that section is repetitive, so
only representative fragments are reproduced here. We interpret the code as follows: enforce ODEs
is true if and only if all of the following elements are true (including, of course, those that are elided
here.)

− P is a vector containing P1,P2,P3,P4

− each element of P is a function defined on [T0,T1max]

− each element of P is a function whose range is [0, 1]
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− Ps0 is a vector containing P10,P20,P30,P40

− Ps1 is a vector containing P11,P21,P31,P41

− the values of Ps0 are as specified in C in state S0

− the values of Ps1 are as specified in C in state S1

− evalall applied to each element in the list P evaluated at T0 gives the corresponding value
from Ps0, and when evaluated at T1 gives the corresponding value from Ps1

− the value of v in the list of constants C is V

− each of the valves obeys valve ODE given the valve position, velocity, and motion regime

− each of the tanks obeys the appropriate tank ODE

Another section handles the flow restriction caused by the valves.

valve_coef(normal,FRAC,P,E) :- {[FRAC=exp(E*((1-P))**3),
FRAC in [0,1], P in [0.01,1] ]}.

valve_coef(trans,FRAC,P,_) :- {[ FRAC in [0,0.06], P in [0,0.01] ]}.
valve_coef(shut,FRAC,P,_) :- {[FRAC=0.0*FRAC, P=0*P ]}.

valve_ODE(P,_,halted) :- {[ ddt(P,1) = 0.0*P, P in [0,1] ]}.
valve_ODE(P,V,opening) :- {[ ddt(P,1) = V+0*P, P in [0,1] ]}.
valve_ODE(P,V,closing) :- {[ ddt(P,1) = NV + 0*P, P in [0,1],

NV= - V ]}.

The ODE code is completely straightforward, as ODEs can be described directly in CLP(F).
FRAC, E, and P are all functions of T. The first line says that in the valve regime normal,

FRAC = eE·(1−P )3 , FRAC ∈ [0, 1], P ∈ [0.01, 1]

The second line says that in valve regime trans FRAC ∈ [0, 0.06] and P ∈ [0, 0.01]. The third line
says that flow through a shut valve is 0. The idiom FRAC=0.0*FRAC is a workaround used instead of
FRAC=O because CLIP does not allow functions to be set equal to a constant. The second line of the
code is needed to implement the technique of rigorously modeling discontinuous functions discussed
in section 5.1. Observe that this procedure constrains P to take values inside the appropriate region
(for normal, trans, shut).

Similarly, the last three lines specify the derivative of P (the valve position) to be 0 when halted,
V for opening, and -V for closing.

The last assertions in the ODE section specify the flow into and out of tanks. There are seven
cases,as the first and last tanks have different configurations than tanks in the middle, and for all
but the last tank, the ODEs differ according to which regime the tanks is (among below, near,
and above) corresponding to whether the water level in the lower tank is above or below the pipe
entering the lower tank. We consider the case of a middle tank in regime above, as that is the most
complex.
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enforce_ODEs(S0,C,S1) :-

...

% VALVE Position ODEs
% create valve position functions on [T0,T1max]
P=[P1,P2,P3,P4],
decls(P,function(T0,T1max)),

% put bounds on the range of the function
bound_functions(P,[0,1]),

% set their values at times T0 and T1
Ps0=[P10,P20,P30,P40],
Ps1=[P11,P21,P31,P41],
lookup([p1=P10,p2=P20,p3=P30,p4=P40],S0),
lookup([p1=P11,p2=P21,p3=P31,p4=P41],S1),
evalall(P,T0,Ps0), evalall(P,T1,Ps1),

% lookup the valve speed
lookup([v=V],C),

% add the ODE constraints
valve_ODE(P1,V,M1),
valve_ODE(P2,V,M2),
valve_ODE(P3,V,M3),
valve_ODE(P4,V,M4),

...

% apply the ODEs corresponding to each tank
% Ri = ode governing tank i, Di = depth in tank i,
% Fi = flow out of tank i, Hi = height of tank i,
% Pi = valve opening out of tank i, Ki = valve coefficient,
% F00 = flow into tank 1

first_tank( R1, D1,F1,D2, F00,H1,C1,FRAC1,H2,E),
middle_tank(R2, F1,D2,F2,D3, H2,C2,FRAC2,H3,E),
middle_tank(R3, F2,D3,F3,D4, H3,C3,FRAC3,H4,E),
last_tank( F3,D4,F4, C4,FRAC4).

Figure 6. Parts of Enforce ODEs code
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middle_tank(above,F1,D2,F2,D3,H2,C2,FRAC2,H3,_E) :-
{[F2=C2*FRAC2*psqrt(D2-D3+H), ddt(D2,1)=F1-F2, H=H2-H3,

D3 in [H,1000] ]}.

This says that given a middle tank 2 (middle tank here means that tank 2 is not the first tank, and
tank 3 is not the last tank) in regime above with the following parameters:

F1 flow into the upper tank
D2 water height of the upper tank
F2 flow out of the upper tank (into the lower tank)
D3 water height of the lower tank
H2 height of the upper tank above sea level
C2 parameter of flow through the pipe between upper and lower tanks
FRAC2 fraction of the maximum flow the valve allows
H3 height of the lower tank above sea level
E an error term (the underscore before the E means ignore this term .)

then:

F2 = C2 · FRAC2
√

D2−D3 + H,
dD2
dT

= F2− F1, H = H2−H3, D3 ∈ [H, 1000]

Here H2, C2, H3 and E are constants, and all the other variables are function variables, though
that must be implied from earlier declarations. Again note that the the constraint requires the
depth D3(T) to be in the region for the above case or on the boundary with another case. Note
how the ODEs translate directly into CLIP.

6.4. Finding State Changes

The last section of code we describe in detail determines that a regime change has occurred. Parts of
this code are in Figure 7 and Figure 8. This code is called from find state change which says that
find state change is true if at least one of find flow state change, find valve state change,
find program state change or find step change, is true.

find flow state change (Figure 7) is true if and only if the two lookup assertions are true,
update discrete state is satisfied, and flow state change is satisfied. The lookup assertions
state that the values of constants passed to the assertion match the constants stored in
C. update discrete state here states that the only difference in discrete variables between state
S0 and state S1 is that in state S0, Ri has value R before and in state S1, Ri has value R after.

flow state change lists the four possible transitions, and the water levels which allow them.
Note the hysteresis – to enter state near the water level has to be within E of the critical level (H1
- H2), while to leave state near the water level has to be 2*E away from the critical level. This is
to prevent an infinite sequence of zero-time transitions when the water level is at a critical point.

Figure 8 shows the code for changes in the valve’s regime. find valve state change is very
similar to the code for find flow state change, except that it twice calls update discrete state
to update the two ternary variables for the two sets of regimes a valve has. One (M) is the valve
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% Detection of regime change due to tank depth exceeding input
% pipe height e.g. find_flow_state_change(r2,h2,h3,d3,C,S0,S1).
% note j=i+1 here and Ri in {above,near,below}

find_flow_state_change(Ri,Hi,Hj,Dj,C,S0,S1) :-
lookup([Hi=H1,Hj=H2],C), lookup([Dj=D],S1),
update_discrete_state(Ri,R_before,R_after,S0,S1),
flow_state_change(R_before,D,R_after,H1,H2).

% We use hysteresis in our analysis to avoid an infinite loop of zero
% time state changes as it goes from near to below and back again.
flow_state_change(below,D,near,H1,H2) :-
E=0.00001, {D = H1-H2-E}.

flow_state_change(near,D,below,H1,H2) :-
E=0.00001, {D = H1-H2-2*E}.

flow_state_change(above,D,near,H1,H2) :-
E=0.00001, {D = H1-H2+E}.

flow_state_change(near,D,below,H1,H2) :-
E=0.00001, {D = H1-H2+2*E}.

Figure 7. Code for Regime Change as Water Level Changes

motion regime, which can be one of opening, halted, closing, the other (R) is the valve position
regime, which can be one of shut, trans, norm. The valve position regime is necessary because
of the discontinuity in the valve ODEs at zero. norm means that the valve is in the regime where
the standard ODE applies, shut means that the valve is fully closed, and there is no flow through
it, and trans is the transition regime, where we simply apply a coarse constraint because we don’t
understand the physics in that regime.

7. Zeno hybrid systems

Johansson et al. (Johansson et al., 1999) introduce what they call a “Zeno phenomenon”. This is a
problem with some hybrid models in which an infinite number of steps occur in a finite amount of
time. At best, this leads to calculations which never finish, while at worst, it leads to false proofs
of safety properties in systems which don’t have those properties. The canonical examples of Zeno
phenomena are a bouncing ball which with each bounce achieves some fraction of the height of
the previous bounce in a fixed fraction of the time, and a water tank example discussed below. In
the bouncing ball case, a simulation would have to calculate an infinite number of bounces before
terminating unless the model included some handling of the idea that when the height of each
bounce is less than one atom’s diameter, the model must change.

The water tanks example of Johansson et al. is shown in Figure 9. There is a flow of water i into
a valve which can direct the water into either of two tanks. Each tank has a water level (h1, h2),
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% check to see if valve n has hit a state change
% and if so, update the discrete part of S1 accordingly
% e.g. find_valve_state_change(p2,v2,C,S0,S1).
% v2 in {opening,closing,halted}, p2 in [0,1],
% note that this is a regime change, not a state change.
% Also, we have to handle the regime change from shut to transition
% to normal. The transisition to shut implies a transition to halted,
% but not vice versa.

find_valve_state_change(Pn,Rn,Mn,_C,S0,S1) :-
% use S2, as temp states to have 2 discreet vars change
lookup([Pn=P_before],S0),lookup([Pn=P_after],S1),
update_discrete_state(Mn,M_before,M_after,S0,S2),
update_discrete_state(Rn,R_before,R_after,S2,S1),
valve_state_change(M_before,R_before,P_before,M_after,

R_after,P_after).

% regime change rules for valve motion (and in closing case, position)
valve_state_change(opening,normal,_P_before,halted,normal,P_after) :-

{P_after=1}.
valve_state_change(closing,trans,_P_before,halted,shut,P_after) :-

{P_after=0}.

% regime change rules for valves position
valve_state_change(opening,trans,_P_before, opening,normal,P_after) :-

{P_after=0.01}.
valve_state_change(opening,normal,_P_before,constant,normal,P_after):-

{P_after=1.0}.
valve_state_change(opening, shut,_P_before, opening,trans,P_after) :-

{P_after=0.0}.
valve_state_change(closing, normal,_P_before,closing,trans,P_after) :-

{P_after=0.01}.
valve_state_change(closing,trans,_P_before, constant,shut,P_after) :-

{P_after=0.0}.

Figure 8. Code for Valve Regime Changes
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and a required level (r1, r2). The safety property is that h1 is always above r1, and h2 is always
above r2. The water flow out of each tank is proportional to the ratio of the area of the tank to the
area of the output pipe, and to the square root of the water height. If the input flow i is chosen
to be larger than either output flow o1 or o2, but less than their sum (when h1 and h2 are near
r1 and r2), it is clear that the level in at least one of the tanks must fall below its required level.
Consider the program which whenever one of tanks gets to its required level switches the flow to
that tank. As the water level gets lower, the switching will happen more and more often, and the
valve will switch an infinite number of times in a finite period, during which time the water level
in each tank will still be at or above the required level.

Johansson et al. note that the Zeno phenomenon usually occurs as a result of over abstraction in
the model, as happens in these cases. Real systems can have valves that chatter, but the chattering
cannot involve an infinite number of state changes in a finite time. If the real system has chatter,
one should model it by a constraint giving a minimum time for a valve to change state. The infinite
chattering is an artifact of some models, and should be removed by the modeler. Zhang et al. (Zhang
et al., 2001) give examples of cases where overly abstract models (with the Zeno property) of real
systems (without the Zeno property) lead to incorrect proofs of safety properties. In most cases,
the Zeno problem can be eliminated by a more accurate model, often by simply modeling the time
a valve or switch takes to change state. In our example, we avoid Zeno phenomena because there
is a lower bound on the time required for twelve consecutive state changes. This bound is implied
in different ways for different sets of state changes. For example, the water flow through any pipe
is proportional to the square root of the water height, and we bound the water height in each
tank. That limit on the water flow limits how quickly the water level in any tank can change. The
only code added to avoid Zeno phenomena is the hysteresis. One case in which we do not avoid
Zeno phenomena is if the discrete part of a hybrid automata describes a Zeno phenomena. If, for
example, the program specified that at some water level a valve would switch from open to closed
and from closed to open, that behaviour would be modeled, and the simulation might never finish.
There is nothing to be done here. If a user specifies a poorly-formed program, analysis may fail.

7.1. CLP(F) and Zeno systems

How does a CLP(F) model handle a Zeno system? Consider the bouncing ball first. If the modeler
does not note that the physics change for very small bounces, the simulation has to include an
infinite number of vanishingly small bounces, but because everything in CLP(F) is an interval, the
height of the bounce will at some point reduce to [0, S], where S is the smallest number representable
in the floating point system. CLP(F)’s non-determinism means that it should eventually explore the
path where the bounce height is 0, and the motion ends. Because CLP(F) currently uses depth-first
search, it is non-deterministic whether it will try the finite or the infinite path at each branch.
If CLP(F) were to use breadth-first search, it would clearly show the possibility that the motion
ended, while still modeling the Zeno execution as another possibility. This is probably the best one
can hope for. If one gives a computer a model which includes a Zeno execution, the model must
show that. If the model can also show that the behaviour is within measurement (or calculation)
error, one hopes the user will realize that the initial model is insufficiently defined.
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Figure 9. Flow system with Zeno behaviour (after Zhang et al. )
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Extended Abstract 
This paper presents a method for computing rigorous bounds on the solution of linear systems 

whose coefficients have large, correlated uncertainties, with a computable overestimation factor that 
is frequently quite small. 

Linear systems of equations are among the most frequently used tools in applied mathematics. In 
realistic applications, the data entering the coefficients of these equations are generally uncertain. 
Since linear equations become nonlinear when coefficients are uncertain and become variable, 
traditional sensitivity analysis remains valid only for sufficiently small errors. Unfortunately, it 
is usually unclear when the errors are sufficiently small for its validity: For errors larger than some 
unknown, problem-dependent margin, sensitivity analysis may be severely biased, since it does not 
account for the nonlinearities in the problem. 

In problems where safety is an issue, worst case results are needed. For example, current safety 
regulation laws in civil engineering require a worst case analysis, and hence interval techniques, 
although current practice is still Monte Carlo with its deficiencies. 

Recently, NEUMAIER & POWNUK ( 2 ) showed that using interval analysis, it is possible to do 
quantitative worst case sensitivity analysis even in high dimensions. The techniques presented there 
provide good and valid enclosures of all quantities of interest, and thus enables engineers to obtain 
guarantees whether the worst case satisfies all safety requirements. 

However, previous worst case methods (including monotonicity methods which work only under 
additional assumptions) only compute the worst case when all uncertainties vary independently. 
This is frequently an unrealistic assumption. In the past, correlated uncertainties could be han- 
dled only with Monte Carlo methods which always underestimate the worst case, and sometimes 
drastically. 

In this paper we develop a method for the worst case analysis of solutions of linear systems of 
the form 

( K  + A ~ D A ) ~  = a + F b ,  

where D is diagonal, with correlated uncertainties in D and b, and no uncertainty in K ,  A, a ,  and 
F. This includes the case of linear systems arising in truss modeling. 
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The new results are obtained by generalizing those of NEUMAIER & POWNUK ( 2 ) to the case 
where the uncertainties are bounded by ellipsoids rather than boxes, thus reflecting the known 
correlations. A basic tool used is the following optimal bound for linear combinations of numbers 
ranging in an ellipsoid. 

Proposition. Let C E RnXn be symmetrtic and positive definite. If 

then 
aTxl 5 JZ, 

with equality iff x = XCa with I X  = 4-. 
Proof. Any symmetrtic and positive definite matrix C has a Cholesky factorization C = LLT 

with nonsingular L. Using this, we have 

Now the Cauchy-Schwarz inequality implies 

giving (1). Equality can only hold if equality holds in the Cauchy-Schwarz inequality, hence if Lplx 
and LTa are parallel. This requires x = XCa, and by substituting this into the equality case of (I), 

we find that I X  = J-. 

In addition, we employ ellipsoid arithmetic (cf. NEUMAIER ( 1 )) to enclose the intermediate 
expressions in the calculations. 

As an application, we show that it is feasible to compute worst case error bounds for the 
displacements of truss structures with uncertain stiffness coefficient, in the important case when 
the uncertainties are correlated. This includes the discussion of an appropriate deterministic model 
for uncertainty correlation. 

Examples of numerical computations will be given for large truss structures with correlated 
uncertainty in the stiffness. 
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Abstract: This note introduces the notion of dependence among intervals to account for observed 
or theoretical constraints on the relationships among uncertain inputs in mathematical 
calculations.  We define dependence as any restriction on the possible pairings of values within 
respective intervals and define nondependence as the degenerate case of no restrictions (which we 
carefully distinguish from independence in probability theory).  Traditional interval calculations 
assume nondependence, but alternative assumptions are possible, including several which might 
be practical in engineering settings that would lead to tighter enclosures on arithmetic functions 
of intervals.  We give best possible formulas for addition of intervals under several of these 
dependencies.  We also suggest some potentially useful models of correlation, which are single-
parameter families of dependencies, often ranging from the identity dependence (u=v) 
representing maximal correlation, through nondependence, to opposite dependence (1−u=v) 
representing maximally negative correlation. 
 
Keywords: dependence, correlation, copula, multivariate interval, nondependence 
 
 
 

1. Introduction 
 
Interval analysis has an inadequate model of dependence between variables.  Because of this 
deficiency, many analysts discount the utility of interval arithmetic in propagating uncertainty 
through mathematical expressions because it does not account for natural dependencies that can 
occur between input values.  Many reject interval methods and appeal instead to probability 
theory because it provides a well developed model of dependence in terms of correlations and the 
general theory of copulas (Nelsen 1999).  This perceived advantage of probabilistic over interval 
methods is undeserved, however, because interval analysis could also offer a model of 
dependence, and it would be considerably simpler and perhaps more workable than that required 
for event probabilities or random numbers. 
 
There are two uses of a model of dependence among intervals.  The first is to account for 
dependencies that exist between distinct inputs.  Such dependencies can be implied by the 
physical or biological mechanisms governing the underlying system.  For instance, if both the  
___________________________ 
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size and mass of a component are interval inputs in a calculation, it is likely there is a connection  
between these two inputs such that large values of one are associated with large values of the 
other and that precludes certain contrary combinations of values within their intervals.  For other 
variables there might be reasons why large values of one cannot co-occur with large values of 
another.  Dependencies such as these might be deduced from the mathematical relationships 
between the variables.  They might alternatively be evidenced by empirical information, or 
simply asserted a priori by the analyst.  In any case, it is legitimate and essential to take account 
of these dependencies if doing so tightens the interval outputs of analysis. 
 
Although not a primary focus of this note, the second use of a model of dependence among 
intervals is as underpinning for a strategy to address the repeated parameter issue (also known as 
the “dependence” issue) in which a single interval input appears multiple times within a 
mathematical expression.  For example, the terms in the expression A − A2 are dependent in that 
knowing A’s value tells us the value of A2 exactly.  Such dependencies arise because of 
mathematical identities or repeated variables in expressions, rather than empirical dependencies 
discussed above.  One could argue that one kind of dependence is a special case of the other kind 
of dependence, and they are clearly closely intertwined. 
 
 
 

2. Dependence between intervals 
 
So what is dependence between uncertain numbers characterized by intervals?  We define 
dependence as any restriction on the possible pairings of the uncertain numbers.  An interval 
dependence relation D is a subset of the unit square U = [0,1] × [0,1] = { (u,v) : u ∈ [0,1], v ∈ 
[0,1] } such that there exists in the relation at least one pair (u,v) for every value of u and v.  That 
is, D ⊆ U is a dependence relation if and only if, for any u ∈ [0,1], there exists some pair (u,v) ∈ 
D for some v ∈ [0,1], and, likewise, for any v ∈ [0,1], there is a pair (u,v) ∈ D for some u ∈ [0,1].  
Consider two intervals A = [a1, a2] and B = [b1, b2].  We say that A and B are dependent according 
to a dependence relation D if  
 
f(A, B) = { c : c = f(a, b), where a = u (a2 – a1) + a1, b = v (b2 – b1) + b1, and (u,v) ∈ D } 
 
for all binary functions f.  In this case, A and B are said to have the dependence D.  Any pair of 
values (a,b) is called a possible pair from the intervals A and B if a ∈ A, b ∈ B, and ((a – a1)/(a2 – 
a1), (b – b1)/(b2 – b1)) ∈ D. 
 
We use D to denote the set of all such dependence relations, of which U ∈ D is a privileged 
special case.  If a dependence relation is all of U, it is called the noninteractive dependence 
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relation or, more simply, the all-pairs relation.  It is the largest possible dependence in that it 
encloses all other possible dependence relations.  We can say that intervals having this degenerate 
relation are nondependent.  (We conscientiously refrain from calling such intervals ‘independent’ 
because this term already has a firmly entrenched meaning in probability theory that is not 
equivalent to—and indeed is quite different from—nondependence.) 
 
If there is only one pair in the set for each value of u and only one pair for each v, it is called a 
one-pair dependence relation.  There are two special cases of one-pair relations that are 
especially important.  The first is the identity relation P = { (u,v) : u = v, u ∈ [0,1], v ∈ [0,1] }.  
This is the case of perfect dependence between the two intervals.  Low values of one interval are 
perfectly paired with low values of the other, and high values of one are paired with high values 
of the other.  The second special case of a one-pair relation is the opposite relation O = { (u,v) : 
1−u = v, u ∈ [0,1], v ∈ [0,1] } which reverses the association so high values of one variable are 
paired with low values of the other.  Both of these special cases are monotone relations, but not 
all one-pair relations are so well behaved.  Even if the value within A perfectly determines the 
associated value within B and vice versa, their dependence may still be very complicated.  The 
notion of “shuffles” (Nelsen 1999) from probability theory generalizes to interval dependence. 
 
Between the degenerate all-pairs dependence relation and various possible one-pair dependence 
relations there is a huge variety of dependence relations.  Indeed, this variety is infinite-
dimensional, although it is vastly less complex than the analogous diversity in copulas modeling 
dependence between random numbers in probability theory.  The key to developing practical 
strategies for handling dependence among intervals is to define classes or families of dependence 
that are appropriate models of the kinds of associations commonly encountered.  The next section 
introduces some candidates. 
 
 
 

3. Correlation models 
 
A complete model of correlation is any map ρ from [−1,+1] to D (the set of all bivariate 
dependence relations) such that ρ(−1) = O, ρ(0) = U, and ρ(1) = P.  There are infinitely many 
such maps (just as there are in the analogous probability theory).  Nevertheless, it is useful to 
identify some models of correlation that might be workable in practical engineering settings.  For 
instance, it might be convenient to define the family of dependence relations depicted in Figure 1.  
The figure shows eleven dependence relations, ranging from O at the far left to P at the far right.  
Each dependence relation is depicted as an area in black within the unit square.  The abscissas are 
the u values and the ordinates are the v values. 
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 r = −1 r = 0 r = +1 

 
Figure 1.  A complete model of correlation between intervals. 

 
In this family, there is a dependence relation for each value of the correlation r from negative one 
through zero and on to positive one.  In this case, the dependence relation for a given r is defined 
as  
 
D(r) = { (u,v) : max(0, −u−r, u−1+r) ≤ v ≤ min(1, u+1−r, −u+2+r), u ∈ [0,1], v ∈ [0,1] }. 
 
The signal characteristic of the model of correlation represented by this parameterized family of 
dependence relations is the way in which pairs are excluded that would contradict the assertion of 
correlation at magnitude r:  the counterindicated corners of the dependence relation are shaved 
away. 
 
There are actually many complete models of correlation that are possible.  For example, Figure 2 
shows four different families, each of which smoothly morph from the opposite dependence O for 
a correlation r of −1 though the all-pairs dependence at correlation zero to the perfect dependence 
P at correlation +1.  These families are composed of relations having rhomboidal shapes with 
straight-line edges.  Other families could be devised out of other curved shapes as well. 
 
 r = −1 r = 0 r = +1 

 
Figure 2.  Four alternative complete models of correlation. 
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A non-complete model of correlation would be a map from a proper subset of [−1,+1] to D, or a 
map from [−1,+1] to D that didn’t send −1, 0 and +1 to O, U and P respectively.  One non-
complete model of correlation that will likely be very useful in practical problems is the ellipse 
model (Chernousko 1988, 1994; Kreinovich et al. 2005, 2006).  This model maps all of the range 
[−1,+1] and it goes from O and P, but its dependence for zero correlation is not U.  Instead, it is 
the inscribed circle E0 = {(u,v) : (u−½)2 + (v−½)2 ≤ ¼}.  As the correlation coefficient varies from 
zero to +1, the dependence relation is a rotated ellipse inscribed within U.  In the limit, as the 
correlation reaches +1, it becomes a degenerate rotated ellipse equivalent to the perfect 
dependence relation P.  Likewise the negative correlations go from the circle to the opposite 
dependence O.  This family of ellipses is depicted in Figure 3.  It is parameterized by the point u* 
of the ellipse’s tangency with the u-axis (where v = 0).  Because this point ranges over [0,1], we 
can define another correlation index r = 1 − 2u*, ranging over [−1,+1]. 
 
 r = −1 r = 0 r = +1 

 
Figure 3.  Elliptic family of dependence relations. 

 
Given an elliptic correlation r, the dependence relation is the interior of the ellipse E(r) ⊆ U, 
which is tangent to the u-axis at u* = (1−r)/2.  This dependence relation is 
 
E(r) = {(u,v) : 4((u+v−1)2−2(1+r)(u−½)(v−½))/(1−r2) ≤ 1, u ∈ [0,1], v ∈ [0,1]}.  
 
Chernousko (1988, 1994) and Kreinovich et al. (2005, 2006) considered such ellipses for 
modeling dependence among intervals.  Kreinovich et al. (2006) reviewed the use of an elliptic 
model of interval dependence in quadratic response surface models. 
 
There are many, many other dependence families that might be useful.  When, for example, an 
interval expression involves repeated subexpressions inducing a mathematical dependence, the 
relevant family of dependence relations represents the mathematical relationship.  Consider, for 
instance, intervals A and A2.  Depending on the numerical values within A, their dependence must 
be an arc of a parabola and might be one of the dependence relations depicted in Figure 4.   
 
 r = −1 r = 0 r = +1 

 
Figure 4.  Parabolic family of dependence relations. 
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These dependencies can be called the parabolic family of dependence relations.  A 
parameterization of the family is  
 
Q(r) = { (u,v) : ((u − λ)2 − q) / (max(λ2, (1 − λ)2) − q) = v, u ∈ [0,1], v ∈ [0,1] }. 
 
where λ = tan(−πr/2) + ½ is the location on the u-axis of the parabola’s minimum, and q is zero if 
0 ≤ λ ≤ 1, or min(λ2, (1−λ)2) otherwise.  Some of these dependencies are one-pair relations (when 
they represent only one branch of the parabola), in which case calculations may be relatively 
easy, but this is not always so.  Because the dependence relation is scaled on the unit square, this 
family of dependences can be parameterized by a single-dimensional scalar value that depends on 
whether the interval A straddles zero or not. 
 
In principle, other intervals could have parabolic dependence as well.  For instance, the interval B 
= [4,11] could not be a square of the interval A = [3,5] because their ranges would be inconsistent, 
but these two intervals could have a parabolic dependence if the pairings of a ∈ A and b ∈ B were 
constrained so that ((a − 3)/2, (b − 4)/7) ∈ Q(r) for some r as depicted in Figure 4. 
 
 
 

4. Arithmetic operations under specified dependence 
 
Accounting for the dependence between intervals can improve the enclosures that can be 
computed for arithmetic expressions that involve them, and the numerical results can be 
considerably tighter than would be obtained by applying the default methods of interval 
arithmetic that do not consider dependence.  The table below gives formulas for the sum of A = 
[a1, a2] and B = [b1, b2] under a variety of dependence relations between them.  On the left side of 
the table are given the name of the dependence relation, a graphical depiction of its shape and the 
constraints that define it (in terms of u and v, which are each implicitly assumed to lie within 
[0,1]).  On the right side of the table are formulas to compute best-possible bounds on the sum 
A+B.  Some of the formulas involve the envelope function env(x,y) = [min(x, y), max(x, y)], and 
the proportional component function w([x1,x2], p) which is p (x2 − x1) + x1, or just x1 if p is less 
than zero, or x2 if p is greater than one. 
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Dependence Addition formula 
P (perfect) 

 
u = v 

[a1+b1, a2+b2] 

O (opposite) 

 
1 − u = v 

env(a1+b2, a2+b1) 

D(r) (correlated) 

,    
max(−u−r,u−1+r)≤v≤ 
min(u+1−r,−u+2+r) 

[env(w(A, −r)+b1, a1+w(B,−r)), env(a2+w(B,1+r),w(A,1+r)+b2)] 

E(r) (elliptic) 

,  
4((u+v−1)2−2(1+r) 
(u−½)(v−½))/(1−r2)≤1 

env(p−q−, p−q+, −p+q+, −p+q−)+(x1+x2+y1+y2)/2, where 
                         _________________________________________________________________________                                                            ______________________________________________ 

p = √4z/(((y2−4xz)/(y−2z))2−y2+4xz),   q± = yp±√y2p2−4z(xp2−1))/2z, 
x = 4/(a2−a1)

2(1−r2),   y = −8/(a2−a1)(b2−b1)(1−r2),   z = 4/(b2−b1)
2(1−r2) 

Upper, left 

 
u ≤ v 

[a1+b1, a2+b2] 

Lower, left 

 
1 − u ≥ v 

env(a2+b1, env(a1+b2, a1+b1)) 

Upper, right 

 
1 − u ≤ v 

env(a2+b1, env(a1+b2, a2+b2)) 

Lower, right 

 
u ≥ v 

[a1+b1, a2+b2] 

Diamond 

 
[env(a1+w(B,½), w(A,½)+b1), env(a2+w(B,½), w(A,½)+b2)] 



 Scott Ferson and Vladik Kreinovich 122 

|u − ½| + |v − ½| ≤ ½ 
U (nondependent) 

 
(u,v) 

[a1+b1, a2+b2] 

 
This and comparable tables for other arithmetic operations such as subtraction, multiplication, 
division, minimum, maximum, powers, etc., together would constitute an extension to naïve 
interval arithmetic that can begin to account for dependence between inputs.   
 
The table above gives formulas for single arithmetic sums.  For example, suppose the dependence 
relation between A = [0,1] and B = [1,11] is of the form D(r = −0.5) as depicted in Figure 1, then 
the sum A + B is surely within [env(w(A, −r)+b1, a1+w(B,−r)), env(a2+w(B,1+r),w(A,1+r)+b2)] = 
[env(w([0,1], 0.5)+1, 0+w([1,11], 0.5)), env(1+w([1,11],1−0.5),w([0,1],1−0.5)+11)] = 
[env(0.5+1, 0+6), env(1+6, 0.5+11)] = [[1.5,6], [7,11.5]] = [1.5, 11.5].  This interval is an 
improvement to both bounds over [1,12] obtained by standard interval analysis that does not 
consider their dependence.  The bounds accounting for this kind of dependence will be tighter 
than [a1+b1, a2+b2] whenever r is less than zero.  Another example involves a special case of the 
D(r) dependence family which is the opposite dependence relation O = D(−1).  If A and B have 
this dependence, then their sum A+B is sure to be within [2,11].  The tighter result arises in this 
case because the possible pairs of values from the two intervals are restricted to single 
combinations: 
 
a∈A  b∈B  a+b 
 

0 11 11, . . . . . . . . . 
0.1 10 10.1, . . . . . . . . . 
0.2 9 9.2, . . . . . . . . . 
0.3 8 8.3, . . . . . . . . . 
0.8 3 3.8, . . . . . . . . . 
0.9 2 2.9, . . . . . . . . . 
1 1 2. 
 
For this reason, the formula for addition under opposite dependence simplifies to env(a1+b2, 
a2+b1) as shown in the table. 
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There is an important caveat about the difficulty of the deriving formulas for arithmetic functions 
for different dependence relations.  Monotonicity of the dependence relation does not ensure that 
the bounds on an arithmetic function can be found by testing two endpoints.  Consider bounding 
the addition of intervals A = [3,5] and B = [4,11] that have a parabolic dependence defined by the 
constraint (u − 1)2 = v.  This corresponds to λ = 1, q = 0, and r = −2 atan(½)/π ≈ −0.295 and is the 
left branch of a parabola, so the dependence is monotone.  (It is depicted as the decreasing curve 
in the third graph from the left in Figure 4.)  The endpoints of the dependence relation might 
seem to suggest that the bounds on the sum would be a+b = 3+11 = 14 and a+b = 5+4 = 9.  But 
the minimal value of the sum is actually obtained from the combination of a = 45/7 with b = 41/7, 
which is 86/7 ≈ 8.857.  The values correspond to u = 6/7 and v = 1/49.  This example shows that 
even when the dependence is a one-pair relation that is a monotone function, even the simplest 
arithmetic function, addition, cannot be evaluated by enveloping the results at the endpoints.  
Inspection of the endpoints or corners of the dependence relation only generally suffices to find 
the bounds on the arithmetic function if the edges of the dependence relation are straight lines and 
the arithmetic function is addition. 
 
Accounting for dependence can sometimes lead to substantial numerical improvements over 
interval calculations that make no account of dependence.  Although they are generally modest 
for addition, they can be large for other mathematical operations.  For instance, if A = [0,1] and B 
= [1,11] have the opposite dependence relation O, the range of their product A×B is [0,3.025], 
which is only a third of the width of the interval [0,11] obtained by the standard calculation. 
 
 
 

5. Uncertainty about the dependence 
 
Specifying the dependence relations between input intervals is the prerogative and responsibility 
of the analyst.  They should represent available information about constraints between the inputs.  
Because the specification of such dependencies is a matter of engineering judgment or empirical 
evidence, there may be uncertainty about how it should be done.  In particular, for instance, one 
may not be able to ascribe a precise value to a correlation coefficient r.  In such cases, it might be 
reasonable to use an interval to characterize r.  The bounds on an arithmetic function of intervals 
in this case can be found by taking the union (or convex hull) of bounds obtained under each 
possible correlation coefficient within the interval. 
 
When one does not know anything about the dependence at all, the all-pairs dependence relation 
we call nondependence should be used.  This reduces all arithmetic calculations to the traditional 
interval formulas.  This choice allows an analyst to compute conservative answers that enclose all 
possible results.  Such a simple strategy is not available in probability theory.  Assuming 
independence (or, indeed, any dependence) between random variables would not allow one to 
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find the bounds on an arithmetic function when their dependence is unknown.  To do this, one 
must resort to computing the Fréchet convolutions (Ferson et al. 2004).  This difference shows 
that nondependence is not really analogous to independence as it is recognized by probabilists.  
Although interval researchers often refer to nondependence as independence, and nondependence 
has sometimes been considered a kind of independence (Couso et al. 2000; cf. Ferson et al. 2004), 
we think that they are such distinct ideas that special care should be made to distinguish between 
them. 
 
 
 

6. Multivariate dependence relations 
 
So far, we have discussed only bivariate dependence relations, but there are multivariate 
generalizations as well.  For example, D3 ⊆ [0,1]×[0,1]×[0,1] is a trivariate dependence relation if 
it contains at least one triple for every marginal value.  Likewise, Dk ⊆ [0,1]k is a k-dimensional 
dependence relation if it contains at least one element for every marginal value.  We can denote 
the set of all possible k-dimensional dependence relations as Dk.  We have been calling D2 simply 
D.  There is a k-dimensional generalization of P, but not of O. 
 
The problem of accounting for dependencies among intervals in complex mathematical 
expressions may be much more difficult than it is for the binary operations considered in this 
note.  Strategies for conveniently calculating best possible bounds await development.  It may be 
difficult to properly handle such calculations as a sequence of binary operations on intervals.  For 
example, suppose A = [2,4], B = [4,7], and C = [3,9], where A and C have the opposite 
dependence relation O, and that the mathematical expression to be evaluated is AB+C.  
Approached as a composition of binary operations, the calculation would need to evaluate AB 
first and only then the sum.  However, the information about the dependence between A and C is 
inaccessible once the multiplication occurs.  What does dependence information about two 
variables imply about the dependence between functions of these variables?  Simple simulations 
show that the best possible bounds on the function AB+C given the opposite dependence between 
A and C are [17,31].  This interval can be obtained by assuming opposite dependence between C 
and the product AB, but it is not clear that assumptions like this are always permissible, or, in 
general, what theory governs dependence in interval calculations. 
 
 
 

7. Conclusions 
 
This paper has introduced the notion of dependence within interval calculations.  Dependence is 
defined to be any restriction on the possible pairings of values from the respective intervals.  Such 
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restrictions can be modeled as subsets of the unit square, which are relations (rather than 
functions) between the margins of a multivariate interval.  As copulas abstract the notion of 
dependence out of joint distributions in probability theory, these structures extract the dependence 
out of multivariate intervals. 
 
We have derived some exemplary formulas for bounding the results of interval addition under a 
handful of possible dependence relations, but the general computational problem of accounting 
for dependencies among intervals in arbitrary interval computations remains largely unstudied.  
Dependence information about two interval variables does not necessarily imply the dependence 
between functions of these variables.  Further work is necessary to develop and implement 
convenient algorithms to enable routine calculations that take account of dependence among 
intervals.  Further work is also needed to explore the role that conditionalization might play in the 
context of interval dependence. 
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Abstract. In many real-life situations, in addition to knowing the intervals xi of possible values
of each variable xi, we also know additional restrictions on the possible combinations of xi; in
this case, the set x of possible values of x = (x1, . . . , xn) is a proper subset of the original box
x1× . . .×xn. In this paper, we show how to take into account this dependence between the inputs
when computing the range of a function f(x1, . . . , xn).

Keywords: constraints, interval computations, dependence between the inputs

1. Introduction

1.1. General Problem of Data Processing under Uncertainty

In many real-life situations, there exist quantities which are difficult (or even impossible) to measure
directly: e.g., the amount of oil in an oil field, or the temperature inside a reactor. Since we cannot
measure the corresponding quantity directly, we can measure it indirectly: by measuring the values
of easier-to-measure quantities x1, . . . , xn which are related to the desired quantity y by a known
dependence y = f(x1, . . . , xn).

The resulting indirect measurement consists of the following:

− first, we measure the quantities x1, . . . , xn, and

− then, we apply the function f to the results x̃1, . . . , x̃n of these measurements.

The resulting value ỹ = f(x̃1, . . . , x̃n) is our estimate for the desired quantity y.

c© 2006 by authors. Printed in USA.
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-

· · ·
-

-

x̃n

x̃2

x̃1

-ỹ = f(x̃1, . . . , x̃n)f

If measurements were absolutely accurate, then we would be able to get the exact values of xi,
and thus, compute the exact value of the desired quantity y. In reality, however, measurements
are never 100% accurate; hence, the result x̃i of i-th measurement is, in general, different from the
actual value xi of the corresponding quantity. In other words, we have a non-zero measurement
error ∆xi 6= 0. Hence, the result ỹ = f(x̃1, . . . , x̃n) of applying the function f to the measured
values is, in general, different from the actual (unknown) value y of the desired quantity – i.e.,
from the result y = f(x1, . . . , yn) of applying the function f to the actual (unknown) values of the
quantities xi.

A natural question is: what can we say about the error ∆y
def= ỹ − y of indirect measurement?

Comment. In some real-life situations, we also do not know the exact function f , and this uncer-
tainty in f needs to be added to the uncertainty caused by errors of direct measurements ∆xi 6= 0.
In this paper, for simplicity, we consider only the cases when we know the exact expressions for the
function f .

1.2. Probabilistic and Interval Uncertainty

The error ∆y of indirect measurement is caused by the measurement errors ∆xi of direct measure-
ments. Thus, to deduce the desired information about ∆y, we must use the known information
about ∆xi.

-

. . .

-

-

∆xn

∆x2

∆x1

-∆yf

Traditionally, in engineering and science, we assume that we know the joint probability distribu-
tion for ∆xi. Usually, it is assumed that these measurement errors are independent and normally
distributed, with 0 mean and known standard deviations; however, there are are also known ways
of handling possible dependence and non-Gaussian (non-normal) distributions.
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In many real-life situations, we do know these distributions: they come from the process of
comparing the currently used measuring instruments (MI) with much more accurate “standard”
MIs used in the national or international standards centers. Specifically, we repeatedly measure
the same quantity by our MI and by the standard MI. The standard MI is, by definition, much
more accurate than our MI, i.e., |xstand

i − xi| ¿ |x̃i − xi|. Hence, the difference x̃i − xstand
i between

the results of these two measurements is very close to the actual (unknown) measurement error
∆xi = x̃i − xi. Thus, by analyzing the sample of such differences, we can infer the probability
distribution for the measurement error ∆xi.

This “calibration” of measuring instruments is indeed often performed. However, there are two
important classes of situations where this calibration is not done.

The first such class is situations from fundamental science. If we are interested in the accuracy
of a typical over-the-counter voltmeter, then it is possible to design a more accurate voltmeter
and used this more accurate MI to calibrate our MI. However, when we are trying to analyze the
accuracy of, say, measurements performed by using the newest particle super-collider, it would nice
to have a much more accurate instrument available for calibration, but the existing instrument is
the best we have. Similarly, to analyze the accuracy of measurements made by using the Hubble
telescope, it would be nice to have a much more accurate instrument floating nearby, but the Hubble
is the best we have so far.

Another class of situations is related to manufacturing. In manufacturing, in principle, it is
possible to calibrate all the sensors. However, a detailed individual calibration of each sensor often
costs orders of magnitude more than the sensors themselves. As a result, manufacturers are trying
to avoid detailed calibration of all the sensors, and use whatever information is available without
spending a lot of money.

In such cases, we do not know the probability distribution of the measurement errors ∆xi. What
do we know in such situations? For sure, the manufacturer of the measuring instrument must supply
us with an upper bound ∆i on the (absolute value of) the measurement error |∆xi|. Indeed, if such
guaranteed bound is provided, this means that the actual value xi of the measured quantity can be
as far away as possible from the measured value x̃i. For example, we measure the current as 1 A,
but the actual current current can be 1000 or 0. This is a wild guess, not a measurement. For an
instrument to be called a measuring instrument, some bound has to be provided. The manufacturer
may provide some additional information about ∆xi, but the upper bound has to be provided.

Once the upper bound ∆i on |∆xi| is provided, then, based on the measured value x̃i, we can
conclude that the actual (unknown) value xi of the i-th quantity belongs to the interval

xi ∈ [x̃i −∆i, x̃i + ∆i].

In other words, we know the values xi with interval uncertainty.
For example, if the measured current is 1.0 V and the upper bound on the measurement error

is 0.1 V, then we are guaranteed that the actual (unknown) value of the current is in the interval
[1.0− 0.1, 1.0 + 0.1] = [0.9, 1.1].
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1.3. Interval Computations: A Problem

We have just mentioned that in many important real-life situations, we know xi with interval
uncertainty, i.e.:

− we know the ranges xi of possible values of xi, and

− we do not have any information about the probability of different values within these ranges.

In such situations, the only information that we can have about the desired quantity y = f(x1, . . . , xn)
is the range of possible values of y when xi ∈ xi. In other words, we face the following problem:

− Given:

• an algorithm y = f(x1, . . . , xn) that transforms n real numbers xi into a number y; and

• n intervals xi = [xi, xi].

− Compute: the corresponding range of y:

y = [y, y] = {f(x1, . . . , xn) |x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

-

· · ·
-

-

xn

x2

x1

-y = f(x1, . . . ,xn)f

The problem of computing this range is often called the main problem of interval computations;
see, e.g., (Jaulin et al., 2001).

It is known that even for quadratic f , the problem of computing the exact range y is difficult
to compute (in precise terms, NP-hard); see, e.g., (Kreinovich et al., 1997; Vavasis, 1991). Crudely
speaking, NP-hard means that1 it is not possible to find an efficient algorithm that would compute
the exact range for all possible problems. Since no such general algorithm is possible, to solve
practical problems, we thus need to do the following:

− find classes of problems for which efficient algorithms are possible; and

− for problems outside these classes, find efficient techniques for approximating uncertainty of y.

This is what interval computations community has been doing for several decades.

1 unless P is equal to NP, which most computer scientists do not believe
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1.4. Why Not Maximum Entropy?

From the engineering practical viewpoint, a natural question is: why not use the Maximum Entropy
approach? Let us explain what this question means and how to answer it.

Our problems come from the fact that we do not know the exact probability distribution for
∆x = (∆x1, . . . ,∆xn). In real life, this is a frequent situation: in many practical applications, it is
very difficult to come up with the probabilities.

The traditional engineering approach recommends that we use probabilistic techniques. If we do
not know the exact probability distribution, this means that there are many different probability
distributions which are consistent with the same observations and measurements. The traditional
engineering solution to this problem is to select one of these distributions – e.g., the one with the
largest entropy; see, e.g., (Jaynes, 2003) for the detailed description of this Maximum Entropy
(MaxEnt) approach.

For example, suppose that we have only one variable x, and all we know about the actual value
of this variable is that it belongs to the interval [x, x]. Since we have no information about the
relative probability of different values from this interval, there is no reason to assume that some
values are more probable than the others. It is therefore reasonable to assume that all the values
within this interval are equally probable, i.e., in precise terms, that we have a uniform distribution
on this interval [x, x]. Not surprisingly, this is exactly what MaxEnt leads to.

In case we have several variables ∆xi and we have no information about their correlation, then
we have no reason to assume that they are positively or negatively correlated; it is thus reasonable
to assume that they are independent. For example, if all we know is that ∆xi belongs to the interval
[−∆i, ∆i], then the only information that we have about the vector ∆x = (∆x1, . . . ,∆xn) is that
it is located in the box [−∆1, ∆1]× . . .× [−∆n, ∆n]. Since we have no reason to assume that some
values from this box are more probable than the others, it seems reasonable to assume that all the
values from the box are equally probable – i.e., in precise terms, that we have a uniform distribution
on this box. One can easily see that the uniform distribution on the box means that:

− the variables ∆xi are independent, and

− each variable ∆xi is uniformly distributed in the corresponding interval.

Why should we not use this approach? Because, as we will show, this approach can sometimes
seriously underestimate the error of indirect measurement. Indeed, let us consider the simplest
possible case, when:

− the desired quantity y is simply the sum of n values x1, . . . , xn, i.e., f(x1, . . . , xn) = x1+. . .+xn,
and

− all direct measurements have the same error bound ∆1 = . . . = ∆n = ∆.

In this case, ∆y = ∆x1 + . . . + ∆xn, with ∆xi ∈ [−∆i, ∆i].
In practice, it is quite possible that all n measurement errors are caused by the same factor; in

this case, it is possible that ∆x1 = . . . = ∆xn and thus, ∆y = n ·∆x1. Since the measurement error
∆x1 can be take any values from the interval [−∆, ∆], it is possible that ∆x1 = ∆ and therefore,
it is possible that ∆y = n ·∆.
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On the other hand, when we apply the MaxEnt approach to this situation, we thus assume
that the values ∆xi ∈ [−∆, ∆] are independent identically distributed random variables uniformly
distributed on the interval [−∆, ∆]. For the uniform distribution, the mean is 0, and the variance

is
1
3
·∆2. When we add independent random variables, their means and variances add up, so the

sum ∆y has a mean 0 and variance V =
1
3
· n ·∆2.

It is known that, due to the Central Limit Theorem (see, e.g., (Wadsworth, 1990)), for large n, the
sum ∆y of n independent identically distributed random variables is almost normally distributed.
Thus, within the MaxEnt approach, for large n, the measurement error ∆y is (almost) normally

distributed with 0 means and variance V =
1
3
· n · ∆2. It is also well known that for a normally

distributed random variable, the probability of a value which is more than, say, 6σ away from
the mean is negligibly small (≈ 10−8). Thus, from the MaxEnt approach, we conclude that with
probability ≥ 1− 10−8 (i.e., practically, with certainty), the measurement error ∆y is bounded by
6σ = 6 · √V ∼ √

n.
So, by using the MaxEnt approach, we get an error bound ∼ √

n, but in reality, due to possible
correlations, we may have ∆y ∼ n À √

n. Our conclusion is that using a single distribution – even
the most reasonable one – can be very misleading, especially if we want guaranteed results, e.g., in
high-risk application areas such as space exploration or nuclear engineering.

We therefore need to solve the original problem of interval computations.

1.5. General Approach: Interval-Type Step-by-Step Techniques

In this paper, we will modify the standard interval computation techniques. To explain the needed
modification, let us recall these techniques in detail.

As we have mentioned, the main difficulty of solving the main problem of interval computations
is that it is (provably) computationally difficult to compute the exact range y for an arbitrary
function f(x1, . . . , xn). The solution provided by interval computations is to compute an enclosure
Y for this range, i.e., a set Y for which y ⊆ Y.

Algorithms for computing an enclosure start with an observation that for arithmetic operations
f(x1, x2), we have explicit formulas for the range. When x1 ∈ x1 = [x1, x1] and x2 ∈ x2 = [x2, x2],
then:

− The range x1 + x2 for x1 + x2 is [x1 + x2, x1 + x2].

− The range x1 − x2 for x1 − x2 is [x1 − x2, x1 − x2].

− The range x1 · x2 for x1 · x2 is [y, y], where

y = min(x1 · x2, x1 · x2, x1 · x2, x1 · x2); y = max(x1 · x2, x1 · x2, x1 · x2, x1 · x2).

− The range 1/x1 for 1/x1 is [1/x1, 1/x1] (if 0 6∈ x1).

These formulas are called formulas of interval arithmetic.
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The main idea behind straightforward interval computations is that within a computer, only
elementary arithmetic operations are hardware supported2. No matter how complex the function
f(x1, . . . , xn) is, the compiler parses it, i.e., represents its computation as a sequence of elementary
arithmetic operations. The main idea is that if we only know the inputs with interval uncertainty,
then we perform the same arithmetic operations in the same order, but with intervals instead of
numbers. It is known that the resulting interval is an enclosure for the desired range.

Let us consider a toy example of estimating the range of a function f(x) = (x− 2) · (x + 2) on
the interval x ∈ [1, 2]. How will the computer compute this function? It will first compute x − 2,
then x + 2, and then multiply the results. If we denote i-th intermediate computational result by
ri, then we get the following sequence of elementary arithmetic operations:

• r1 := x− 2;

• r2 := x + 2;

• r3 := r1 · r2.

If we perform the same operations, but with intervals instead of numbers, then we get the following
intervals:

• r1 := [1, 2]− [2, 2] = [−1, 0];

• r2 := [1, 2] + [2, 2] = [3, 4];

• r3 := [−1, 0] · [3, 4] = [−4, 0].

As a result, we get an interval [−4, 0].
In this toy example, f(x) = x2 − 4, so the actual range of this function on the interval [1, 2] is

easy to compute: it is equal to f(x) = [−3, 0]. We can thus see that our computed range Y = [−4, 0]
is indeed the enclosure for the actual range y = [−3, 0].

Comment. To avoid misunderstanding, we should emphasize that this is just a toy example.
There exist more efficient ways of computing an enclosure Y ⊇ y than straightforward interval
computations (see, e.g., (Jaulin et al., 2001)); however, most of these more efficient and more
sophisticated techniques are based on the main ideas of straightforward interval computations.

1.6. From “Theoretical” Interval Computations to Computer-Representable
Interval Computations: The Need for Rounding

The above formulas for interval arithmetic assumed that all rational numbers can be exactly
represented in a computer. In reality, only some binary-rational numbers can be represented. To
represent numbers like 1/3 in a computer, we must therefore round these numbers, i.e., replace
these theoretically correct numbers with nearby machine-representable ones.

To get a guaranteed enclosure, we must always:
2 Actually, only addition, subtraction, and multiplication are directly hardware supported; division a/b is usually

implemented as a · (1/b).

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.



134 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

− round the lower endpoint of the interval downwards (i.e., replace it with a smaller number),
and

− round the upper endpoint of the interval upwards (i.e., replace it with a larger number).

1.7. Interval Computations: Analysis

As we have mentioned, the main problem with computing the exact range of the function under
interval uncertainty is that this computation is NP-hard, which means that in the worst case, this
computation probably require the time which is exponentially growing the size T of the expression
f – i.e., grows as 2T of faster. As a result, for reasonable size algorithms f , with T in hundreds,
the required computation time will be unrealistic – e.g., it may exceed the lifetime of the universe.

From this viewpoint, a natural question to ask is: how long will computations take for the
above straightforward computations techniques of computing the enclosure for the exact range. In
straightforward interval computations, each original elementary arithmetic operation is replaced
with one operation of interval arithmetic. Each interval arithmetic operation consists of several
arithmetic operations with numbers: addition of two intervals means two additions of numbers,
etc. The largest number of operation with numbers per single interval arithmetic operation is for
interval multiplication, which requires 4 multiplications of numbers. Thus, when we move from
the original computations to interval computations, we replace each arithmetic operation with ≤ 4
operations. As a result, the computation time for the straightforward computations is ≤ 4 · T , i.e.,
it is O(T ), where T is the number of operations in (i.e., in effect, the running time of) the original
algorithm.

As a result of straightforward interval computations, we compute the enclosure Y ⊇ y, often
with excess width. As we have seen on the toy example, the main reason why there is an excessive
width is that:

− there is a relation between intermediate results, and

− in straightforward interval computations, we ignore this relation.

For example, in the above toy example, the intervals ranges for r1 and r2 were exact. However,
when we multiplied the corresponding intervals r1 and r2, we used the general formulas for interval
multiplication, formulas that implicitly assume that all pairs (r1, r2) from the corresponding box
r1× r2 are possible. Thus, we ignored the fact that the values r1 and r2 are actually related – since
they are both functions of the same variable x – and so, not all pairs (r1, r2) are possible.

In addition to algorithms for computing an enclosure, there also exist algorithms for computing
the exact range; e.g., algorithms based on Tarski’s ideas can be applicable for arbitrary algebraic
functions f ; see, e.g., (Kreinovich et al., 1997) and references therein. These algorithms, however,
require exponential time ∼ 2T (or even higher) and are, thus, not applicable for large T .

1.8. Interval Computations: The First Problem

Summarizing the above discussion, we conclude that we have, in effect, two classes of algorithms
for solving the main problem of interval computations:
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− fast and efficient O(T ) algorithms – which often have large excess width;

− slow and inefficient (often non-feasible) algorithms – with no excess width.

In practice, we are often not satisfied with the excess width of a faster algorithm, but we do not have
enough time to apply the algorithm for computing the exact range. To take care of such situations,
it is desirable to develop a sequence of feasible algorithms with:

− longer and longer computation time and

− smaller and smaller excess width.

The development of such a sequence is one of the objectives of this paper.

2. Formulation of the Main Problem

2.1. Interval Computations: Limitations

In traditional interval computations:

− we know the intervals xi of possible values of different parameters xi, and

− we assume that an arbitrary combination of these values is possible.

In geometric terms, this assumption means that the set of possible combinations x = (x1, . . . , xn)
is a box x = x1 × . . .× xn.

In many real-life situations, in addition to knowing the intervals xi of possible values of each
variable xi, we also know additional restrictions on the possible combinations of xi. In this case,
the set x of possible values of x is a (proper) subset of the original box. For example, in addition to
knowing the bounds on x1 and x2, we may also know that the difference between x1 and x2 cannot
exceed a certain amount. Informally speaking, the parameters xi are no longer independent – in
the sense that the set of possible values of xi may depend on the values of other parameters.

In such situations, it is desirable to be able to compute the range of possible values of f(x1, . . . , xn)
for all combinations (x1, . . . , xn) which satisfy the given restrictions. Computing this range is the
main objective of this paper.
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Comment. In interval computations, we start with independent inputs; as we follow computations,
we get dependent intermediate results: e.g., for x1 − x2

1, the values of x1 and x2 = x2
1 are strongly

dependent in the sense that only values (x1, x
2
1) are possible within the box x1 × x2.

− In interval computations, there are many techniques for handling similar dependence between
the intermediate computational results.

− In this paper, we extend these techniques to handle a different type of dependence – dependence
between the inputs.

Before we start describing the corresponding ideas and algorithms, let us first give two examples
of such restrictions.

2.2. Example from Geosciences

Our civilization greatly depends on the things we extract from the Earth, such as fossil fuels (oil,
coal, natural gas), minerals, and water. Our need for these commodities is constantly growing, and
because of this growth, they are being exhausted. Even under the best conservation policies, there
is (and there will be) a constant need to find new sources of minerals, fuels, and water.

The only sure-proof way to guarantee that there are resources such as minerals at a certain
location is to actually drill a borehole and analyze the materials extracted. However, exploration
for natural resources using indirect means began in earnest during the first half of the 20th century.
The result was the discovery of many large relatively easy to locate resources such as the oil in the
Middle East.

However, nowadays, most easy-to-access mineral resources have already been discovered. For
example, new oil fields are mainly discovered either at large depths, or under water, or in very
remote areas – in short, in the areas where drilling is very expensive. It is therefore desirable to
predict the presence of resources as accurately as possible before we invest in drilling.

From previous exploration experiences, we usually have a good idea of what type of structures
are symptomatic for a particular region. For example, oil and gas tend to concentrate near the top
of natural underground domal structures. So, to be able to distinguish between more promising and
less promising locations, it is desirable to determine the structure of the Earth at these locations.
To be more precise, we want to know the structure at different depths z at different locations (x, y).

Another vitally important application where the knowledge of the Earth structure is crucial is
the assessment of earth hazards. Earthquakes can be very destructive, so it is important to be able
to estimate the probability of an earthquake, where one is most likely to occur, and what will be
the magnitude of the expected earthquake. Geophysicists have shown that earthquakes result from
accumulation of mechanical stress; so if we know the detailed structure of the corresponding Earth
locations, we can get a good idea of the corresponding stresses and faults present and the potential
for occurrence of an earthquake. From this viewpoint, it is also very important to determine the
structure of the Earth.

In general, to determine the Earth structure, we can use different measurement results that
can be obtained without actually drilling the boreholes: e.g., gravity and magnetic measurements,
analyzing the travel-times and paths of seismic ways as they propagate through the earth, etc.
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The relation between the Earth structure and the related measurable quantities is usually known.
So, when we know the exact structure at a given Earth location, we can predict, with reasonable
accuracy, the corresponding values of the measured quantities – we can predict the local value of
the gravity field, the time that a seismic signal needs to travel from its origin to the sensor, etc.
Such problems are usually called forward problems.

Forward problems enable us, given a model of the Earth, to predict the values of different
signals. What we need in the above geophysical applications is the opposite: given the measured
values of different signals, we need to reconstruct the structure of the Earth at the location where
the measurements have been made. Such problems are therefore called inverse problems.

Some measurements – like gravity and magnetic measurements – describe the overall effect of
a large area. These measurements can help us determine the average mass density in the area, or
the average concentration of magnetic materials in the area, but they often do not determine the
detailed structure of this area. This detailed structure can be determined only from measurements
which are narrowly focused on small sub-areas of interest.

The most important of these measurements are usually seismic measurements. Seismic measure-
ments involve the recording of vibrations caused by distant earthquakes, explosions, or mechanical
devices. For example, these records are what seismographic stations all over the world still use to
detect earthquakes. However, the signal coming from an earthquake carries not only information
about the earthquake itself, it also carries the information about the materials along the path from
an earthquake to the station: e.g., by measuring the travel-time of a seismic wave, checking how fast
the signal came, we can determine the velocity of sound v in these materials. Usually, the velocity
of sound increases with increasing density, so, by knowing the velocity of sound at different 3-D
points, we will be able to determine the density of materials at different locations and different
depths.

The main problem with the analysis of earthquake data (i.e., passive seismic data) is that
earthquakes are rare events, and they mainly occur in a few seismically active belts. Thus, we have
a very uneven distribution of sources and receivers that results in a “fuzzy” image of earth structure
in many areas.

To get a better understanding of the Earth structure, we must therefore rely on active seismic
data – in other words, we must make artificial explosions, place sensors around them, and measure
how the resulting seismic waves propagate. The most important information about the seismic wave
is the travel-time ti, i.e., the time that it takes for the wave to travel from its source to the sensor.
to determine the geophysical structure of a region, we measure seismic travel times and reconstruct
velocities at different depths from these data. The problem of reconstructing this structure is called
the seismic inverse problem. There are several algorithms for solving this inverse problem; see, e.g.,
(Hole, 1992; Parker, 1994; Zelt et al., 1998).

In principle, we can determine the paths from the source to each sensor. The travel-time ti along
i-th path can then be determined as the sum of travel-times in different cells j through which
this path passes: ti =

∑
j

`ijvj , where `ij denotes the length of the part of i-th path within cell j.

This formula can be somewhat simplified if we replace the velocities vj by their inverses sj
def=

1
vj

,
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called slownesses. In terms of slownesses, the formula for the travel-time takes the simpler form
ti =

∑
j

`ij · sj .

For each cell j, a geophysicist usually provides us with the smallest and largest possible value of
slowness for this cell. In other words, for each cell j, the expert provides us with an interval [sj , sj ]
that is guaranteed to contain the actual (unknown) value of slowness sj . Based on these estimates,
we can find the range [ti, ti] of possible values of ti, where ti =

∑
j

`ij · sj and ti =
∑
j

`ij · sj . If

the measured travel time t̃i is outside this interval, this means that the observed travel-times are
inconsistent with the intervals [sj , sj ]. This information should be reported back to the experts, so
that the experts will be able to adjust their bounds for sj in such a way that the new bounds will
be consistent with the observations; see, e.g., (Averill et al., 2005).

The above bounds ti and ti were obtained under the assumption that the only information that
we have about the slownesses sj is that each slowness lies in the corresponding interval. In reality, in
addition to bounds on slownesses sj at different points, we also know that slowness cannot change
too fast between the neighboring points. To be more precise, the experts usually provide us with a
value ∆ such that |sj − sk| ≤ ∆ for all neighboring pairs (j, k):

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

It is therefore necessary to find the range of a linear function ti =
∑
j

`ij · sj under such constraints.

2.3. Example from Safety-Critical Engineering

In engineering of safety-critical systems, e.g., in nuclear engineering, it is vitally important to
provide safety, i.e., to guarantee that certain quantities y like temperature, pressure, radiation
level, do not exceed the required thresholds y0. The value of each such quantity y depends on
several parameters x1, . . . , xn, all of which may somewhat deviate from their nominal values. These
parameters may include parameters of the design (such as the exact thickness of the protective
layer) or external parameters such as the outdoors temperature.

We usually know the dependence y = f(x1, . . . , xn) of the desired quantity y on these parameters.
So, the problem of guaranteeing safety means guaranteeing that the upper endpoint y of the range
y = [y, y] of the function f(x1, . . . , xn) over all possible combinations (x1, . . . , xn) does not exceed
y0.

We usually know the ranges xi of possible values of each of the parameters. Thus, we know that
all possible combinations (x1, . . . , xn) are within the box x1 × . . . × xn. So, in principle, we can
guarantee safety if we guarantee that f(x1, . . . , xn) ≤ y0 for all possible values from this box. In
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other words, we can find the range ỹ = [y, y] of the function f(x1, . . . , xn) on the box, and make
sure that y ≤ y0.

This approach does lead to guarantee safety, but it may be too conservative. Indeed, the maxi-
mum of the function f(x1, . . . , xn) on the box x1 × . . .× xn is often attained at one its endpoints,
i.e., at one of the possible combinations of extreme values of xi. This fact is true, e.g., if the function
f(x1, . . . , xn) is monotonic in each of its variables. However, experts often claim that combinations
of extreme values are impossible. In other words, experts claim that the actual set S of possible
values of (x1, . . . , xn) is a proper subset of the original box – i.e., that there are additional constraints
which describe the relation between the parameters xi.

How can we describe such a subset? In real life, whenever we have a cluster formed by real-life
data points, this cluster has a reasonably smooth boundary. This cluster can be a disk (solid circle),
a ball (solid sphere in multi-D space), an ellipsoid, or a more complex structure, but it is practically
always smooth. The fact that it is smooth means that we can describe its border by an equation
b(x1, . . . , xn) = C for some smooth function b(x1, . . . , xn) and for some constant C. As a result, the
set S itself can be describe either by the inequality

b(x1, . . . , xn) ≤ C0 (1)

or by the inequality b(x1, . . . , xn) ≥ C0. In the second case, the inequality can be transformed into
an equivalent form b′(x1, . . . , xn) ≤ C ′, where the function b′(x1, . . . , xn) = −b(x1, . . . , xn) is also
smooth, and C ′ = −C0. So, without loss of generality, we can assume that the set S is described
by the inequality (1), for some smooth function b(x1, . . . , xn).

An arbitrary smooth function can be approximated by a polynomial, so, instead of the the
general set (1), we can consider the approximating set

a(x1, . . . , xn) ≤ C0, (2)

where a(x1, . . . , xn) is a polynomial that approximates the smooth function b(x1, . . . , xn).
The simplest possible polynomials are linear polynomials a(x1, . . . , xn) = a0+a1 ·x1+. . .+an ·xn.

However, for a linear function a(x1, . . . , xn), the set of all the vectors x for which a(x) ≤ C0 is a
half-space, i.e., a set that is not bounded in many directions, while we want a set S that is inside
the box – and hence, bounded in all directions. Thus, if we restrict ourselves to only linear terms,
we do not get a good approximation to the set (1).

To get a reasonable approximation, we must consider quadratic and higher order polynomial
approximating functions a(x1, . . . , xn). In particular, for the simplest non-linear polynomials –
quadratic polynomials – the approximating set (2) takes the following form:

a(x1, . . . , xn) = a0 +
n∑

i=1

ai · xi +
n∑

i=1

n∑

j=1

ai,j · xi · xj ≤ C. (3)

Ellipsoids indeed provide a reasonable description of the set of possible values of (x1, . . . , xn). To
get an even better description of the actual set (1), we can, in principle, use 3rd, 4th, and higher
order polynomials.
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2.4. How This Information Is Processed Now

At present, to estimate the range of a given function over given constraints, we use problem-specific
structure of the objective function f(x1, . . . , xn) and of the corresponding constraints.

In geophysical problems, to estimate the range of a linear function ti =
∑
j

`ij · sj under linear

constraints sj ≤ sj ≤ sj and |sj − sk| ≤ ∆, we can use linear programming techniques – techniques
that were specifically designed for such linear constraint optimization.

Another idea is used to estimate the range of a given function over an ellipsoid in safety-
critical engineering; see, e.g., (Kreinovich et al., to appear). Usually, the range of each variable
xi is reasonably narrow, so we can expand the dependence f(x1, . . . , xn) in Taylor series around
nominal values, and restrict ourselves to quadratic terms in this expansion. As a result, the problem
of estimating the range of a given function f(x1, . . . ,x ) over the range S turns into the problem of
estimating the range of the given quadratic function f(x1, . . . , xn) over an ellipsoid, i.e., over the
range described by quadratic constraints b(x1, . . . , xn) ≤ C0.

For this constraint optimization problem, the Lagrange multiplier technique reduces it to the
problem of unconstrained optimization of a quadratic function

F (x1, . . . , xn) = f(x1, . . . , xn) + λ · (b(x1, . . . , xn)− C0).

For this quadratic function, we can find the maximum by simply solving an easy-to-solve system

of n linear equations with n unknowns:
∂F

∂xi
= 0.

Both ideas can only be used for special objective functions and special constraints. It is therefore
desirable to develop general techniques for estimating the range of a given function under given
constraints.

3. Main Idea

3.1. Similar Situation: Statistics

In statistics, to get a complete description of a multi-dimensional probability distribution of n vari-
ables x = (x1, . . . , xn), ideally, we should take into account dependence between all the variables. It
is, however, often too computationally taxing to find all these dependencies. Therefore, in statistics,
it is often necessary to only use partial information about the n-dimensional distribution.

First, we need to find the probability distribution for each of n variables. As we have mentioned
earlier, if we have no information about the dependence between these variables, then it is reasonable
to assume that these variables are independent. This resulting probability distribution often forms
a reasonable first approximation to the actual n-dimensional distribution.

To get a more accurate description, the next reasonable step is to take into account pairwise
dependencies, i.e., dependencies between pairs of variables (xi, xj). In the traditional statistical
practice in engineering and science, this is done by estimating correlation, covariance, and/or other
characteristics of pairwise dependence.
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To get an even better picture of the distribution, we can consider dependencies between triples,
etc.

As a result, we get a sequence of methods – independent variables, pairwise dependence, depen-
dence between the tripes, etc., all the way to a complete description of dependence between all n
variables. As we go from independence to taking more and more information about the dependence
into account, we get a sequence of methods which:

− require more and more time

− but at the same time lead to more and more accurate results.

3.2. Let Us Use a Similar Idea for Interval Uncertainty

How can we use a similar idea to take into account dependence between the inputs in interval
computation?

In straightforward interval computations, we consider only intervals of possible values of xi.
A natural next approximation is when we consider:

− sets xi of possible values of xi, and also

− sets xij of possible pairs (xi, xj).

Comment. This idea is similar to constrained fuzzy arithmetic developed by G. J. Klir; see, e.g.,
(Klir, 2000).

The third approximation is when we also consider possible sets of triples xijk, etc., all the way to
the situation when we completely describe the dependence between xi by describing the set x12...n

of possible values of x = (x1, x2, . . . , xn).
Of course, the more dependence we take into account, the more information we need to store

and process and thus, the more computation time the methods will take.

− For straightforward interval computations, all we need to store is intervals of possible values.

− For pairs, we need to store sets of possible values of pairs, i.e., subsets of 2-D boxes. To
describe an arbitrary such set with accuracy ε, we must know, for each of 1/ε2 sub-boxes of
size ε× ε, whether this box belongs to the desired set or not. Thus, we need to store 1/ε2 bits
of information.

− For triples, we similarly need 1/ε3 bits of information about whether each of 1/ε3 3-D boxes
of size ε× ε× ε belongs to the desired set or not.

− For quadruples, we need 1/ε4 bits, etc.

As a result, we (hope to) get a sequence of methods which:

− require more and more time
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− but at the same time lead to more and more accurate results.

3.3. How to Implement This Idea

In straightforward interval computations:

− First, we describe the initial uncertainty by intervals.

− Then, we show how, by using interval arithmetic, we can propagate this uncertainty through
the algorithm f , so that at the end, we get an enclosure for the desired range.

− Finally, we show how to adjust operations of interval arithmetic so that all intermediate
intervals are computer-representable – and at the same time the result is still a guaranteed
enclosure.

Similarly, to implement the new idea, we must be able to achieve the following:

− First, we must describe the initial uncertainty by sets of pairs etc.

− Second, we must learn how to propagate the corresponding uncertainty through algorithms, so
that at the end, we will get a better enclosure for the desired range, an enclosure that takes
into account the dependence between the inputs.

− Finally, we must learn how to represent and process sets of pairs etc, in the computer, so that
the result will still be a guaranteed enclosure.

We have already decided on how to represent uncertainty by sets of pairs etc. In the following
subsections, we will show how we can achieve the two remaining tasks.

3.4. How to Propagate This Uncertainty

In the beginning, we know the intervals r1, . . . , rn corresponding to the input variables ri = xi, and
we know the sets rij for i, j from 1 to n.

The question: is how to propagate this information through an intermediate computation step,
a step of computing rk = ra ∗ rb for some arithmetic operation ∗ and for previous results ra and rb

(a, b < k). By the time we come to this step, we know the intervals ri and the sets rij for i, j < k.
We want to find the interval rk for xk, and the sets rik for i < k. The following is a natural way to
find these sets:

− The range rk can be naturally found as {ra ∗ rb | (ra, rb) ∈ rab}.
− The set rak is described as {(ra, ra ∗ rb) | (ra, rb) ∈ rab}.
− The set rbk is described as {(rb, ra ∗ rb) | (ra, rb) ∈ rab}.
− For i 6= a, b, the set rik is described as {(ri, ra ∗ rb) | (ri, ra) ∈ ria, (ri, rb) ∈ rib}.
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Comment. From the mathematical viewpoint, a subset rij of the set of all possible pairs ri × rj

is a relation. It is therefore not surprising that processing this uncertainty is similar to processing
relations in other application areas such as relational database systems; see, e.g., (Ullman et al.,
2002). For example, a natural intermediate step in computing rik is when, given the relations ria

and rib, we form a new relation {(ra, ri, rb) | (ra, ri) ∈ rai, (ri, rb) ∈ rib}. In relational algebra, this
intermediate relation is called a join and denoted by rai 1i rib.

3.5. How to Represent Sets in a Computer

How can we represent a set of pairs or a set of triples in a computer? A natural idea is to do it in a
way cumulative probability distributions (cdf) are represented in RiskCalc package (Ferson, 2002):
by discretization.

In RiskCalc, we divide the interval [0, 1] of possible values of probability into, say, 10 subintervals
of equal width and represent cdf F (x) by 10 values x1, . . . , x10 at which F (xi) = i/10.

Similarly, to describe a set xij ⊆ xi × xj , we:

− divide the box xi × xj into, say, 10× 10 subboxes, and

− describe the set xij by listing all subboxes which contain possible pairs.

Comment. This representation of a set by the union of grid cells which intersect with this set is
well known in data mining as an upper approximation in the sense of rough set theory; see, e.g.,
(Pawlak, 1991; Polkowski, 2002).

Of course, in reality, there is no need to actually list these subboxes: to describe an arbitrary
set, it is sufficient to store 10× 10 = 100 bits of information describing whether each of the 10× 10
subboxes belongs to the list. In other words, a set can be represented as 10× 10 array of Boolean
values. Similarly, for triples, we can represent the corresponding set as a 3-D array of size 10×10×10,
etc.

Comment. The above approach is a good way to describe generic sets, but in practice, the resulting
description may be redundant.

− For example, even if we know that all the values (x1, x2) are possible, we still need 100 Boolean
values to describe this set.

− Similarly, if the set consists of all the values for which x1 = x2, then out of 100 subboxes, only
10 diagonal boxes are affected, but we still need all 100 Boolean values.

A more efficient idea is to represent sets is by using a paving – in the style of (Jaulin et al., 2001).
In this approach, we start with a 2× 2 subdivision. For each of the 2× 2 = 4 subboxes, we:

− mark this subbox as “in” if it is completely inside the desired set;

− mark this subbox as “out” if it is completely outside the desired set;
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− otherwise, if this subbox contains both points from the desired set and point outside the desired
set, we subdivide this box into 2× 2 = 4 subboxes, and repeat the procedure.

As a result, we get a list consisting of boxes of different sizes – starting with larger ones and only
decreasing the size when necessary.

3.6. How to Propagate This Uncertainty: An Algorithm

Let us show how this representation can be propagated through an intermediate computational
step, a step of computing rk = ra ∗ rb for some arithmetic operation ∗ and for previous results ra

and rb (a, b < k). We start by dividing each original interval range into the same number C of
equal sub-intervals. By the time we come to this step, we know the intervals ri and the sets rij for
i, j < k. Each of these sets is described as a union of the subboxes.

We want to find the interval rk for xk, and the sets rik for i < k. First, we compute the range
rk:

− In our representation, the set xab consists of small 2-D boxes Xa ×Xb.

− For each small box Xa ×Xb, we use interval arithmetic to compute the range Xa ∗Xb of the
value ra ∗ rb over this box.

− Then, we take the union (interval hull) of all these ranges.

Then, we divide this range interval into C equal sub-intervls, and compute the sets rik as follows:

− We consider the sets rab, rai, and rbi.

− For each small box Ra ×Rb from rab, we:

• consider all subintervals Ri for which Ra ×Ri is in rai and Rb ×Ri is in rbi, and then

• we add (Ra ∗Rb)×Ri to the set rki.

To be more precise, since the interval Ra ∗ Rb may not have bounds exactly matching the
subdivision of the range interval rk into C parts, we may need to expand the interval Ra ∗Rb to
get within bounds of this subdivision (numerical examples are given in the following text).

Comment. How long does each computation take? For each i, we need to consider ≤ C2 small
boxes Ra×Rb, and for each such subbox, we must consider C subintervals Ri, so the computation
of each new range rik requires O(C2) ·C = O(C3) computational steps. Since C is a fixed constant,
this number does not affect the asymptotic complexity of the proposed algorithm.

We repeat these computations step by step until we get the desired estimate for the range of the
final result of the computations.

Comment. Our main objective is to be able to take into account the prior dependence between
the inputs x1, . . . , xn. However, as a side effect of this technique, in addition to taking into account
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dependence between the inputs, we also take care of the (more traditional) dependence between
individual results. For example, when we compute the range of x1 − x2

1, we first compute x2 = x2
1

and then compute x3 = x1 − x2; in our methodology, when we compute x2, we automatically
generate the set x12 of possible values of pairs (x1, x2). We will see that this set is close to the
graph of the function x2. On the next step, when we compute x3 = x1 − x2, we take into account
not only the intervals x1 and x2, but also the set x12, and thus, the resulting estimate for the range
for x3 is close to the ideal.

4. Examples

4.1. First Example: Computing the Range of x− x

Let us starts with the simplest example where straightforward interval computations lead to over-
estimation: the problem of estimating the range of the function f(x) = x − x on the interval
[0, 1].

Of course, this function is identically 0, so its actual range is the degenerate interval [0, 0]. Let us
trace what happens if we apply straightforward interval computations to this function. Parsing leads
to the following sequence of elementary arithmetic operations: r1 = x, r2 = r1, and r3 = r1 − r2.
So, if we replace each elementary arithmetic operation with the corresponding operation of interval
arithmetic, we get r1 = [0, 1], r2 = [0, 1], and thus, the final range is r3 = r1 − r2 = [0, 1]− [0, 1] =
[−1, 1] – an enclosure with excess width.

In straightforward interval computations, we have r1 = x with the exact interval range r1 = [0, 1],
we have r2 = x with the exact interval range x2 = [0, 1]. We get excess width because the variables
r1 and r2 are dependent, but we ignore this dependence. In effect, when computing the range r3,
we use formulas based on the assumption that the set of possible combinations of (r1, r2) is the
entire box r1 × r2.

In the new approach, we still have r1 = r2 = [0, 1]. However, since r2 = r1, we know that not
all pairs (r1, r2) from the box r1 × r2 are possible – the set r12 of possible values of (r1, r2) is the
diagonal r12 = {(r1, r2) | r1, r2 ∈ [0, 1], r1 = r2}.

When we compute the range r3 of r3 = r1 − r2, we only use pairs (r1, r2) from the diagonal set
r12. For each point from this diagonal set, r3 = r1 − r2 = 0. Thus, with the new techniques, we get
the exact range [0, 0] for the function f(x) = x− x.

Comment. Similarly, the new method computes the exact range for x ·x: we have r1 = x, r2 = r1,
and r3 = r1 · r2. In contrast, if we use straightforward interval computations, then for x = [−, 1],
instead of the correct range [0, 1], we get an closure [−1, 1] · [−1, 1] = [−1, 1], with excess width.

4.2. Second Example: Computing the Range of x− x2

In the example of the degenerate function f(x) = x − x, it is easy to avoid excess width without
using any new techniques. Indeed, in this example, it is sufficient to simplify the expression for the
function f(x) to 0. Many existing compilers can detect the possibility of such a simplification and
perform it.
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There are less trivial examples of excess width, where a simplification is either impossible or at
least is not so easy to find. A simple example of such a situation is the function f(x) = x− x2 on
the interval [0, 1].

For this quadratic function, the range can be easily obtained by using the standard calculus
technique: namely, according to calculus, to find the range of a function of one variable on a given
interval, it is sufficient to find the values of this function on the endpoints and on all the stationary
points (i.e., points where the derivative f ′(x) is equal to). The smallest of these values is the lower
endpoint of the range, and the largest of these values is the upper endpoint of the range. For the
given function, the only stationary point f ′(x) = 1 − 2x = 0 is the point x = 0.5. So, to find the
range of this function, it is sufficient to find its value for x = 0 (where f(0) = 0), for x = 0.5
(where f(0.5) = 0.25), and for x = 1 (where f(1) = 0). Thus, the actual range of this function is
[min(0, 0.25, 0), max(0, 0.25, 0)] = [0, 0.25].

In straightforward interval computations:

− we have r1 = x with interval r1 = [0, 1];

− we have r2 = x2 with interval x2 = [0, 1];

− the variables r1 and r2 are dependent, but we ignore this dependence and estimate r3 as
[0, 1]− [0, 1] = [−1, 1].

In the new approach, we still have r1 = r2 = [0, 1], but, since x2 = x2
1, we now also have the set

r12 = {(x1, x2) |x1, x2 ∈ [0, 1], x2 = x2
1}. When we compute the range r3 of r3 = r1−r2, we only use

pairs (r1, r2) from this set. For each point from this diagonal set, r3 = r1− r2 = r1− r2
1. Thus, with

the new techniques, the computed range r3 is exactly the range [0, 0.25] of the original function
f(x) = x− x2 – with no excess width.

4.3. Distributivity: a · (b + c) vs. a · b + a · c

It is known that interval arithmetic is not distributive in the following sense: when we want to
compute the range of the function f(x1, x2, x3) = x1 · (x2 + x3) = x1 · x2 + x1 · x3, straightforward
interval computations sometimes lead to different enclosures depending on which of the two equal
expression we use.

This is true, e.g., when x1 ∈ x1 = [0, 1], x2 = [1, 1], and x3 = [−1,−1]. In this case, x2 + x3 = 0,
so f(x1, x2, x3) = x1 · (x2 + x3) = 0 for all possible xi. Hence, the actual range is [0, 0].

For the expression f(x1, x2, x3) = x1 · (x2 + x3), straightforward interval computations lead to
x1 ·(x2+x3) = [0, 1]·[0, 0] = [0, 0], i.e., to the exact range. However, for f(x1, x2, x3) = x1 ·x2+x1 ·x3,
we get x1 · x2 + x1 · x3 = [0, 1] · 1 + [0, 1] · (−1) = [0, 1] + [−1, 0] = [−1, 1], i.e., excess width.

The reason for this excess width is that we have the exact ranges for r1 = x1, r2 = x2, r3 = x3,
r4 = x1 · x2, and r5 = x1 · x3, but we ignore the dependence between r4 and r5 when computing
the range of the final result r6 = r4 + r5.

In the new approach, we start with the intervals r1 = x1, r2 = x2, and r3 = x3. Since we are
not assuming any dependence between the variables r1, r2, and r3, we thus assume that for these
variables, all pairs are possible, i.e., r12 = r1 × r2, r23 = r2 × r3, and r13 = r1 × r3.
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When we compute r4 = r1 · r2, we also compute the ranges r14, r24, and r34, as

r14 = {(r1, r1 · r2) | r1 ∈ r1, r2 ∈ r2}, r24 = {(r2, r1 · r2) | r1 ∈ r1, r2 ∈ r2}, r34 = r3 × r4.

When we compute r5 = r1 · r3, we also compute the range r45 for pairs (r4, r5) as

{(r4, r1 · r3) | (r1, r4) ∈ r14, (r3, r4) ∈ r34}.

From our description of r14 and r34, we conclude that

r45 = {(r4, r1 · r3) | ∃r2 ∈ r2 s.t. r4 = r1 · r2, r3 ∈ r3}.

Thus,
r45 = {(r1 · r2, r1 · r3) | r1 ∈ r1, r2 ∈ r2, r3 ∈ r3}.

Based on this set, the range of possible values of r6 = r4 + r5 coincides with the set

{r1 · r2 + r1 · r3 | r1 ∈ r1, r2 ∈ r2, r3 ∈ r3},

i.e., with the exact range of the function f(x1, x2, x3) = x1 · (x2 + x3).

4.4. Toy Example with Prior Dependence

Let us consider the problem of finding the range of r1 − r2 when r1 = [0, 1], r2 = [0, 1], and
|r1 − r2| ≤ 0.1. In this case, the actual range of the difference r1 − r2 is, of course, [−0.1, 0.1].

Straightforward interval computations cannot take the prior dependence into account. Thus, the
only result we can get by using straightforward interval computations is the interval r1 − r2 =
[0, 1]− [0, 1] = [−1, 1].

In the new approach, r12 = {(r1, r2) | r1 ∈ [0, 1], r2 ∈ [0, 1], |r1 − r2| ≤ 0.1}. The range of the
function r1 − r2 over this set is exactly the desired interval [−0.1, 0.1].

5. Numerical Examples

Let us show that the advantages of the new approach are preserved even when we take into
consideration the need to approximate the sets.

5.1. First Example: Computing the Range of x− x

As we have mentioned, for f(x) = x − x on [0, 1], the actual range is [0, 0], but straightforward
interval computations lead to an enclosure [0, 1] − [0, 1] = [−1, 1]. In straightforward interval
computations, we have r1 = x with the exact interval range r1 = [0, 1], and we have r2 = x
with the exact interval range x2 = [0, 1]. The variables r1 and r2 are dependent, but we ignore this
dependence.

In the new approach: we have r1 = r2 = [0, 1], and we also have r12:
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×
×

×
×

×

r1

r2

For each small box, we have [−0.2, 0.2], so the union is [−0.2, 0.2].
If we divide into more pieces, we get an interval closer to 0.

5.2. Second Example: Computing the Range of x− x2

In straightforward interval computations, we have r1 = x with the exact interval range interval
r1 = [0, 1], and we have r2 = x2 with the exact interval range x2 = [0, 1]. The variables r1 and r2

are dependent, but we ignore this dependence and estimate r3 as [0, 1]− [0, 1] = [−1, 1].
In the new approach: we have r1 = r2 = [0, 1], and we also have r12. First, we divide the range

[0, 1] into 5 equal subintervals R1. The union of the ranges R2
1 corresponding to these 5 subintervals

R1 is [0, 1], so r2 = [0, 1]. We divide this interval r2 into 5 equal sub-intervals [0, 0.2], [0.2, 0.4], etc.
We now compute the set r12 as follows:

− for R1 = [0, 0.2], we have R2
1 = [0, 0.04], so only sub-interval [0, 0.2] of the interval r2 is

affected;

− for R1 = [0.2, 0.4], we have R2
1 = [0.04, 0.16], so also only sub-interval [0, 0.2] is affected;

− for R1 = [0.4, 0.6], we have R2
1 = [0.16, 0.25], so two sub-intervals [0, 0.2] and [0.2, 0.4] are

affected, etc.

× × ×
× ×

×
× ×

×

r1

r2

For each possible pair of small boxes R1×R2, we have R1−R2 = [−0.2, 0.2], [0, 0.4], or [0.2, 0.6],
so the union of R1 −R2 is r3 = [−0.2, 0.6].

If we divide into more and more pieces, we get the enclosure which is closer and closer to the
exact range [0, 0.25].
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5.3. How to Compute rik

The above example is a good case to illustrate how we compute the range r13 for r3 = r1 − r2.
Indeed, since r3 = [−0.2, 0.6], we divide this range into 5 subintervals [−0.2,−0.04], [−0.04, 0.12],
[0.12, 0.28], [0.28, 0.44], [0.44, 0.6].

− For R1 = [0, 0.2], the only possible R2 is [0, 0.2], so R1 − R2 = [−0.2, 0.2]. This covers
[−0.2,−0.04] and [−0.04, 0.12].

− For R1 = [0.2, 0.4], the only possible R2 is [0, 0.2], so R1 −R2 = [0, 0.4]. This interval covers
[−0.04, 0.12], [0.12, 0.28], and [0.28, 0.44].

− For R1 = [0.4, 0.6], we have two possible R2:

• for R2 = [0, 0.2], we have R1 − R2 = [0.2, 0.6]; this covers [0.12, 0.28], [0.28, 0.44], and
[0.44, 0.6];

• for R2 = [0.2, 0.4], we have R1 −R2 = [0, 0.4]; this covers [−0.04, 0.12], [0.12, 0.28], and
[0.28, 0.44].

− For R1 = [0.6, 0.8], we have R2
1 = [0.36, 0.64], so three possible R2: [0.2, 0.4], [0.4, 0.6], and

[0.6, 0.8], to the total of [0.2, 0.8]. Here, [0.6, 0.8]− [0.2, 0.8] = [−0.2, 0.6], so all 5 subintervals
are affected.

− Finally, for R1 = [0.8, 1.0], we have R2
1 = [0.64, 1.0], so two possible R2: [0.6, 0.8] and [0.8, 1.0],

to the total of [0.6, 1.0]. Here, [0.8, 1.0] − [0.6, 1.0] = [−0.2, 0.4], so the first 4 subintervals are
affected.

×
× ×

×
×

×
×
×
×
×

×
×
×
×
×

×
×
×
×

r1

r3

5.4. Distributivity: a · (b + c) vs. a · b + a · c
We want to estimate the range of the function f(x1, x2, x3) = x1 ·x2 +x1 ·x3 when x1 ∈ x1 = [0, 1],
x2 = [1, 1], and x3 = [−1,−1]. The actual range is [0, 0], but straightforward interval computations
lead to [0, 1] · 1 + [0, 1] · (−1) = [0, 1] + [−1, 0] = [−1, 1], i.e., to excess width. The reason is that
we have exact ranges for r4 = x1 · x2 and r5 = x1 · x3, but we ignore the dependence between r4

and r5.
Here, parsing leads to r4 = r1 · r2, r5 = r1 · r3, and r6 = r4 + r5. We start with r1 = [0, 1], r2 = 1,

and r3 = −1. In the new idea, when we get r4 = r1 · r2, we compute the ranges r14, r24, and r34;
the only non-trivial range is r14:
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×
×

×
×

×

r1

r4

For r5 = r1 · r3, we get r5 = [−1, 0]. To compute the range r45, for each possible box R1 ×R3, we:

− consider all boxes R4 for which R4 ×R1 is possible and R4 ×R3 is possible; and

− add R4 × (R1 ·R3) to the set r45.

The result is as follows:

×
×

×
×

×
r4

r5

Hence, for r6 = r4 + r5, we get [−0.2, 0.2].
If we divide into more pieces, we get the enclosure closer to 0.

5.5. Toy Example with Prior Dependence

The problem is to find the range of r1−r2 when r1 = [0, 1], r2 = [0, 1], and |r1−r2| ≤ 0.1. Here, the
actual range is [−0.1, 0.1], but straightforward interval computations return [0, 1]− [0, 1] = [−1, 1].

In the new approach, first, we describe the constraint in terms of subboxes:

×
×

×
×
×

×
×
×

×
×
×

×
×

r1

r2

Next, we compute R1 −R2 for all possible pairs and take the union. The result is [−0.6, 0.6].
If we divide into more pieces, we get the enclosure closer to [−0.1, 0.1].
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6. Discussion

When we apply straightforward interval computations to a T -step algorithm,

− we need to compute T intervals ri, i = 1, . . . , T ;

− so, it requires O(T ) steps.

In the new approach:

− we need to compute T 2 sets rij , i, j = 1, . . . , T ;

− so, it requires O(T 2) steps.

Thus, the new method takes longer than straightforward interval computations, but it is still
feasible.

We have already mentioned that the range estimation problem is, in general, NP-hard (even
without any dependency between the inputs). This means that no feasible method can completely
avoid excess width. In particular, this means that our quadratic time method cannot completely
avoid excess width. So sometimes, we will need better estimates.

To get better estimates, in addition to sets of pairs, we can also consider sets of triples rijk. This
will be a T 3 time version of our approach. If the use of a full subdivision of each box ri × rj × rk

into C × C × C subboxes requires too much computation time, then, instead of using the full 3-D

approach, we can use an intermediate “2
1
2
-D” approach in which we divide each box into C×C× c

subboxes, with c ¿ C.
We can also go to quadruples with time O(T 4), etc. When we have tuples with as many elements

as the number of variables, we get the exact range. Thus, as we planned, we have a sequence of
more and more accurate feasible algorithms for estimating the range, the sequence whose algorithm
require longer and longer computation time as the accuracy improves.

Comment. Similar ideas can be applied to the case of expert systems, when we have partial
information about probabilities (Ceberio et al., 2005; Ceberio et al., to appear; Chopra, 2005).

Traditionally, expert systems use technique similar to straightforward interval computations: we
parse F and replace each computation step with corresponding probability operation. The problem
with this approach is that at each step, we ignore the dependence between the intermediate results
Fj . As a result, the resulting intervals of possible values of probability are too wide (or, if we use
numerical estimates instead of intervals, these numerical estimates can be way off).

This phenomenon can be illustrated on the simple example of estimating the probability P (A∨
¬A) when P (A) = 0.5. In reality, A ∨ ¬A is always true, so this probability should be equal to 1.
In the interval-type approach, we parse the expression A∨¬A into the following sequence: F1 = A,
F2 = ¬F1, and F3 = F1∨F2. So, first we conclude that P (F1) = 0.5, then that P (F2) = 1−P (F1) =
1 − 0.5 = 0.5. However, when we compute the probability P (F1 ∨ F2), we ignore the dependence
between F1 and F2 and only use the fact that P (F1) = P (F2) = 0.5. In this case, the probability
P (F1 ∨ F2) can take any value from the interval [0.5, 1]. This interval is what the system returns –
with excess width.
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A solution to this problem is that, similarly to the above algorithm, on each intermediate
step, besides P (Fj), we also compute P (Fj &Fi) (or P (Fj1 & . . . &Fjk

)). On each step, we use
all combinations of l such probabilities to get new estimates. As a result, we get a new technique
in which, e.g., P (A ∨ ¬A) is always estimated as 1.

The fact that similar ideas work in interval and in probabilistic cases should not be surprising,
because the set of possible values xij which described the dependence between two interval-valued
quantities is a natural analog between copulas – which describe dependence between two random
variables; see, e.g., (Nelsen, 1999).
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Appendix

A. Open Questions

When is the New Method Exact? It is known that straightforward interval computations produce
the exact range for single-use expressions (SUE), in which each variable occurs exactly once; see,
e.g., (Hansen, 1997; Jaulin et al., 2001). A natural question is: is there a similar syntactic class of
expressions for which our pair-wise method leads to the exact range?

One seemingly natural hypothesis does not work here. Namely, we have shown that our new
method leads to the exact range for expressions x − x, x − x2, and x1 · x2 + x1 · x3. In all these
expressions, each variable occurs no more than twice. It may therefore seem natural to conjecture
that the new method is exact for all such “double-use” expressions. Alas, this is not true: it is

known (see, e.g., (Ferson et al., 2005)) that computing the range of the variance V =
1
n
·

n∑

i=1

x2
i −

(
1
n
·

n∑

i=1

xi

)2

on interval data xi is NP-hard. Since variance is an example of a double-use expression,

and our algorithm is feasible, we can thus conclude that for some double-use problems, it must lead
to excess width.

If we allow prior constraints, then the problem of estimating the range become NP-hard even for
SUE expressions with linear SUE constraints. Indeed, we can take an arbitrary non-SUE algebraic
expression, replace each occurrence of each variable xi with different new variables xi1, xi2, . . . –
this will make this expression SUE, and then add SUE linear constraint xi1 = xi2, xi2 = xi3,
. . . Under these constraints, the range of the new expression is exactly the same as the range of the
original expression, and we already know that computing the range of even quadratic expressions
is NP-hard.

What Are the Possible Shapes of rij? It is easy to show that for 1-D ranges, for algebraic functions
f(x1, . . . , xn) (i.e., solutions of polynomial equations with polynomial coefficients), the endpoints
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of the range intervals are algebraic numbers, and that, vice versa, every interval with algebraic
endpoints is a range of an appropriate algebraic function; see, e.g. (Kreinovich et al., 1997).

It is easy to show that when we have two algebraic functions f(x1, . . . , xn) and g(x1, . . . , xn),
then the set of possible values of pairs (f, g) is semi-algebraic (i.e., is described by a finite set of
polynomial equalities and inequalities). A natural question is: can every semi-algebraic set in IR2

be thus represented? What about sets in IR3? in IRn for an arbitrary n?
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Validated Solution of Initial Value Problems

for ODEs with Interval Parameters

Youdong Lin and Mark A. Stadtherr∗

Department of Chemical and Biomolecular Engineering, University of Notre Dame,
Notre Dame, IN 46556, USA

Abstract. In initial value problems for ODEs with interval-valued parameters, it is desirable in
many applications to be able to determine a validated enclosure of all possible solutions to the ODE
system. Much work has been done for the case in which initial values are given by intervals, and
there are several available software packages that deal with this case. However, relatively little work
has been done on the case in which parameters are given by intervals. We demonstrate here a new
method for obtaining validated solutions of initial value problems for ODEs with interval-valued
parameters. The method also accounts for interval-valued initial values. The effectiveness of the
method is demonstrated using numerical examples involving kinetics in a bioreactor and motion of
a double pendulum.

Keywords: ODE, IVP, Parametric uncertainty, Bioreactor kinetics, Double pendulum

1. Introduction

Initial value problems for ODEs arise naturally in many applications in engineering and science.
It is often the case that the problem involves parameters and/or initial values that are not known
with certainty but that can be expressed as intervals. For this situation it is desirable to be able to
determine an enclosure of all possible solutions to the ODEs. Interval methods (validated methods)
not only can determine such guaranteed error bounds on the true solution, but can also verify that
a unique solution to the problem exists. An excellent review of interval methods for initial value
problems has been given by Nedialkov et al. (1999). Much work has been done for the case in which
the initial values are given by intervals, and there are several available software packages, including
AWA (Lohner, 1992), VNODE (Nedialkov et al., 2001) and COSY VI (Berz and Makino, 1998), that
deal with this case. However, relatively little work has been done on the case in which parameters
are given by intervals. We concentrate here on the case of such parametric ODEs. However, the
method demonstrated will also account for interval-valued initial values.

Since available general-purpose validated ODE solvers are focused on dealing with uncertainties
in the initial values, the presence of interval parameters can cause inefficiencies because they lead
to a wrapping effect. An alternative approach is to treat time-invariant interval parameters as
additional state variables, with zero first-order derivatives, as suggested by Lohner (1988). Since
the parameters are now treated as independent variables, tighter enclosures can be obtained.
∗ Author to whom all correspondence should be addressed. E-mail: markst@nd.edu

c© 2006 by authors. Printed in USA.
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However, the increase in the number of state variables, m, can result in a significant increase
in the computational expense. For example, a matrix of order m must be factored at each time
step in the usual methods (e.g., QR factorization) for controlling the wrapping effect. In this work,
we will demonstrate a new method for efficiently determining validated solutions of ODEs with
interval parameters; instead of increasing the number of state variables, this method will treat
the parametric uncertainty directly. The method makes use, in a novel way, of the Taylor model
approach that Makino and Berz (1996) used to deal with the dependence problem in interval
arithmetic, and which they applied in COSY VI (Berz and Makino, 1998).

2. Background

2.1. Interval analysis

A real interval X is defined as the set of real numbers lying between (and including) given upper
and lower bounds; that is,

X =
[
X, X

]
=

{
x ∈ < | X ≤ x ≤ X

}
. (1)

Here an underline is used to indicate the lower bound of an interval and an overline is used to indicate
the upper bound. A real interval vector X = (X1, X2, · · · , Xn)T has n real interval components and
can be interpreted geometrically as an n-dimensional rectangle or box. Note that in this context
uppercase quantities are intervals, and lowercase quantities or uppercase quantities with underline
or overline are real numbers.

Basic arithmetic operations with intervals are defined by

X op Y = {x op y | x ∈ X, y ∈ Y } , (2)

where op = {+,−,×,÷}. Interval versions of the elementary functions can be similarly defined.
It should be emphasized that, when machine computations with interval arithmetic operations are
done, as in the procedures outlined below, the endpoints of an interval are computed with a directed
(outward) rounding. That is, the lower endpoint is rounded down to the next machine-representable
number and the upper endpoint is rounded up to the next machine-representable number. In this
way, through the use of interval, as opposed to floating-point arithmetic, any potential rounding
error problems are avoided. Several good introductions to interval analysis, as well as interval
arithmetic and other aspects of computing with intervals, are available (Jaulin et al., 2001; Hansen
and Walster, 2004; Kearfott, 1996; Neumaier, 1990). Implementations of interval arithmetic and
elementary functions are also readily available, and recent compilers from Sun Microsystems directly
support interval arithmetic and an interval data type.

For an arbitrary function f(x), the interval extension F (X) encloses all possible values of f(x)
for x ∈ X; that is, it encloses the range of f(x) over X. It is often computed by substituting the
given interval X into the function f(x) and then evaluating the function using interval arithmetic.
This so-called “natural” interval extension is often wider than the actual range of function values,
though it always includes the actual range. This overestimation of the function range is due to
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the “dependency” problem, which may arise when a variable occurs more than once in a function
expression. There are a variety of approaches that can be used to try to tighten interval extensions
(Jaulin et al., 2001; Hansen and Walster, 2004; Kearfott, 1996; Neumaier, 1990), including the use
of Taylor models, as described in the next subsection.

2.2. Taylor models

Makino and Berz (1996; 1999) have described a remainder differential algebra (RDA) approach
for bounding function ranges and controlling the dependency problem of interval arithmetic. This
method employs high-order computational differentiation to express a function by a model consist-
ing of a Taylor polynomial, usually a truncated Taylor series, and an interval remainder bound.

Consider a function f : x ∈ X ⊂ Rm → R that is (q +1) times partially differentiable on X and
let x0 ∈ X. The Taylor theorem states that for each x ∈ X, there exists a ζ ∈ R with 0 < ζ < 1
such that

f(x) =
q∑

i=0

1
i!

[(x− x0) · 5]i f (x0) +
1

(q + 1)!
[(x− x0) · 5]q+1 f [x0 + (x− x0)ζ] , (3)

where the partial differential operator [g · 5]k is

[g · 5]k =
∑

j1+···+jm=k
0≤j1,··· ,jm≤k

k!
j1! · · · jm!

gj1
1 · · · gjm

m

∂k

∂xj1
1 · · · ∂xjm

m

. (4)

The last (remainder) term in (3) can be quantitatively bounded over 0 < ζ < 1 using interval
arithmetic or other methods to obtain an interval remainder bound. The Taylor model for f(x)
then consists of a q-th order polynomial in (x − x0), pf (x − x0) (the summation in (3)), and an
interval remainder bound Rf . This Taylor model is denoted by Tf = (pf , Rf ).

Arithmetic operations with Taylor models can be done using the RDA approach described by
Makino and Berz (1996; 1999; 2003). Let Tf and Tg be the Taylor models of the functions f(x)
and g(x) respectively over the interval x ∈ X. The Taylor model of f ± g can be represented as

Tf±g = (pf , Rf )± (pg, Rg) = (pf ± pg, Rf ±Rg) = (pf±g, Rf±g). (5)

For the the product f × g,

f × g ∈ (pf , Rf )× (pg, Rg) ⊆ pf × pg + pf ×Rg + pg ×Rf + Rf ×Rg. (6)

Note that pf×pg is a polynomial of order 2q. In order to be consistent with the q-th order polynomial
in a Taylor model, this term is split into the sum of a polynomial pf×g of up to q-th order, and an
extra polynomial pe containing the higher order terms. A Taylor model for the product f × g can
then be given by Tf×g = (pf×g, Rf×g), with

Rf×g = B(pe) + B(pf )×Rg + B(pg)×Rf + Rf ×Rg. (7)

Here B(p) = P (X−x0) denotes an interval bound of the polynomial p(x−x0) over x ∈ X. Similarly,
an interval bound on an overall Taylor model T = (p,R) will be denoted by B(T ) = B(p) + R.
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In storing and operating on a Taylor model, only the coefficients of the polynomial part p(x− x0)
are used, and these are point valued. However, when these coefficients are computed in floating
point arithmetic, numerical errors may occur and they must be bounded. To do this in our current
implementation of Taylor model arithmetic, we have used the “tallying variable” approach, as
described by Makino and Berz (2003). This approach has been analyzed in detail by Revol et al.
(2005). This results in an error bound on the floating point calculation of the coefficients in p(x−x0)
being added to the interval remainder bound R.

Taylor models for the reciprocal operation, as well as the intrinsic functions (exponential, log-
arithm, square root, sine, cosine, etc.) can also be obtained (Makino, 1998; Makino and Berz,
1996; Makino and Berz, 2003). Using these, together with the basic arithmetic operations defined
above, it is possible to start with simple functions such as the constant function k(x) = k,
for which Tk = (k, [0, 0]), and the identity function i(xi) = xi, i = 1, · · · ,m, for which Ti =
(xi0 + (xi − xi0), [0, 0]), and to then compute Taylor models for very complicated functions. Al-
together, it is possible to compute a Taylor model for any function that can be represented in a
computer environment by simple operator overloading through RDA operations. It has been shown
that, compared to other rigorous bounding methods, the Taylor model often yields sharper bounds
for modest to complicated functional dependencies (Makino and Berz, 1996; Makino and Berz,
1999; Neumaier, 2002).

3. Validated Solution of Parametric ODEs

Traditional interval methods usually consist of two processes applied at each integration step
(Moore, 1966; Nedialkov et al., 1999). In the first process, existence and uniqueness of the solution
are proven using the Picard-Lindelöf operator and the Banach fixed point theorem (Eijgenraam,
1991), and a rough enclosure of the solution is computed. In the second process, a tighter enclosure
of the solution is computed. In general, both processes are realized by applying interval Taylor
series (ITS) expansions with respect to time, and using automatic differentiation to obtain the
Taylor coefficients. We will demonstrate here the use of a new method (Lin and Stadtherr, 2005)
for the validated solution of parametric ODEs, which is used to produced guaranteed bounds on the
solutions of dynamic systems with interval-valued initial states and parameters. The method uses
the traditional two-phase approach, but in the second phase makes use of Taylor models to deal
with the uncertain quantities (parameters and initial values). We will summarize here the basic
ideas of this approach. Additional details are given by Lin and Stadtherr (2005).

Consider the following parametric ODE system:

ẋ = f(x, θ), x(t0) = x0 ∈ X0, θ ∈ Θ, (8)

where x is the m-dimensional state vector, θ is a p-dimensional parameter vector, and t ∈ [t0, tN ] for
some tN > t0. The interval vectors X0 and Θ represent enclosures of initial values and parameters,
respectively. It is desired to determine a validated enclosure of all possible solutions to this initial
value problem. Also note that nonautonomous (time dependent) problems can be converted to the
autonomous form given in (8). We denote by x(t; tj , Xj ,Θ) the set of solutions x(t; tj , Xj ,Θ) =
{x(t; tj ,xj , θ) | xj ∈ Xj , θ ∈ Θ} , where x(t; tj , xj , θ) denotes a solution of ẋ = f(x,θ) for the
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initial condition x = xj at tj . We will describe a method for determining enclosures Xj of the state
variables at each time step j = 1, . . . , N , such that x(tj ; t0, X0,Θ) ⊆ Xj .

Assume that at tj we have an enclosure Xj of x(tj ; t0, X0,Θ), and that we want to carry out
an integration step to compute the next enclosure Xj+1. Then, in the first phase of the method,
the goal is to find a step size hj = tj+1 − tj > 0 and a prior enclosure X̃j of the solution such that
a unique solution x(t; tj ,xj , θ) ∈ X̃j is guaranteed to exist for all t ∈ [tj , tj+1], all xj ∈ Xj , and
all θ ∈ Θ. We apply the traditional interval method, with high order enclosure, to the parametric
ODEs by using an interval Taylor series (ITS) with respect to time. That is, we determine hj and
X̃j such that for Xj ⊆ X̃

0
j ,

X̃j =
k−1∑

i=0

[0, hj ]iF [i](Xj ,Θ) + [0, hj ]kF [k](X̃
0
j ,Θ) ⊆ X̃

0
j . (9)

Here k denotes the order of the Taylor expansion, and the coefficients F [i] are interval extensions of
the Taylor coefficients f [i] of x(t) with respect to time, which can be obtained recursively in terms
of ẋ(t) = f(x, θ) by

f [0] = x

f [1] = f(x, θ) (10)

f [i] =
1
i

(
∂f [i−1]

∂x
f

)
(x, θ), i ≥ 2.

Satisfaction of (9) demonstrates that there exists a unique solution x(t; tj , xj ,θ) ∈ X̃j for all
t ∈ [tj , tj+1], all xj ∈ Xj , and all θ ∈ Θ.

In phase 2, we compute a tighter enclosure Xj+1 ⊆ X̃j , such that x(tj+1; t0, X0,Θ) ⊆ Xj+1.
This will be done by using an ITS approach to compute a Taylor model T xj+1 of xj+1 in terms
of the initial values and parameters, and then obtaining the enclosure Xj+1 = B(T xj+1). For the
Taylor model computations, we begin by representing the interval initial states and parameters by
the Taylor models T x0 and T θ, respectively, with components

Txi0 = (m(Xi0) + (xi0 −m(Xi0)), [0, 0]), i = 1, · · · ,m, (11)

and
Tθi = (m(Θi) + (θi −m(Θi)), [0, 0]), i = 1, · · · , p. (12)

Then, we can determine Taylor models T f [i] of the interval Taylor series coefficients f [i](xi, θ) by

using RDA operations to compute T f [i] = f [i](T xj , T θ). Using an interval Taylor series for xj+1

with coefficients given by T f [i] , and incorporating a novel approach for using the mean value theorem
on Taylor models, one can obtain a result for T xj+1 in terms of the parameters and initial states.
This result can be improved (tightened) by applying additional steps, based on a QR factorization
approach, to further control the wrapping effect. Complete details of the computation of T xj+1 are
given by Lin and Stadtherr (2005).
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4. Results

We now report results of numerical experiments using a C++ implementation of the method
outlined above. This implementation is called VSPODE (Validating Solver for Parametric ODEs).
The results for VSPODE were obtained using a k = 17 order interval Taylor series method, and
with a q = 5 order Taylor model. All tests were performed on a workstation running Linux with
an Intel Pentium 4 3.2GHz CPU.

4.1. Bioreactor kinetics

In a bioreactor, a simple microbial growth process (Bastin and Dochain, 1990), which involves a
single biomass and single substrate, can be described using the following ODE model,

Ẋ = (µ− αD)X (13)
Ṡ = D(Si − S)− kµX, (14)

where X and S are concentrations of biomass and substrate, respectively; α is the process het-
erogeneity parameter; D and Si are the dilution rate and the influent concentration of substrate,
respectively; k is the yield coefficient; and µ is the growth rate, which is dependent on S. We
consider two models for µ, the Monod law,

µ =
µmS

KS + S
, (15)

and the Haldane law,

µ =
µmS

KS + S + KIS2
, (16)

where µm is the maximum growth rate, KS is the saturation parameter, and KI is the inhibition
parameter. In this study, the initial value of biomass concentration X0, and the process kinetic
parameters (µm, KS , and KI) are assumed to be uncertain and given by intervals. Thus, for the
Monod law, there are three uncertain quantities, and four for the Haldane law. The values of the
initial conditions (X0, S0), the inputs (D and Si), and parameters (α, k, µm, KS , and KI) are
given in Table I.

For purposes of comparison, as a representative of traditional interval methods, we used the
popular VNODE package (Nedialkov et al., 2001), with a k = 17 order interval Hermite-Obreschkoff
QR method. Though, like other available solvers, VNODE is designed to deal with uncertain initial
values, it can take interval parameter values as input. However, better performance can be obtained
by treating the uncertain parameters as additional state variables with zero time derivatives; thus
the parametric uncertainties become uncertainties in the initial values of the extra state variables.

Enclosures of the state variables S and X for t ∈ [0, 20] were computing using VSPODE and
VNODE with constant step size h = 0.1. The results were shown in Fig. 1 and Fig. 2 for the
Monod law and the Haldane law, respectively. VSPODE clearly provides a better enclosure, with
VNODE failing at t = 9.3 for the Monod law, and at t = 6.6 for the Haldane law. In order
to allow VNODE to solve the problem all the way to tN = 20, we divided the intervals into a
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Table I. Bioreactor microbial growth parameters

Parameter Value Units Parameter Value Units

α 0.5 - µm [1.19, 1.21] day−1

k 10.53 g S/ g X KS [7.09, 7.11] g S/l

D 0.36 day−1 KI [0.49, 0.51] (g S/l)−1

Si 5.7 g S/l X0 [0.82, 0.84] g X/l

S0 0.80 g S/l
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Figure 1. Enclosures for bioreactor state using the Monod law

certain number of equal-sized sub-boxes and then used VNODE to determine the solution for each
sub-box. The final solution enclosure is then the union of all the enclosures resulting from each
sub-box. Results showing the final solution enclosures (tN = 20) and their widths, as determined
using VSPODE (with no box subdivision) and VNODE with an increasing number of sub-boxes,
are given in Table II for the Monod law. For example, VNODE-1000 in Table II indicates the use
of 1000 sub-boxes in VNODE. Even with 1000 sub-boxes, the solution enclosure determined by
VNODE is still significantly wider than that obtained from a single calculation with VSPODE, and
requires about 200 times more computational time.
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Figure 2. Enclosures for bioreactor state using the Haldane law

Table II. Results for the Monod law, showing final enclosures
(tN = 20).

Method Enclosure Width CPU time (s)

VSPODE [ 0.8386, 0.8450 ] 0.0064 1.34

[ 1.2423, 1.2721 ] 0.0298

VNODE–343 [ 0.8359, 0.8561 ] 0.0202 68.6

[ 1.2309, 1.2814 ] 0.0505

VNODE–512 [ 0.8375, 0.8528 ] 0.0153 102.8

[ 1.2331, 1.2767 ] 0.0436

VNODE–1000 [ 0.8380, 0.8502 ] 0.0122 263.1

[ 1.2359, 1.2732 ] 0.0373
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Figure 3. Schematic of double pendulum

4.2. Double pendulum

In this problem, we consider the motion of a double pendulum, as depicted in Fig. 3. This system
is described by the nonlinear state equations:

θ̇1 = ω1 (17)
θ̇2 = ω2

ω̇1 =
−g(2m1 + m2) sin θ1 −m2g sin(θ1 − 2θ2)− 2m2 sin(θ1 − θ2)

[
ω2

2L2 − ω2
1L1 cos(θ1 − θ2)

]

L1 [2m1 + m2 −m2 cos(2θ1 − 2θ2)]

ω̇2 =
2 sin(θ1 − θ2)

[
ω2

1L1(m1 + m2) + g(m1 + m2) cos θ1 + ω2
2L2m2 cos(θ1 − θ2)

]

L2 [2m1 + m2 −m2 cos(2θ1 − 2θ2)]
,

where θ1 and θ2 are the angles of the pendulum rods (0 = vertical downwards, counter-clockwise
is positive), and ω1 and ω2 are the angular velocities of the top and bottom rod, respectively. The
mass parameters are set to m1 = m2 = 1 kg and the length parameters are set to L1 = L2 = 1 m.
The parameter g is the local acceleration of gravity, which varies with latitude (greatest at the poles,
lowest at the equator) and altitude. In this problem, we will treat g as an uncertain parameter in the
interval [9.79, 9.81] m/s2. This corresponds roughly to the variation in the sea level value between
25◦ and 49◦ latitude (i.e., spanning the contiguous United States). The initial conditions determine
the amount of potential and kinetic energy given to the system. We consider two set of initial
values: 1) a relatively high-energy case with initial state of (θ1, θ2, ω1, ω2)0 = (0.75π, 0.5π, 0, 0) and
2) a relatively low-energy case with initial state of (θ1, θ2, ω1, ω2)0 = (0,−0.25π, 0, 0).

Enclosures of the state variables for both cases were computed using VSPODE with variable
step size (automatically determined by program). The results for θ1 and θ2 are shown in Fig. 4 for
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the high-energy case and Fig. 5 for the low-energy case. The computational times were 8.1 and 12.7
seconds, respectively. For the high-energy case, good enclosures were maintained through two full
rotations of the lower pendulum and one of the upper. For the low-energy case, good enclosures
were maintained through several cycles of motion. The enclosures of all state variables at some time
instances, as well as the break-down time, are shown in Table III and Table IV.
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−20
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Figure 4. Enclosures of θ1 and θ2 for the double pendulum model, high-energy case.

Table III. Enclosures for the double pendulum model, high-energy case.

Enclosure

t θ1 θ2 ω1 ω2

0.5 [ 1.6563, 1.6579 ] [ 1.0368, 1.0372] [-3.0472, -3.0408] [-0.9327, -0.9298]

1.0 [-0.6093, -0.6067] [-0.2392, -0.2277] [-2.5851, -2.5397] [-11.3007, -11.2407]

1.5 [-2.2913, -2.2883] [-3.0230, -3.0203] [-1.9772, -1.9647] [-1.7512, -1.7474]

2.0 [-2.5990, -2.5978] [-4.5055, -4.4958] [-0.5943, -0.5778] [-4.7957, -4.7668]

2.5 [-5.1731, -5.1512] [-8.3532, -8.3308] [-8.5972, -8.5801] [-8.7733, -8.7566]

3.0 [-6.8254, -6.8000] [-12.9548, -12.9121] [ 6.3803, 6.4705] [-12.7200, -12.5692]

3.07 FAIL
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Figure 5. Enclosures of θ1 and θ2 for the double pendulum model, low-energy case.

Table IV. Enclosures for the double pendulum model, low-energy case.

Enclosure

t θ1 θ2 ω1 ω2

1.0 [ 0.2688, 0.2704] [ 0.1153, 0.1167] [ 1.5710, 1.5734] [-1.3996, -1.3971]

2.0 [-0.2517, -0.2509] [ 0.1744, 0.1792] [ 0.3534, 0.3688] [-2.3539, -2.3340]

3.0 [-0.3623, -0.3622] [ 0.1393, 0.1444] [ 0.0310, 0.05463] [ 1.6578, 1.6810]

4.0 [ 0.2161, 0.2224] [ 0.3409, 0.3483] [-1.5371, -1.5321] [ 1.7902, 1.8019]

5.0 [-0.0034, -0.0004] [-0.7395, -0.7382] [-0.6020, -0.5848] [ 0.2325, 0.2808]

6.0 [ 0.2927, 0.3014] [-0.0856, -0.0818] [ 1.3907, 1.4213] [-0.6345, -0.5891]

7.0 [-0.0976, -0.0922] [ 0.1977, 0.2179] [ 0.7267, 0.7672] [-2.8614, -2.8031]

8.0 [-0.4260, -0.4213] [ 0.1059, 0.1150] [ 0.3924, 0.4578] [ 0.7548, 0.8205]

8.89 FAIL
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5. Concluding Remarks

We have demonstrated a new method for obtaining validated solutions of initial value problems for
ODEs with interval-valued parameters and initial values. The dependence of the solution on t is
handled using ITS methods, as in VNODE (Nedialkov et al., 2001). However, the dependence on the
parameter vector θ and the initial state x0 is handled through a novel use of Taylor models of the
form described by Makino and Berz (Makino and Berz, 1996; Makino and Berz, 2003). Numerical
results on a bioreactor kinetics problem and a double pendulum motion problem demonstrate that
this approach provides a very efficient way to obtain a tight enclosure of all possible solutions to a
parametric ODE system under uncertain conditions.
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Online Implementation of a Robust Controller using Hybrid Global

Optimization Techniques

Paluri S. V. Nataraj and Nandkishor Kubal
Systems and Control Engineering Group, ACRE Building, IIT Bombay, Mumbai 400076, India

Abstract. In this work, we report the experimental implementation of a Quantitative Feed-
back Theory (QFT) based robust controller, designed online using hybrid global optimization
and constraint propagation techniques. The hybrid global optimization combines interval global
optimization and nonlinear local optimization methods. The constraint propagation techniques are
very effective in discarding infeasible controller parameter regions in the optimization search. The
obtained experimental results show the effectiveness of hybrid global optimization for the online
design of robust control systems.

Keywords: global optimization, interval analysis, robust control

1. Introduction

Most of the practical system consists of uncertainties in the form of disturbances, measurement
noise and unmodelled or imprecisely modeled dynamics. Therefore the design has to seek a control
system that functions adequately over a wide range of uncertain parameters. Such a system is said
to be robust when, it has low sensitivities, is stable over a wide range of parameter variations,
and the performance stays within prescribed limit bounds in the presence of parameter variations.
Sometimes the parameter variations are beyond the uncertainty bounds, then there is need of
retuning (adaptation) of controller parameters online.

Quantitative Feedback Theory (QFT), developed by Horowitz (1993) is a frequency domain
based technique for robust controller design. It converts the design specifications of a closed loop
system and plant uncertainties into robust stability bounds and performance bounds on the open
loop transmission of the nominal system and then synthesize a controller by using the gain-phase
loop shaping technique. Traditionally, this synthesis was done manually by the designer, relying on
design experience and skill. Recently, several researchers have attempted to automate this step, see,
for instance, (Ballance and Gawthrop, 1991; Bryant and Halikias, 1995; Chait et al., 1999; Gera
and Horowitz, 1980; Thompson and Nwokah, 1994)

The main drawback of the approaches cited above lies in attempting to solve a complicated
nonlinear optimization problem using convex or linear programming techniques, which generally
leads to conservative designs. To overcome these difficulties, Chen et al. (1998) reformulated the
problem as one of parameter optimization of a fixed order controller and used genetic algorithms
for obtaining the solutions. However, it is well known that with genetic algorithms one may obtain
a local minimum instead of the global minimum (Dallwig et al., 1997). Moreover, genetic algorithms
tend to become slower as one tries to increase the probability of success.

c© 2006 by authors. Printed in USA.
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Figure 1. Two Degree of Freedom Structure for QFT.

In this paper, we used an efficient method for automatic loop shaping in QFT, proposed in
(Nataraj and Kubal, 2005). The QFT controller synthesis problem is posed as a constrained
optimization problem, where the objective function is the high frequency gain of the controller, and
the constraint set for the optimization is the set of possibly nonconvex, nonlinear magnitude-phase
QFT bounds at the various design frequencies. The method uses hybrid optimization techniques
and constraint propagation ideas to solve the optimization problem. The hybrid optimization part
efficiently combines interval global optimization (Moore, 1979; Ratschek and Rokne, 1988; Hansen,
1992; Kearfott, 1996) and nonlinear local optimization methods. The method supplement the opti-
mization tools with a new so-called quick solution approach, developed based on ideas of constraint
propagation techniques. The quick solution approach can quickly discard sizable portions of the
infeasible controller parameter regions using simple arithmetic calculations.

In the present work, automatic loop shaping using hybrid global optimization and constraint
propagation is used for the experimental implementation of QFT based robust adaptive controller
on a coupled tank system.

The paper is organized as follows: Section 2 deals with the background of QFT. Problem for-
mulation is given in Section 3. Section 4 give details of hybrid global optimization and constraint
propagation. Case study of coupled-tank system is described in Section 5.

2. Overview of QFT

Consider a two degree freedom feedback system configuration (see Fig 1), where G(s) and F (s) are
the controller and prefilter respectively. The uncertain plant P (s) is given by P (s) ∈ {P (s, λ) : λ ∈
λ}, where λ ∈ Rl is a vector of plant parameters whose values vary over a parameter box λ

λ = {λ ∈ Rl : λi ∈ [λi, λi], λi ≤ λi, i = 1, ..., l}
This gives rise to a parametric plant family or set

P = {P (s, λ) : λ ∈ λ}
The open loop transmission function is defined as

L(s, λ) = G(s)P (s, λ) (1)

and the nominal open loop transmission function is

L0(s) = G(s)P (s, λ0) (2)
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The objective in QFT is to synthesize G(s) and F (s) such that the various stability and performance
specifications are met for all P (s) ∈ P. In general following specifications are considered in QFT:

1. Robust stability margin ∣∣∣∣
L(jω)

1 + L(jω)

∣∣∣∣ ≤ ωs

2. Robust tracking performance

|TL(jω)| ≤
∣∣∣∣
F (jω)L(jω)
1 + L(jω)

∣∣∣∣ ≤ |TU (jω)|

3. Robust input disturbance rejection performance
∣∣∣∣

G(jω)
1 + L(jω)

∣∣∣∣ ≤ ωdi(w)

4. Robust output disturbance rejection performance
∣∣∣∣

1
1 + L(jω)

∣∣∣∣ ≤ ωdo(w)

In practice, the objective is to satisfy the given specifications over a finite design frequency set
Ω. The main steps of QFT design specifications are

1. Generating templates: For a given uncertain plant P (s) ∈ P, at each design frequency
ωi ∈ Ω, calculate the value set of the plant P (jωi) in the complex plane.

2. Computation of QFT bounds: At each design frequency ωi, combines the stability and
performance specifications with the plant templates which results in the stability margin and
performance bounds. The bound at ωi is denoted as Bi(∠L0(jω), ωi) or simply Bi

3. Design of Controller : Design a controller G(s) such that

− The bound constraints at each design frequency ωi are satisfied.

− The nominal closed loop system is stable.

4. Design of Prefilter: Design a prefilter P (s) such that the robust tracking specifications are
satisfied.
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3. Problem Formulation

We consider the controller structure in the gain-pole-zero form as

G(s, x) =

kG

nz∏

i1=1

(s + zi1)

np∏

k1=1

(s + pk1)

(3)

where
x = (kG, z1, ...znz , p1, ..., pnp) (4)

is the controller parameter vector. The magnitude and phase functions of G(s, x) are defined as

Gmag(ω, x) = |G(s, x)|; Gang(ω, x) = ∠G(s, x) (5)

Now, the QFT controller synthesis problem can be formulated as: Given the QFT bounds and
the nominal plant, develop a controller automatically which provides nominal closed loop stability,
satisfies all the bound constraints, with minimum high frequency controller gain kG. Minimization
of the high frequency gain of the controller tends to reduce the amplification of the sensor noise in
the high frequency range, as shown in (Horowitz, 1993).

The QFT synthesis problem can be posed as a constrained optimization problem

min
x∈x

f = kG (6)

subject to H(x) ≤ 0

− x is the vector of controller parameters, x is some suitably specified initial search box of
controller parameter values.

− H(x) = {hi(x)} is set of bound constraints at each design frequency ωi

single valued upper bound constraint : hu
i (x) = |L0(jωi, x)| −Bi(∠L0(jωi, x), ωi) ≤ 0 (7)

single valued lower bound constraint : hl
i(x) = Bi(∠L0(jωi, x), ωi)− |L0(jωi, x)| ≤ 0 (8)

A multiple valued bound constraint denoted as hul
i can be split into a single-valued upper

bound constraint hu
i and a single-valued lower bound constraint hl

i, and then the condition of
both the bounds consider together.

− The bound constraint on the controller parameter vector, i.e. the controller parameter values
should lie in the initial search region.

− The nominal closed loop stability test is based on finding out the zeros of 1 + L(s, z0, λ0) for
some z0 ∈ z ⊆ x
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4. Hybrid Global Optimization

Let z = (kG, z1, ..., znz ,p1, ...,pnp) be the controller parameter box. Let Gmag(ωi, z) and Gphase(ωi, z)
denote the natural interval extensions of controller magnitude and phase functions respectively. The
natural interval extensions of nominal open loop transfer function magnitude and phase are defined
as

L0mag(ωi, z) = |L0(jωi, z)| = Gmag(ωi, z) |P (ωi, λ0)| (9)

L0phase(ωi, z) = ∠L0(jωi, z) = Gphase(ωi, z) + ∠P (ωi, λ0) (10)

The evaluations of the natural interval extensions at a given frequency ωi give magnitude and phase
intervals that define a box-like region in the Nichols chart. This is called as the L0 box at ωi.

The algorithm proposed in (Nataraj and Kubal, 2005) mainly consists of seven major compo-
nents: a quick solution approach, feasibility test, local optimization call, initialization, list sorting
and handling, a bisection strategy and a termination criteria.

1. Feasibility test: Based on the location of the L0 box w.r.t. bounds Bi, the parameter box z
is determined as feasible, infeasible or indeterminate at ωi, see Fig. 2. The flagz represents the
feasibility of parameter box z The details for the feasibility test are given in sec. 4.1.

2. Quick Solution approach: The quick solution approach discards the portion of the controller
parameter box z based on the location of the L0 box w.r.t. the bounds (for details see sec. 4.3).

3. Initialization: The current processing box z is assigned to the initial search box. The quick
solution and feasibility test is done for z. If z is infeasible, then by the inclusion property of
interval analysis, there is no feasible solution ∀z̃ ∈ z, hence, the algorithm exits and print the
message ‘No solution exist in the given initial search box’. Else, a list L is initialized with triple
(z, z, f lagz), where z = inf z(1) is the minimum value of the high frequency gain based on the
current parameter box z.

4. Local optimization call: A constrained local optimization routine is called to solve the
constrained optimization problem (6). For details see sec. 4.2.

5. Bisection: At each iteration, the box z of leading triple is bisected into two subboxes v1 and
v2

6. List sorting and handling: At each iteration, the leading triple is deleted from the list L
and the indeterminate bisected triples are added into the list. The list is sorted and arranged
in the non decreasing order of the value of objective function.

7. Termination:

a) As the list is sorted and arranged in the non decreasing order of the value of objective
function z at each iteration, the leading triple always contains the minimum value of the
objective function. Hence, at any iteration, if the box z of the leading triple is feasible, then
the algorithm can be terminated by printing the optimal controller parameter box z
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PSfrag replacements
|Bi|max

Figure 2. Feasibility conditions for different locations of L0 box w.r.t. single valued lower bound at ωi. Box A shows
feasible case, box B shows infeasible case and box C shows the indeterminate case.

b) If the relative gain width of the box z of leading triple is less than a specified relative gain
tolerance, and the box z contains the feasible parameter vector (i.e. feasible local solution)
then the algorithm can be terminated by printing the optimal parameter vector zlocal

4.1. Feasibility check

The feasibility check for a controller parameter box z consists of checks for the bound constraints
satisfaction in (7) and (8) at a given ωi, i = 1, ..., n.

4.1.1. Feasibility check for bound satisfaction
Let |Bi|max and |Bi|min be the top most and bottom most value of the single valued lower bound
for the entire phase interval ∠L0(jωi, z). Based on the location of the L0 box w.r.t. the single valued
lower bound one of the following cases arises (see Fig.2)

1. If the entire L0 box lies on or above |Bi|max (box A in Fig. 2) then hl
i is satisfied for any

controller parameter vector z ∈ z, so that the entire box z is feasible at ωi.

2. If the entire L0 box lies below |Bi|min (box B in Fig. 2) then hl
i is not satisfied for any controller

parameter vector z ∈ z, so that the entire box z is infeasible at ωi.

3. Else box z is indeterminate (box C in Fig. 2).
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4.2. Local optimization

Local optimization gives an early knowledge of the approximate global minimum. However, the
main difficulty is to decide of when to call a local optimization algorithm in a hybrid algorithm. If
local optimization is called at each algorithmic iteration, then the computational costs will grow
dramatically. Hence, the following decision rule is made regarding when to call the local optimization
routine.

− Let z, be any parameter vector belong to the parameter box z.

− z is compared with all previous starting points of local optimization, say zv,

− If z is sufficiently different (say, for instance more than 10%) from all previous starting points
zv, then call the local optimization routine for z.

4.3. Quick Solution

We can easily show from (2), (3) that the magnitude and phase of L0 vary monotonically over the
gain, zero and pole intervals. Further, from Fig. 3, we also observe that the coordinate (inf∠L0, sup|L0|)
is contributed by supremum values of gain and zero intervals and infimum values of pole intervals,
while the coordinate (sup∠L0, inf|L0|) is contributed by infimum values of gain and zero intervals
and supremum values of pole intervals

The proposed quick solution approach uses these simple observations and a few arithmetic
calculations for discarding infeasible parts of gain, pole and zero intervals. In general, optimization
techniques alone would take perhaps many iterations to achieve the same.

5. Case study

5.1. Plant Description

The coupled tank system whose schematic is given in Fig. 4 consists of two hold-up tanks which
are coupled by an orifice. Water is pumped in to the first tank by variable speed pump. The orifice
allows this water to flow into the second tank and hence out to a reservoir. The aim is to control
the water level in the second tank by changing the flow rate to the first tank by varying the speed
of the pump. The speed of the pump is varied by varying the control voltage (0-10V) to the pump.
The liquid level in the tank is measured using a depth sensor whose output is voltage (0-10V),
which is proportional to the level.

The input to the plant is the voltage to the variable speed pump and the output is the water
level in the second tank in terms of voltage signal.

The control voltage to the pump motor drive is from a digital computer along with the Advantech
5000 series data acquisition system. The mentioned data acquisition comprises 8-channel analog
input module and 4-channel Analog output module. The analog input channel accepts the signal
of 0− 10 volts. The analog output channels can generate an output of 0−10 volts. Communication
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Figure 3. Variation of |L0(jωi, z)|, ∠L0(jωi, z) w.r.t. gain, zero and pole intervals. The outer rectangle shows the L0

box.
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Figure 4. Schematic of Coupled Tank System.

between data acquisition system and the digital computer is via serial port. The control design
algorithm is implemented on a PC in Microsoft FORTRAN 95 with interval arithmetic support
INTLIB (Kearfott et al., 1994).

5.2. Real-time Parameter Estimation

On-line determination of process parameters is a key element in adaptive control system. In the
present work recursive least square method is used for parameter estimation. In recursive identifi-
cation method, the parameter estimates are computed recursively in time. This method has a small
requirement on memory since only a modest amount of information is stored. This amount will not
increase with time.
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Figure 5. Experimental closed-loop responses to setpoint changes for the coupled-tank system.

5.3. Controller Design and Implementation

For the design of robust QFT controller, the closed-loop specifications include the robust QFT
stability margins and tracking performance which are specified by

∣∣∣∣
L(jω)

1 + L(jω)

∣∣∣∣ ≤ 3dB

and
|TL(ω)| ≤

∣∣∣∣
F (jω)L(jω)
1 + L(jω)

∣∣∣∣ ≤ |TU (ω)|
respectively, where

TU (s) =
16.67s + 1

2140s2 + 56.44s + 1
and

TL(s) =
1

4.495× 104s3 + 4740s2 + 139.2s + 1
A second order model structure is selected for the coupled-tank plant, whose parameters are
estimated online using recursive least square method. The method mentioned in sec. 4 is used
to design the controller online. The implementation results are shown in the Figs. 5 and 6.

It can be noticed in Fig. 6 that the obtained closed-loop responses satisfy the given time-domain
specifications.
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Abstract:  Fuzzy controllers prove to be very useful for practical applications, especially in the 
cases when there is no appropriate mathematical model of behavior of the controlled object. 
Control signal is computed by fuzzy controller with the use of rule base table. In this paper we 
propose a mathematical method for reduction in space complexity of the system by decreasing the 
number of address lines in the memory used to store If-Then rules. The idea of the method is to 
use variable radix in representing integers. We also propose incorporation of error-correcting 
codes in the memory used to store If-then rules without substantial increasing of space 
complexity and application of signature analysis for error detection/location in a fuzzy controller.  

 
 

1. Introduction 
 

Fuzzy sets and some basic ideas pertaining to their theory were first introduced in 1965 by 
Lofti A. Zadeh, a Professor of Electrical Engineering at the University of California a Berkeley. 
The development of fuzzy set theory and fuzzy logic experimented changes since their 
introduction. Therefore the “Fuzzy Boom” (since 1989) has been characterized by a rapid 
increase in successful industrial applications that have netted impressive revenues.  

Major research centers have been established devoted to this field. This all been accompanied 
by a tremendous increase in the number of contributors as well as in the number of relevant 
publications, including several dedicated journals.  

 
Braunstingl [1] developed a wall-following robot that used a fuzzy logic controller and local 

navigation strategy to determine its movement. The fuzzy logic controller uses the input variables 
to control the firing of 33 rules.  
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A fuzzy system developed by Surmann [2] controls the navigation of an autonomous mobile 
robot. The entire system has about 180 fuzzy rules that associate 30 fuzzy inputs with 11 outputs.  
Potentially, the number of fuzzy rules can be very large. 

 
 The contribution of this paper is to tackle the space complexity of the system by decreasing 

the number of addresses lines used to store If-Then rules. Also the incorporation of error 
correcting codes in the memory used to store If-Then rules without substantial increasing space 
complexity as well as application of signatures analysis for error detection/location in a fuzzy 
controller.  

 
 

2. Fuzzification, Rule Base and Defuzzification 
 

Fuzzy controllers follow standard procedures for their design, which consists of fuzzification, 
control rule base establishment, and defuzzification as shown by fig. 1.  We are using a fuzzy 
controller with a sensor 0 and sensor k where  and denote the number of membership 

possible values.  
0r kr

 
 Fuzzy

Sensor 0 Attributes

Values of Membership 
Functions

0.0
0.6
0.3
0.0

Sensor k 0.0 Crisp 

0.0
0.0
0.7
0.5
0.0
0.0
0.0

 
 

Fuzzification

Fuzzification Address

 
 

0r 

Output

generator

kr

Rule Base
(1,2,..r)

Computational 
Block

 
 
2.1 Fuzzification 

 

 

   Fig. 1 Basic Fuzzy Controller Block diagram 

Fuzzification is mapping from the crisp domain into the fuzzy domain. Fuzzification also 
means the assigning of linguistic value, defined by relative small number of membership 
functions to variable. 

 
2.2 Rule Base 

 
The rule base is in fact a big database of rules that keep the knowledge of how is best to 

control the system. 
 



Vainstein F.,Marte E.,Osoria V., and Romero R 

 

ria V., and Romero R.  
  
 
  

181

181

 
2.3 Computational block 
 

The Computational Block runs the inference engine which goes through all the rules, 
evaluating the firing strength of each rule which in turn is proportional to the truth-value of the 
preconditions.  
 

After all the rules are computed, we have the firing strength of each rule. A problem then 
arises - we might have several rules with similar consequents, but different firing strength. Such a 
situation will result with different membership values for the same output. Here the defuzzifier 
comes in.  
 
2.4 Defuzzification  

 
The defuzzifier block task is to receive as input the membership values of the outputs, or in 

other words, the fuzzy outputs. Then it returns the actual numerical output, which may be a drug 
dose, a desired temperature, or any other variable. There are many methods of solving that 
problem and all of them aggregate the membership values of the outputs, in some form of an 
average, to find out the actual output. 

 
3. Address Generation 

 
Fig. 2 below shows a classical fuzzy controller implementation with two sensors, velocity and 

position.  
 
Normally different values of position and velocity will trigger different and probably 

simultaneous rules which will lead the computational block to take a decision with these values. 
Base Rules in a fuzzy controller are preset values for decision taking, as an example for the 
controller in Fig.2 we created a 2-dimensional table where we are implementing five different 
decisions (1 to 5). Therefore the computational block for delivering 2 outputs in this system will 
need 3 bits for each output to represent these values in classical binary format (Fig. 3).  
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Sensor 0
(Position)

NM 0.0      To Computational
NS 0.6      Block
ZE 0.3
PS 0.0

Sensor 1 PM 0.0 3
(Velocity)
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NM 0.0
NS 0.0
ZE 0.7
PS 0.5

PM 0.0

Fuzzification

Fuzzification Address
generator

50 =r

51 =r

 

 
 
 
 

  
 
 
 
 
 
 
 

Fig. 2 Example of Address Generation 
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NM 1 4 3 2 1
NS 5 2 1 3 2
ZE 1 3 2 1 4
PS 5 5 3 2 1
PM 1 2 5 1 2

       Position

to 
computational
block

                  Rule Base

ve
lo

ci
ty

Fig. 3 Bidimensional Table for Decision 
Take of the fuzzy Controller 

 
 
 
 
 
 
 
 
3.1 Number of Lines and Space Complexity 
 

Denote by the number of input address lines of the ROM storing Rule Base Table. 0N
With the straightforward approach, the value of  is obtained from the following formula: 0N
 

∑
=

=
k

i
irN

0
20 ][log                                                   (1) 

 
Example:  Let k=9, 5... 910 ==== rrr  Using (1) we obtain 300 =N . 

 

 Rule Base

02log r

kr2log

r2log

Fig. 4   Straight forward Address Generation 

  
 
 
 
 
 
Let us assume that Rules Base is stored in a ROM. The space complexity of a Rom is 
proportional to where N is the number of address lines in the Rom (See Fig. 5). N2

 

num ber of
address lines

space     
com plexit

exponential

Fig. 5 Space Complexity Vs Address Lines 
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4.  Variable Radix Numbers (Multi Radix) 
 
In this paper we introduce a new representation of numbers. Unlike the usual decimal, and 

binary numbers, where the radix is fixed, in our representation the radix differ from position to 
position. We call this numbers Variable Radix (or Multy Radix) Numbers. 
 
By Definition Multy Radix number can be written as follow: 
 

           ),...,( 0aaa kr = ,                              (2)        

 
   Where,              },...,{ 0 krrr =  

   }1,...,0{ 00 −∈ ra  
 }1,...,0{ 11 −∈ ra  
………………. 

  }1,...,0{ −∈ kk ra  
The Multy Radix number  has the value ra
 

     110102010 ...... −++++= kkr rrrarraraaa                                   (3) 

 
Example:  
 
Let’s assume that 7,2,5 210 === rrr  

Then the multi radix number 604 it then has the decimal value 1064=ra  

 
Usage of multi radix numbers in a fuzzy controller will reduce the space complexity of the 
system. 
 
4.1 Important Note 
 
There exists natural one-to-one correspondence between the set of multi radix numbers and the 
set of fuzzy rules. It is demonstrated on Fig. 6 and Fig. 7. 
 

Sensor 0

0
1

Sensor 1 2

0
1
2
3
4

 
 
 
 
 
 
 
 

Fig. 6  Set of fuzzy Rules  
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Fig. 7 One-to-One Mapping 

 
 
 
 
 
 
 
 
4.2 Multi Radix to Binary Converter 
 
Denote by . kk rrrwrrwrw ...,...,, 1010201 ===
Then kkr wawawaaa ++++= ...22110                                       (4) 

 
The block diagram of Multy Radix to Binary Converter is shown in Fig. 8 for the case of 

 0 1 2 35, 5,  3, 6r r r r= = = =
 

3

3

2

3

Convertor

+

0w

1w

2w

3w

0a

1a

2a

3a

9][log 32102 =rrrr

Fig. 8 Multi Radix to Binary Converter 

 
 
 
 
 
 
 
 

 
 

 
3-input line ROMs can be used as multipliers by the constant . iw
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5. Reduction in space complexity 
 
We can reduce the space complexity of the Rule Base by using Multi Radix numbers as shown in 
Fig. 9.                            

 Sensor 0

Sensor k

N

Fuzzification

Fuzzification

Address
generator in 

noncompact binary

0r

kr

Multiradix to 
Binary 

Converter

Rule 
Base

][log 02r

][log2 kr

 

Fig. 9 Rule Base with Multi radix to Binary Converter 

 
If we denote by 

 the initial 

number of 
addresses lines 
and by N the 
number of 
addresses lines 
after the Multi 
Radix to Binary 
Converter then 
the following 
statement is true:  

0N

 
                   

0202102 ][log...][log]...[log NrrrrrN kk =++≤=                            (5)  

 
Example: 
Let . Then the number of initial addresses lines5..,9 90 ==== rrk 300 =N . 

 
The number of addresses lines after the Multi Radix to Binary Converter is equal 
to  24][log2 == krN
 

6. Data compression and error correcting codes in Rule Base 
 
Data compression can be demonstrated by the following examples:  
 
Example: 
Suppose we have 2 Sensors   50 == rr , 5=r . Normally, for this case it will take 15 bits for 

representing a single row as shown in Fig.10. 
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The string of numbers in the center row, as shown in Fig. 11, can be considered as a radix 5 
number. Since this number has 5 digits (positions), the biggest possible number represented by 

this string is equal to . 55 1−
 
 

1 4 3   0 1 
1 100 011 0 11 15 Bits

Fig. 10  Single Row 2 Sensors Representation 

 
 
 
 
 
 
 
 
 
 
 
 
 1 4 3 0 1

Fig. 11 Center Row 
 
 
 
To convert it to binary we need bits.  We saved 3 bits.   These bits can be used 
for error correction 

12]15[log 5
2 =−

 
 
Example: 
 
Suppose that we have 3 sensors, ;5210 === rrr  5=r . In this case we have a number with 25 

digits. The biggest possible number  255 1− .   To convert it to binary we need 59 bits. Therefore 
we saved 75-59=16 bits, see Fig. 12. 
 
 
 
 
            
 
                                       
                                                  

Fig. 12   3 Sensors representation 

 2 1 1    2   4 
3 5 3   1  2 

 25 Positions
25*3=75 Bits

…...…….

 
 
 
6.1 Rule Base with data compression and Error Detection/correction 
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The block diagram of the Rule Base with data compression and Error Detection/Correction is 
shown in Fig. 13 

N
Address
generator 

(noncompact binary)

Variable 
Radix to 
Binary 

Converter

Rule Base 
with error 
correction 

code

][log 02 r

][log2 kr

0N

Decoder

 

…
Code Word Code Word Code Word

Decode

check bits
(16)

 

 
 
 
 
 
 
 
 

Fig. 13 Rule Base block Diagram with data compression and Error Detection/Correction  

 
6.2 Testing of a Fuzzy Controller by signature Analysis of test Response 

 
 Test M

Patters N Test
Responses

Variable 
Radix to 
Binary 

Converter

Rule Base 
with error 
correction 

code

][log 02 r

][log 2 kr

0N

Decoder

Fig. 14 Testing by signature analysis  

 
 
 
 
 

 
Since initially we have  address lines and after the decoder we have M address lines, we can 

consider a mapping 
0N

 
MN ZZf 22

0: ⎯→⎯        (6) 
 
Note the  can be considered as a field of  elements . MZ 2

M2 )2( MGF
 

 
Error detection is performed the following way: first we precompute the signature 

 

∑= )(xfS xf α        (7) 

where , . is to be considered fault-free. 0
2
NZx ∈ )2( M

x GF∈α fS
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The signature observed is computed with the same set of weights xα  

 

  ∑= )(xfS xf
α       (8) 

 

Here f  is  (possibly faulty)  function MN ZZf 22
0: ⎯→⎯           (9) 

 

For testing if   andf f  are the same we compute the signatures. If the signatures   and fS fS  

are the same, the test is passed.  
 

7. Conclusion 
 
In this paper we introduce a new representation of numbers – Variable Radix Number system. 
Using a Variable Radix Number system we decreased the number of addresses lines in a ROM 
that is used to store If-Then rules, thus reducing the space complexity of a fuzzy controller. Also 
we incorporated error correcting codes in the memory used to store If-Then rules without 
substantial increasing space complexity. 
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Abstract. There are many applications within digital signal processing (DSP) and controls that
require the user to know how various numerical errors affect the result, i.e. uncertainty. This
uncertainty is represented by replacing non-interval values with intervals. Since most DSPs operate
in real time environments, fast processors are needed. The goal is to develop a platform in which
interval arithmetic operations are performed at the same computational speed as present day signal
processors. We have proposed a design for an interval based arithmetic logic unit (I-ALU) whose
computational time for implementing interval arithmetic operations is equivalent to many digital
signal processors.

Many DSP and control applications require a small subset of arithmetic operations that must
be computed efficiently. This design has two independent modules operating in parallel to calculate
the lower bound and upper bound of the output interval. The functional unit of the ALU performs
the basic fixed-point interval arithmetic operations of addition, subtraction, multiplication and the
interval set operations of union and intersection. In addition, the ALU is optimized to perform dot
products through the multiply-accumulate instruction. Division traditionally is not implemented on
digital signal processors unless computed with a shift operation. In this design, division by shifting
is implemented. The ALU is designed to have maximum throughput while minimizing area.

Keywords: arithmetic logic unit, interval arithmetic, signal processing

1. Introduction

Interval based algorithms continue to find applications as the solution for signal processing and
controls problems. For instance, in signal processing, there is usually the need to determine the
optimal solution to a problem, i.e., to minimize a cost function. The ability of interval global
optimization approaches to guarantee convergence to global minimum point(s) (?) is one that
makes such approaches attractive in digital signal processing (DSP) and control applications. DSP
and control algorithms need to be designed in such a way that roundoff and truncation errors that
occur naturally due to the discrete nature of computing do not cause the algorithm to become
unstable. Interval analysis provides a means of managing such errors. It is therefore possible to
obtain numerically accurate and reliable results.

Interval based algorithms are however slower than non-interval counterparts when run on current
processor architectures. Such algorithms are usually implemented in software and so extra work

c© 2006 by authors. Printed in USA.
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needs to be done in software to change rounding modes, perform memory management and perform 
error checks. These steps are time consuming and therefore make the algorithms run slowly. 

If interval based algorithms are to become more practical, the throughput problem will have to 
be solved. This can be achieved by using arithmetic logic units (ALU) that are specially designed 
to manipulate interval numbers. Such an Interval ALU (I-ALU) can be used as the core of any 
digital signal processor. The throughput of such an ALU will have to be comparable to that of non- 
interval units. In contrast to general purpose microprocessors that are designed to handle general 
computing tasks, digital signal processors are designed and optimized to operate on algorithms 
that are characterized by repetitive multiply-and-add operations. They use a modified Harvard 
architecture with separate data and program memory (?). In general, they feature fast multiply- 
accumulate instructions, multiple-access memory, specialized program control for interrupt handling 
and 110, and fast and efficient access to peripherals. 

Interval floating-point ALUs have been proposed by ?. In this paper, we propose a fixed-point 
I-ALU. Fixed-point processors have the advantage of requiring less silicon, featuring faster clocks 
and being cheaper (?). The ALU is designed to perform the basic arithmetic operations of addition, 
subtraction and multiplication. Division by shifting is also implemented. Other operations that can 
be performed include multiply-accumulate (MAC), and the set operations of union and intersection. 

The paper is organized as follows: section ?? discusses various aspects of the hardware design 
based on a modified Harvard architecture, section ?? shows the results, and finally, section ?? 
provides the conclusion. 

2. Interval ALU 

2.1. OVERALL ALU DESIGN 

Consider the intervals X = [xL, xu] and Y = [yL, yu]. The ALU is designed to perform operations 
Z = X op Y = {x op y I x E X, y E Y) where op E {+, -, x, 1). It is also designed to perform 
the set operations of union, U and intersection, n. As is typical with digital signal processors, only 
division by powers of 2 is implemented. That is, given X / Y, Y is degenerate and a power of two. 
This allows for the division operation to be achieved by simply shifting the bits of the numerator, 
X. The ALU is also capable of calculating the dot product of two vectors by a multiply-accumulate 
operation. 

In general, the result of each operation is a single interval. However, there is one situation where 
two intervals may result. This is the case when the union of two disjoint intervals is desired. Consider 
the operation X U Y where X and Y are disjoint intervals. The result will then be two intervals, 
X and Y, and they will be placed on the output lines in two successive clock cycles. 

The ALU is a fixed-point unit which represents numbers in two's complement format. One 
bit, the leftmost and most significant bit (MSB), is used as the sign bit. The remaining bits are 
used to represent the number. Figure ?? shows the structure of an N-bit signed number in two's 
complement format as used in our implementation. 

Table ?? lists the inputs to the ALU. Operands are specified as 16-bit numbers. The ALU has 
input lines that allow selection of the multiply-accumulate mode and the number of bits for the 
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2.3.2. Rounding Algorithm for Upper Bound Module 
Rounding for the output is slightly more complicated. If any of the bits that are to  be discarded is a 
1, a 1 is added to the part that is going to be retained after rounding. Otherwise, simple truncation 
is performed. Figure ?? illustrates this rounding algorithm in brief. 

MSB ) LSB 

Figure 6. Rounding Unit for Upper Bound Module 

3. Performance & Results 

The I-ALU presented in this paper was designed in such a way that its performance would compare 
with non-interval ALUs. The two performance metrics of interest are throughput and area. Through- 
put was the more important performance metric so the design was first optimized for throughput 
and then for area. In other words, throughput was maximized while area was minimized. The 
design was implemented using Verilog HDL and synthesized using Synopsys. The 0.18,um technology 
library was used. 

In order to compare favorably with non-interval ALUs, an interval ALU should be able to 
produce the results of computations in a single clock cycle. The design presented produces results 
in one clock cycle, except for cases where the result is a union of two disjoint intervals. The fastest 
clock obtained for the design was 45.8MHz. 

Once the design was optimized for throughput, it was then optimized for area. The goal was to 
minimize the area. The minimum area obtained for our design was 218,569 ,urn2. 
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4. Conclusion 

We have presented in this paper a design for an Interval based Arithmetic Logic Unit having 
computational efficiency comparable to many present day digital signal processors. This ALU 
operates on intervals represented by fixed point numbers in twos complement form. To make the 
ALU specific to DSP and control applications, dedicated hardware with a reduced instruction set of 
addition, subtraction, multiplication and for filtering operations, the multiply-accumulate operator 
is implemented. To bind the errors that accrue due to rounding, the outward rounding has been 
implemented. Throughput and area of the design has been optimized to obtain the best results. 
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Abstract: In chip design, one of the main objectives is to decrease its clock cycle; however, the 
existing approaches to timing analysis under uncertainty are based on fundamentally restrictive 
assumptions. Statistical timing analysis techniques assume that the full probabilistic distribution 
of timing uncertainty is available; in reality, the complete probabilistic distribution information is 
often unavailable.  Additionally, the existing alternative of treating uncertainty as interval-based, 
or affine, is limited since it cannot handle probabilistic information in principle. In this paper, a 
fundamentally new paradigm for timing uncertainty description is proposed as a way to 
consistently and rigorously handle partially available descriptions of timing uncertainty. The 
paradigm is based on a formal theory of interval probabilistic models that permit handling 
parameter uncertainty that is described in a distribution-free mode - just via the range, the mean, 
and the variance. This strategy permits effectively handling multiple real-life challenges, 
including imprecise and limited information about the distributions of process parameters, 
parameters coming from different populations, and the sources of uncertainty that are too difficult 
to handle via full probabilistic measures (e.g. on-chip supply voltage variation). Specifically, 
analytical techniques for bounding the distributions of probabilistic interval variables are 
proposed. Also, a provably correct strategy for fast Monte Carlo simulation based on probabilistic 
interval variables is introduced. A path-based timing algorithm implementing the novel modeling 
paradigm, as well as handling the traditional variability descriptions, has been developed. The 
results indicate the proposed technique can improve the upper bound of the 95th-percentile circuit 
delay, on average, by 4.8% across the ISCAS’85 benchmark circuits, compared to the worst-case 
timing analysis that uses only the interval information of the partially specified parameters. 
 
Keywords: interval uncertainty, Monte-Carlo techniques 
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1. Need for New Models of Uncertainty: Probabilistic Interval Analysis 
 
The area of statistical static timing analysis (SSTA) has recently made substantial progress in 
terms of algorithmic and modeling advances. Efficient block-based and incremental computation  
techniques based on the first-order delay model are now well developed (Visweswariah et al, 
2004; Chang and Sapatnekar, 2003). Extensions of the basic framework of SSTA to higher-order 
models have been recently investigated to capture non-linear effects and non-Gaussian process 
parameter distributions (Zhan et al, 2005; Chang et al, 2005; Zhang et al, 2005). Statistical delay 
computation for interconnect based on affine interval arithmetic has been studied (Ma and 
Rutenbar, 2004). These developments in the theory of SSTA came in response to the increased 
variability in the process parameters, the inadequacy of the corner models, and the need to use 
explicit probabilistic descriptions of key process parameters. 

The fundamental assumption behind all of the above techniques is that the probabilistic 
descriptions are readily available. In all the algorithms for SSTA (Visweswariah et al, 2004; 
Chang and Sapatnekar, 2003; Zhan et al, 2005; Chang et al, 2005; Zhang et al, 2005), the 
complete knowledge about the distributions of process and environmental parameters is given, 
e.g. it is assumed that the process parameters are normally distributed, with the known mean and 
variance. Then, first-order models link delay variability with process parameters, allowing delay 
to be normally distributed as well (Visweswariah et al, 2004; Chang and Sapatnekar, 2003). If 
linear delay models are not sufficiently accurate, higher-order models can be used, at the cost of 
the resulting non-Gaussian distribution of delay. The non-Gaussianality of process parameters or 
timing can be handled by numerical processing leading to a substantial (3-10X) increase in the 
run-time of the algorithm (Chang et al, 2005) 0. 

In this paper we argue that in a practical setting of cutting-edge IC design the full 
probabilistic information about parameter uncertainty is not available. The process 
characterization data is often incomplete and of limited nature, especially at the ramp-up phase of 
the industrial manufacturing. With limited number of measurements and characterization lots, 
there may be a large uncertainty in the statistic metrics (the mean and the variance) of the process 
parameters. Some sources of on-chip uncertainty cannot be described probabilistically: supply 
voltage (Vdd), temperature, and systematic variation sources with the unit of repeatability larger 
than a single chip (e.g. aberration-caused Lgate variation).  

Interval and affine methods, which tremendously improve on the conservatism of the 
traditional interval techniques, can be used in circuit timing analysis (Ma and Rutenbar, 2004). 
However, in many instances, some but not full probabilistic information is available. For 
example, variation of supply voltage in time depends on the input vectors applied to the chip. 
Because of the difficulty of performing temporal input-dependent analysis, the uncertainty about 
supply voltage is most typically represented by the range information (Ernst et al, 2004), 
however, the mean and, possibly, the variance of the distribution can be estimated more easily. 
For example, the supply voltage may vary between 90-100% of the nominal value, with the mean 
equal to 97% of the nominal value. The distribution is unknown because its characterization is 
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computationally expensive (Kouroussis et al, 2005). Statistical STA cannot meaningfully handle 
such a realistic scenario. The affine methods are fundamentally non-probabilistic and their 
extensions to handling statistics are heuristic in nature (Ma and Rutenbar, 2004). 

Thus, in addition to the existing techniques, a new way of treating uncertain variables with 
partial probabilistic information is needed to enable practical design under uncertainty. This paper 
develops a solution of timing analysis under uncertainty based on the principles of probabilistic 
interval models. These models have been developed over the last decade in the field of robust 
statistics, reliable computing, and computer science  0(Kouznetsov, 1991). They are based on the 
generalization of classical random variables to variables described by families of distributions. 

Conceptually, the most general description of an uncertain variable is an interval, 
e.g. [ , ]∈x x x . Such descriptions form the basis of interval arithmetic and its enhancement in 
terms of affine arithmetic (Moore, 1966; Stolfi and de Figueiredo, 2003). An interval description 
does not permit making statements about which values of the variable are more likely. Thus, if in 
addition to the range, the statistic metrics, such as mean and variance, are known the interval 
methods are incapable of utilizing this additional information in computing the arithmetic 
operations (+, -, *, /, max, min). Probabilistic interval analysis is a natural synergy of pure 
interval arithmetic and probabilistic analysis. It permits the use of partial statistic information 
(e.g. range, mean, and variance) to quantify the likelihood of the variable in the range. The 
estimates are guaranteed to be conservative regardless of the precise form of the distribution. For 
the fully specified random variable (e.g. Gaussian) the most general representation is its 
cumulative distribution function (cdf) (Feller, 1968). For a partially-specified random variable, 
the most general representation is a set of cumulative distribution functions, which can be 
represented as bounds on the cdf, forming a so-called probability box. 

Following the above philosophy, this paper develops timing analysis techniques that produce 
reliable timing estimates even if the characterization data is incomplete. The essential 
contribution of this paper is in handling incomplete and imprecise uncertainty description. 
Compared to affine methods, the developed techniques can handle both the interval and 
probabilistic descriptions consistently and formally. The paper describes in detail how the 
probability boxes can be computed effectively. Importantly, the proposed techniques are 
compatible with the existing SSTA tools and can handle both full and partial probabilistic 
descriptions simultaneously. 

This paper is organized as follows. Section 2 describes the paradigm of modeling non-
probabilistic uncertainty based on probabilistic interval analysis, which enables us to use partial 
statistic metrics for timing analysis. The computation of path delay due to Gaussian variables and 
probabilistic interval variables is derived. Besides, a statistical technique of robustly estimating 
circuit delay distribution is proposed. The experimental results are presented in Section 3. 
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2.  Timing Analysis with Partial Probabilistic Information 
 
In this section, an application of the new probabilistic interval techniques to timing analysis is 
introduced. First, the construction of the path-delay probability box is described. Second, the 
bound of the circuit delay distribution is constructed. Finally, a method to combine the results of 
the traditional SSTA with the above derivations is described.  
2.1. PATH DELAY COMPUTATION 
 
The timing model used in this work is based on the additive delay model containing both the 
uncertainty due to classical random variables and the newly introduced probabilistic interval 
variables. The probabilistic interval variables (as opposed to random variables) are variables for 
which only partial statistic metrics, mean and variance, are available in addition to the known 
range, or interval. The delay model can be expressed as: 

  , , , ,
1 1

n m

i i i j i j i k i k
j k

d a x bμ
= =

= + Δ + Δ∑ ∑ y   (1)

where  is the mean value of the gate delay, iμ ,Δ i jx  is a zero-mean Gaussian random variable, 

and  is a zero-mean probabilistic interval variable. The coefficients a,Δ i ky i,j and bi,k are the 

sensitivities of gate delays, which are the first-order derivatives of gate delays with respect to the 
variables. Note that this delay model can be easily transformed into an affine arithmetic 
representation if variables are scaled such that the variables are limited within [-1, 1].  

A concise representation of the gate delay model can be obtained by resorting to the matrix 
form: 

 T T
i i i i id A X Bμ= + + iY

iA a a= ,,1[ ]Ti iiB b b= ,,1[ ]Ti i niX x x= Δ Δ

m

TY

TY

 (2)

where the matrices , ,  , and 

. 

,,1[ ]Ti i n m

,,1[ ]Ti iiY y y= Δ Δ
The variation of parameters can be further decomposed into the linear sum of perfectly 

correlated die-to-die components (Xdd, Ydd), and independent within-die components (Xi,wd, Yi,wd): 
 , ,

T T T
i i i i i ii wd dd i wd ddd A X A X B Y Bμ= + + + +  (3)

The path delay of a path can be represented by:  jP

 

, ,( )
j

j j j

j T T T
i i i wd i dd i i wd i dd

i P

i i i
i P i P i P

D A X A X B Y B

g u

μ

μ
∈

∈ ∈ ∈

= + + + +

= + +

∑

∑ ∑ ∑
 (4)

where , and  ,
T T

i i ii wd ddg A X A X= + ,
T T

i i ii wd ddu B Y B Y= +
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)It is convenient to separate the contributions of random delay uncertainty and 

probabilistic interval uncertainty : 

( RD

( )PID R

j

j
i

i p
D g

∈
= ∑ and . Computing 

the path delay distribution when the gate delays are normal random variables is straightforward. 
Therefore, we focus on the delay variation resulting from probabilistic interval variables i.e. . 

The range of the gate delay variation, , is: 

j j

j
iPI

i P i P

D uμ
∈ ∈

= +∑ ∑ i

j
PID

iu

 , , , ,
1 1

,
m m

i i k i k i k i k
k k

u b y b y
= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∈ Δ Δ∑ ∑ (5)

where ,i kyΔ and ,i kyΔ are the lower and upper bound of . Then we can compute the range 

of . 

,i kyΔ
j
PID

Because the mean values of probabilistic interval variables are zero, the mean of the path 
delay is: 

 
[ ]

j

j
iPI

i P
E D μ

∈
= ∑  (6)

 
The variance of the path delay can be computed by: 

 { } ,
j j

j T T
i i ii wd ddPI

i P i P i P
Var D B B B B

∈ ∈

⎛ ⎞ ⎛⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝

= Σ + Σ∑ ∑
j

i
∈

⎞

⎠
∑

)i n

(7)

where and are the covariance matrices of and , respectively. Since different 

kinds of parameters are uncorrelated, the covariance matrices are actually diagonal matrices, with 
the diagonal elements equal to the variance of variables. 

,i wdΣ ddΣ ,i wdY ddY

While the ultimate objective of the paper is to derive the circuit delay distribution, being able 
to describe individual path delay distributions is also essential. Now that the range, the mean and 
the variance of  are known, the challenge is to compute the probability box that contains the 

family of distributions satisfying the partial statistical information that is available. Actually, the 
computation of the probability bound can be formulated as an optimization problem: 

j
PID

Let be a possible cumulative distribution function of a random 
variable X, and satisfies the partial statistical information: 

and

: [0,1] (1iF ℜ → ≤ ≤
iF

 2[ ] , [ ] ,E X Var Xμ σ= = [ , ]X X X∈ . The lower bound for the cumulative probability of X at 
a specific value x, can be computed by solving the optimization problem considering all 
possible : iF

( )max  s.t. ,  1ip F x p i≥ ≤ ≤ n . 
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Similarly, the upper bound can be computed by: 
 

( )min  s.t. ,  1ip F x p i≤ ≤ ≤n . 

 
However, because we seek a fast analytical solution, we prefer to use an inequality, which is 

a combination of the Chebyshev inequality and Cantelli inequality (Godwin, 1964). This 
inequality applies when, in addition to the first two moments of the variable, its support (range) is 
also known, resulting in a tighter bound on the cdf. The upper bound of the cumulative 
probability of a random variable X is given by (Ferson, Kreinovich, Ginzburg, Myers, and Sentz, 
2002): 
 

 

( )
( )
( )

2 2 2

2 2 2

0                                            

1 (1 ( ) )                ( )

1 ( ) (1 )       ( )

                                                              

P X x x X
P X x x X x X
P X x m my s y X x

μ σ μ σ μ
μ σ μ

≤ = <

≤ ≤ + − ≤ < + −

≤ ≤ − − + − + − ≤

( )
2

2

             and  ( )
1                                           ( )

x X
P X x X x

μ σ μ
μ σ μ

< + −
≤ = + − ≤

 (8)

 
where μ denotes the mean, 2σ denotes the variance, X is the lower bound, X is the upper 

bound, ( ) ( )y x X X X= − − , ( ) ( )m X X Xμ= − − , and 2 2 ( )2s X Xσ= − . 
Similarly, the lower bound of the cumulative probability is: 

 

 

( )
( )

( )

2

2 2 2

2

2 2

0                                          ( )

1 ( (1 ) )      ( )

                                                                    and  ( )
1 (1 ( ) )

P X x x X
P X x m y s m y X x

x X
P X x x

μ σ μ
μ σ μ

μ σ μ
σ μ

≤ = < + −

≤ ≥ − + − − + − ≤
< + −

≤ ≥ + −

( )
2              ( )

1                                          

X x X
P X x X x

μ σ μ+ − ≤ <

≤ = ≤

 (9)

 
Thus, expressions (8) and (9) can be used to compute the bound for the path delay cumulative 

probability. An example of applying this set of inequalities is shown in Figure 2(a). 
The same analytical structure can be used when the mean and variance are known only with 

certain accuracy (Ferson, 2002). First, the maximum of the variance should be used in the 
generalized Chebyshev inequality because it primarily determines the span of the cdf. Second, the 
upper bound of the mean should be used when computing the lower (right-side) bound of the 
probability using (9), because it leads to the worst lower bound of the probability. Similarly, the 
lower bound of the mean should be used in (8).  
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j

)

) )

)

Having computed the distribution of path delay variation due to probabilistic interval 
variables, now we combine it with the delay variation resulting from Gaussian variables. Since 
parameters of different categories are independent, it means that the delay variations and  

are independent, and the bound for the cdf of the sum can be computed by convolution: 
R
jD j

PID

 

 ( ) ( ) ( )
PI R

j jCDF D CDF D f D= ⊗ (10)

where  is the probability density function of . We use the lower and upper bounds 

of in convolution respectively, and then obtain the bounds of . Finally, we 

have the bound for the path delay distribution, which enables computing the bound of delay at 
any quantile. 

(
R
jf D

R
jD

(
PI
jCDF D ( jCDF D

 
2.2. CIRCUIT TIMING COMPUTATION 
 
In this section, we develop techniques for efficient construction of probability boxes on the 
distribution of circuit delay, i.e. the maximum of all path delays. New techniques are proposed to 
perform this task efficiently and robustly. From (4), the bound of the circuit delay can be 
computed by: 
 

 ( ) (

( ) ( )
1

1
max

1 1

max( ,..., )

max ,...,

max ,..., max ,...,
N

N

i i i i i i
i P i P

N N
R R PI PI

D D D

g u g u

D D D D

μ μ
∈ ∈

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

=

= + + +

≤ +

∑ ∑ +  (11)

 

Let ( )1
max max ,..., N
R R RD D= D  be the term due to random probabilistic variability, and the 

second term ( )1
max max ,..., N

PI PI PID D= D  be the term due to interval-probabilistic variability. In 

deriving the probability box for , we adopt a strategy in which the sources of uncertainty 
described probabilistically are separated from interval probabilistic uncertainty. The distribution 
of can be computed by the statistical timing analysis algorithm based on the first-order 
delay models (Visweswariah et al, 2004; Chang and Sapatnekar, 2003; Agarwal et al, 2003; 
Orshansky and Bandyopadhyay, 2004). Therefore, in the remainder, we concentrate on the 
computation of . The two terms are then combined to generate the bounds on the full 
distribution of circuit delay.  

maxD

maxRD

maxPID

In constructing the probability box for the circuit delay distribution, ideally, we would like to 
use analytical means as was done in Section 2.1. Expressions (8) and (9) can be used to find the 
bounds on the distribution of , once the mean, the variance, and the range are known. maxPID
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However, in general functions of probabilistic interval variables, , finding the bounds 
on the variance is NP-hard (Ferson,

1,( ..., )Nf u u
 Ginzburg, Kreinovich, Longpré, and Aviles, 2002). We show 

below that for convex functions the exact bound on the variance can be computed. Let us first 
establish the convexity of the term . The path delay  is a linear and 

thus convex function of . The circuit delay is given by  which is 

also a convex function of probabilistic interval variables (Boyd and Vandenberghe, 2004). 
Convexity is essential to our efficient analysis strategy, since as the theorem below shows 
determining the probability bound and moments of distributions of convex functions is much 
easier. 

maxPID ,j
iPID u i= ∈∑ jP

Diu
1

max max( ,..., )NPI PI PID D=

Our strategy is essentially based on the development of the robust (guaranteed) approach to 
Monte Carlo sampling from an unknown distribution (Orshansky et al, 2006). The Monte-Carlo 
simulation is a widely-used technique to solve complex numerical problems (Fishman, 1995). It 
can be used as a powerful tool for estimating the timing performance of integrated circuits when 
the distributions are known (Jyu et al, 1993; Lemke et al, 2002). Without the full distributional 
knowledge of the parameters, a possible way to perform the simulation is to heuristically generate 
a variety of distributions that correspond to the given partial information. However, this method is 
not mathematically robust because it is impossible to enumerate all possible distributions. 
Besides, the high run time accounting for numerous distributions prevents this method from 
practical use. We show that for convex functions the robust Monte Carlo simulation can be 
rigorously and efficiently performed. Compared to the traditional approach to Monte-Carlo 
simulation, the selection of distribution is justified in our simulation strategy; only distributions 
that cause the extreme value of the target function need to be considered. Therefore, this selective 
strategy is guaranteed to produce a bounding distribution, and achieves high efficiency in terms 
of the run time. Theorem 1 effectively defines the algorithm for such robust Monte Carlo 
(Orshansky et al, 2006). 
 

Theorem 1. Let { }1,..., Mv v be a set of independent random variables, where [ , ]i iv v v∈ i , 

and  for i=1 to M. Let [ ]i iE v E= 1( ,..., )Mf v v be a non-negative convex function of the random 
variable vi, for i=1 to M. The probabilistic bound of 1( ,..., )Mf v v , at a confidence level , is defined 
as: 

α

 { }1min : ( ( ,..., ) )   MD D P f v v Dα α= ∈ ≤ ≥

Assume D decreases if any interval α [ , ]i iv v  is narrowed down.  

Then, among all possible cdfs of { :  that correspond to the partial statistical 
information of the range and the mean, the bound D achieves the maximum value when each 
random variable  follows the 2-point distribution, 

1.. }iv i M=
α

iv
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where i
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i i

v E
p

v v
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−
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E v
p

v v
−

=
−
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Effectively, Theorem 1 reduces the number of possible distributions that must be considered 
in order to find the bounding distribution, which will result in a sought probability box for the 
function of probabilistic interval variables. However, this robust Monte Carlo simulation still 
suffers from the common problems of Monte Carlo - the slow decrease of the estimation error, 
especially, at high percentiles. To address this concern, we have developed a fast hybrid 
approach, the fast robust Monte Carlo simulation, in which robust Monte Carlo is used to get a 
quick estimate of the moments (a much faster computation) and then analytical techniques are 
used for establishing bounds. The justification of the technique is based on the corollary to 
Theorem 1. 

Corollary. The kth moment of the function, , where , achieves the 

maximum value when each random variable  follows the 2-point distribution in (12). 

Furthermore,  achieves the minimum when . 

[ ]kE y 1( ,..., )My f v v=

iv

[ ]kE y ( )i iP v E= = 1

Therefore, using the above sampling procedure also guarantees that the bounds of 
( )1,..., ME f v v⎡

⎢⎣ ⎦
⎤
⎥  are accurately estimated.  

In the fast robust Monte Carlo simulation, a limited number of random samples are drawn 
using the algorithm following Theorem 1. The corollary guarantees that we will get an accurate 
estimate of the range of the mean circuit delay. As for the variance of the circuit delay, it can also 
be bounded by the sample variance because the 2-point distribution in (12) results in the 
maximum variance of gate delays thus maximizes the variance of path delays and the circuit 
delay. Therefore, expressions (8) and (9) can be then used to compute the bound of the 
distribution analytically.  

Figure 1 illustrates the algorithm of the fast robust Monte Carlo simulation. This proposed 
strategy estimates the upper bound of sample mean and sample variance with only a limited 
number of runs. In practice, a few hundred runs are sufficient to generate an estimate with 
reasonable accuracy. This can be verified by considering the standard error of the sample mean 
and the confidence level of the true mean i.e. the mean of the population. From (Rice, 1988), the 
99% confidence interval of the true mean (  for a variable X is)μ 2.575 XX Nσ± , where X is 

the sample mean,  is the true standard deviation, and N is the number of samples. For 
example, consider a circuit with extremely large span in the delay domain: the 3 value of circuit 
delay is 45% of the mean. Then we estimate the confidence level: 

Xσ
σ
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( 2.575 0.15 ) 0.99P X Nμ μ− ≤ ⋅ = . 

The error of the sample mean for N = 500 is less than 1.7% with probability equal to 0.99, 
which has a very limited impact on the result of using expressions (8) and (9). Thus, the accuracy 
of Monte Carlo for such a sample size is acceptable for our analysis. 

Once the lower bound on the distribution of  is generated, the overall circuit delay 

distribution  can be obtained by combining  and . Since these two 

components of delay variation are independent, the distribution of the sum can be computed by 
convolution, similar to (10).  The lower bounds of the cdf (i.e. the upper bound of the delay) are 
used in the convolution because it is a more important metric for circuit timing. 

maxPID

maxD maxPID maxRD

 

 
 

for i = 1..N 
Generate a sample for each die-to-die parameter. 
for each gate 

Generate a sample for each within-die parameter. 
Compute gate delay. 

end 
Use static timing analysis to compute the circuit delay, Di. 

end 
Compute the mean and the variance of samples: 

=

=

=

= − −

∑

∑

1

2 2

1

( ) 1

N

i
i

N

D i
i

D D N

s D D N

. 

WithD , 2
Ds , and the range of the circuit delay, use (9) to compute the lower bound of the cdf. 

Figure 1. Algorithm of the fast robust Monte Carlo simulation. 
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(a)  Path Delay (normalized to mean)
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Figure 2. The path delay analysis algorithm improves the worst-case path delay by 9.0% for the critical path of circuit 

c6288 at the 95th percentile. a) Delay due to probabilistic interval variables; b) Total path delay. 
3. Experiments 

 
The algorithms for timing analysis using partial description of uncertainty described in Section 2 
have been implemented in C++, and have been tested on a set of combinational ISCAS'85 
benchmark circuits. Variability of process parameters (L, Vth, and Tox) and the environmental 
fluctuation (Vdd) are taken into account. The 3 values for process parameters are set at 20% of 
the mean, including 50% die-to-die variations. The standard deviation of V

σ
dd is 4% of the 

maximum, and the range of Vdd is 84-100% of the maximum value. In the experiments, Vth, Tox 
and Vdd are modeled as probabilistic interval variables. Sensitivities of parameters are from 
SPICE simulations for a cell library of BPTM 0.13um technology (Cao et al, 2000).  

The proposed timing analysis algorithms separately handle the contributions of the random 
probabilistic uncertainty and the interval probabilistic uncertainty. Thus, the comparison of our 
algorithms and the worst-case timing analysis i.e. only using the range (interval) of the interval 
uncertainty, should be done in two phases. We first compare the bounds of j

PID computed by the 
proposed algorithm and the worst-case timing analysis, then compare the bound of the total delay, 
which is the sum of j

PID and j
RD . Note that the sum of the bound from the worst-case timing 

analysis for interval uncertainty and j
RD can be computed by simply shifting the cdf of j

RD by the 
worst-case delay value. A similar comparison is also made for the bounds on circuit delay 
distribution. 

Figure 2(a) illustrates the importance of probabilistic interval analysis in path delay analysis. 
The upper bound of the 95th- percentile path delay ( j

PID ) from the proposed algorithm for the 
critical path of circuit c6288 is only 8.4% over the mean path delay, while the worst-case timing 
estimate is 16.2% over the mean. Therefore, the proposed path timing analysis algorithm reduces 
the worst-case timing estimate by 6.7%. Similarly, the 95th-percentile total path delay 
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( j j
R PD D+ I ) is 20.2% over the mean for the proposed algorithm, which is a better bound than the 

worst-case delay (32.1% over the mean) in Figure 2(b). Thus, the proposed strategy improves the 
worst-case estimate by 9.0% for the overall path delay at the 95th percentile. 

For circuit delay distribution, the proposed statistical technique has been run on a Sun 
workstation with 1280 MHz CPU and 8GB memory. We ran the fast robust Monte Carlo 
simulation (FRMC) to estimate the sample mean and the variance using 1,000 samples, and then 
analytically computed the lower bound of the cumulative probability. The run time of the fast 
robust Monte Carlo ranges from 12 to 114 seconds. Figure 3 shows the circuit delay variation due 
to probabilistic interval variables of circuit c7552, from the proposed statistical technique and the 
worst-case timing analysis. It shows that FRMC is able to provide a superior bound to the worst-
case delay at lower than the 87th percentile.  

For the total circuit delay ( ), FRMC improves the estimates from the worst-case timing 
analysis by 4.8% across the benchmark circuits, for the 95

maxD
th percentile delay. Table I shows the 

upper bound of the total circuit delay at high percentiles (90th and 95th percentiles) for FRMC, and  
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Figure 3. Upper bounds for circuit delay due to probabilistic interval variables for circuit c7552. The fast Monte Carlo 

simulation provides a bound superior to the worst-cast timing estimate at lower than the 87th percentile. 
 

the worst-case timing analysis. Figure 4 shows an example of the total circuit delay for the circuit 
c7552, in which FRMC reduces the worst-case delay estimate by 4.5% at the 95th percentile. 
Indeed, the joint use of SSTA and our statistical technique for probabilistic interval variables is a 
promising synergy, and it can be easily extended to incorporate more circuit parameters, to fully 
assess the impact on timing performance. 

Another important feature of the proposed techniques is the capability of handling skewed 
distributions. Some environmental parameters are not symmetrically distributed (e.g. Vdd); 
however, the normal assumption implies the distribution is symmetrical to the mean, which may 
cause inaccurate estimation of the circuit delay. Figure 5(a) compares path delay distributions of 
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two cases with the same interval and variance of Vdd uncertainty: the right-skewed Vdd 
uncertainty and the symmetrical case. Because the voltage drop increases delay, the right-skewed 
Vdd uncertainty decreases the upper bound of delays, compared to the center-meaned Vdd 
distribution. From Figure 5(b), the similar trend can be also observed in the distribution of the 
total circuit delay. Thus, our timing analysis algorithm can be used to handle asymmetrical 
distributions (e.g. non-Gaussian), and provide a more accurate timing estimate. 
 

4. Conclusions 
 
In this paper, we propose a set of statistical techniques for estimating the path and circuit delay 
distributions. Given partial statistic metrics of the uncertainty, the proposed algorithm is able to 
analytically compute the bounds of the path delay. A fast robust Monte Carlo simulation 
technique is proposed to assess the impact of the uncertainty, and estimate the upper bound of the 
circuit delay. With justified selection of the distribution used in the simulation, the proposed 
technique can efficiently provide a guaranteed bound of the circuit delay distribution. 
 

Table I. Upper bounds for circuit delay at high percentiles and the run time of the proposed technique. 
 

Number Fast Robust Monte Carlo Simulation Worst-case Delay  

of 90th Percentile 95th Percentile Run 90th 
Percentile 

95th 
Percentile 

Gates Time (s) Delay Delay 

Circuit 

 
Delay (ps) Reduction (%) Delay (ps) Reduction (%)

  (ps) (ps) 

c880 456 2383 5.62 2467 4.97 12 2525 2596 

c1355 605 2264 4.59 2335 4.26 18 2373 2439 

c1908 975 2820 5.56 2919 4.89 26 2986 3069 

c2670 1544 3124 5.65 3232 5.08 38 3311 3405 

c3540 1787 4097 5.49 4237 4.94 52 4335 4457 

c6288 2448 17547 5.28 18081 4.82 87 18526 18996 

c5315 2600 3579 5.49 3703 4.88 79 3787 3893 

c7552 3874 3136 4.88 3236 4.46 114 3297 3387 
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Figure 4. Upper bounds for the overall circuit delay of c7552. FRMC improves the worst-case delay  

estimate by 4% at the 95-percentile. 
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Figure 5. The right-skewed Vdd distribution improves bounds of (a) path delay;  

and (b) circuit delay of center-meaned Vdd distribution. 
 

Acknowledgements 
 
This work was supported in part by NASA under cooperative agreement NCC5-209, NSF grants 
EAR-0225670 and DMS-0532645, Army Research Lab grant DATM-05-02-C-0046, Star Award 
from the University of Texas System, Texas Department of Transportation grant No. 0-5453, 
GSRC, NSF, SRC, Sun, and Intel. 
 

REC 2006 - Orshansky, Wang, Xiang, and Kreinovich 



 Interval-Based Robust Statistical Techniques for Non-Negative Convex Functions….. 211 
 

References 
 
Agarwal, A., D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao, K. Gala, and R. Panda. Path-
based statistical timing analysis considering inter- and intra-die correlations. TAU, 2002. 

Barmish, R. and H. Kettani. Monte Carlo analysis of resistive networks without apriori 
probability distributions. Proc. of ISCAS, 2000. 

Boyd, S. and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. 

Cao, Y., T. Sato, D. Sylvester, M. Orshansky, and C. Hu. New paradigm of predictive MOSFET 
and interconnect modeling for early circuit design. Proc. of Custom Integrated Circuits 
Conference, pp. 201-204, 2000. 

Chang, H. and S. Sapatnekar. Statistical timing analysis considering spatial correlations using a 
single PERT-like traversal. Proc. of International Conference on Computer Aided Design, 2003. 

Chang, H., V. Zolotov, S. Narayan, and C. Visweswariah. Parameterized block-based statistical 
timing analysis with non-Gaussian parameters and nonlinear delay functions. Proc. of Design 
Automation Conference, 2005. 

Ernst, D., S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and K. Flautner. Razor: 
circuit-level correction of timing errors for low-power operation. IEEE Micro, 24(6):10-20, 
November 2004. 

Feller, W. An Introduction to Probability Theory and Its Applications. Wiley and Sons, 3rd 
Edition, 1968. 

Ferson, S., V. Kreinovich, L. Ginzburg, D. S. Myers, and K. Sentz. Constructing probability 
boxes and Dempster-Shafer structures. Sandia Report, 2002. 

Ferson, S. RAMAS Risk Calc 4.0 Software: Risk Assessment with Uncertain Numbers. CRC Press, 
2002. 

Ferson, S., L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles. Computing variance for 
interval data is NP-hard. ACM SIGACT News, Vol. 23(2), pp. 108-118, June 2002. 

Fishman, G. Monte Carlo: Concepts, Algorithms, and Applications. Springer-Verlag, 1995. 

Godwin, H. Inequalities on Distribution Functions. Hafner, 1964. 

Hitchcock, R. Timing verification and the timing analysis program. Proc. of Design Automation 
Conference, 1982. 

Jyu, H.-F., S. Malik, S. Devadas, and K. Keutzer. Statistical timing analysis of combinational 
logic circuits. IEEE Trans. on VLSI Systems, vol.1, (no.2), pp. 126-37, 1993. 

Kouroussis, D., I. A. Ferzli, and F. N. Najm. Incremental partitioning-based vectorless power grid 
verification. Proc. of International Conference on Computer Aided Design, 2005. 

Kouznetsov, V. P. Interval Statistical Models. Radio i Svyaz, Moscow, 1991 (In Russian). 



212 Michael Orshansky, Wei-Shen Wang, Gang Xiang, and Vladik Kreinovich 

Lemke, A., L. Hedrich, and E. Barke. Analog circuit sizing based on formal methods using affine 
arithmetic. Proc. of International Conference on Computer Aided Design, 2002. 

Ma, J. D. and R. A. Rutenbar. Interval-valued reduced order statistical interconnect modeling. 
Proc. of International Conference on Computer Aided Design, 2004. 

Moore, R. E. Interval Analysis. Prentice-Hall, 1966. 

Orshansky, M. and A. Bandyopadhyay. Fast statistical timing analysis handling arbitrary delay 
correlations. Proc. of Design Automation Conference, 2004. 

Orshansky, M., W. –S. Wang, M. Ceberio, and G. Xiang. Interval-based robust statistical 
techniques for non-negative convex functions, with application to timing analysis of computer 
chips.  to appear in ACM Symposium on Applied Computing, 2006. 

Rice, J. Mathematical Statistics and Data Analysis, Wadsworth & Brooks, 1988. 

Stolfi, J. and L.H. de Figueiredo. An introduction to affine arithmetic. TEMA Tend. Mat. Apl. 
Computing, 4, No. 3 (2003), 297-312. 

Visweswariah, C., K. Ravindran, K. Kalafala, S. G. Walker, and S. Narayan. First-order 
incremental block-based statistical timing analysis. Proc. of Design Automation Conference, 2004. 

Zhan, Y., A. Strojwas, X. Li, L. Pileggi, D. Newmark, and M. Sharma. Correlation-aware 
statistical timing analysis with non-Gaussian delay distributions. Proc. of Design Automation 
Conference, 2005. 

Zhang, L., W. Chen, Y. Hu, J. Gubner, and C. C. –P. Chen. Correlation-Preserved Non-Gaussian 
Statistical Timing Analysis with Quadratic Timing Model. Proc. of Design Automation 
Conference, 2005. 

 

REC 2006 - Orshansky, Wang, Xiang, and Kreinovich 



On reliability of finite element method in fluid-structure interaction

problems ∗

Petr Sváček
Faculty of Mechanical Engeneering, Czech Technical University in Prague, Department of

Technical Mathematics, Karlovo nám. 13, 121 35 Praha 2

Abstract. In this paper we are concerned with numerical methods for fluid-structure interaction
(FSI) problems and with their verification and validation. The fluid-structure interaction modelling
is very complicated problem, where the most complicated and cruicial part is modelling of the fluid
flow. Therefore the main interest of this paper is the numerical approximation of two dimensional
incompressible viscous fluid over a flexibly supported profile. In technical problems the relevant
Reynolds numbers are usually very high (104 − 106) and the fluid flow is turbulent. The correct
numerical approximation requires very fine mesh refining as well as very small time steps involved in
the computation. On the other hand in many technical applications the Reynolds Averaged Navier-
Stokes equations are being used together with a suitable turbulence model. Here, both (laminar)
Navier-Stokes equations as well as Reynolds Averaged Navier-Stokes equations are considered,
numerically approximated by the Finite Element Method (FEM), stabilized by Galerkin-Least-
Squares technique, and the obtained solution compared to the experimental data.

Keywords: aeroelasticity, Reynolds Averaged Navier-Stokes equations, Navier-Stokes equations

Nomenclature

L(t), D(t),M(t) = aerodynamic lift and drag force and torsional moment
m = mass of the airfoil
Sα, Iα = static and inertia moments around the elastic axis EO
khh, kαα = bending and torsional stiffness
l, c = airfoil depth and chord
α, h = rotational and vertical displacements around the elastic axis EO
Gt = computational domain occupied by fluid at time t

∂Gt = boundary of the domain Gt

P = time averaged kinematic pressure,
ρ, ν = constant fluid density and (laminar) kinematic viscosity of the fluid
νT = turbulent kinematic viscosity
τij , σij = fluid stress tensor and Reynolds stress tensor
Ωij = tensor rotation of the fluid velocity
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1. Introduction

The fluid-structure interaction problems can be met in many technical applications (for details see,
e.g., (Dowell, 1995; Naudasher and Rockwell, 1994)). The treatment of fully coupled interaction
problem of a structure and fluid flow is very difficult. Therefor, it is usually modelled with several
simplifications. The main objective of commercial codes (as, e.g., NASTRAN) is to determine the
critical fluid flow velocity. The post-flutter behaviour can not be captured. The special problems of
aero-elasticity mainly in linear domain are solved.

The paper focus on numerical simulations of two dimensional viscous incompressible air flow
around an airfoil. The main objective is the correct numerical resolution of the flow and the fluid
forces acting on the airfoil. The relevant flow velocities for the selected class of problems are in the
range 0−120 m s−1. The flow is described by the incompressible Navier-Stokes equations. The other
possibility is to use the model of compressible flow. Nevertheless, the numerical approximation of
low Mach number flows at incompressible limit is quite complicated and a modification of governing
equations has to be used.

The numerical approximation of incompressible flow can be carried out with the use of various
methods. In CFD, the finite volume method is rather popular. In our paper the finite element
method is used for the spatial discretization of the problem. In this case several sources of in-
stabilities have to be treated. First, in order to guarantee the stability of the scheme the finite
elements for velocity and pressure need to be selected in a proper way to satisfy the Babuka-
Brezzi condition. Moreover, very high Reynolds numbers result in the appearance of spurious
oscillations in the approximate solution. In last decades a number of stabilization procedures have
been developed. In this paper the stabilization based on GLS (Galerkin Least-Squares) method
together with grad-div stabilization is employed. The combination of this method with the mesh
refinement (e.g., performed by the anisotropic mesh generator, see (Doleǰśı, 2001)) results in a
very robust and efficient method. The choice of stabilization parameters is based on the numerical
analysis of the problem as well as numerical experience, see (Lube, 1994), (Sváček and Feistauer,
2004). The presented method is applied to the solution of incompressible (laminar) Navier-Stokes
equations and also to the solution of Reynolds Averaged Navier-Stokes (RANS) equations. In this
paper the application of the finite element method to RANS system of equations is discussed. For
the description of application onto (laminar) Navier-Stokes equations, see (Sváček, Feistauer, and
Horáček, 2004). The Reynolds stresses involved in the RANS equations are modelled with the aid of
the Spallart-Almaras turbulence model (for an overview of turbulence models used in computational
fluid dynamics, see, e.g. (Wilcox, 1993).

The structure motion is simulated by the solution of a system of nonlinear ordinary differential
equations for the vertical and angular displacements. The airfoil motion results in deformations of
the computational domain, which are treated with the aid of Arbitrary Lagrangian-Eulerian(ALE)
method, see (Nomura and Hughes, 1992), (LeTallec and Mouro, 1998).
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Ω Ωt t
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Figure 1. Comparison of Lagrangian and Arbitrary Lagrangian-Eulerian mappings.
In this figure the demonstration of Lagrangian mapping (on the left) and ALE mapping (on the right) is shown.
Although the Lagrangian mapping allows the structure to be deflected, the other (artificial) boundaries are also
deformed , which is unusable in practical computations. ALE mapping is then the “compromise” between having
fixed artificial boundaries and deflected the structure boundary.

2. Problem description

In this section the addresed aeroelastic model is presented. The fluid flow is described with the aid
of the Reynolds Averaged Navier-Stokes(RANS) incompressible equations. The Reynolds stresses
are modelled with the aid of the one equation Spallart-Almaras model. The aerodynamical forces
are then evaluated and used in the structural model, which is presented here as the system of
two ordinary differential equations. In order to describe the mathematical model for the case of
moving meshes, the concept of Arbitrary Lagrangian-Eulerian formulation is briefly explained. The
discretization of incompressible Navier-Stokes equations (INSE) can be considered as a special case
of the RANS equations with turbulent viscosity νT set to νT ≡ 0.

2.1. Arbitrary Lagrangian-Eulerian formulation

The numerical approximation of the time derivative by a time difference leads to complications in
the case of time dependent domains and moving meshes. These complications are mainly caused by
the fact that the grid points change their location during every time step. With the use of Arbitrary
Lagrangian-Eulerian (ALE) method the original mathematical model can be reformulated in a
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suitable way and the finite element space discretization together with a suitable time discretization
can be introduced. The ALE method is based on the definition of an ALE mapping of the original
configuration computational domain G0 onto the computational domain Gt and the definition of the
ALE domain velocity as the time derivative of the ALE mapping At, i.e.

At : G0 7→ Gt, w̃g =
∂At

∂t
, wg = w̃g ◦ A−1

t .

With the aid of the time differentiation with respect to the original configuration G0, leading to the
so-called ALE derivative denoted by DAt

Dt , the time derivative of any function can be rewritten as
∂
∂t = DAt

Dt − (wg · ∇). For more details about ALE method, see, e.g., (Nomura and Hughes, 1992).

2.2. Reynolds Averaged Navier-Stokes equations and turbulence modelling

Let us assume that at each time instant t the boundary Gt is split into three distjoint parts ∂Gt =
ΓD ∪ ΓO ∪ ΓWt . The turbulent fluid flow is modelled with the numerical solution of Reynolds
Averaged Navier-Stokes equations

∂Ui

∂t
− ν

∑

j

∂

∂xj

(
∂Ui

∂xj
+

∂Uj

∂xi

)
+ (U · ∇) Ui +

∂P

∂xi
= −

∑

j

∂

∂xj
u′iu

′
j + f , (1)

∇ ·U = 0,

where the right hand side terms are so called Reynolds stresses σij = −u′iu
′
j .

The system (1) is equipped with the following boundary conditions

a) U = UD, on ΓD,

b) U = wg, on ΓWt , (2)

c) −ν
∑

j

(
∂Ui

∂xj
+

∂Uj

∂xi

)
nj + (P − Pref )ni =

∑

j

σijnj , on ΓO,

and with the initial condition U(x, 0) = U0(x) for x ∈ G0. If we set σij ≡ 0, then the boundary
condition (2,c) is reduced to the well-known “do-nothing” boundary condition. The Reynolds stress
tensor σ = (σij) requires further modelling. One possibility is to use the Bousinesq assumption
consisting of taking σ in the form

σij = −2
3
kδij + νT

(
∂Ui

∂xj
+

∂Uj

∂xi

)

In the present paper the turbulent kinematic viscosity is modelled with the aid of one-equation
Spallart-Almaras model and the volumetric part −2

3kδij is included in the pressure term. In this
approach, the system of equations (1) is coupled with the following nonlinear partial differential
equation

DAt ν̃

Dt
+ ((U−wg) · ∇) ν̃ =

1
β

[
2∑

i=1

∂

∂xi

(
(ν + ν̃)

∂ν̃

∂xi

)
+ cb2 (∇ν̃)2

]
+ G− Y, (3)

REC 2006 - Petr Sváček
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equipped with the boundary conditions ν̃ = 0 on ΓWt and ∂ν̃
∂n = 0 on ΓO ∪ ΓD. The functions G

and Y are functions of the tensor of rotation of mean velocity Ω and of the wall distance y, i.e.

G = cb1S̃ · ν̃, Y = cw1
ν̃2

y2

(
1+c6w3

1+c6w3
/g6

) 1
6

, S̃ =
(
S + ν̃

κ2y2 fv2

)
, fv2 = 1− χ

1+χfv1
,

g = r + cw2(r
6 − r), r = ν̃

S̃κ2y2 , S =
√

2Ω(U) : Ω(U), Ω(U) = 1
2(∇U−∇UT ).

The following choice of constants is used

cb1 = 0.1355, cb2 = 0.622, β =
2
3
, cv = 7.1,

cw3 = 0.3, cw3 = 2.0, κ = 0.41, cw1 = cb1/κ2 + (1 + cb2)/β.

The Reynolds stresses then are computed as

σij = −νT

(
∂Ui

∂xj
+

∂Uj

∂xi

)
, νT = ν̃

χ3

χ3 + c3
v

, χ =
ν̃

ν
,

where the volumetric part of σ has been included in the pressure term, i.e. P ∗ = P + 2
3k. In what

follows we shall not distinguish between P and P ∗, we shall simply use the symbol P .
The space discretization of the problem is carried out by the finite element method, which starts

from the so called weak formulation. To this end we introduce the velocity spaces W,X, the pressure
space Q and the turbulence model space Λ:

W = (H1(Gt))2, X = {v ∈ W ;v|ΓD∪ΓWt
= 0}, Q = L2(Gt), Λ = {φ ∈ W ; φ|ΓWt

= 0}
where L2(Gt) is the Lebesgue space of square integrable functions over the domain Gt and H1(Gt)
is the Sobolev space of functions square integrable together with their first order derivatives.

Now, multiplying the system of equation (1) by test functions v ∈ X and q ∈ Q, integrating over
the domain Gt and using Green’s theorem, we obtain the weak formulation: find U : 〈0, T 〉 7→ W
such that for all t the Dirichlet boundary conditions (2 a-b) are satisfied and P : 〈0, T 〉 7→ Q such
that for all t ∈ 〈0, T 〉 the following equality holds

a(U−wg;U, P ;v, q) = L(v, q), ∀v ∈ X, q ∈ Q (4)

where

a(b;U, P ;v, q) =

(
DAtU

Dt
,v

)

Gt

+ ν

(
∇U,∇v

)

Gt

+
∑

i,j

(
σij(U),

∂vi

∂xj

)

Gt

+

(
(b · ∇)U,v

)

Gt

−
(

P,∇ · v
)

Gt

+

(
∇ ·U, q

)

Gt

,

L(v, q) = (f ,v)Gt
.

Now, by multiplying the equation (3) by a test function φ ∈ Λ, integrating over the domain Gt

and using the Green’s theorem, we obtain the weak formulation of the Spallart-Almaras turbulence
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one-equation model: Find ν̃ : [0, T ] 7→ Λ such that for all φ ∈ Λ and for any time t ∈ [0, T ] the
following equation holds
(

DAt ν̃

Dt
, φ

)

Gt

+

(
(U−wg) ·∇ν̃, φ

)

Gt

+

(
(ν + ν̃)∇ν̃,∇ψ

)

Gt

+(Y, ψ)Gt = (G, ψ)Gt +

(
cb2

β
(∇ν̃)2, ψ

)
.

(5)

2.3. Structural model and fluid-structure coupling

The nonlinear equations of motion for a flexibly supported body, see (Sváček, Feistauer, and
Horáček, 2004), read

m ḧ + Sα α̈ cosα− Sα α̇2 sinα + khh h = −L(t), (6)
Sα ḧ cosα + Iαα̈ + kαα α = M(t),

where the possibility of large values of α and h have been considered. For small values of the angle
α, when α ≈ 0, sinα ≈ 0 and cosα ≈ 1, the system (6) can be rewritten in a simplified form
(see, e.g., (Dowell, 1995), (Naudasher and Rockwell, 1994)). The aerodynamical forces acting on
the airfoil can be evaluated

L = −
∫

ΓWt

2∑

j=1

τ2jnjdS, M = −
∫

ΓWt

2∑

i,j=1

τijnjr
ort
i dS, (7)

(8)

where rort
1 = −(x2 − xEO2), rort

2 = x1 − xEO1 and τ is the stress tensor, i.e.

τij = ρ

[
pδij + ν

(
∂Ui

∂xj
+

∂Uj

∂xi

)]
.

One should notice that the fluid flow model (1) and the structural model (6) can not be solved
independently: clearly the aerodynamical forces L(t) and M(t), determined by the solution of the
fluid flow model, appear in right hand side of (6) and, on the other hand, the deformation of the
computational domain Gt depends on the angle of rotation α = α(t) and the translation h = h(t),
which form the solution of the system (6).

3. Discretization of the problem

3.1. Space-time discretization

First, we start with time partition 0 = t0 < t1 < · · · < T, tk = k∆t, with a time step ∆t > 0 and
approximate the function U(tn), P (tn) and ν̃(tn) defined in Gtn at time tn by Un, Pn and ν̃n. The
ALE derivative can approximated by the finite differences

DAu
Dt

∣∣∣∣∣
tn+1

=
3un+1 − 4ûn + ûn−1

2∆t
,

DAν̃

Dt

∣∣∣∣∣
tn+1

=
3ν̃n+1 − 4ˆ̃ν

n
+ ˆ̃ν

n−1

2∆t
, (9)
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On reliability of finite element method in fluid-structure interaction problems 219

Figure 2. The fluid velocity and pressure isolines for inlet velocity U = 25m s−1

velocit[m/s]
20.5126
19.5358
18.559
17.5822
16.6054
15.6287
14.6519
13.6751
12.6983
11.7215
10.7447
9.76791
8.79112
7.81433
6.83754
5.86075
4.88396
3.90717
2.93038
1.95359
0.976796

pressure[Pa]
187.225
174.393
161.561
148.729
135.897
123.064
110.232
97.4002
84.5681
71.736
58.9039
46.0718
33.2397
20.4076
7.5755

-5.2566
-18.0887
-30.9208
-43.7529
-56.585
-69.4171

Figure 3. The time averaged fluid velocity and pressure isolines for inlet velocity U = 25m s−1, stationary solution.

where for a function f : Gi 7→ R the function f̂ i : Gn+1 7→ R is defined as f̂ i = f ◦ Ati ◦ A−1
tn+1

at a
fixed time step tn+1. Then the form a is modified in the following way:

a(b;U, P ;v, q) =

(
3Un+1

2∆t
,v

)

Gn+1

+ ν

(
∇U,∇v

)

Gn+1

+
∑

i,j

(
σij(U),

∂vi

∂xj

)

Gn+1

+

(
(b · ∇)U,v

)

Gn+1

−
(

P,∇ · v
)

Gn+1

+

(
∇ ·U, q

)

Gn+1

,

L(v, q) =

(
4Ûn − Ûn−1

2∆t
,v

)

Gn+1

,

and the semi-implicit weak form of the Spallart-Almaras turbulence reads: Find ν̃n+1 ∈ Λ such
that for all φ ∈ Λ holds the following equation

c(ν̃n+1, φ) = l(φ), (10)
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220 Petr Sváček

where

c(ν̃n+1, φ) =
(3ν̃n+1

2∆t
, φ

)
Gn+1

+
(
(Un+1−wg)·∇ν̃n+1, φ

)
Gn+1

+
(ν + ν̃n

β
∇ν̃n+1,∇φ

)
Gn+1

+
(
s(n)ν̃n+1,∇φ

)
Gn+1

l(φ) =

(
4ˆ̃ν

n − ˆ̃ν
n−1

2∆t
, φ

)

Gn+1

+

(
G(n), φ

)

Gn+1

+

(
cb2

β
(∇ˆ̃ν

n
)2, φ

)

Gn+1

,

and

s(n) = cw1

ν̃n

y2

(
1 + c6

w3

1 + c6
w3

/g6

)1/6

, G(n) = cb1S
ˆ̃ν

n
.

In order to apply the Galerkin FEM, we approximate the spaces W, X, Q from the weak for-
mulation by finite dimensional subspaces W∆ ⊂ W , Q∆ ⊂ Q , Λ∆ ⊂ Λ for ∆ ∈ (0, ∆0) and we
set

X∆ = {v∆ ∈ W∆;v∆|ΓD∩ΓWt
= 0}.

Hence, we define the discrete problem to find an approximate solution U∆ ∈ W∆ and P∆ ∈ Q∆

such that U∆ satisfies approximately boundary conditions and the identity

a(U−wg;U, P ;v, q) = L(v, q), ∀v, q (11)

The couple (X∆, Q∆) of the finite element spaces should satisfy the Babuška-Brezzi (BB) inf-sup
condition (see, e.g. (Girault and Raviart, 1986)). In our computations, the well-known Taylor-Hood
P2/P1 conforming elements on triangular meshes are used for the velocity/pressure approximation.

The standard Galerkin discretization (11) may produce approximate solutions suffering from
spurious oscillations for high Reynolds numbers. In order to avoid this drawback, the stabiliza-
tion via Galerkin Least-Squares technique is applied (see, e.g. (Lube, 1994), (Gelhard, Lube, and
Olshanskii, 2003)). The stabilization terms are defined as

L∆(b;U, p;v, q) =
∑

K∈T∆

2∑

i=1

δK

(
3

2∆t
Ui − ν4Ui + (b · ∇) Ui +

∂P

∂xi
−

2∑

j=1

∂σij(U)
∂xj

, (b · ∇)vi +
∂q

∂xi

)

K

,

F∆(v) =
∑

K∈T∆

2∑

i=1

δK

(
4Ûi

n − Ûi
n−1

2∆t
+ fi, (b · ∇)vi +

∂q

∂xi

)

K

, (12)

and the additional grad-div stabilization terms

P∆(U,v) =
∑

K∈T∆

τK(∇ ·U,∇ · v)K , (13)

are introduced with suitably chosen parameters δK ≥ 0 and τK ≥ 0.
The stabilized discrete problem reads: Find U∆ ∈ W∆ and P∆ × Q∆ such that U∆ satisfies

approximately conditions (2), a), b) and

a(U−wg;U, P ;v, q) + L∆(U−wg;U, P ;v, q) + P∆(U,v) = L(v, q) + F∆(V∆)
for all v∆ ∈ X∆, q∆) ∈ Q∆. (14)
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Furthermore, the approximate solution of the RANS system (1) is coupled with the Spallart-
Almaras turbulence model given by the solution of (10). The nonlinear algebraic discrete system
(14) and (10) is solved on each time level tn+1 with the aid of the linearized Oseen iterative
process. More detailed description of Oseen iterative process can be found in (Sváček, Feistauer,
and Horáček, 2004) for (laminar) Navier-Stokes equations.

4. Numerical results. Conclusions

In this paper we present the comparison of the presented method with NASTRAN computation and
with the numerical simulation with the aid of Spallart-Almaras turbulence model. The parameters
of the structural model was set as

m = 0.086622 kg, Sα = −0.000779673 kg m, Iα = 0.000487291 kg m2,

khh = 105.109 N m−1, kαα = 3.695582 N m rad−1, l = 0.05 m, c = 0.3 m.

The elastic axis is located at 40% of the airfoil, ρ = 1.225 kg m−3, ν = 1.5 · 10−5 m s−2. The
numerical computations were performed for airfoils NACA 0012 (turbulent case) and NACA 632−
415 (laminar case).

First, the numerical approximation of the coupled model with RANS equations was obtained
for velocities in the range 5 − 40 m s−1. The aeroelastic responses of the airfoil are shown in
Figures 4, 5 and 6 for different values of the far field velocity U∞ in the stable region. In Figure
7 the aeroelastic response for far field velocity U∞ = 38m s−1 is shown, where the coupled model
is unstable (This is in agreement with NASTRAN computations by STRIP model, where the
determined critical velocity was shown for U∞ = 37.7m s−1. In Figure 8 the comparison of the
frequencies and damping coefficient determined from the aeroelastic response of the coupled model
and frequencies and damping coefficient from NASTRAN computations (see (Čečrdle and Maleček,
2002)) is shown.

The similar computations were performed for (laminar) Navier-Stokes equations and the flow
over an airfoil NACA 632 − 415. Figure 9 shows the behaviour of the coupled model in this case.
The post-flutter behaviour in this case is shown in Figure 10. In order to validate the results for
large large structural displacements the numerical simulation of vibrating airfoil was performed and
compared to the experimental results. Figure 11 shows the streamlines patterns, which is in good
agreement to the experimental results, see Naudasher and Rockwell, Figure 7.11.

The result shows that both laminar and turbulent approximation of fluid flow leads to compa-
rable results, the determined critical velocity by the presented method is in agreement with the
NASTRAN computation (Čečrdle and Maleček, 2002). The main difference is demonstrated in
Figures 2 and 3, where for the turbulence model leads to the stationary solution in the case of fixed
airfoil, which is not the case of ‘laminar’ simulations.
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Figure 4. RANS simulations with Spallart-Almaras turbulence model for U∞ = 5, 10, and 12.5 m s−1

The graph of the airfoil displacements in h (on the left) and α (on the right). In this case the coupled
model is in stable region and two main frequencies can be identified in the aeroelastic response of the airfoil.
Futhermore, with increasing far field velocity the aerodynamical damping is increasing.
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Figure 5. RANS simulations with Spallart-Almaras turbulence model for field velocity U∞ = 15, 20, 25 m s−1

The graph of the airfoil displacements in h (on the left) and α (on the right). The aeroelastic behaviour
is still in stable region, two main frequencies can be identified, for far field velocity U∞ = 25 m s−1 the
aerodynamical damping is maximal.
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Figure 6. RANS simulations with Spallart-Almaras turbulence model for U∞ = 30, 32, 35 m s−1

The graph of the airfoil displacements in h (on the left) and α (on the right). In this region of velocities only
one frequency can be identified in the aeroelastic response of the airfoil and with increasing far field velocity
the aerodynamical damping starts to be decreasing.
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Figure 7. RANS simulations with Spallart-Almaras turbulence model for post-critical velocity U∞ = 38 m s−1

For this value of far field velocity the aeroelastic problem is unstable, the vibrations slowly increases in time.
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Figure 8. Comparison of frequency and damping for the aeroelastic response for the presented FE simulations of
RANS equations and NASTRAN computations.
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Figure 9. Navier-Stokes equations (laminar) simulations for the aeroelastic simulations and subcritical velocity
U∞ = 5, 10, and 16 m s−1

The graph of the airfoil displacements in h (on the left) and α (on the right). In this case the coupled
model is in stable region and two main frequencies can be identified in the aeroelastic response of the airfoil.
Futhermore, with increasing far field velocity the aerodynamical damping is increasing. For the far field
velocity U∞ = 16 m s−1 the vibrations are not fully damped as it was the case for the RANS simulations,
but the aeroelastic model still remains clearly stable.
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Figure 10. Navier-Stokes equations (laminar) simulations for the aeroelastic simulations and for sub-critical velocity
U∞ = 30 m s−1 and for post-critical velocity U∞ = 40 m s−1

α = 10.859 α = 19.4553
Figure 11. Incompressible (laminar) Navier-Stokes equations simulations.
Instantaneous streamline patterns for vibrating airfoil Re = 5000, α = 10◦+10◦ sin(2πfst) at fsc/U∞ = 1/2π
showing the ‘dynamic stall vortex’ (after (Naudasher and Rockwell, 1994))
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1. Introduction

Many problems in computational engineering and science, such as solid and fluid mechanics, elec-
tromagnetics, heat transfer, or chemistry, are sufficiently well described on the macroscopic level in
terms of partial differential equations (PDEs). In practice, these processes may be very complex,
and the presence of multiple spatial and/or temporal scales, or even discontinuities in the solution,
often makes their computer simulation challenging. There exist advanced numerical methods to
tackle these problems, such as finite element methods (FEM). Lately, new advanced version of
these methods have appeared, such as hierarchic higher-order finite element methods (hp-FEM)
and extended finite element methods (X-FEM). Most of these methods work on a traditional basis
where no uncertainty considerations are present in the modeling or computation. However, the need
for numerical treatment of uncertainty becomes increasingly urgent. In many cases a given problem
can be solved efficiently and accurately for a given set of input data (such as geometry, boundary
conditions, material parameters, etc.), but little can be said about how the solution depends on
uncertainties in these parameters.

However, the design of an engineered system requires the performance of the system to be
guaranteed over its lifetime. One of the major difficulties a designer must face is that neither the
external demands of the systems nor its manufacturing variations are known exactly. In order to
overcome this uncertainty, the designer must provide excessive capabilities and over design the
system. As analysis tools continue to be developed, the predictive skills of designers have become
finer. In addition, the demands of the market place require that more efficient designs be developed.
In order to satisfy these current requirements in designs subject to uncertainties, the uncertainties
in the performance of the system must be included in the analysis.

At present, analytical and Monte-Carlo techniques are used to handle probabilistic uncertainty,
and interval finite element methods are used to handle interval uncertainty. In many practical situ-
ations, we have both probabilistic and interval uncertainty. The problem of efficient combination of

c© 2006 by authors. Printed in USA.
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probabilistic and interval uncertainties have to be explored for problems where neither Monte Carlo
nor standard interval methods can be used. Therefore, advanced interval arithmetic techniques,
ideally handling probabilistic uncertainty as well, need to be implemented into modern finite element
methods both on the practical and theoretical levels. When developing these techniques, we need
to take into account recent developments in interval computation techniques are their applications
and developments in promising finite element techniques such as hp-FEM and X-FEM, together
with results obtained with interval finite element methods for problems of structural mechanics
(reviewed in Section 2).

2. Interval Finite Element Methods: A Brief Overview

There are various ways in which the types of uncertainty might be classified. One is to distinguish
between “aleatory” (or stochastic) uncertainty and “epistemic” uncertainty. The first refers to
underlying, intrinsic variabilities of physical quantities, and the latter refers to uncertainty which
might be reduced with additional data or information, or better modeling and better parameter
estimation (Melchers, 1999). Probability theory is the traditional approach to handle uncertainty.
This approach requires sufficient statistical data to justify the assumed statistical distributions.
Analysts agree that, given sufficient statistical data, the probability theory describes the stochastic
uncertainty well. However, traditional probabilistic modeling techniques cannot handle situations
with incomplete or little information on which to evaluate a probability, or when that information is
nonspecific, ambiguous, or conflicting (Walley, 1991; Ferson and Ginzburg, 1996; Sentz and Ferson,
2002). Many generalized models of uncertainty have been developed to treat such situations, includ-
ing fuzzy sets and possibility theory (Zadeh, 1978), Dempster-Shafer theory of evidence (Dempster,
1967; Shafer, 1976), random sets (Kendall, 1974), probability bounds (Berleant, 1993; Ferson
and Ginzburg, 1996; Ferson et al., 2003), imprecise probabilities (Walley, 1991), convex models
(Ben-Haim and Elishakoff, 1990), and others.

These generalized models of uncertainty have a variety of mathematical descriptions. However,
they are all closely connected with interval analysis (Moore, 1966), in which imprecision is described
by an interval (or, more generally, a set). For example, a fuzzy number can be viewed as a nested
collection of intervals corresponding to different levels of confidence α (so-called α-cuts). Thus, the
mathematical analysis associated with fuzzy set theory can be performed as interval analysis on
different α-levels (Muhanna and Mullen, 1995; Lodwick and Jamison, 2002), and fuzzy arithmetic
can be performed as interval arithmetic on α cuts. A Dempster-Shafer structure (Dempster, 1967;
Shafer, 1976) with interval focal elements can be viewed as a set of intervals with probability
mass assignments, where the computation is carried out using the interval focal sets. Probability
bounds analysis (Berleant, 1993; Ferson and Ginzburg, 1996; Ferson et al., 2003) is a combination
of standard interval analysis and probability theory. Uncertain variables are decomposed into a list
of pairs of the form (interval, probability). In this sense, interval arithmetic serves as the calculation
tool for the generalized models of uncertainty.

Recently, various generalized models of uncertainty have been applied within the context of the
finite element method to solve a partial differential equation with uncertain parameters. Regardless
what model is adopted, the proper interval solution will represent the first requirement for any fur-

REC 2006 - R. Muhanna, V. Kreinovich, P. Šolı́n, J. Chessa, R. Araiza, G. Xiang
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ther rigorous formulation. Finite element method with interval valued parameters results in Interval
Finite Element Method (IFEM). The numerical solution of an IFEM is the focus of this section.
Different formulations of IFEM have been developed. The use of IFEM solution techniques can
be broadly classified into two groups, namely the optimization approach and the non-optimization
approach.

In the optimization approaches (Koyluoglu et al., 1995; Rao and Chen, 1998; Akpan et al.,
2001; Möller et al., 2000), optimizations are performed to compute the minimal and maximal
structural responses when the uncertain parameters are constrained to belong to intervals. This
approach often encounters practical difficulties. Firstly it requires efficient and robust optimiza-
tion algorithm. In most structural engineering problems, the objective function is nonlinear and
complicated, thus often only an approximate solution is achievable. Secondly, this approach is
computationally expensive. For each response quantity, two optimization problems must be solved
to find the lower and the upper bounds.

More recently, non-optimization approaches for the interval finite element analysis have been
developed in a number of papers. For linear elastic problems, this approach leads to a system
of linear interval equations, then the solution is sought using various methods developed for this
purpose. The major difficulty associated with this approach is the “dependency problem” (Moore,
1979; Neumaier, 1990; Hansen, 1992; Muhanna and Mullen, 2001). In general, dependency problem
arises when one or several interval variables occur more than once in an interval expression. The
dependency in interval arithmetic leads to an overestimation of the solution. A straightforward
replacement of the system parameters with interval ones without taking care of the dependency
problem is known as a näıve application of interval arithmetic in finite element method (näıve
IFEM). Usually such a use results in meaninglessly wide and even catastrophic results (Muhanna
and Mullen, 2001).

In the non-optimization category, a number of developments can be presented. A combinatorial
approach (based on an exhaustive combination of the extreme values of the interval parameters)
was used in (Muhanna and Mullen, 1995; Rao and Berke, 1997). This approach gives exact solution
in special cases of linear elastic problems. However, it is computationally tedious and expensive,
and is limited to the solutions of small-scale problems.

A convex modeling and superposition approach was proposed to analyze load uncertainty in
(Pantelides and Ganzerli, 2001), and exact solution was obtained. However, the superposition is
only applicable to load uncertainty.

A combinatorial approach was used in (Ganzerli and Pantelides, 1999) to treat interval modulus
of elasticity.

A static displacement bounds analysis was developed in (Chen et al., 2002) have developed using
matrix perturbation theory. The first-order perturbation was used and the second-order term was
neglected. The result is approximate and not guaranteed to contain the exact bounds.

The paper (McWilliam, 2000) proposed two methods for determining the static displacement
bounds of structures with interval parameters. The first method is a modified version of perturbation
analysis. The second method is based on the assumption that the displacement surface is monotonic.
However, for the general case, the validity of monotonicity is difficult to verify.

In (Dessombz et al., 2001), an interval FEM was introduced in which the interval parameters
were factored out during the assembly process of the stiffness matrix. Then an enhanced iterative
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algorithm from (Rump, 1983) was employed for solving the linear interval equation. In this work,
the overestimation control becomes more difficult with the increase of the number of the interval
parameters, which does not lead to useful results for practical problems.

In (Muhanna and Mullen, 1995; Mullen and Muhanna, 1996; Mullen and Muhanna, 1999),
an interval-based fuzzy finite element has been developed for treating uncertain loads in static
structural problems. Load dependency was eliminated, and the exact solution was obtained. Also,
in (Muhanna and Mullen, 2001), an interval FEM was developed based on an element-by-element
technique and Lagrange multiplier method. Uncertain modulus of elasticity was considered. Most
sources of overestimation were eliminated, and a sharp result for displacement was obtained. How-
ever, this formulation can only handle uncertain modulus of elasticity, and it can not obtain the
sharp enclosures for element internal forces.

A new formulation for interval finite element analysis for linear static structural problems is
developed in the work of (Muhanna et al., 2005). Material and load uncertainties are handled
simultaneously, and sharp enclosures on the system’s displacement as well as the internal forces are
obtained efficiently.

Recently, new advancements has been made in the area of interval FEM, e.g., (Corliss et al.,
2004; Popova et al., 2003), and the significant development in (Neumaier and Pownuk, to appear)
where sharp results are achieved for linear truss problems even with large uncertainty.

3. First Challenge: Combination of Interval and Probabilistic Techniques

In many problems, e.g., of fundamental physics, one knows the exact equations, one knows the
exact values of the parameters of these equations, and all one needs is to solve these equations
as fast and as accurately as possible. These are the cases when the traditional FEM techniques
directly lead to practically useful results. In engineering practice one approximates both the actual
computational domain and function space using a collection of finite elements, the FEM solution
only is an approximation to the actual continuous field, but as one increases the number and/or
polynomial degree of the finite elements (using h, p, or hp-adaptivity), the FEM results become
more and more accurate, and at some point one gets the desired solution with a very high accuracy.

There are many other application problems, however, where one only knows the approximate
equations, or where one knows the equations, but one only knows the approximate values of the
corresponding parameters. For example, in many civil engineering problems, one does not know
the exact values of the Young modulus; one only knows the bounds for these values coming from
the fact that one knows the material, and one knows the bounds for this type of material. In such
problems, even if one uses an extremely fine mesh to make the discretization error negligible, the
resulting FEM solution may still be very different from the actual behavior of an analyzed system
– because of the uncertainty in the parameters and/or equations.

In such situations, to make the FEM results practically useful, one must be able to estimate
how different the true and approximate solutions can be. In other words, one needs to be able to
estimate how the uncertainty in the parameters of the system can affect the FEM results.

This question is of paramount importance in science and engineering, and, of course, there has
already been a lot of research aiming to answer this question. Most of this research is based on
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the assumption that one knows the exact probability distributions corresponding to all uncertain
parameters. In this stochastic FEM case one can, in principle, apply the Monte Carlo method:
Simulate all the parameters according to their known distributions, apply FEM for the system with
the simulated values of the corresponding parameters, and then perform the statistical analysis of
the FEM results – and thus, get the probability distribution for these results.

This stochastic FEM approach works well in many practical situations. In many other situations,
on the other hand, the probabilities of different values of the uncertain parameters are not known.
For example, in civil engineering one often only knows the lower and upper bounds on the Young
modulus, but the probabilities of different values within the corresponding interval may depend on
the manufacturing process, and thus they may differ from one building to another dramatically. In
situations which require reliable estimates, e.g., when one analyzes the stability of a building, it is
not enough to select one possible distribution and confirm that the building is stable under this
distribution; to get a reliable result, one must make sure that the building remains stable for all
possible distributions on the given interval.

Lately, there has been a lot of progress in applying interval computation techniques to FEM
with interval uncertainty. This area of research was started in the early 1990s, and it was advanced
in the series of papers reviewed in Section 3.

The software tools developed recently by R. Muhanna in the U.S., as well as similar tools
developed by A. Neumaier in Austria, allowed us to prove reasonable interval FEM estimates –
at least for the situations like civil engineering, when one can get a reasonable description of a
structure by using several hundreds of finite elements only. These methods have led to very useful
practical applications to the reliability of buildings and associated problems.

However, there still are practical problems for which the interval FEM is not fully adequate. As
of now, there are two main methods to handle uncertainty in FEM problems:

− Stochastic FEM methods for situations when one knows the exact probability distribution of
all uncertain parameters.

− Interval FEM methods for situations when no information about the probability distributions
is available – one only knows the intervals of possible value of these parameters.

In other words, at present one only knows how to handle uncertainty in two extreme situations:

− One has full information about the probabilities.

− One has no information about the probabilities.

Many practical situations lie in between these two extremes: one has a partial information about
the probabilities. For example, one may also have interval bounds for some of the parameters,
but one may know the probability distribution for other parameters. For example, one may know
only intervals of possible values of the manufacturing-related parameters, but, when one has good
records, one may also know probabilities of different values of, say, weather-related parameters.

It is therefore highly desirable to extend the interval and stochastic FEM techniques to the
case when one has a combination of interval and probabilistic uncertainty. Extension of interval
and statistical methods to such a technique is, at present, an active area of research. While these
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combined techniques have been developed and applied to different practical situations, there are
still very few applications to FEM.

Our preliminary results have already led to an idea of such an extension for an important case
when one has interval uncertainty for some parameters and probabilistic uncertainty for some other
parameters. In such situations, one can apply Monte Carlo techniques to simulate parameters with
known probability distributions. For each such simulation, one can then use interval FEM tech-
niques to take into account the corresponding interval uncertainty. As a result of applying interval
FEM techniques, one gets the interval bounds for the resulting FEM inaccuracy. By repeating this
simulation several times, one gets several bounds – and hence, the resulting bounds distribution.
By using this bounds distribution, one can now supplement the interval FEM information that the
FEM inaccuracy ∆y is bounded by a certain value ∆ with the information that with probability
90%, one can get a narrower bound that bounds ∆y in at least 90% of the case, yet narrower bound
which holds in at least 80% of the cases, etc. Similar techniques need to be developed and applied
to more complex situations with combined interval and probabilistic uncertainty.

Comment. The above idea is applicable in situations in which we already have well-developed
interval FEM techniques. Another important research topic is the extension of interval FEM
techniques to other advanced FEM techniques such as hp-FEM. These adaptive higher-order FEM
techniques has proved to be superior to traditional lowest-order FEM in many practical problems,
both in terms of higher accuracy and dramatically smaller size of the resulting stiffness matrices
and substantially shorter CPU time; see, e.g., see (Demkowicz et al., 2001; Šoĺın, 2005) and the
references therein.

4. Second Challenge: Nonlinear FEM with Stochastic Variations and Uncertainty
for Microstructure

Significant amount of work was done in the use of both the probabilistic and non-probabilistic finite
element methods for the assessment of uncertainty for linear PDEs. Several methods have proven
to be successful: stochastic methods, interval methods, fuzzy number methods (Elishakoff and Ren,
1999; Haldar and Mahadevan, 2000; Schuëller, 2001). These approaches have been primarily applied
to problems academic in nature. The issue of uncertainty and verification in practical engineering
problems still seems to be a little addressed issue. By verification one is referring to the definition
from (Babuška and Oden, 2004), where correct empirically derived model parameters are used.

An area of emerging importance is the application of stochastic and interval finite element
methods to nonlinear continuum mechanics problems. Specifically, effects of uncertainty in the
microstructural state of materials need to be studied. In this area, enriched finite element methods,
particularly the extended finite element methods (X-FEM) (Moës et al., 1999; Belytschko et al.,
2001; Stazi et al., 2003), need to be combined with interval and stochastic methods to investigate
the effect of uncertainty on the position and state of the microstructure.

The X-FEM uses a local partition of unity technique to construct finite elements which are
capable of reproducing discontinuities and singularities without mesh refinement. This approach
has been used to model crack growth (Moës et al., 1999; Chen and Belytschko, 2003; Stazi et al.,
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2003), material inhomogeneities (Sukumar et al., 2000; Chessa et al., 2003) as well as various other
phenomena (Chessa et al., 2002; Chessa and Belytschko, 2003; Chessa and Belytschko, to appear).
In all of these methods, the location of the material interfaces is implicitly defined by a level set
field (Sethian, 1999). Thus, material models with a significantly increased number of defects and
inclusions are computationally tractable.

This technique should be extended to non-linear problems of fracture mechanics, e.g., to non-
linear Stefan-type equations that describe the dynamics of crack growth.

In principle, both for linear and nonlinear problems, we can use a straightforward perturbation
approach as in (Liu et al., 1999). However, such approaches allow for only small variations in the
variables. To allow for large stochastic variations, a combined approach of interval finite element
methods and homogeneous chaos methods need to be developed.

5. Third Challenge: Enhancing hp-FEM with Advanced Interval Techniques

The hp-FEM is distinguished from the traditional FEM by combining elements of variable size
and polynomial degree to achieve extremely fast convergence. The method originates in the early
works of I. Babuška et al. (Babuška and Gui, 1986; Babuška et al., 1999). In the last few years,
significant progress was made towards the solution of practical problems related to the computer
implementation of the hp-FEM (design of optimal algorithms and data structures, automatic hp-
adaptive strategies, optimal higher-order shape functions, etc.), see (Ainsworth and Senior, 1997;
Karniadakis and Sherwin, 1999; Paszynski et al., 2004; Rachowicz et al., 2004; Šoĺın et al., 2003;
Šoĺın and Demkowicz, 2004). Typically, the hp-FEM is capable of solving PDE problems using
dramatically fewer degrees of freedom compared to standard FEM. Several such examples, obtained
using a modular hp-FEM system HERMES which is being developed at the University of Texas at
El Paso, are presented in the recent monograph (Šoĺın, 2005). It is therefore desirable to extend
interval FEM techniques to hp-FEM.

We believe that for hp-FEM, the existing interval techniques will be even more efficient than for
more traditional FEM techniques. Indeed, one of the main advantages of hp-FEM in comparison
to lowest-order methods is that in many practical situations, for the same approximation accuracy,
hp-FEM techniques require dramatically fewer degrees of freedom (unknown solution coefficients).
In other words, they can decrease the size of the matrices in the corresponding linear systems
substantially. When we solve systems of linear equations with interval uncertainty, in general, we
get enclosures with excess width, and this excess width drastically increases with the size of a
system. Thus, the decrease in the system’s size will allow us to get more accurate estimates for the
resulting interval uncertainty.

6. Fourth Challenge:
Using Interval Computations to Prove Results about FEM Techniques

Finally, it is desirable to use interval computation techniques – techniques which provide guaranteed
bounds for functions on continuous domains – in proving results about FEM methods, results which
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should be valid for all possible values of the corresponding parameters. In this section, we describe
our preliminary results in this direction and related challenges.

6.1. Formulation of the Problem

Our preliminary results are related to elliptic partial differential equations Lu = f . The simplest
case to begin with is the one-dimensional Poisson equation −u′′ = f with homogeneous Dirichlet
boundary conditions.

For elliptic differential equations Lu = f , there is a known Maximum Principle: If f(x) ≤ 0
for all points x from the domain Ω, then (under reasonable smoothness conditions) the solution u
attains its maximum on the boundary of Ω. Because of the maximum principle:

− for the same f , we have a continuous dependence of the solution on the boundary conditions:
namely, if u1 and u2 are two solutions with the same right-hand side f , then the sup-norm
distance sup

x∈Ω
|u1(x) − u2(x)| between u1 and u2 (defined as the supremum over all x from Ω)

is equal to the supremum sup
x∈∂Ω

|u1(x) − u2(x)| of the difference over the boundary ∂Ω of the

domain Ω;

− similarly, there is a continuous dependence of u on f .

This allows us to provide guaranteed bounds on the solution based on the uncertainty with which
we know the right-hand side f and the boundary values of u.

In the Finite Element Method we consider piecewise-polynomial functions uh,p(x) (which span
a finite-dimensional space Vh,p. Of course, uh,p is not an exact solution of the original problem
Lu = f . Instead, we look for an exact solution to the discrete weak formulation of the partial
differential equation, see, e.g., (Šoĺın, 2005).

It is known that, sometimes, f(x) ≤ 0 for all x ∈ Ω, but the maximum of the resulting finite
element solution uh,p is not necessarily attained on the boundary. As a result,

− even when we know the bounds on the uncertainty in f and in the boundary conditions, it is
difficult to find guaranteed bounds on the uncertainty in uh,p,

− the approximate solution uh,p may be unphysical, e.g., it may attain negative values when it
represents absolute temperature, concentration, etc.

It is therefore desirable to find discrete analogues of the classical maximum principles, which are
called discrete maximum principles. Such analogues are known for lowest-order (piecewise linear)
FEM since the early 1970s (Ciarlet, 1970; Ciarlet et al., 1973). For the latest results, see, e.g.,
(Korotov et al., 2000; Kř́ıžek and Liu, 2003; Karátson and Korotov, 2005).

Until recently, no extensions to higher-order FEM were known. Moreover, a rather discouraging
result (Höhn and Mittelmann, 1981) stated that the discrete maximum principle did not hold for the
Poisson equation −u′′ = f discretized with quadratic elements except with unrealistic conditions on
the triangulation. After that, it was assumed for a long time that no discrete maximum principles
for hp-FEM can be proved.

REC 2006 - R. Muhanna, V. Kreinovich, P. Šolı́n, J. Chessa, R. Araiza, G. Xiang
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In (Šoĺın and Vejchodský, 2005), we solved the Poisson equation in one spatial dimension,
equipped with homogeneous Dirichlet boundary conditions u(−1) = u(1) = 0 and with a right-hand
side f(x) = 200 ·e−10·(x+1). According to the standard maximum principle, the actual solution u(x)
is nonnegative in the entire interval (−1, 1). Let us consider this whole domain as a single element,
and let us approximate the desired solution by a 3-rd degree polynomial uh,p(x) which satisfies the
desired boundary conditions uh,p(−1) = uh,p(1) = 0. We want − ∫ 1

−1 u′h,p(x)v′(x)− f(x)v(x) dx = 0
for all 3-rd other polynomials v(x) such that v(±1) = 0.

Due to linearity of the problem, the satisfaction of this integral condition for all these polynomials
is equivalent to the fact that this condition must hold for any basis, for example, v1(x) = 1 − x2,
v2(x) = x(1− x2). Thus, in terms of the coefficients of the unknown polynomial uh,p(x), we get an
easy-to-solve system of linear equations, whose solution

uh,p(x) =
1
40
·
[
54 + 66 · e−20 − (73− 133 · e−20) · x

]
·
(
1− x2

)

is negative, e.g., at x = 0.9.

6.2. Formulation of the Result

The reason for the above negativity is that, as one can easily check, the weak solution corresponding
to the original function f(x) is the same as the weak solution corresponding to the projection fh,p(x)
of the function f(x) on the set of polynomials of 3-rd degree – i.e., for the 3-rd degree polynomial
fh,p(x) for which

∫
(f(x)− fh,p(x)) · v(x) dx = 0 for all 3-rd degree polynomials v(x). For the above

function f(x), the projection

fh,p(x) = −8.25 + 29.175 · x + 54.75 · x2 − 93.625 · x3

is no longer nonnegative: e.g., it is negative for x = 0.
It is therefore reasonable to ask whether the Discrete Maximum Principle for higher-order FEM

holds if we restrict ourselves to the case when not only the function f(x) is nonnegative, but its
projection fh,p(x) (i.e., the polynomial of the corresponding degree) is nonnegative as well.

So, we arrive at the following problem. For some integer p, we have a p-th degree polynomial
fh,p(x) defined on the interval (−1, 1). We are looking for a weak solution uh,p(x) to the equation
−u′′ = f with the boundary conditions u(−1) = u(1) = 0, i.e., for a polynomial up,h(x) of p-th
degree for which

∫ 1
−1(−u′′h,p(x)− f(x)) · v(x) dx = 0 for all polynomials v(x) of degree p. We want

to prove that if the polynomial fh,p(x) is nonnegative on the entire interval (−1, 1), then the weak
solution uh,p(x) is also nonnegative for all x ∈ (−1, 1). By using interval computations, we can
prove this statement for p = 2, 3, 4, . . . , 10; see (Šoĺın and Vejchodský, 2005; Šoĺın, 2005) for details.

6.3. How We Use Interval Computations

To prove the above result, we use a special basis in the linear space of all polynomials of p-th degree
which vanish for x = −1 and x = 1: the basis of Lobatto shape functions (see, e.g., (Šoĺın, 2005))

lk(x) =
1

‖Lk−1‖L2

·
∫ x

−1
Lk−1(ξ) dξ, 2 ≤ k,
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where L0, L1, . . . are Legendre polynomials with ‖Lk−1‖L2 =
√

2/(2k − 1). In terms of these
functions, the general solution to the above problem can be represented in the following form

uh,p(x) =
∫ 1

−1
fh,p(z) · Φp(x, z) dz, (1)

where the Green’s function Φp(x, z) has the form

Φp(x, z) =
p−1∑

i=1

li+1(x) · li+1(z).

For every p > 1, the function Φp(x, z) is a given bivariate polynomial defined in the square (−1, 1)2.
We want to use the expression (1) to prove that uh,p(x) is nonnegative for all x ∈ (−1, 1). This is
done in two steps:

1. First, we identify a subdomain Ω+
p of the interval (−1, 1) where the function Φp is positive.

2. After that, we find a quadrature rule of the order of accuracy 2p (exact for all polynomials of
degree less or equal to 2p) with positive weights and points lying in Ω+

p .

The construction of the subdomains Ω+
p and the corresponding quadrature rules finishes the proof.

The concrete subdomains Ω+
p along with the quadrature rules can be found in (Šoĺın and Vejch-

odský, 2005).
The interval computation technique is used to verify that the functions Φp are positive in the

subdomains Ω+
p . Let us demonstrate the procedure on the quartic case, where we deal with the

function Φ4(x, z) =
3∑

i=1
li+1(x) · li+1(z). Since each polynomial li(x) vanishes at x = −1 and at

x = 1, this polynomial is proportional to (x + 1) · (x− 1) = x2− 1, so the Green’s function Φ4(x, z)
can be represented as Φ4(x, z) = (x2 − 1) · (z2 − 1) ·Ψ4(x, z), where

Ψ4(x, z) =
3
8

+
5
8
· x · z +

7
128

· (5x2 − 1) · (5z2 − 1). (2)

The graph of the function Φ4(x, z) is shown in Fig. 1.

To prove that the Green’s function Φ4(x, z) = (x2 − 1) · (z2 − 1) ·Ψ4(x, z) is nonnegative in the
entire square [−1, 1]2, it is sufficient to prove that Ψ(x, z) ≥ 0 for all (x, z) ∈ [−1, 1]2. We prove
this nonengativity by using straightforward interval computations; see, e.g., (Jaulin et al., 2001).

In interval computations, one deals with intervals instead of numbers, and standard unary and
binary operations are extended from numbers to intervals in a natural way. For example, [a, a] +
[b, b] = [a + b, a + b], [a, a] − [b, b] = [a − b, a − b], and so on. If we replace every operation with
numbers by the corresponding operation of interval arithmetic, we get an enclosure for the range
of the analyzed function on given intervals (Jaulin et al., 2001).

Let us use this technique to prove the nonnegativity of the function Ψ4(x, z) in the square
[−1, 1]2: Substituting a pair of intervals X = [x, x] and Z = [z, z] into the formula for Ψ4(x, z), we
obtain an enclosure

[Ψ4, Ψ4] ⊇ Ψ4(X, Z) = {Ψ4(x, z); x ∈ X, z ∈ Z}.
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Figure 1. The function Φ4(x, z).

Since the function Ψ4(x, z) is polynomial and it only contains rational coefficients, its evaluation
for rational intervals can be done using exact integer arithmetic.

Step 1: Consider the intervals X1 = Z1 = [−1, 1], and compute the enclosure [Ψ4, Ψ4] for Ψ4(X1, Z1):

[Ψ4, Ψ4] = [−25/16, 95/32] ⊇ Ψ4(X1, Z1).

If the left endpoint Ψ4 of the enclosure interval [Ψ4,Ψ4] was nonnegative, then the proof would be
finished. Since this is not the case, we refine the grid by halving both the intervals X1 and Z1. We
obtain four subdomains [−1, 0]× [−1, 0], [−1, 0]× [0, 1], [0, 1]× [−1, 0], and [0, 1]× [0, 1].

Step 2: Compute the enclosures for these subdomains:

− for [−1, 0]× [−1, 0], we get [Ψ4, Ψ4] = [5/32, 15/8] ⊇ Ψ4([−1, 0], [−1, 0]);

− for [−1, 0]× [0, 1], we get [Ψ4, Ψ4] = [−15/32, 5/4] ⊇ Ψ4([−1, 0], [0, 1]);

− for [0, 1]× [−1, 0], we get [Ψ4, Ψ4] = [−15/32, 5/4] ⊇ Ψ4([0, 1], [−1, 0]);

− for [0, 1]× [0, 1], we get [Ψ4, Ψ4] = [5/32, 15/8] ⊇ Ψ4([0, 1], [0, 1]).

This proves that the function Ψ4 (and hence also Φ4) is nonnegative in the subdomains [−1, 0] ×
[−1, 0] and [0, 1] × [0, 1]. As for the remaining subdomains [−1, 0] × [0, 1] and [0, 1] × [−1, 0], we
divide each of them into four equal subdomains, compute the enclosure for each new subdomain,
etc.

After five iterations of this procedure, we get a partition of [−1, 1]2 for which the left endpoints
of the enclosures are nonnegative. So we have proved that Ψ4 (and hence also Φ4) is nonnegative
in [−1, 1]2.
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The Java programs and output files with details on the computations for p = 4, 5, . . . , 10 can be
viewed on the web page http://www.math.utep.edu/Faculty/solin/intcomp

6.4. New Challenges

Can we extend the above one-dimensional result to a multi-dimensional case? The following example
shows that the assumption of nonnegativity of the polynomial L2-projection of the right-hand side
f will no longer be sufficient.

To illustrate this, let us consider a triangular domain Ω given by the vertices [−1,−1], [1,−1],
[−1, 1], and the stationary heat transfer equation −∆θ = f in Ω equipped with zero Dirichlet
boundary conditions θ(x) = 0 for all x ∈ ∂Ω. The heat sources f are chosen to be a nonnegative
cubic polynomial f(x1, x2) = 1000 · (x1 +1)3. In this case the exact solution θ is nonnegative in the
domain Ω due to the classical (continuous) maximum principle for the Poisson equation.

The problem is discretized using a one-element mesh K = Ω with the polynomial degree
p(K) = 10. It is shown in Fig. 2 that the approximate temperature θh,p is negative, i.e., nonphysical,
near the right corner of Ω.

Figure 2. Nonphysical finite element solution of stationary heat transfer equation with zero boundary conditions and
positive heat sources.

The formulation of conditions on the data and/or triangulation, which would guarantee the
nonnegativity of the approximate solution, are an open problem. So far, we have found only partial
conditions. Once these conditions are found, we will need to sue interval computation techniques
to prove the desired nonnegativity.
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Abstract. The application of a general-purpose self-verified parametric iteration for bounding
the response of mechanical systems involving rational dependencies between interval parameters is
investigated. Based on the availability of self-validated parametric linear solver, a general framework
of computer-assisted proof of global and local monotonicity properties is presented. By the discussed
methodology and software tools some frame structures with uncertainties in cross-sectional proper-
ties, applied loadings, material properties, geometry and connections are analyzed. The results are
compared to literature data produced by other methods and a comparison of different measures of
overestimation is done.

Keywords: self-verified methods, structural frames, parameter-dependent interval linear systems

1. Introduction

Uncertainty quantification is an emerging discipline which is nowadays well recognized by SIAM and
structural engineering community. One of the research directions in this field utilizes intervals for
representing the uncertain quantities and interval-based methods for reliable bounding the model
response under variations in the uncertain parameters.

Many mechanical problems, e.g. linear static problems, modelled by finite element method,
can be described by systems of linear equations involving uncertain model parameters. When the
uncertain parameters are introduced by bounded intervals, the problem can be transformed into
an interval linear system which should be solved appropriately to bound the mechanical system
response. This approach is usually called Interval Finite Element Method. Overview of recent
developments in the area of uncertainty treatment using interval finite element methods and their
applications in structural engineering mechanics can be found in (Muhanna et al., 2004), (Muhanna
et al., 2005). Although known for a decade, a self-validated parametric iteration method (Rump,
1994) is not adopted (even for a comparison purpose) and has single mechanical applications
(Dessombz et al., 2001), (Popova et al., 2003). Instead, a construction method, called Element-
By-Element approach (Mullen and Muhanna, 1999), is developed which introduces extra variables
∗ This work was partially supported by the Bulgarian National Science Fund under grant No. MM1301/03.
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and equations in order to eliminate the dependencies between interval parameters. The penalty and
Lagrange multiplier methods are used to impose the necessary constraints for compatibility and
equilibrium (Muhanna and Mullen, 2001), (Muhanna et al., 2005). Non-parametric interval fixed-
point iteration is modified and used to solve the model parametric interval linear system. During this
transformation of the original parametric system, self-verifying properties of the interval iteration
are lost or delayed to the final phase of solving non-parametric interval linear system. Recently,
accounting for the structure of input data in systems related to truss structures, by splitting the
iteration into two parts, Neumaier and Pownuk (2005) achieved an advance in self-verified methods
applied to truss structures. Assuming a particular structure of the dependencies their method
removes the restriction of most self-validating methods for linear systems to have a strongly regular
matrix.

Depending on what model is adopted and which model parameters are considered to be uncertain
or how they are involved into the interval linear system to be solved, the latter can be classified into
two types: parametric linear systems involving affine-linear dependencies between the parameters
and parametric linear systems involving arbitrary nonlinear dependencies between the interval
parameters. So far mainly problems involving affine-linear dependencies have been solved. In this
work we come back to the parametric fixed-point iteration, initially introduced by S. Rump (1994),
and first time apply it for bounding the response of structural engineering systems involving
nonlinear dependencies between the model parameters. In (Popova, 2005) the inclusion method
is combined with a simple interval arithmetic technique providing inner and outer bounds for the
range of monotone rational functions. The arithmetic on proper and improper intervals (Gardeñes
et al., 2001) is considered as an intermediate computational tool for eliminating the dependency
problem in range computation and for obtaining inner estimations by outwardly rounded interval
arithmetic. This methodology is implemented into a number of supporting software tools with result
verification, developed in the environment of Mathematica, (Popova, 2005).

Combinatorial approach and the monotonicity approach have been favored by many authors in
solving linear elastic problems involving particular uncertain parameters (Rao and Berke, 1997),
(Ganzerli and Pantelides, 1999), (McWilliam, 2000), (Pownuk, 2000). A rigorous application of
these approaches requires validation of their assumptions which are not generally valid. In Section
2.2 of this paper we present a general framework of computer-aided proof of global and local
monotonicity properties of parametric solutions provided that a self-verified solver of parametric
linear systems is available.

A recent work (Corliss et al., 2004), see also (Corliss and Foley, 2005), identified typical pa-
rameter uncertainties in finite element models of structural steel frames with partially constrained
connections and by applying a sequence of interval-based methods the response of a simple one-bay
steel frame to variations in cross-sectional properties, loading, material properties, and connections
is bounded. Taking occasion of the appeal at the end of the presentation (Corliss and Foley, 2005)
for other reliable methods solving parameter-dependent linear systems, in Section 3.1 this work we
expand the structural analysis performed in (Corliss et al., 2004) by application of the self-verified
parametric iteration, a rigorous hybrid monotonicity approach, and interval subdivision technique
to the same problem and to a larger structural steel frame. The goal is to increase the awareness
of the engineering community about the variety of interval-based methods with result verification
that can be used in the analysis of mechanical structures involving uncertain parameters.
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The paper is organized in two parts. Section 2 briefly describes the methodological and software
tools that are used in the second part. Section 3 contains the analysis of of structural frames.

2. Methodology and Software Tools

In this section we give a brief summary of the numerical methods and software tools that will be
used in solving linear elastic mechanical problems with uncertainties in all the model parameters.
The methods have general purpose and do not assume any particular structure of the input data.

Consider linear algebraic system
A(p) · x = b(p), (1a)

where A(p) is an n × n matrix, b(p) is an n-dimensional vector and p = (p1, . . . , pk)> is a k-
dimensional parameter vector. The elements of A(p) and b(p) are, in general, nonlinear functions
of the parameters

aij(p) = aij(p1, . . . , pk), (1b)
bi(p) = bi(p1, . . . , pk), i, j = 1, . . . , n. (1c)

The parameters are considered to be unknown or uncertain and varying within prescribed intervals

p ∈ [p] = ([p1], . . . , [pk])>. (1d)

When the parameters vary within a box [p] ∈ IRk the set of solutions, called parametric solution
set is

Σp = Σ (A(p), b(p), [p]) := {x ∈ Rn | A(p) · x = b(p) for some p ∈ [p]} . (2)

In general, a solution set has very complicated structure, and does not need even to be convex.
The parametric solution set Σp is bounded if A(p) is nonsingular for every p ∈ [p]. For a nonempty
bounded set Σ ⊆ Rn, define interval hull ¤ : PRn → IRn by

¤Σ := [inf Σ, supΣ] = ∩{[x] ∈ IRn | Σ ⊆ [x]}.
Since it is quite expensive to obtain Σp or ¤Σp, the solution of interest is seeking an interval vector
[y] ∈ IRn such that [y] ⊇ ¤Σp ⊇ Σp, and the goal is [y] to be as narrow as possible.

Below we use the following notations. Rn,Rn×m denote the set of real vectors with n components
and the set of real n×m matrices, respectively. By normal (proper) interval we mean a real compact
interval [a] = [a−, a+] := {a ∈ R | a− ≤ a ≤ a+}. By IRn, IRn×m we denote interval n-vectors and
interval n×m matrices. The end-point functionals (·)−, (·)+, the mid-point function mid(·), where
mid([a−, a+]) := (a−+a+)/2, and the diameter (width) function ω(·), where ω([a−, a+]) := a+−a−,
are applied to interval vectors and matrices componentwise. The absolute value of a matrix A = (aij)
is denoted by |A| = (|aij |); for [a] ∈ IR, |[a]| := max{|a| | a ∈ [a]}. For two matrices of the same
size matrix (vector) inequalities A ≤ B and the interval subset relations [A] ⊆ [B] are understood
componentwise. A < B if A ≤ B and A 6= B, analogously [A] ⊂ [B] if [A] ⊆ [B] and [A] 6= [B].
The above matrix notations apply to vectors, considered as one-column matrices, as well. %(A) is
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the spectral radius of a matrix A, I denotes the identity matrix. For interval quantities [A], [B],
operations between them are always interval operations. The result is the smallest interval quantity
containing the corresponding result when using power set operations. For example,

[A] ∈ IRn×n, [b] ∈ IRn : [A] · [b] := ∩{[c] ∈ IRn | ∀ a ∈ [A], ∀ b ∈ [b] : a · b ∈ [c]}.
We assume the reader is familiar with conventional interval arithmetic, cf. (Moore, 1979), (Neu-
maier, 1990).

2.1. Inclusion Theorems

The inclusion theorems for the solution set of a parametric linear system given here present a direct
consequence from the inclusion theory for nonparametric problems developed by S. Rump and
discussed in many works, cf. (Rump, 1986; Rump, 1990; Rump, 1994). The basic idea of combining
the Krawczyk-operator and the existence test by Moore was further elaborated by S. Rump (1986)
who proposed several improvements leading to inclusion theorems for the solution of nonparametric
interval linear systems [A] ·x = [b]. Computing verified inclusions for the solution set of an interval
linear system with data dependencies was first considered by C. Jansson (1991). He treated systems
with symmetric and skew-symmetric matrices, as well as dependencies in the right hand side, by
modifying the general nonparametric inclusion theorem to account for the dependencies in the
system. In (Rump, 1994, Theorem 4.8) S. Rump gives a straightforward generalization to affine-
linear dependencies in the matrix and the right hand side. The affine-linear dependencies between
the parameters in A(p), b(p) allow an explicit representation of the ranges of the residual vector
z(p) := R · (b(p)−A(p) · x̃) and the iteration matrix C(p) := I − R · A(p) by interval expressions,
as it is stated by the following theorem.

Theorem 2.1. Consider parametric linear system (1a) where A(p), b(p) are defined by

aij(p) := a
(0)
ij +

k∑

ν=1

pνa
(ν)
ij , bi(p) := b

(0)
i +

k∑

ν=1

pνb
(ν)
i , i, j = 1, . . . , n.

Let R ∈ Rn×n, [y] ∈ IRn, x̃ ∈ Rn be given and define [z] ∈ IRn, [C] ∈ IRn×n by

[z] := R · (b(0) −A(0)x̃) +
k∑

ν=1

[pν ](R · b(ν) −R ·A(ν) · x̃),

[C] := I −R ·A(0) −
k∑

ν=1

[pν ](R ·A(ν)),

where A(0) :=
(
a

(0)
ij

)
, . . . , A(k) :=

(
a

(k)
ij

)
∈ Rn×n, b(0) := (b(0)

i ), . . . , b(k) := (b(k)
i ) ∈ Rn.

Define [v] ∈ IRn by means of the following Einzelschrittverfahren

1 ≤ i ≤ n : [vi] := {[z] + [C] · [u]}i, u := (v1, ..., vi−1, yi, ..., yn)>.

If [v] $ [y], then R and every matrix A(p), p ∈ [p] are regular, and for every p ∈ [p] the unique
solution x̂ = A−1(p)b(p) of (1a) satisfies x̂ ∈ x̃ + [v].
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The above theorem generalizes Theorem 4.8 from (Rump, 1994) by requiring computation of the
range of C(p) instead of using an interval extension C([p]), cf. (Popova, 2004c). Although a sharp
enclosure of the iteration matrix is used also by other authors (Dessombz et al., 2001; Muhanna
et al., 2005), the necessity of this improvement is not well justified therein. The generalization of
Theorem 4.8 from (Rump, 1994) is proven theoretically and demonstrated by several numerical
examples in (Popova, 2004b; Popova, 2004c). Indeed, for a class of so-called column-dependent
parametric matrices (Popova, 2004b), the following relation holds

[Cp] := ¤{C(p) | p ∈ [p]} ⊂ C([p]) =: [C],

which implies |[Cp]| < |[C]|. If in addition, |[Cp]|+ |[C]| is irreducible, from the theory of nonneg-
ative matrices it follows that %(|[Cp]|) < %(|[C]|). Thus the range enclosure of C(p) will provide
convergence of the iteration method for %(|[Cp]|) < 1, while a worse enclosure (e.g. C([p])) may
not for some column-dependent parametric matrices and some interval domains for the parameters.
Examples demonstrating the expanded scope of application of the generalized Theorem 2.1 can be
found in (Popova, 2004b; Popova, 2004c; Popova and Krämer, 2004).

In case of arbitrary nonlinear dependencies between the parameters of a linear system we can
give only a general formulation of the inclusion theorem, as bellow.

Theorem 2.2. Consider parametric linear system defined by (1a–1d). Let R ∈ Rn×n, [y] ∈ IRn,
x̃ ∈ Rn be given and define [z] ∈ IRn, [C] ∈ IRn×n by

[z] := ¤{R (b(p)−A(p)x̃) | p ∈ [p]},
[C] := ¤{I −R ·A(p) | p ∈ [p]}.

Define [v] ∈ IRn by means of the following Einzelschrittverfahren

1 ≤ i ≤ n : [vi] := {[z] + [C] · [u]}i, u := (v1, ..., vi−1, yi, ..., yn)>.

If [v] $ [y], then R and every matrix A(p) with p ∈ [p] are regular, and for every p ∈ [p] the
unique solution x̂ = A−1(p)b(p) of (1a–1d) satisfies x̂ ∈ x̃ + [v].

In case of arbitrary nonlinear dependencies between the uncertain parameters in a system,
computing [z] and [C] in Theorem 2.2 requires sharp range enclosure for nonlinear functions. This
is a key problem in interval analysis and there exists a variety of methods and techniques devoted
to this problem. The quality of the range enclosure for z(p) := R · (b(p)−A(p) · x̃) will determine
the sharpness of the parametric solution set enclosure. The verification iteration based on Theorem
2.2 will be convergent if the interval matrix ¤{R · A(p) | p ∈ [p]} is regular which we call strong
regularity of the parametric matrix A(p) in the domain [p], following the term initially introduced
in (Neumaier, 1990). Since the left preconditioning introduces an affine transformation on the
columns of A(p), only systems with column-dependent parametric matrices may benefit from a
sharper enclosure of C(p) = I −R ·A(p).

In (Popova, 2005) the above inclusion theorem is combined with a simple interval arithmetic tech-
nique providing inner and outer bounds for the range of monotone rational functions. The arithmetic
of generalised (proper and improper) intervals is considered as an intermediate computational tool
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for eliminating the dependency problem in range computation and for obtaining inner estimations
by outwardly rounded interval arithmetic (Gardeñes et al., 2001). A detailed presentation of this
technique and the corresponding algorithm with result verification, which solves linear systems
whose input data are rational functions of interval parameters, can be found in (Popova, 2005).
This methodology, rigorously implemented in software tools presented in Section 2.4, will be used
in Section 3 for solving linear systems obtained by FE modelling of mechanical structures with
uncertainties in all the parameters determining the structure behavior.

The above theorems define how to compute an outer enclosure of the solution set of an inter-
val linear system, i.e. an interval vector which is verified to contain the exact solution set hull,
respectively the true solution set of the system. However, it is important to know the quality of
the computed enclosure, in other words: how much such an enclosure overestimates the exact hull
of the solution set. The amount of overestimation can be approximated by an inner inclusion of
the solution set hull which is a componentwise inner estimation of the solution set (Neumaier,
1987; Rump, 1990).

Definition 2.1. An interval vector [x] ∈ IRn is called componentwise inner approximation for
some set Σ ∈ Rn if

inf
σ∈Σ

σi ≤ x−i and x+
i ≤ sup

σ∈Σ
σi, for every 1 ≤ i ≤ n.

The interval vector [x] from the above definition is an inner inclusion of the solution set hull and
should be distinguished from an inner inclusion of the solution set, that is [x] ⊆ [inf(Σ), sup(Σ)]
but [x] 6⊆ Σ.

Basing on ideas developed in (Neumaier, 1987), a cheap method for computing rigorous inner
inclusion of the solution set hull is proposed in (Rump, 1990). The next theorem establishes how
to compute the componentwise inner estimation of the parametric solution set.

Theorem 2.3. Let A(p) · x = b(p), where A(p) ∈ Rn×n, b(p) ∈ Rn, p ∈ [p] ∈ IRk, and R ∈ Rn×n,
x̃ ∈ Rn, [y] ∈ IRn be given. Define

[z] := ¤ {R · (b(p)−A(p) · x̃) | p ∈ [p]} ,

[∆] := [C] · [y], where [C] := ¤ {I −R ·A(p) | p ∈ [p]} .

Let the solution set Σp = Σ(A(p), b(p), [p]) be defined as in (2) and assume

[z] + [∆] $ [y].

Then
[x̃ + [z]− + [∆]+, x̃ + [z]+ + [∆]−] j ¤Σp j x̃ + [z] + [∆]

or, in coordinate notations, for all i = 1, . . . , n there exists x−, x+ ∈ Σp with

x̃i + [zi]− + [∆i]− 5 x−i 5 x̃i + [zi]− + [∆i]+ and
x̃i + [zi]+ + [∆i]− 5 x+

i 5 x̃i + [zi]+ + [∆i]+.
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In order to have a guaranteed inner inclusion all the computations should be done in computer
arithmetic with directed roundings, cf. (Popova, 2005).

The method from Theorem 2.3 has its limits. When widening the intervals for the parameters,
respectively the interval components of the linear system, the inner inclusion becomes smaller and
smaller, and finally vanishes. The latter means that no quantitative measure for the quality of the
outer enclosure can be given. For wide parameter intervals empty inner inclusion usually means bad
outer enclosure and, when further widening the input intervals, the outer solution enclosure will
fail at a certain point. Numerical examples demonstrating this effect can be found in (Popova and
Krämer, 2004). The same result of empty inner inclusion intervals can be obtained also for very tight
parameter intervals due to the rounding errors in computing inner approximations. A necessary and
sufficient condition for non-empty inner inclusions is provided by the relation ω([∆i]) 5 ω([zi]),
where the notations are as in Theorem 2.3, [∆i] is computed with outward rounding and [zi] is
computed with inward rounding.

When somehow we have sharpen the outer solution enclosure ¤ Σp ⊆ [v̂] ⊆ [v] = x̃+[z]+ [∆],
then the improved outer estimation [v̂] can replace [v] in Theorem 2.3 to get an improved inner
estimation of ¤Σp. Numerical example demonstrating this property can be found in (Popova, 2001).

2.2. Rigorous Monotonicity Approach

For many mechanical systems the exact bounds of the system response can be obtained by the
so-called combinatorial approach. The combinatorial solution is computed as a convex hull of the
solutions to all point linear systems corresponding to an exhaustive combination of the bounds
of the interval parameters. Combinatorial hull is a quality of particular parametric solution sets
which is not valid in general. The combinatorial approach gives the exact solution set hull in exact
arithmetic in the special case when the parametric solution is monotone with respect to all the
parameters. If the combinatorial hull property is not proven theoretically (as by Neumaier and
Pownuk (2005)) or numerically (as below), any other non-rigorous application of combinatorial or
monotonicity approach would result in an interval box underestimating the true parametric solution
set. This is the reason by which combinatorial and monotonicity approaches are usually referred
as methods giving inner inclusion of the solution set hull (Muhanna et al., 2005; Neumaier and
Pownuk, 2005).

In this section we briefly sketch a rigorous application of the combinatorial/monotonicity ap-
proach within a general framework for solving parametric linear systems. The rigorousness is
provided by computer-assisted numerical proofs of global and local monotonicity properties of
the parametric solution. Since an essential ingredient of this approach is a self-verified solver for
parametric linear systems, we call this approach a rigorous hybrid monotonicity approach (Popova,
2004a).

The general framework of the rigorous hybrid monotonicity approach consists of three basic
components:

1. self-verified solver for parametric linear systems;

2. computer-assisted proof of global and local monotonicity properties of a parametric solution;

3. guaranteed solution enclosure for point linear systems.
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Provided that we have a self-verified solver for parametric linear systems, we can verify the
global and local monotonicity properties of the parametric solution x(p) = A(p)−1 · b(p). Below we
use the following notations. For [a] = [a−, a+] ∈ IR, define sign([a]) = {1 if a− ≥ 0, −1 if a+ ≤
0, 0 if a−a+ < 0}. For a set of indices I = {i1, . . . , in}, the vector (xi1 , . . . , xin)> will be denoted
by xI and [xI ] = [x−I , x+

I ] where x−I = (x−i1 , . . . , x
−
in

)>, x+
I = (x+

i1
, . . . , x+

in
)>.

The global monotonicity properties are verifiable by solving k parametric linear systems in the
global domain [p] ∈ IRk

A(p)
∂x

∂pν
=

∂b(p)
∂pν

− ∂A(p)
∂pν

· [x∗], ν = 1, . . . , k, (3)

where [x∗] ⊇ Σp is an initial enclosure of the parametric solution set. Let us suppose that for fixed
i, 1 ≤ i ≤ n there exist index sets

L+ = {ν | sign
[
∂xi

∂pν

]
= 1}, L− = {ν | sign

[
∂xi

∂pν

]
= −1}.

If L− ∪ L+ = {1, . . . , k}, then

[inf Σp
i , supΣp

i ] = [{A−1(p−L+
, p+

L−) · b(p−L+
, p+

L−)}i, {A−1(p+
L+

, p−L−) · b(p+
L+

, p−L−)}i].

Monotonicity can also be used even when some solution components are not globally monotonic
with respect to some parameters. Suppose that for some i, 1 ≤ i ≤ n, there exist index sets

L+ = {ν | sign
[
∂xi

∂pν

]
= 1}, L− = {ν | sign

[
∂xi

∂pν

]
= −1}, L0 = {ν | sign

[
∂xi

∂pν

]
= 0},

such that L0 6= {1, . . . , k} and L0 6= ∅. Consider two new parametric linear systems

A−(pL0) · y = b−(pL0) (4)
A+(pL0) · z = b+(pL0), (5)

wherein

a−ij(pL0) := aij(p−L+
, p+

L− , pL0), b−i (pL0) := bi(p−L+
, p+

L− , pL0)

a+
ij(pL0) := aij(p+

L+
, p−L− , pL0) b+

i (pL0) := bi(p+
L+

, p−L− , pL0)

for i, j = 1, . . . , n and pL0 ∈ [pL0 ].
Let [y∗] ⊇ Σ(A−(pL0), b

−(pL0), [pL0 ]) and [z∗] ⊇ Σ(A+(pL0), b
+(pL0), [pL0 ]). In general,

[inf Σp
i , supΣp

i ] ⊆ [y∗i ] ∪ [z∗i ].

However, we may prove some monotonicity properties of the parametric solutions to (4), (5) by
solving the corresponding parametric derivative systems in a considerably reduced interval domain
[pL0 ].

A−(pL0)
∂y

∂pν
=

∂b−(pL0)
∂pν

− ∂A−(pL0)
∂pν

· [y∗]

A+(pL0)
∂z

∂pν
=

∂b+(pL0)
∂pν

− ∂A+(pL0)
∂pν

· [z∗],
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for all ν ∈ L0, where [y∗], [z∗] are initial enclosures of the solution sets of (4), resp. (5), or an initial
enclosure of Σ(A(p), b(p), [p]).

This way, a computer-aided proof of global and local monotonicity properties of the parametric
solution can be performed by self-validated solving of parametric linear systems. The success of the
numerical proof depends very much on the quality of the parametric solution enclosure and on the
quality of the initial enclosure (Popova, 2004a). Some specific issues related to this approach will
be discussed in a separate work.

2.3. Measures of Overestimation

The quality of a solution enclosure is measured by estimating how much an outer solution enclosure
overestimates the true parametric solution set or an inner inclusion of the solution set hull (since
the true hull is usually not known). A discussion about different methods used for obtaining inner
hull estimations can be found in (Neumaier and Pownuk, 2005). The inclusion method, presented
in Section 2.1, is equipped with an easy computable guaranteed inner estimation of the solution set
hull. In this work we shall measure the overestimation of the outer solution enclosure with respect
to a combinatorial solution and to the guaranteed inner estimation of the solution hull provided by
the method.

Provided that we have computed the exact solution set hull or some inner estimation(s) of
the hull, the amount of overestimation should be quantified. The endeavor of providing sharper
solution enclosures has resulted in utilization of different measures of overestimation. In the next
section we shall use and compare the quality quantifications provided by the following measures of
overestimation.

For two intervals [a], [b] ∈ IR such that [a] ⊆ [b], the standard measure of overestimation that
is usually applied is the percentage by which [b] overestimates the interval [a], defined as Oω :
IR× IR −→ R+

Oω([a], [b]) := 100(1− ω([a])/ω([b])).

Distance-based measures of overestimation are sometimes used in the engineering literature, e.g.
(Muhanna et al., 2005). Od : IR× IR −→ R× R is defined by

Od([a], [b]) := 100
(
1− a−/b−, 1− a+/b+)

.

Since we will compare part of our results to those obtained in (Corliss et al., 2004), we will need
the measure of overestimation used therein. For [a], [b] ∈ IR, [a] ⊆ [b] and c ∈ R, c ∈ [a], define
Oc : IR× IR× R −→ R+ by

Oc([a], [b], c) := 100
(
b− − a− + a+ − b+)

/c.

Overestimation measures are applied to interval vectors componentwise.
The presented parametric fixed-point method provides a guaranteed inner estimation [v] of

the solution hull [h] at no additional cost. Since the computation of [v] uses the computed outer
enclosure [u] in a “symmetric ” way, it can be expected that [v] is almost symmetric to [u] with
respect to the exact solution set hull. That is why, 1

2Ow([v], [u]) ≈ Ow([h], [u]) will be used for
measuring the quality of a solution enclosure.
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2.4. Software Tools

Interval methods discussed in this paper and elsewhere are implemented in the environment of Math-
ematica (Wolfram, 1999). The Mathematica package IntervalComputations ‘LinearSystems‘
contains a collection of functions which compute guaranteed inclusions for the solution set of an
interval linear system (Popova, 2004a). The particular solvers differ upon the type of the linear
system to be solved and the implemented solution method. Except for a C-XSC module solving
parametric linear systems with affine-linear dependencies (Popova and Krämer, 2004), the above
Mathematica package is the only by now public software for solving parameter-dependent interval
linear systems.

ParametricNSolve[Ap, bp, tr] is the function which solves linear systems involving affine-
linear dependencies between interval parameters. The function is based on entirely numerical
computations and therefore it is fast. The function is updated to handle sparse arrays as input
data.

ParametricSSolve[Ap, bp, tr] computes a guaranteed enclosure of the solution set to a
parametric linear system Ap.x = bp involving rational dependencies by the algorithm presented in
(Popova, 2005). The parameters and their interval values are specified by a list tr of transformation
rules1. All iterative solvers can take two optional arguments affecting the computational process,
respectively the output of the function. InnerEstimation is an option which when set to True
specifies the computing of component-wise inner approximation of the solution set in addition to
the outer enclosure. The option is set to False by default. Even set to True, the option is active
only if the Mathematica package IntervalComputations ‘GeneralisedIntervals‘ is available.
Refinement is an option which set to True implies an iterative refinement procedure applied to the
computed outer solution enclosure. The default setting is False.

Due to a previous improvement of the inclusion theory, new functions generating guaranteed
inclusions of the solutions to nonsquare over-/underdetermined (parametric) linear systems are de-
veloped. Several functions supporting the hybrid monotonicity approach and a subdivision strategy
ar also part of the package.

Approaching to parametric linear systems with rational dependencies, the integration of symbolic-
algebraic and self-validating numerical computations based on interval arithmetic is found to be a
fruitful synergism. The power of Mathematica to support rigorous exact and/or variable precision
interval computations, the functionality of a generalized interval arithmetic package and the tools
provided by the other interval packages, make a suitable environment for exploration and solving
parametric problems with interval uncertainties.

In order to provide a broad access to solvers for parametric interval linear systems a web interface
for the available Mathematica software is developed which can be found at

http://cose.math.bas.bg/webComputing/
Accessing the webComputing pages users enter or upload data, choose between different options,
and submit data to build up a sequence of results in a numeric, symbolic, graphics or combined
form. The end-users do not need to buy, install, and maintain software; they do not need to
develop user software or to learn different software applications training time being considerably
reduced. They can be certain that use the most recent version. The technical professionals and

1 Mathematica transformation rules have the form name -> value.
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interval researchers can easily explore newly developed methods; compare the efficiency of different
methods and software tools; teach interval methods involving students in an active exploration by
doing. Since algebraic computations are time consuming and webMathematica applications have a
fixed time limit for using the Mathematica kernel, the nonlinear parametric web solver is suitable
only for small size problems, while large problems involving affine-linear dependencies can be solved
remotely. The parametric web solvers allow uploading data files from the client machine onto the
server. For a parametric system, 3 data files (containing the matrix, the right-hand side vector
and the rules for the parameters) are required. Present restriction to the maximum size of a data
file is 4MB. Matrix/vector data in a file presently should be specified by Mathematica lists, or as
sparse arrays (Wolfram, 1999). Future enhancement of the solvers include different data formats,
downloading the generated results on the client machine and combining/reusing the results from
different pages.

3. Numerical Examples

3.1. One-Bay Steel Frame

In this section we consider a simple one-bay structural steel frame, shown in Figure 1, that was
initially considered and analyzed by Corliss et al. (2004). In their work the authors survey typical un-
certainties for the parameters characterizing the structural behavior and apply the Muhanna-Mullen
Element-by-Element approach (Muhanna and Mullen, 2001), interval subdistributivity properties,
scaling, and constraint propagation in order to demonstrate the feasibility of interval techniques for
bounding structural responses in the presence of interval parameters. Here the analysis of Corliss
et al. is expanded by the methods presented in Section 2.

Figure 1. One-bay structural steel frame (after Corliss et al. (2004)).

In order to compare the results generated by the different methods, we strictly follow the struc-
ture system and the uncertainties for the parameters considered in(Corliss et al., 2004). Following
the usual practice, the authors have assembled the following linear system corresponding to the
portal structure in Figure 1.




AbEb
Lb

+ 12EcIc
L3

c
0 6EcIc

L2
c

0 0
0 AcEc

Lc
+ 12EbIb

L3
b

0 6EbIb

L2
b

6EbIb

L2
b

6EcIc
L2

c
0 α + 4EcIc

Lc
−α 0

0 6EbIb

L2
b

−α α + 4EbIb
Lb

2EbIb
Lb

0 6EbIb

L2
b

0 2EbIb
Lb

α + 4EcIc
Lc

−AbEb
Lb

0 0 0 0
0 −12EbIb

L3
b

0 −6EbIb

L2
b

−6EbIb

L2
b

0 0 0 0 −α

(6)
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−AbEb
Lb

0 0
0 −12EbIb

L3
b

0
0 0 0
0 −6EbIb

L2
b

0

0 −6EbIb

L2
b

−α
AbEb
Lb

+ 12EcIc
L3

c
0 6EcIc

L2
c

0 AcEc
Lc

+ 12EbIb

L3
b

−6EbIb

L2
b

6EcIc
L2

c
−6EbIb

L2
b

α + 4EcIc
Lc







d2x

d2y

r2z

r5z

r6z

d3x

d3y

r3z




=




H
0
0
0
0
0
0
0




It is readily seen that this is a linear system involving rational dependencies between the frame
parameters. Typical nominal parameter values and the corresponding worst case uncertainties, as
proposed in (Corliss et al., 2004), are shown in Table I.

Table I. Parameters involved in the steel frame example, their
nominal values, and worst case uncertainties.

parameter nominal value uncertainty

Eb 29 ∗ 106 lbs/in2 ±348 ∗ 104

Young modulus
Ec 29 ∗ 106 lbs/in2 ±348 ∗ 104

Ib 510 in4 ±51
Second moment

Ic 272 in4 ±27.2

Ab 10.3 in2 ±1.3
Area

Ac 14.4 in2 ±1.44

External force H 5305.5 lbs ±2203.5

Joint stiffness α 2.77461 ∗ 109 lb-in/rad ±1.26504 ∗ 109

Length Lc 144 in, Lb 288 in

Initially, the system (6), where Lb, Lc are replaced by their nominal values, is solved with
parameter uncertainties which are 1% of the values presented in the last column of Table I,

Eb, Ec ∈ [28965200, 29034800], Ib ∈ [509.49, 510.51], Ic ∈ [271.728, 272.272],

Ab ∈ [10.287, 10.313], Ac ∈ [14.3856, 14.4144], α ∈ [276195960, 278726040],

H ∈ [5283.465, 5327.535].

(7)

Applying the rigorous monotonicity approach we have found the monotonicity profile of the
system response presented in Table II which proves that the combinatorial approach gives the
exact hull in exact arithmetic. Note, that all solution components are only locally monotone with
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respect to Ab. The exact hull [h] of the solution set for this problem, computed in rational arithmetic
and then rounded outwardly to 10 digits accuracy, is presented in (Popova, 2005).

Table II. One-bay steel frame example with uncertain param-
eters (7): monotonicity properties of the system response.

solution parameter

component Eb Ec Ib Ic Ab Ac α H

1. d2x -1 -1 -1 -1 -1, -1 -1 -1 1

2. d2y 1 -1 1 -1 -1, -1 -1 1 1

3. r2z 1 1 1 1 1 1 1 1 -1

4. r5z 1 1 1 1 1 1 1 1 -1 -1

5. r6z 1 1 1 1 -1 -1 1 -1 -1

6. d3x -1 -1 -1 -1 1 1 -1 -1 1

7. d3y -1 1 -1 1 -1 -1 1 1 -1

8. r3z 1 1 1 1 -1 -1 1 1 -1

The parametric linear system (6) is solved by the presented general parametric fixed-point iter-
ation. The system involves eight uncertain parameters which are considered to vary independently
within tolerance intervals (7). The guaranteed outer enclosure [u] of the system response and an
inner estimation [v] of the outer enclosure, obtained in just one single execution of the parametric
solver function, are presented with 10 digits accuracy in (Popova, 2005). The quality of the obtained
enclosure is measured by the three measures of overestimation, defined in Section 2.3, and also
compared to the quality of the solution enclosures for the same problem obtained by alternative
methods used in (Corliss et al., 2004), see Table III.

The second and third columns in Table III demonstrate the relation 1
2Ow([v], [u]) ≈ Ow([h], [u]).

The distance-based measure Od gives two numbers with different signs corresponding to the end-
points of the intervals. As demonstrated by the results in Table III, this measure yields values
which are two orders of magnitude less than the overestimation measure Oω([h], [u]). The other
overestimation measure Oc([h], [u], µ) is also not comparable to Oω([h], [u]) giving values with one
order of magnitude less than the latter.

The last three columns in Table III present the quality of the solution enclosures obtained in
(Corliss et al., 2004) by the application of EBE approach (Muhanna and Mullen, 2001) to the system
(6)–(7). The application of the EBE approach was successively improved in (Corliss et al., 2004) by
applying subdistributivity property and scaling which has resulted in improved solution enclosures
measured by Oc([h̃], [ui], µ̃), where [h̃] is the solution set hull reported in (Corliss et al., 2004), and
[ui] is the corresponding solution enclosure. Comparing the best solution enclosure, obtained by
the EBE approach — Oc([h̃], [u3], µ̃), to the quality Oc([h], [u], µ) of the solution enclosure obtained
by the present parametric method, we see the superiority of the present method by one order of
magnitude. The results in Table III show also that the different components of the system response
have different sensitivity to variations in the system parameters.
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Table III. One-bay steel frame example with uncertain parameters (7): comparison of overestimation
measures in %. Oc([h], [ui]) are after (Corliss et al., 2004), i = 3 – Table V, i = 2 – Table IV, i = 1 –
Table III, respectively, dash means no available data.

solution 1
2
Oω Oω 102Od Oc Oc Oc Oc

comp. ([v], [u]) ([h], [u]) ([h], [u]) ([h], [u], µ) ([h̃], [u3], µ) ([h̃], [u2], µ) ([h̃], [u1], µ)

1. d2x 0.83 0.83 -0.75, 0.38 0.011 0.29 0.40 78.02

2. d2y 0.57 0.57 -0.86, 0.20 0.011 0.004 0.13 85.38

3. r2z 4.58 4.31 3.01, -3.53 0.065 0.75 0.84 81.18

4. r5z 8.65 7.73 5.89, -6.31 0.122 1.62 1.63 85.32

5. r6z 13.54 11.99 9.81, -10.32 0.201 – – –

6. d3x 0.84 0.84 -0.76, 0.39 0.011 – – –

7. d3y 0.79 0.79 0.33, -1.21 0.015 – – –

8. r3z 3.40 3.23 2.19, -2.70 0.049 – – –

It is well-known that the parametric fixed-point iteration gives sharper solution enclosures for
smaller interval tolerances. To illustrate this effect we have subdivided the ranges (7) of some
interval-valued parameters and obtain enclosure of the system response as a hull of the solution
enclosures in all sub-domains. The results obtained after the application of the subdivision approach,
reported in (Popova, 2005), show an improvement between 0.37% and 3.05% in the solution enclo-
sure obtained by subdivision of the intervals. The overestimation for the different components of
the system response is different ranging from 0.2% to 9.22%.

Table IV. One-bay steel frame example with worst-case parameter un-
certainties (Table I) solved by subdivision of the parameter intervals
(Eb, Ec, Ib, Ic, Ab, Ac, α, H)> correspondingly into (2, 2, 2, 2, 1, 1, 1, 1)> equal subin-
tervals. Inner [vs] and outer [us] inclusions of the solution set hull are compared to
the combinatorial solution [h̃].

d2x d2y r2z r5z r6z d3x d3y r3z

1
2
Oω([vs], [us]) 19.97 15.87 – – – 20.12 23.50 –

Oω([h̃], [us]) 18.41 12.23 26.23 41.43 41.84 18.56 18.77 26.70

The presented parametric fixed-point iteration fails in solving the parametric linear system (6)
for the worst case (over 40%) parameter uncertainties given in Table I. For very large uncertainties
the parametric matrix is not strongly regular as required by the method. But we can solve the
problem by subdividing the parameter intervals. As small are the sub-domains as better will
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be the solution enclosure. Inclusions (inner and outer) of the solution set hull are obtained by
subdivision of the worst-case parameter intervals (Eb, Ec, Ib, Ic, Ab, Ac, α,H)> correspondingly into
(2, 2, 2, 2, 1, 1, 1, 1)> equal subintervals. The quality of the obtained outer enclosure is presented in
Table IV. Although the inner estimations for the most sensitive solution components are empty
set intervals, a minimal number of subdivisions provided an outer enclosure overestimating the
combinatorial solution with 12% to 42%. These results show that even for comparatively large
parameter intervals, the presented parametric fixed-point iteration is able to enclose the solution.
Although the parametric matrix is strongly regular (which provides convergence of the method)
even for the large parameter uncertainties that are chosen, a poor accuracy of the residual vector
enclosure may be the reason for overestimating the system response.

3.2. Two-Bay Two-Story Frame

As large frame examples we consider rectangular multi-story multi-bay frames. We model the
two-bay two-story steel frame with IPE 400 beams and HE 280 B columns as shown in Figure 2.

Figure 2. Two-bay two-story steel frame.

The frame is subjected to lateral static forces and vertical uniform loads. Beam-to-column
connections are considered to be semi-rigid and are modelled by single rotational spring elements.
The use of spring models is better fitted to steel frames with bolted connections, for example
beam-to column connections of extended-end-plate system. Semi-rigid steel and reinforced concrete
frames have been widely used to reduce the seismic loading. However many structures of this type
have been strongly damaged or collapsed during the Northridge earthquake, which struck Southern
California in 1994. The main reason has been found to be the increased flexibility of entire frame
being strongly influenced by P-∆ effect. Semi-rigid frames are in large extent sensitive to physical
properties of the beam-to-column connections and this was the main reason to direct our research
in this direction.

Structure elements are specified to be beam or column. Columns are chosen to be traditional 2D
frame elements for the elastic analysis having three degrees of freedom per node – two translations
and one rotation. Beam elements also have three degrees of freedom at each node – two translations
and one rotation. The rotational springs are added to both ends and internal rotations are elimi-
nated. Beam elements allow for application of traditional finite element procedure which requires
matrices of order 6×6. Basement nodes are fixed and are not able to displace. Applying conventional
methods for analysis of frame structures, cf. (Zienkiewicz, 1971), a system of 18 linear equations
is composed where the coefficients are rational functions of the model parameters. The distributed
beam loading is transformed to the equivalent nodal forces. In this manner the parameters related
to the geometric properties are included in the global loading vector.

In contrast to the system considered in Section 3.1 the linear system describing present two-bay
two-story frame in Figure 2 has the following right-hand side vector whose components depend also
on parameters of the beams, not only on the applied loadings

(
f2, −1

2
w1Lb1, − w1Lb2

1

12(1 + 2Eb1Ib1
cLb1

)
, 0, −w1Lb1

2
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2
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1

12(1 + 2Eb1Ib1
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)
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,
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,
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)
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.

The following data, taken according to the European Standard (Eurocode 3, 2003), are used in
the model.

Columns (HE 280 B) Beams (IPE 400)

Cross-sectional area Ac = 0.01314 m2, Ab = 0.008446 m2

Moment of inertia Ic = 19270 ∗ 10−8 m4, Ib = 23130 ∗ 10−8 m4

Modulus of elasticity Ec = 2.1 ∗ 108 kN/m2, Eb = 2.1 ∗ 108 kN/m2

Length Lc = 3 m, Lb = 2Lc m

Rotational spring stiffness c = 108 kN (8)
Uniform vertical load w1 = . . . = w4 = 30 kN/m
Concentrated lateral forces f1 = f2 = 100 kN

As a first problem a system structure having 13 uncertain parameters: Ac, Ic, Ec, Ab, Ib, Eb, c,
w1, . . . , w4, f1, f2 was considered. The system parameters were initially taken to vary within 1%
tolerance intervals [p − p/200, p + p/200] where p is the corresponding parameter nominal value
from (8).

Table V. Solutions for displacements and rotations of two-bay two-story frame system with 13 parameters having 1%
uncertainties.

dx1(m) dy1 (m) θ1 (rad) dx3(m) dy3 (m) θ3 (rad)

103[v] [12.80, 13.20] [-.2143, -.2062] [-2.168, -2.099] [12.21, 12.60] [-.3439, -.3333] [-.2079, -.1554]

103[u] [12.78, 13.21] [-.2145, -.2060] [-2.175, -2.092] [12.20, 12.62] [-.3441, -.3331] [-.2146, -.1487]

Oω([h], [u]) 4.90 3.20 9.24 4.98 2.93 11.04

Oc([h], [u]) 0.16 0.13 0.35 0.17 0.09 3.99

The parametric solver, presented in this paper, found a guaranteed outer enclosure [u] of the
system response and a corresponding inner estimation [v] of the solution set hull. The results
for displacements and rotations of selected nodes are given in Table V. The system response at
the first three nodes is most sensitive to the variations in model parameters. The bounds for the
solution are captured by sharp intervals. Applying rigorously the monotonicity approach based on
verified parametric solver, it was numerically proven that the combinatorial approach gives the
exact solution set hull. That is why, the last two rows of Table V list the percentage by which
the outer enclosures produced by the parametric solver overestimate the true bounds of the system
response. The results in Table V show that the rotations are about three times more sensitive to the
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variations in model parameters than the displacements. The same behavior was observed during
the analysis of the portal structure in Section 3.1.

Further, we solve the same parametric system where the element material properties are taken to
vary within 1% tolerances while the spring stiffness and all applied loadings are taken to vary within
large 10% tolerance intervals. Table VI presents the results obtained for the nodes one and three. The

Table VI. Interval solutions for displacements and rotations of two-bay two-story frame system with 13 parame-
ters. The material properties have 1% uncertainties while the spring stiffness and the applied loadings have 10%
uncertainties.

dx1(m) dy1 (m) θ1 (rad) dx3(m) dy3 (m) θ3 (rad)

103[h] [12.16, 13.85] [-.2308, -.1902] [-2.316, -1.956] [11.60, 13.24] [-.3604, -.3174] [-.3545, -.0100]

103[u] [11.92, 13.89] [-.2311, -.1850] [-2.333, -1.896] [11.36, 13.28] [-.3607, -.3119] [-.3724, .04663]

Oω([h], [u]) 14.51 12.10 17.60 14.61 12.04 17.82

Oc([h], [u]) 2.19 2.65 3.59 2.25 1.73 41.05

solutions after applying the monotonicity properties w.r.t. the applied loadings

103[u] [12.13, 13.88] [-.2314, -.1896] [-2.323, -1.949] [11.56, 13.28] [-.3613, -.3165] [-.3599, -4.e−6]

Oω([h], [u]) 3.99 2.75 3.89 3.99 3.83 3.05

Oc([h], [u]) 0.54 0.54 0.68 0.55 0.50 5.95

first row in Table VI gives the combinatorial solution which is used for measuring the overestimation
produced by the parametric solver. Except for θ3, interval bounds for the system response are
reasonable although not quite sharp. The percentage of overestimation increases with increasing
the width of the parameter intervals. The lower quality of the solution enclosures for large parameter
intervals is probably due to a poor range estimation of the residual vector in the algorithm. Proving
monotonicity properties of the system response with respect to the loadings parameters w1, . . . , w4,
f1, f2 and solving corresponding parametric systems involving reduced number of parameters results
in a quite sharp solution enclosure presented in the second part of Table VI.

It should be noted that for 10% tolerance intervals of the model parameters even the combina-
torial solution is such that the interval for θ3 contains zero.

As a second larger problem of this type we consider the same system structure as above but
assuming that each structure element has properties varying independently within 1% tolerance
intervals. This leads to an 18× 18 parametric system involving 37 interval parameters. The results
for displacements and rotations of the selected nodes, listed in Table VII, are similar to those
obtained for the system involving 13 parameters having the same uncertainties.

While the combinatorial solution for the problem involving 37 uncertain parameters requires
solving 237 ≈ 1.37 ∗ 1011 point linear systems (in rational arithmetic), or applying Monte Carlo
simulation usually takes 106 trials in order to assess the quality of a solution enclosure, just one
single execution of our parametric solver yields both guaranteed outer solution enclosure [u] and its
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Table VII. Solutions for displacements and rotations of two-bay two-story frame system with 37 parameters having
1% uncertainties.

dx1(m) dy1 (m) θ1 (rad) dx3(m) dy3 (m) θ3 (rad)

[v] ∗ 103 [12.67, 13.32] [-.224, -.1964] [-2.222, -2.045] [12.09, 12.73] [-.3571, -.3199] [-.2569, -.1062]

[u] ∗ 103 [12.62, 13.37] [-.2249, -.1954] [-2.237, -2.030] [12.04, 12.77] [-.3584, -.3186] [-.2716, -.0915]

1
2
Oω([v], [u]) 6.05 3.44 7.28 6.16 3.19 8.18

1
2
Oc([v], [u]) 0.34 0.48 0.70 0.36 0.37 8.09

inner estimation [v], based on which 1/2Oω([v], [u]) measures the quality of the obtained solution
bounds.

4. Conclusion

The application of a self-verified parametric iteration method for bounding the response of uncertain
mechanical structures modelled by finite element method is presented. The method can solve linear
systems involving arbitrary non-linear dependencies between the uncertain input data, provided
that it is combined with good tools for range enclosure. It is demonstrated that very sharp solution
enclosures are generated for small parameter tolerances. Powerful range enclosing techniques are
necessary to provide good accuracy of the solution enclosure when the system parameters are
subjected to large uncertainties which retain the strong regularity property of the parametric
matrix.

We have demonstrated the feasibility of the general-purpose parametric iteration method for
bounding structure responses in the presence of uncertainties in all model parameters. It was illus-
trated by the numerical examples that for small intervals the method is superior to other, although
not self-verified, methods like the EBE approach. Even for quite large parameter uncertainties, the
interval subdivision guarantee the feasibility of the method and the accuracy of the inclusions.

The most attractive feature of the discussed methodology and software tools consists in the
fact that they yield validated inclusions computed by a finite precision arithmetic. To provide
this feature a rigorous computer implementation by interval arithmetic with directed roundings
is necessary. Any self-verified parametric solver can be incorporated in a general framework for
computer-assisted proof of global and local monotonicity properties of a parametric solution. Basing
on these properties, a guaranteed and highly accurate enclosure of the solution set hull can be
computed.

Contrary to other approaches for modelling uncertain mechanical systems that apply special
techniques at the level of constructing the linear system to be solved in order to reduce the
dependencies, the present method requires no preliminary specialized construction methods. For
example, there is no need to overcome the coupling as in the EBE approach. Present method is
highly automated since engineers need to apply only conventional methods for obtaining the linear
system in a parametric form by software tools widely available in modern computing environments
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(Matlab, Mathematica, etc.). Uncertainties in all the system parameters (e.g., material, load and
geometry properties) can be considered and handled simultaneously. A combination of interval
methods can ensure very sharp bounds for the system response. Furthermore, the present method
and all the methods combined to obtain sharp bounds for the system response, are implemented in
software tools which are freely available and ready for application. When the construction methods,
used for assembling the global stiffness matrix and the global loading vector, cannot eliminate all the
dependencies between the input parameters, a parametric iteration, respectively the implemented
parametric solver, should be used instead of a non-parametric one.

Being the only general-purpose parametric linear solver, the presented methodology and software
tools are applicable in the context of any problem which requires solving of linear systems whose
input data depend on uncertain (interval) parameters.
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Popova, E., and W. Krämer. Inner and Outer Bounds for the Solution Set of Parametric Linear Systems. J. of
Computational and Applied Mathematics, 2004, in press.

Pownuk, A. Calculations of Displacement in Elastic and Elastic-Plastic Structures with Interval Parameters. 33rd
Solid Mechanics Conference, Zakopane, Poland, September, 2000.

Rao, S. S., and L. Berke. Analysis of Uncertain Structural Systems using Interval Analysis. AIAA J. 35(4):727–735.

REC 2006 - Evgenija Popova et al.



Bounding the Response of Mechanical Structures with Uncertainties in All the Parameters 265

Rump, S. New Results on Verified Inclusions. In W. L. Miranker, and R. Toupin, editors, Accurate Scientific
Computations, Springer LNCS 235, 31–69, 1986.

Rump, S. Rigorous sensitivity analysis for systems of linear and nonlinear equations. Mathematics of Computation
54(190):721–736, 1990.

Rump, S. Verification methods for dense and sparse systems of equations. In J. Herzberger, editor, Topics in Validated
Computations, N. Holland, 63–135, 1994.

Wolfram, S. The Mathematica Book. 4th ed., Wolfram Media/Cambridge U. Press, 1999.
Zienkiewicz, O. C. The Finite Element Method in Engineering Science. McGraw-Hill, London, 1971.

REC 2006 - Evgenija Popova et al.



REC 2006 - Evgenija Popova et al.



Overview of Reliability Analysis and Design Capabilities in

DAKOTA

M. S. Eldred∗

Sandia National Laboratories†, Albuquerque, NM 87185

B. J. Bichon‡

Vanderbilt University, Nashville, TN 37235

B. M. Adams§

Sandia National Laboratories, Albuquerque, NM 87185

Abstract. Reliability methods are probabilistic algorithms for quantifying the effect of uncertain-
ties in simulation input on response metrics of interest. In particular, they compute approximate
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inverse reliability analysis of computing response levels for specified probabilities (the performance
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1. Introduction

Reliability methods are probabilistic algorithms for quantifying the effect of uncertainties in simu-
lation input on response metrics of interest. In particular, they perform uncertainty quantification
(UQ) by computing approximate response function distribution statistics based on specified prob-
ability distributions for input random variables. These response statistics include response mean,
response standard deviation, and cumulative or complementary cumulative distribution function
(CDF/CCDF) response level and probability/reliability level pairings. These methods are often
more efficient at computing statistics in the tails of the response distributions (events with low
probability) than sampling-based approaches since the number of samples required to resolve a
low probability can be prohibitive. Thus, these methods, as their name implies, are often used in
a reliability context for assessing the probability of failure of a system when confronted with an
uncertain environment.

A number of classical reliability analysis methods are discussed in (Haldar and Mahadevan,
2000), including Mean-Value First-Order Second-Moment (MVFOSM), First-Order Reliability Method
(FORM), and Second-Order Reliability Method (SORM). More recent methods which seek to
improve the efficiency of FORM analysis through limit state approximations include the use of
local and multipoint approximations in Advanced Mean Value methods (AMV/AMV+ (Wu et
al., 1990)) and Two-point Adaptive Nonlinearity Approximation-based methods (TANA (Wang
and Grandhi, 1994; Xu and Grandhi, 1998)), respectively. Each of the FORM-based methods can
be employed for “forward” or “inverse” reliability analysis through the reliability index approach
(RIA) or performance measure approach (PMA), respectively, as described in (Tu et al., 1999).

The capability to assess reliability is broadly useful within a design optimization context, and
reliability-based design optimization (RBDO) methods are popular approaches for designing sys-
tems while accounting for uncertainty. RBDO approaches may be broadly characterized as bi-level
(in which the reliability analysis is nested within the optimization, e.g. (Allen and Maute, 2004)),
sequential (in which iteration occurs between optimization and reliability analysis, e.g. (Wu et al.,
2001; Du and Chen, 2004)), or unilevel (in which the design and reliability searches are combined
into a single optimization, e.g. (Agarwal et al., 2004)). Bi-level RBDO methods are simple and
general-purpose, but can be computationally demanding. Sequential and unilevel methods seek to
reduce computational expense by breaking the nested relationship through the use of iterated or
simultaneous approaches.

In order to provide access to a variety of uncertainty quantification capabilities for analy-
sis of large-scale engineering applications on high-performance parallel computers, the DAKOTA
project (Eldred et al., 2003) at Sandia National Laboratories has developed a suite of algorithmic
capabilities known as DAKOTA/UQ (Wojtkiewicz et al., 2001). This package contains the reliabil-
ity analysis capabilities described in this paper and enables the RBDO approaches, and is freely
available for download worldwide through an open source license.

This paper overviews recent algorithm research activities that have explored a variety of ap-
proaches for performing reliability analysis. In particular, forward and inverse reliability analyses
have been explored using multiple limit state approximation, probability integration, warm starting,
Hessian approximation, and optimization algorithm selections. These uncertainty quantification ca-
pabilities have also provided a foundation for exploring bi-level and sequential RBDO formulations.
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Sections 2 and 3 describe these algorithmic components, Section 4 summarizes computational results
for four benchmark test problems, Section 5 presents initial deployment of these methodologies to
the probabilistic analysis and design of MEMS, and Section 6 provides concluding remarks.

2. Reliability Method Formulations

2.1. Mean Value

The Mean Value method (MV, also known as MVFOSM in (Haldar and Mahadevan, 2000)) is
the simplest, least-expensive reliability method because it estimates the response means, response
standard deviations, and all CDF/CCDF response-probability-reliability levels from a single evalu-
ation of response functions and their gradients at the uncertain variable means. This approximation
can have acceptable accuracy when the response functions are nearly linear and their distributions
are approximately Gaussian, but can have poor accuracy in other situations. The expressions for
approximate response mean μg, approximate response standard deviation σg, response target to
approximate probability/reliability level mapping (z̄ → p, β), and probability/reliability target to
approximate response level mapping (p̄, β̄ → z) are

μg = g(μx) (1)

σg =
∑

i

∑
j

Cov(i, j)
dg

dxi
(μx)

dg

dxj
(μx) (2)

βcdf =
μg − z̄

σg
(3)

βccdf =
z̄ − μg

σg
(4)

z = μg − σgβ̄cdf (5)
z = μg + σgβ̄ccdf (6)

respectively, where x are the uncertain values in the space of the original uncertain variables (“x-
space”), g(x) is the limit state function (the response function for which probability-response level
pairs are needed), and βcdf and βccdf are the CDF and CCDF reliability indices, respectively.

With the introduction of second-order limit state information, MVSOSM calculates a second-
order mean as

μg = g(μx) +
1
2

∑
i

∑
j

Cov(i, j)
d2g

dxidxj
(μx) (7)

This is commonly combined with a first-order variance (Eq. 2), since second-order variance involves
higher order distribution moments (skewness, kurtosis) (Haldar and Mahadevan, 2000) which are
often unavailable.

The first-order CDF probability p(g ≤ z), first-order CCDF probability p(g > z), βcdf , and βccdf

are related to one another through

p(g ≤ z) = Φ(−βcdf ) (8)
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p(g > z) = Φ(−βccdf ) (9)

βcdf = −Φ−1(p(g ≤ z)) (10)

βccdf = −Φ−1(p(g > z)) (11)
βcdf = −βccdf (12)

p(g ≤ z) = 1 − p(g > z) (13)

where Φ() is the standard normal cumulative distribution function. A common convention in the
literature is to define g in such a way that the CDF probability for a response level z of zero (i.e.,
p(g ≤ 0)) is the response metric of interest. The formulations in this paper are not restricted to this
convention and are designed to support CDF or CCDF mappings for general response, probability,
and reliability level sequences.

2.2. MPP Search Methods

All other reliability methods solve a nonlinear optimization problem to compute a most probable
point (MPP) and then integrate about this point to compute probabilities. The MPP search is
performed in uncorrelated standard normal space (“u-space”) since it simplifies the probability
integration: the distance of the MPP from the origin has the meaning of the number of input
standard deviations separating the mean response from a particular response threshold. The trans-
formation from correlated non-normal distributions (x-space) to uncorrelated standard normal
distributions (u-space) is denoted as u = T (x) with the reverse transformation denoted as x =
T−1(u). These transformations are nonlinear in general, and possible approaches include the Rosen-
blatt (Rosenblatt, 1952), Nataf (Der Kiureghian and Liu, 1986), and Box-Cox (Box and Cox, 1964)
transformations. The nonlinear transformations may also be linearized, and common approaches for
this include the Rackwitz-Fiessler (Rackwitz and Fiessler, 1978) two-parameter equivalent normal
and the Chen-Lind (Chen and Lind, 1983) and Wu-Wirsching (Wu and Wirsching, 1987) three-
parameter equivalent normals. The results in this paper employ the Nataf nonlinear transformation
which occurs in the following two steps. To transform between the original correlated x-space
variables and correlated standard normals (“z-space”), the CDF matching condition is used:

Φ(zi) = F (xi) (14)

where F () is the cumulative distribution function of the original probability distribution. Then, to
transform between correlated z-space variables and uncorrelated u-space variables, the Cholesky
factor L of a modified correlation matrix is used:

z = Lu (15)

where the original correlation matrix for non-normals in x-space has been modified to represent the
corresponding correlation in z-space (Der Kiureghian and Liu, 1986).

The forward reliability analysis algorithm of computing CDF/CCDF probability/reliability levels
for specified response levels is called the reliability index approach (RIA), and the inverse reliability
analysis algorithm of computing response levels for specified CDF/CCDF probability/reliability lev-
els is called the performance measure approach (PMA) (Tu et al., 1999). The differences between the

REC 2006 - M. S. Eldred, B. J. Bichon, and B. M. Adams



Overview of Reliability Analysis and Design Capabilities in DAKOTA 271

RIA and PMA formulations appear in the objective function and equality constraint formulations
used in the MPP searches. For RIA, the MPP search for achieving the specified response level z̄ is
formulated as

minimize uTu
subject to G(u) = z̄ (16)

and for PMA, the MPP search for achieving the specified reliability/probability level β̄, p̄ is formu-
lated as

minimize ±G(u)
subject to uTu = β̄2 (17)

where u is a vector centered at the origin in u-space and g(x) ≡ G(u) by definition. In the RIA
case, the optimal MPP solution u∗ defines the reliability index from β = ±‖u∗‖2, which in turn
defines the CDF/CCDF probabilities (using Eqs. 8-9 in the case of first-order integration). The
sign of β is defined by

G(u∗) > G(0) : βcdf < 0, βccdf > 0 (18)
G(u∗) < G(0) : βcdf > 0, βccdf < 0 (19)

where G(0) is the median limit state response computed at the origin in u-space (where βcdf =
βccdf = 0 and first-order p(g ≤ z) = p(g > z) = 0.5). In the PMA case, the sign applied to G(u)
(equivalent to minimizing or maximizing G(u)) is similarly defined by β̄

β̄cdf < 0, β̄ccdf > 0 : maximize G(u) (20)
β̄cdf > 0, β̄ccdf < 0 : minimize G(u) (21)

and the limit state at the MPP (G(u∗)) defines the desired response level result.
When performing PMA with specified p̄, one must compute β̄ to include in Eq. 17. While

this is a straightforward one-time calculation for first-order integrations (Eqs. 10-11), the use of
second-order integrations complicates matters since the β̄ corresponding to the prescribed p̄ is a
function of the Hessian of G (see Eq. 38), which in turn is a function of location in u-space. A
generalized reliability index (Eq. 50), which would allow a one-time calculation, may not be used
since equality with uTu is not meaningful. The β̄ target must therefore be updated in Eq. 17 as
the minimization progresses (e.g., using Newton’s method to solve Eq. 38 for β̄ given p̄ and κi).
This works best when β̄ can be fixed during the course of an approximate optimization, such as for
the AMV2+ and TANA methods described in Section 2.2.1. For second-order PMA without limit
state approximation cycles (i.e., PMA SORM), the constraint must be continually updated and the
constraint derivative should include ∇uβ̄, which would require third-order information for the limit
state to compute derivatives of the principal curvatures. This is impractical, so the PMA SORM
constraint derivatives are only approximated analytically or estimated numerically. Potentially for
this reason, PMA SORM has not been widely explored in the literature.

REC 2006 - M. S. Eldred, B. J. Bichon, and B. M. Adams



272 M. S. Eldred, B. J. Bichon, and B. M. Adams

2.2.1. Limit state approximations
There are a variety of algorithmic variations that can be explored within RIA/PMA reliability
analysis. First, one may select among several different limit state approximations that can be
used to reduce computational expense during the MPP searches. Local, multipoint, and global
approximations of the limit state are possible. (Eldred et al., 2005) investigated local first-order
limit state approximations, and (Eldred et al., 2006) investigated local second-order and multipoint
approximations. These techniques include:

1. a single Taylor series per response/reliability/probability level in x-space centered at the un-
certain variable means. The first-order approach is commonly known as the Advanced Mean
Value (AMV) method:

g(x) ∼= g(μx) + ∇xg(μx)T (x − μx) (22)

and the second-order approach has been named AMV2:

g(x) ∼= g(μx) + ∇xg(μx)T (x − μx) +
1
2
(x − μx)T∇2

xg(μx)(x − μx) (23)

2. same as AMV/AMV2, except that the Taylor series is expanded in u-space. The first-order
option has been termed the u-space AMV method:

G(u) ∼= G(μu) + ∇uG(μu)T (u − μu) (24)

where μu = T (μx) and is nonzero in general, and the second-order option has been named the
u-space AMV2 method:

G(u) ∼= G(μu) + ∇uG(μu)T (u− μu) +
1
2
(u − μu)T∇2

uG(μu)(u − μu) (25)

3. an initial Taylor series approximation in x-space at the uncertain variable means, with iterative
expansion updates at each MPP estimate (x∗) until the MPP converges. The first-order option
is commonly known as AMV+:

g(x) ∼= g(x∗) + ∇xg(x∗)T (x − x∗) (26)

and the second-order option has been named AMV2+:

g(x) ∼= g(x∗) + ∇xg(x∗)T (x − x∗) +
1
2
(x − x∗)T∇2

xg(x
∗)(x − x∗) (27)

4. same as AMV+/AMV2+, except that the expansions are performed in u-space. The first-order
option has been termed the u-space AMV+ method.

G(u) ∼= G(u∗) + ∇uG(u∗)T (u− u∗) (28)

and the second-order option has been named the u-space AMV2+ method:

G(u) ∼= G(u∗) + ∇uG(u∗)T (u − u∗) +
1
2
(u − u∗)T∇2

uG(u∗)(u − u∗) (29)
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5. a multipoint approximation in x-space. This approach involves a Taylor series approximation
in intermediate variables where the powers used for the intermediate variables are selected to
match information at the current and previous expansion points. Based on the two-point expo-
nential approximation concept (TPEA, (Fadel et al., 1990)), the two-point adaptive nonlinearity
approximation (TANA-3, (Xu and Grandhi, 1998)) approximates the limit state as:

g(x) ∼= g(x2) +
n∑

i=1

∂g

∂xi
(x2)

x1−pi
i,2

pi
(xpi

i − xpi
i,2) +

1
2
ε(x)

n∑
i=1

(xpi
i − xpi

i,2)
2 (30)

where n is the number of uncertain variables and:

pi = 1 + ln

⎡
⎣ ∂g

∂xi
(x1)

∂g
∂xi

(x2)

⎤
⎦ /

ln

[
xi,1

xi,2

]
(31)

ε(x) =
H∑n

i=1(x
pi
i − xpi

i,1)2 +
∑n

i=1(x
pi
i − xpi

i,2)2
(32)

H = 2

[
g(x1) − g(x2) −

n∑
i=1

∂g

∂xi
(x2)

x1−pi
i,2

pi
(xpi

i,1 − xpi
i,2)

]
(33)

and x2 and x1 are the current and previous MPP estimates in x-space, respectively. Prior to
the availability of two MPP estimates, x-space AMV+ is used.

6. a multipoint approximation in u-space. The u-space TANA-3 approximates the limit state as:

G(u) ∼= G(u2) +
n∑

i=1

∂G

∂ui
(u2)

u1−pi
i,2

pi
(upi

i − upi
i,2) +

1
2
ε(u)

n∑
i=1

(upi
i − upi

i,2)
2 (34)

where:

pi = 1 + ln

[ ∂G
∂ui

(u1)
∂G
∂ui

(u2)

] /
ln

[
ui,1

ui,2

]
(35)

ε(u) =
H∑n

i=1(u
pi
i − upi

i,1)2 +
∑n

i=1(u
pi
i − upi

i,2)2
(36)

H = 2

[
G(u1) −G(u2) −

n∑
i=1

∂G

∂ui
(u2)

u1−pi
i,2

pi
(upi

i,1 − upi
i,2)

]
(37)

and u2 and u1 are the current and previous MPP estimates in u-space, respectively. Prior to
the availability of two MPP estimates, u-space AMV+ is used.

7. the MPP search on the original response functions without the use of any approximations.

The Hessian matrices in AMV2 and AMV2+ may be available analytically, estimated numerically, or
approximated through quasi-Newton updates. The quasi-Newton variant of AMV2+ is conceptually
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similar to TANA in that both approximate curvature based on a sequence of gradient evaluations.
TANA estimates curvature by matching values and gradients at two points and includes it through
the use of exponential intermediate variables and a single-valued diagonal Hessian approximation.
Quasi-Newton AMV2+ accumulates curvature over a sequence of points and then uses it directly
in a second-order series expansion. Therefore, these methods may be expected to exhibit similar
performance.

The selection between x-space or u-space for performing approximations depends on where the
approximation will be more accurate, since this will result in more accurate MPP estimates (AMV,
AMV2) or faster convergence (AMV+, AMV2+, TANA). Since this relative accuracy depends
on the forms of the limit state g(x) and the transformation T (x) and is therefore application
dependent in general, DAKOTA/UQ supports both options. A concern with approximation-based
iterative search methods (i.e., AMV+, AMV2+ and TANA) is the robustness of their convergence
to the MPP. It is possible for the MPP iterates to oscillate or even diverge. However, to date,
this occurrence has been relatively rare, and DAKOTA/UQ contains checks that monitor for this
behavior. Another concern with TANA is numerical safeguarding. First, there is the possibility of
raising negative xi or ui values to nonintegral pi exponents in Eqs. 30, 32-34, and 36-37. This is
particularly likely for u-space. Safeguarding techniques include the use of linear bounds scaling for
each xi or ui, offseting negative xi or ui, or promotion of pi to integral values for negative xi or ui. In
numerical experimentation, the offset approach has been the most effective in retaining the desired
data matches without overly inflating the pi exponents. Second, there are a number of potential
numerical difficulties with the logarithm ratios in Eqs. 31 and 35. In this case, a safeguarding
strategy is to revert to either the linear (pi = 1) or reciprocal (pi = −1) approximation based on
which approximation has lower error in ∂g

∂xi
(x1) or ∂G

∂ui
(u1).

2.2.2. Probability integrations
The second algorithmic variation involves the integration approach for computing probabilities at
the MPP, which can be selected to be first-order (Eqs. 8-9) or second-order integration. Second-order
integration involves applying a curvature correction (Breitung, 1984; Hohenbichler and Rackwitz,
1988; Hong, 1999). Breitung applies a correction based on asymptotic analysis (Breitung, 1984):

p = Φ(−βp)
n−1∏
i=1

1√
1 + βpκi

(38)

where κi are the principal curvatures of the limit state function (the eigenvalues of an orthonormal
transformation of ∇2

uG, taken positive for a convex limit state) and βp ≥ 0 (select CDF or CCDF
probability correction to obtain correct sign for βp). An alternate correction in (Hohenbichler and
Rackwitz, 1988) is consistent in the asymptotic regime (βp → ∞) but does not collapse to first-order
integration for βp = 0:

p = Φ(−βp)
n−1∏
i=1

1√
1 + ψ(−βp)κi

(39)

where ψ() = φ()
Φ() and φ() is the standard normal density function. (Hong, 1999) applies further

corrections to Eq. 39 based on point concentration methods.
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To invert a second-order integration and compute βp given p and κi (e.g., for second-order PMA
as described in Section 2.2), Newton’s method can be applied as described in (Eldred et al., 2006).
Combining the no-approximation option of the MPP search with first-order and second-order inte-
gration approaches results in the traditional first-order and second-order reliability methods (FORM
and SORM). Additional probability integration approaches can involve importance sampling in the
vicinity of the MPP (Hohenbichler and Rackwitz, 1988; Wu, 1994), but are outside the scope of this
paper. While second-order integrations could be performed anywhere a limit state Hessian has been
computed, the additional computational effort is most warranted for fully converged MPPs from
AMV+, AMV2+, TANA, FORM, and SORM, and is of reduced value for MVFOSM, MVSOSM,
AMV, or AMV2.

2.2.3. Hessian approximations
To use a second-order Taylor series or a second-order integration when second-order information
(∇2

xg, ∇2
uG, and/or κ) is not directly available, one can estimate the missing information using

finite differences or approximate it through use of quasi-Newton approximations. These procedures
will often be needed to make second-order approaches practical for engineering applications.

In the finite difference case, numerical Hessians are commonly computed using either first-order
forward differences of gradients using

∇2g(x) ∼= ∇g(x + hei) −∇g(x)
h

(40)

to estimate the ith Hessian column when gradients are analytically available, or second-order
differences of function values using

∇2g(x) ∼= g(x+hei+hej)−g(x+hei−hej)−g(x−hei+hej)+g(x−hei−hej)
4h2 (41)

to estimate the ijth Hessian term when gradients are not directly available. This approach has the
advantage of locally-accurate Hessians for each point of interest (which can lead to quadratic con-
vergence rates in discrete Newton methods), but has the disadvantage that numerically estimating
each of the matrix terms can be expensive.

Quasi-Newton approximations, on the other hand, do not reevaluate all of the second-order
information for every point of interest. Rather, they accumulate approximate curvature information
over time using secant updates. Since they utilize the existing gradient evaluations, they do not
require any additional function evaluations for evaluating the Hessian terms. The quasi-Newton
approximations of interest include the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

(42)

which yields a sequence of symmetric positive definite Hessian approximations, and the Symmetric
Rank 1 (SR1) update

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)T

(yk − Bksk)T sk
(43)
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which yields a sequence of symmetric, potentially indefinite, Hessian approximations. Bk is the
kth approximation to the Hessian ∇2g, sk = xk+1 − xk is the step and yk = ∇gk+1 − ∇gk is the
corresponding yield in the gradients. The selection of BFGS versus SR1 involves the importance of
retaining positive definiteness in the Hessian approximations; if the procedure does not require it,
then the SR1 update can be more accurate if the true Hessian is not positive definite. Initial scalings
for B0 and numerical safeguarding techniques (damped BFGS, update skipping) are described in
(Eldred et al., 2006).

2.2.4. Optimization algorithms
The next algorithmic variation involves the optimization algorithm selection for solving Eqs. 16
and 17. The Hasofer-Lind Rackwitz-Fissler (HL-RF) algorithm (Haldar and Mahadevan, 2000)
is a classical approach that has been broadly applied. It is a Newton-based approach lacking
line search/trust region globalization, and is generally regarded as computationally efficient but
occasionally unreliable. DAKOTA/UQ takes the approach of employing robust, general-purpose
optimization algorithms with provable convergence properties. This paper employs the sequential
quadratic programming (SQP) and nonlinear interior-point (NIP) optimization algorithms from
the NPSOL (Gill et al., 1998) and OPT++ (Meza, 1994) libraries, respectively.

2.2.5. Warm Starting of MPP Searches
The final algorithmic variation involves the use of warm starting approaches for improving com-
putational efficiency. (Eldred et al., 2005) describes the acceleration of MPP searches through
warm starting with approximate iteration increment, with z/p/β level increment, and with design
variable increment. Warm started data includes the expansion point and associated response values
and the MPP optimizer initial guess. Projections are used when an increment in z/p/β level
or design variables occurs. Warm starts were consistently effective in (Eldred et al., 2005), with
greater effectiveness for smaller parameter changes, and are used for all computational experiments
presented in this paper.

3. Reliability-Based Design Optimization

Reliability-based design optimization (RBDO) methods are used to perform design optimization
accounting for reliability metrics. The reliability analysis capabilities described in Section 2 provide
a rich foundation for exploring a variety of RBDO formulations. (Eldred et al., 2005) inves-
tigated bi-level, fully-analytic bi-level, and first-order sequential RBDO approaches employing
underlying first-order reliability assessments. (Eldred et al., 2006) investigated fully-analytic bi-
level and second-order sequential RBDO approaches employing underlying second-order reliability
assessments. These methods are overviewed in the following sections.

3.1. Bi-level RBDO

The simplest and most direct RBDO approach is the bi-level approach in which a full reliability
analysis is performed for every optimization function evaluation. This involves a nesting of two
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distinct levels of optimization within each other, one at the design level and one at the MPP search
level.

Since an RBDO problem will typically specify both the z̄ level and the p̄/β̄ level, one can use
either the RIA or the PMA formulation for the UQ portion and then constrain the result in the
design optimization portion. In particular, RIA reliability analysis maps z̄ to p/β, so RIA RBDO
constrains p/β:

minimize f

subject to β ≥ β̄

or p ≤ p̄ (44)

And PMA reliability analysis maps p̄/β̄ to z, so PMA RBDO constrains z:

minimize f

subject to z ≥ z̄ (45)

where z ≥ z̄ is used as the RBDO constraint for a cumulative failure probability (failure defined as
z ≤ z̄) but z ≤ z̄ would be used as the RBDO constraint for a complementary cumulative failure
probability (failure defined as z ≥ z̄). It is worth noting that DAKOTA is not limited to these types
of inequality-constrained RBDO formulations; rather, they are convenient examples. DAKOTA
supports general optimization under uncertainty mappings (Eldred et al., 2002) which allow flexible
use of statistics within multiple objectives, inequality constraints, and equality constraints.

An important performance enhancement for bi-level methods is the use of sensitivity anal-
ysis to analytically compute the design gradients of probability, reliability, and response levels.
When design variables are separate from the uncertain variables (i.e., they are not distribution
parameters), then the following first-order expressions may be used (Hohenbichler and Rackwitz,
1986; Karamchandani and Cornell, 1992; Allen and Maute, 2004):

∇dz = ∇dg (46)

∇dβcdf =
1

‖ ∇uG ‖∇dg (47)

∇dpcdf = −φ(−βcdf )∇dβcdf (48)

where it is evident from Eqs. 12-13 that ∇dβccdf = −∇dβcdf and ∇dpccdf = −∇dpcdf . In the case
of second-order integrations, Eq. 48 must be expanded to include the curvature correction. For
Breitung’s correction (Eq. 38),

∇dpcdf =

⎡
⎢⎢⎢⎣Φ(−βp)

n−1∑
i=1

⎛
⎜⎜⎜⎝ −κi

2(1 + βpκi)
3
2

n−1∏
j=1
j �=i

1√
1 + βpκj

⎞
⎟⎟⎟⎠ − φ(−βp)

n−1∏
i=1

1√
1 + βpκi

⎤
⎥⎥⎥⎦∇dβcdf (49)

where ∇dκi has been neglected and βp ≥ 0 (see Section 2.2.2). Other approaches assume the curva-
ture correction is nearly independent of the design variables (Rackwitz, 2002), which is equivalent
to neglecting the first term in Eq. 49.
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To capture second-order probability estimates within an RIA RBDO formulation using well-
behaved β constraints, a generalized reliability index can be introduced where, similar to Eq. 10,

β∗cdf = −Φ−1(pcdf ) (50)

for second-order pcdf . This reliability index is no longer equivalent to the magnitude of u, but
rather is a convenience metric for capturing the effect of more accurate probability estimates. The
corresponding generalized reliability index sensitivity, similar to Eq. 48, is

∇dβ
∗
cdf = − 1

φ(−β∗cdf )
∇dpcdf (51)

where ∇dpcdf is defined from Eq. 49. Even when ∇dg is estimated numerically, Eqs. 46-51 can be
used to avoid numerical differencing across full reliability analyses.

When the design variables are distribution parameters of the uncertain variables, ∇dg is ex-
panded with the chain rule and Eqs. 46 and 47 become

∇dz = ∇dx∇xg (52)

∇dβcdf =
1

‖ ∇uG ‖∇dx∇xg (53)

where the design Jacobian of the transformation (∇dx) may be obtained analytically for uncor-
related x or semi-analytically for correlated x (∇dL is evaluated numerically) by differentiating
Eqs. 14 and 15 with respect to the distribution parameters. Eqs. 48-51 remain the same as before.
For this design variable case, all required information for the sensitivities is available from the MPP
search.

Since Eqs. 46-53 are derived using the Karush-Kuhn-Tucker optimality conditions for a converged
MPP, they are appropriate for RBDO using AMV+, AMV2+, TANA, FORM, and SORM, but not
for RBDO using MVFOSM, MVSOSM, AMV, or AMV2.

3.2. Sequential/Surrogate-based RBDO

An alternative RBDO approach is the sequential approach, in which additional efficiency is sought
through breaking the nested relationship of the MPP and design searches. The general concept
is to iterate between optimization and uncertainty quantification, updating the optimization goals
based on the most recent probabilistic assessment results. This update may be based on safety
factors (Wu et al., 2001) or other approximations (Du and Chen, 2004).

A particularly effective approach for updating the optimization goals is to use the p/β/z sensitiv-
ity analysis of Eqs. 46-53 in combination with local surrogate models (Zou et al., 2004). In (Eldred
et al., 2005) and (Eldred et al., 2006), first-order and second-order Taylor series approximations
were employed within a trust-region model management framework (Giunta and Eldred, 2000) in
order to adaptively manage the extent of the approximations and ensure convergence of the RBDO
process. Surrogate models were used for both the objective function and the constraints, although
the use of constraint surrogates alone is sufficient to remove the nesting.
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In particular, RIA trust-region surrogate-based RBDO employs surrogate models of f and p/β
within a trust region Δk centered at dc. For first-order surrogates:

minimize f(dc) + ∇df(dc)T (d − dc)
subject to β(dc) + ∇dβ(dc)T (d− dc) ≥ β̄

or p(dc) + ∇dp(dc)T (d − dc) ≤ p̄

‖ d− dc ‖∞ ≤ Δk (54)

and for second-order surrogates:

minimize f(dc) + ∇df(dc)T (d − dc) + 1
2(d − dc)T∇2

df(dc)(d − dc)

subject to β(dc) + ∇dβ(dc)T (d − dc) + 1
2(d − dc)T∇2

dβ(dc)(d − dc) ≥ β̄

or p(dc) + ∇dp(dc)T (d − dc) + 1
2(d − dc)T∇2

dp(dc)(d − dc) ≤ p̄

‖ d− dc ‖∞ ≤ Δk (55)

For PMA trust-region surrogate-based RBDO, surrogate models of f and z are employed within a
trust region Δk centered at dc. For first-order surrogates:

minimize f(dc) + ∇df(dc)T (d − dc)
subject to z + ∇dz(dc)T (d − dc) ≥ z̄

‖ d− dc ‖∞ ≤ Δk (56)

and for second-order surrogates:

minimize f(dc) + ∇df(dc)T (d − dc) + 1
2(d − dc)T∇2

df(dc)(d − dc)

subject to z + ∇dz(dc)T (d− dc) + 1
2 (d− dc)T∇2

dz(dc)(d − dc) ≥ z̄

‖ d− dc ‖∞ ≤ Δk (57)

where the sense of the z constraint may vary as described previously. The second-order information
in Eqs. 55 and 57 will typically be approximated with quasi-Newton updates.

4. Benchmark Problems

(Eldred et al., 2005) and (Eldred et al., 2006) have examined the performance of first and second-
order reliability analysis and design methods for four analytic benchmark test problems: lognormal
ratio, short column, cantilever beam, and steel column.

4.1. Reliability analysis results

Within the reliability analysis algorithms, various limit state approximation (MVFOSM, MVSOSM,
x-/u-space AMV, x-/u-space AMV2, x-/u-space AMV+, x-/u-space AMV2+, x-/u-space TANA,
FORM, and SORM), probability integration (first-order or second-order), warm starting, Hessian
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Table I. RIA results for short column problem.

RIA SQP Function NIP Function CDF p Target z

Approach Evaluations Evaluations Error Norm Offset Norm

MVFOSM 1 1 0.1548 0.0

MVSOSM 1 1 0.1127 0.0

x-space AMV 45 45 0.009275 18.28

u-space AMV 45 45 0.006408 18.81

x-space AMV2 45 45 0.002063 2.482

u-space AMV2 45 45 0.001410 2.031

x-space AMV+ 192 192 0.0 0.0

u-space AMV+ 207 207 0.0 0.0

x-space AMV2+ 125 131 0.0 0.0

u-space AMV2+ 122 130 0.0 0.0

x-space TANA 245 246 0.0 0.0

u-space TANA 296* 278* 6.982e-5 0.08014

FORM 626 176 0.0 0.0

SORM 669 219 0.0 0.0

approximation (finite difference, BFGS, or SR1), and MPP optimization algorithm (SQP or NIP)
selections have been investigated. A sample comparison of reliability analysis performance, taken
from the short column example, is shown in Tables I and II for RIA and PMA analysis, respectively,
where “*” indicates that one or more levels failed to converge. Consistent with the employed
probability integrations, the error norms are measured with respect to fully-converged first-order
results for MV, AMV, AMV2, AMV+, and FORM methods, and with respect to fully-converged
second-order results for AMV2+, TANA, and SORM methods. Also, it is important to note that
the simple metric of “function evaluations” is imperfect, and (Eldred et al., 2006) provides more
detailed reporting of individual response value, gradient, and Hessian evaluations.

Overall, reliability analysis results for the lognormal ratio, short column, and cantilever test
problems indicate several trends. MVFOSM, MVSOSM, AMV, and AMV2 are significantly less
expensive than the fully-converged MPP methods, but come with corresponding reductions in
accuracy. In combination, these methods provide a useful spectrum of accuracy and expense that
allow the computational effort to be balanced with the statistical precision required for particular
applications. In addition, support for forward and inverse mappings (RIA and PMA) provide the
flexibility to support different UQ analysis needs.

Relative to FORM and SORM, AMV+ and AMV2+ has been shown to have equal accuracy
and consistent computational savings. For second-order PMA analysis with prescribed probability
levels, AMV2+ has additionally been shown to be more robust due to its ability to better manage
β̄ udpates. Analytic Hessians were highly effective in AMV2+, but since they are often unavailable
in practical applications, finite-difference numerical Hessians and quasi-Newton Hessian approxi-
mations were also demonstrated, with SR1 quasi-Newton updates being shown to be sufficiently
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Table II. PMA results for short column problem.

PMA SQP Function NIP Function CDF z Target p

Approach Evaluations Evaluations Error Norm Offset Norm

MVFOSM 1 1 7.454 0.0

MVSOSM 1 1 6.823 0.0

x-space AMV 45 45 0.9420 0.0

u-space AMV 45 45 0.5828 0.0

x-space AMV2 45 45 2.730 0.0

u-space AMV2 45 45 2.828 0.0

x-space AMV+ 171 179 0.0 0.0

u-space AMV+ 205 205 0.0 0.0

x-space AMV2+ 135 142 0.0 0.0

u-space AMV2+ 132 139 0.0 0.0

x-space TANA 293* 272 0.04259 1.598e-4

u-space TANA 325* 311* 2.208 5.600e-4

FORM 720 192 0.0 0.0

SORM 535 191* 2.410 6.522e-4

accurate and competitive with analytic Hessian performance. Relative to first-order AMV+ per-
formance, AMV2+ with analytic Hessians had consistently superior efficiency, and AMV2+ with
quasi-Newton Hessians had improved performance in most cases (it was more expensive than AMV+
only when a more challenging second-order p̄ problem was being solved). In general, second-order
reliability analyses appear to serve multiple synergistic needs. The same Hessian information that
allows for more accurate probability integrations can also be applied to making MPP solutions
more efficient and more robust. Conversely, limit state curvature information accumulated during
an MPP search can be reused to improve the accuracy of probability estimates.

For nonapproximated limit states (FORM and SORM), NIP optimizers have shown promise in
being less susceptible to PMA u-space excursions and in being more efficient than SQP optimizers in
most cases. Warm starting with projections has been shown to be consistently effective for reliability
analyses, with typical savings on the order of 25%. The x-space and u-space linearizations for AMV,
AMV2, AMV+, AMV2+, and TANA were both effective, and the relative performance was strongly
problem-dependent (u-space was more efficient for lognormal ratio, x-space was more efficient for
short column, and x-space and u-space were equivalent for cantilever). Among all combinations
tested, AMV2+ (with analytic Hessians if available, or SR1 Hessians if not) is the recommended
approach.

An important question is how Taylor-series based limit state approximations (such as AMV+ and
AMV2+) can frequently outperform the best general-purpose optimizers (such as SQP and NIP).
The answer likely lies in the exploitation of the structure of the RIA and PMA MPP problems.
By approximating the limit state but retaining uT u explicitly in Eqs. 16 and 17, specific problem
structure knowledge is utilized in formulating a mixed surrogate/direct approach.
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Table III. Analytic bi-level RBDO results, short column test problem.

RBDO Function Objective Constraint

Approach Evaluations Function Violation

RIA z̄ → p x-space AMV+ 149 217.1 0.0

RIA z̄ → p x-space AMV2+ 129 217.1 0.0

RIA z̄ → p FORM 911 217.1 0.0

RIA z̄ → p SORM 1204 217.1 0.0

RIA z̄ → β x-space AMV+ 72 216.7 0.0

RIA z̄ → β x-space AMV2+ 67 216.7 0.0

RIA z̄ → β FORM 612 216.7 0.0

RIA z̄ → β SORM 601 216.7 0.0

PMA p̄, β̄ → z x-space AMV+ 100 216.8 0.0

PMA p̄ → z x-space AMV2+ 98 216.8 0.0

PMA β̄ → z x-space AMV2+ 98 216.8 0.0

PMA p̄, β̄ → z FORM 285 216.8 0.0

PMA p̄ → z SORM 306 217.2 0.0

PMA β̄ → z SORM 329 216.8 0.0

4.2. RBDO results

These reliability analysis capabilities provide a substantial foundation for RBDO formulations, and
bi-level and sequential RBDO approaches have been investigated. Both approaches have utilized
analytic gradients for z, β, and p with respect to augmented and inserted design variables, and
sequential RBDO has additionally utilized a trust-region surrogate-based approach to manage the
extent of the Taylor-series approximations. A sample comparison of RBDO performance, taken
again from the short column example, is shown in Tables III and IV for bi-level and sequential
surogate-based RBDO, respectively.

Overall, RBDO results for the short column, cantilever, and steel column test problems build
on the reliability analysis trends. Basic first-order bi-level RBDO has been evaluated with up to 18
variants (RIA/PMA with different p/β/z mappings for MV, x-/u-space AMV, x-/u-space AMV+,
and FORM), and fully-analytic bi-level and sequential RBDO have each been evaluated with up to
21 variants (RIA/PMA with different p/β/z mappings for x-/u-space AMV+, x-/u-space AMV2+,
FORM, and SORM). Bi-level RBDO with MV and AMV are inexpensive but give only approximate
optima. These approaches may be useful for preliminary design or for warm-starting other RBDO
methods. Bi-level RBDO with AMV+ was shown to have equal accuracy and robustness to bi-level
FORM-based approaches and be significantly less expensive on average. In addition, usage of β in
RIA RBDO constraints was preferred due to it being more well-behaved and more well-scaled than
constraints on p. Warm starts in RBDO were most effective when the design changes were small,
with the most benefit for basic bi-level RBDO (with numerical differencing at the design level),
decreasing to marginal effectiveness for fully-analytic bi-level RBDO and to relative ineffectiveness
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Table IV. Surrogate-based RBDO results, short column test problem.

RBDO Function Objective Constraint

Approach Evaluations Function Violation

RIA z̄ → p x-space AMV+ 75 216.9 0.0

RIA z̄ → p x-space AMV2+ 86 218.7 0.0

RIA z̄ → p FORM 577 216.9 0.0

RIA z̄ → p SORM 718 216.5 1.110e-4

RIA z̄ → β x-space AMV+ 65 216.7 0.0

RIA z̄ → β x-space AMV2+ 51 216.7 0.0

RIA z̄ → β FORM 561 216.7 0.0

RIA z̄ → β SORM 560 216.7 0.0

PMA p̄, β̄ → z x-space AMV+ 76 216.7 2.1e-4

PMA p̄ → z x-space AMV2+ 58 216.8 0.0

PMA β̄ → z x-space AMV2+ 79 216.8 0.0

PMA p̄, β̄ → z FORM 228 216.7 2.1e-4

PMA p̄ → z SORM 128 217.2 0.0

PMA β̄ → z SORM 171 216.8 0.0

for sequential RBDO. However, large design changes were desirable for overall RBDO efficiency
and, compared to basic bi-level RBDO, fully-analytic RBDO and sequential RBDO were clearly
superior.

In second-order bi-level and sequential RBDO, the AMV2+ approaches were consistently more
efficient than the SORM-based approaches. In general, sequential RBDO approaches demonstrated
consistent computational savings over the corresponding bi-level RBDO approaches, and the com-
bination of sequential RBDO using AMV2+ was the most effective of all of the approaches. With
initial trust region size tuning, sequential RBDO computational expense for these test problems was
shown to be as low as approximately 40 function evaluations per limit state (35 for a single limit state
in short column, 75 for two limit states in cantilever, and 45 for a single limit state in steel column).
Finally, second-order RBDO with probability constraints was shown to be more challenging and
expensive, but could be more precise in achieving the desired probabilistic performance.

5. Application to MEMS

In this section, we consider the application of DAKOTA’s reliability algorithms to the design of
micro-electro-mechanical systems (MEMS). In particular, we summarize initial results for one of
the applications described in (Adams et al., 2006). These application studies provide essential
feedback on the performance of algorithms for real-world design applications, which may contain
computational challenges not well-represented in analytically defined test problems.
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Pre-fabrication design optimization of microelectromechanical systems (MEMS) is an impor-
tant emerging application of uncertainty quantification and reliability-based design optimization.
Typically crafted of silicon, polymers, metals, or a combination thereof, MEMS serve as micro-
scale sensors, actuators, switches, and machines with applications including robotics, biology and
medicine, automobiles, RF electronics, and optical displays (Allen, 2005). Design optimization of
these devices is crucial since fabrication costs, even for prototypes, can be prohibitive. There is
considerable uncertainty in the micromachining and etching processes used to manufacture MEMS
and consequently in the behavior of the finished products. RBDO coupled with computational
mechanics models of MEMS offers a means to quantify this uncertainty and determine a priori the
most reliable and/or robust design that meets performance criteria.

Of particular interest is the design of MEMS bistable mechanisms which toggle between two
stable positions, making them useful as micro switches, relays, and nonvolatile memory. We focus on
shape optimization of compliant bistable mechanisms, where instead of mechanical joints, material
elasticity enables the bistability of the mechanism (Jensen et al., 2001). Figure 1 contains an
electron micrograph of a MEMS compliant bistable mechanism in one of its stable positions. One
achieves transfer between stable states by applying force to the center shuttle of the device via an
electrostatic actuator, heat source, or other means to cause the flexible “legs” (horizontal beams)
of the system to buckle through their instability and relax toward the other stable equilibrium.

Figure 1. Electron micrograph of MEMS bistable mechanism. Source: J.W. Wittwer, Ph.D. dissertation.

Successful bistable switch actuation in this manner depends on the relationship between force
and vertical displacement for the manufactured switch. In Figure 2 we present a schematic of a
typical force–displacement curve for a bistable mechanism. The switch characterized by this curve
has three equilibria: E1 and E3 are stable equilibria whereas E2 is an unstable equilibrium (arrows
indicate stability). A device with such a force–displacement curve could be used as a switch or
actuator by setting it to position E3 as shown in Figure 1 (requiring large force Fmax) and then
actuating by applying the small force Fmin in the opposite direction to transfer through E2 toward
the equilibrium E1. One could utilize this force profile to complete a circuit by placing a switch
contact near the displaced position corresponding to maximum (closure) force as illustrated in
Figure 2.

The design considered in this work is similar to the electron micrograph in Figure 1, for which
design optimization has been considered in (Jensen et al., 2001) and design under uncertainty
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E1

Fmax

Fmin

E2 E3

force

displacement

contact
switch

Figure 2. Schematic of force–displacement curve for bistable MEMS mechanism. Arrows indicate stability.

with mean value methods has been investigated in (Wittwer, 2005; Wittwer, 2006). The primary
structural difference in (Adams et al., 2006) is in the shape of the legs, and Figure 3 shows a detail
of the design of one of these legs.

Figure 3. Sample of tapered beam leg for bistable mechanism.

The design criteria used for this bistable switch include

− minimize the magnitude of the force Fmin required to actuate the switch (drive Fmin toward
zero), while maintaining its bistability (Fmax > 0, Fmin < 0)

− at least 50μN force at switch contact (to reliably attain closure), but no more than 150μN (to
avoid contact damage)

− point of instability E2 no more than 8μm

− maximum stress no more than 1200 MPa

The force-displacement profile of bistable MEMS devices is highly sensitive to design geometry, so
one can vary manufactured geometry in order to achieve various design criteria. However, due to
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manufacturing processes, fabricated geometry can deviate significantly from design-specified beam
geometry. As a consequence of photo masks used in the process, fabricated in-plane geometry
edges (contributing to widths and lengths) are 0.1± 0.08μm less than specified. Uncertainty in the
manufactured geometry can lead to substantial uncertainty in the positions of the stable equilibria
and in the maximum and minimum force on the force–displacement curve. The manufactured
thickness of the device is also uncertain, though this does not contribute as much to variability in the
force–displacement behavior. Uncertain material properties such as Young’s modulus and residual
stress also influence the characteristics of the fabricated beam. For this application, we consider two
uncertain variables: ΔW (edge bias on beam widths, which yields effective manufactured widths
of Wi + ΔW, i = 0, . . . , n) and Sr (residual stress in the manufactured device), with distributions
shown in Table V.

Table V. Uncertain variables used in RBDO.

variable mean std. dev. distribution

Δw -0.2 μm 0.08 normal

Sr -11 Mpa 4.13 normal

Given 13 geometric design variables d describing lengths, widths, and orientations of the legs
and the two specified uncertain variables x, we perform a reliability-based design optimization to
compute a design that is reliably bistable, but requires minimum force to actuate. The limit state
for this problem is

g(x) = Fmin(x) (58)

and we define failure to be lack of bistability (Fmin ≥ 0) and require a reliability index βccdf ≥ 2.
The RBDO problem utilizes an RIA z̄ → β approach:

max Fmin(d,x)
s.t. 2 ≤ βccdf (d,x)

50 ≤ Fmax(d,x) ≤ 150
E2(d,x) ≤ 8
Smax(d,x) ≤ 1200

(59)

although a PMA β̄ → z approach could also be used. The use of the Fmin metric in both the
objective function and the reliability constraint results in a powerful problem formulation since, in
addition to yielding a design with specified reliability, it also produces a robust design. By forcing
Fmin toward zero while requiring two standard deviations of surety, the optimization problem
favors designs with less variability in Fmin. This renders the design performance less sensitive to
the uncertainties in the problem.

We solve the optimization problem by applying DAKOTA’s bi-level RBDO approach in com-
bination with mesh generation using CUBIT and finite element analysis using Adagio. Adagio is
a quasi-static nonlinear mechanics code, implemented in Sandia National Laboratories’ SIERRA
framework of multiphysics codes (Edwards, 2004), that is used to simulate the elastic deformation of
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the device through discrete displacement steps to produce a force–displacement curve. We compare
three reliability analysis methods for this MEMS application: (1) MVFOSM (no MPP search), (2)
AMV+, and (3) FORM. The latter two are advantaged by their ability to provide (semi)analytic
derivatives of reliability metrics with respect to design variables for the optimizer (see Section 3.1),
whereas the former is much less expensive per reliability analysis but must resort to numerical design
derivatives due to the use of σg (analytic derivatives of Eq. 2 with respect to d are impractical to
evaluate).

Results for the three methods are presented in Table VI and the optimal force–displacement
curves are shown in Figure 4. Optimization with MVFOSM offers substantial improvement over
the initial design, yielding a design with a substantially smaller minimum force and tighter re-
liability constraint β. However, since mean value analyses estimate reliability based solely on
evaluations at the means of the uncertain variables, they can yield inaccurate reliability metrics
in cases of nonlinearity or nonnormality. In this example, the actual verified reliability of the
optimal MVFOSM-based design is only 1.75, less than the prescribed reliability of β = 2. The
optimal designs for the AMV+ and FORM-based RBDO methods were indistinguishable from
each other, but relative to MVFOSM-based RBDO, yield a more conservative value of Fmin due to
the improved estimation of β. In each of the three cases, the variability in Fmin has been reduced
from approximately 5.7 to 4.6 μN per (verified) input standard deviation, resulting in designs that
are less sensitive to the input uncertainties.

Table VI. RBDO results (MVFOSM and first-order MPP methods) for MEMS bistable mechanism.

lower RBDO upper MVFOSM MVFOSM AMV+/FORM AMV+/FORM

bound metric bound initial optimal initial optimal

Fmin (μN) -23.03 -8.08 -23.03 -9.37

2 β 5.66 2.00 4.02 2.00

50 Fmax (μN) 150 67.35 50.0 67.35 50.0

E2 (μm) 8 4.06 3.85 4.06 3.76

Smax (MPa) 1200 396 313 396 323

Verified β 4.02 1.75

In Figure 5,we see the results of parameter studies for the metric Fmin(d,x) as a function of
the uncertain variables x for two different sets of design variables d. Since the uncertain variables
are both normal, the transformation to u-space used by AMV+ and FORM is linear. The former
design variable set corresponds to the optimal values obtained from MVFOSM-based RBDO, and
in this case the limit state is relatively linear and well-behaved in the range of interest. First-
order probability integrations should be sufficiently accurate. For the second design variable set,
however, multiple computational challenges are evident. In this case, the limit state has significant
nonlinearity (requiring more sophisticated probability integrations) and its simulation can be seen to
be unreliable in the left tail of the edge bias (resulting from too flimsy a structure). This highlights a
number of difficulties common in engineering applications: highly nonlinear limit states, nonsmooth
and multimodal limit states, and simulation failures caused by, e.g., evaluations in the tails of input

REC 2006 - M. S. Eldred, B. J. Bichon, and B. M. Adams



288 M. S. Eldred, B. J. Bichon, and B. M. Adams

0 1 2 3 4 5 6 7
−10

0

10

20

30

40

50

60

displacement (μ m)

fo
rc

e 
(μ

 N
)

0 1 2 3 4 5 6 7
−10

0

10

20

30

40

50

60

displacement (μ m)

fo
rc

e 
(μ

 N
)

(a) MVFOSM (b) AMV+/FORM
Figure 4. Optimal force-displacement curves resulting from RBDO of MEMS bistable mechanism.

distributions. These difficulties must be mitigated through a combination of algorithm research,
problem formulation, and simulation refinement.
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6. Conclusions

This paper has overviewed recent algorithm research in first and second-order reliability methods.
A number of algorithmic variations have been presented, and the effect of different limit state
approximations, probability integrations, warm starting, most probable point search algorithms,
and Hessian approximations has been discussed. These reliability analysis capabilities provide the
foundation for reliability-based design optimization (RBDO) methods, and bi-level and sequential
formulations have been presented. These RBDO formulations employ analytic sensitivities of relia-
bility metrics with respect to design variables that either augment or define distribution parameters
for the uncertain variables.

Relative performance of these reliability analysis and design algorithms has been measured for
a number of benchmark test problems using the DAKOTA software. The most effective techniques in
these computational experiments have been AMV2+ for reliability analysis and sequential/surrogate-
based approaches for RBDO. Continuing efforts in algorithm research will build on these successful
methods through investigation of sequential RBDO with mixed surrogate and direct models (for
probabilistic and deterministic components, respectively) and second-order RIA RBDO formula-
tions employing generalized reliability indices.

These reliability analysis and design algorithms are now being applied to real-world applications
in the shape optimization of micro-electro-mechanical systems, and initial experiences with this
deployment are presented. Issues identified in deploying reliability methods to complex engineering
applications include highly nonlinear, nonsmooth/noisy, and multimodal limit states, and potential
simulation failures when evaluating parameter sets in the tails of input distributions. To miti-
gate these difficulties, a combination of continuing algorithm research, enhancements in problem
formulation, and refinements to modeling and simulation capabilities is recommended.
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Abstract: A significant amount of research efforts has been given to explore the mathematical 
basis for 3D dimensional and geometric tolerance representation, analysis, and synthesis. 
However, engineering semantics is not maintained in these mathematic models. It is hard to 
interpret calculated numerical results in a meaningful way. In this paper, a new semantic 
tolerance modeling scheme based on modal interval is proposed to improve interpretability of 
tolerance modeling. With logical quantifiers, semantic relations between tolerance specifications 
and implications of tolerance stacking are embedded in the mathematic model. The model 
captures the semantics of physical property difference between rigid and flexible materials as 
well as tolerancing intents such as sequence of specification, measurement, and assembly. 
Compared to traditional methods, the semantic tolerancing allows us to estimate true variation 
ranges such that feasible and complete solutions can be obtained. 
 
Keywords: 3D Tolerance Modeling, Engineering Design, Interpretability, Semantic Tolerancing, 
Interval Analysis, Modal Interval 
 
 
 

1 Introduction 
 
Tolerance modeling forms an important link between design and manufacturing processes. A 
significant amount of research efforts has been given to explore the mathematical basis for 3D 
dimensional and geometric tolerance representation, analysis, and synthesis. Problems of 
tolerance relations can be mathematically formulated and solved in different ways. The typical 
methods for analysis include variational estimation, kinematic formulation, statistical 
approximation, and Monte Carlo simulation. However, current tolerance modeling methods do 
not represent the semantics of tolerance specifications well. 

First, traditional tolerance analysis methods assume objects have rigid geometry. Variance is 
increasingly “stack-up” as components are assembled. As shown in Figure 1, tolerance of 
assembly is always assumed to be larger than its subassembly. Rigid body tolerance analysis 
over-estimates variations of flexible materials, such as assemblies containing sheet metal, 
polymer, and plastic parts, which are common in aerospace, automobile, and electronics industry. 
For example, an airplane skin can be slightly warped, and yet it can be riveted in place. Similarly,  
__________________________ 
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subassembly components of auto body with much larger variation than the specified can still  
 

achieve the final assembly specification. The conventional addition theorem of variance is no 
longer valid in these applications. Given the specification of an assembly, unreasonably tight 
tolerance requirements will be assigned to subassemblies and components during tolerance 
synthesis, as shown in Figure 2. The tolerance allocation based on the rigid body assumption 
increases manufacturing costs unnecessarily. These methods treat tolerances for rigid and 
compliant assemblies with the same scheme of +/- range. This does not capture the physical 
property difference between rigid and flexible materials and implied engineering meanings.  
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Figure 1. Tolerance ranges are monotonously increasing as assembly is built based on the rigid-body assumption 
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Figure 2. Tolerancing may become so tight that costs increase unnecessarily in flexible assembly based on current 

rigid-body tolerance synthesis schemes 

 
Second, current tolerance modeling and analysis methods do not maintain the semantics of 

tolerance specifications. Two types of variation, priori and posteriori, are not differentiated in 
current tolerance models. Priori variation is predetermined but unknown, such as tolerances of 
components from suppliers. On the other hand, posteriori variation is known and controllable, 
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such as tolerances of components built in-house. Engineering implication and tolerance allocation 
strategies are different for two types of variation. Priori variation is not controllable, while 
posteriori variation provides “buffers” in tolerance allocation. Further, how to interpret the 
numerical outputs with high and low bounds is important to understand the relation between 
tolerances. Numerical results of current methods are not interpretable. Engineering semantics 
needs to be maintained during mathematical computation. 

Third, accuracy of range estimation is essential in tolerance analysis. Basic questions include 
completeness and feasibility. Complete solution includes all possible occurrences, which is to 
check if an interval includes all possible results. Feasible solution does not include impossible 
occurrences, which is to check if the interval over estimates the range. Current methods except 
Monte Carlo simulation with extensive sampling do not always give true range. The worst-case 
method tends to over estimate because of dependency between variables. Statistical methods do 
not give true range but statistical intervals. The results from vector and kinematic approaches are 
numerical estimations from algebraic approximations such as linearization. True range estimation 
should be both complete and feasible.  

Instead of focusing only on mathematic and numerical convenience, a good mathematic 
model of tolerance should convey the full semantics of size and geometric tolerances and support 
analysis and synthesis with a simple yet comprehensive structure. Existing research does not 
concentrate on engineering semantics of tolerance zones. This leads to the problem that numerical 
solutions are not interpretable. 

In this paper, we propose a new scheme to represent and analyze tolerance based on modal 
interval analysis. Extended from traditional set-based interval, modal interval introduces logical 
quantifiers and provides interpretation of intervals. Tolerancing semantics thus can be integrated 
into numerical calculation. In addition to better interpretability, modal interval analysis also 
provides better variation estimation than traditional interval analysis. The remainder of the paper 
is organized as follows. Section 2 gives an overview of related work on tolerance modeling and 
interval analysis, and an introduction to modal interval. Section 3 and 4 present the concept of 
semantic tolerance modeling and its two basic properties: interpretability and optimality. Section 
5 describes analysis methods of the semantic tolerance model. 

 
 

2 Background 
 
2.1 3D TOLERANCE MODELING 
 
There is plenty of literature on tolerance modeling (Hong and Chang, 2002; ADCATS). We just 
have a brief overview of 3D geometric tolerance zone representation related to the tolerance 
semantics. In the variational approaches, tolerance zones are established in 3D Euclidean space 
by parameter variation of spatial constraints and equations. Requicha (1983) proposed to 
construct tolerance zones by offsetting the part’s nominal boundaries. Inui et al. (1993) 



296 Wang 

approximate tolerance zone using boundary offset and geometric constraints. Roy and Li (1998; 
1999) model tolerance zones of size, flatness, and parallelism in the variational form of plane 
equation. Teck et al. (2001) represent flatness of non-rectangular planar surfaces. Davidson et al. 
(Davidson et al., 2002; Mujezinovic et al., 2004) developed a hypothetical volume-based 
algebraic model to represent size, form, and orientation tolerances. Bhide et al. (2003) extended 
the method for cylindrical features. 

In the statistical approaches (Nigam and Turner, 1995; Gerth, 1997), linear tolerance stack-up 
can be estimated using root-sum-square methods while non-linear stack-up is approximated using 
Taylor series. Typically it is assumed that the parameters are independent and the random 
variables are normally distributed. While the root-sum-square gives optimistic estimation, 
alternatives were proposed to do adjustment and correction for shifts and drifts (Chase and 
Greenwood, 1988). Srinivasan and O’Connor (1994) model and analyze tolerance based on 
statistical tolerance zone in the mean-variance (μ-σ2) space, which is directly related to process 
capability indices in industry practices. Zhang et al. (1999) apply distribution function zone to 
tolerance synthesis. Different from other approaches, research in the statistical approach 
concentrates on dimensional tolerance stack-up and geometric tolerances are not modeled 
separately. 

In the kinematic approaches, geometrical variation and displacement are modeled 
mathematically in vectors and matrices. Vectorial tolerancing (Wirtz et al., 1993; Martinsen, 
1995) models size, form, location, and orientation tolerances in a unified vector format in order to 
provide an integrated quality control loop. Small displacement torsor method (Bourdet and Ballot, 
1995; Giordano and Duret, 1993) approximates rotation and translation displacement in the form 
of torsors. Matrix representation method (Whitney et al., 1994; Desrochers and Riviere, 1997) 
models displacement in the form of homogenous transformation matrices. Rivest et al. (1994) 
exploit the kinematic character of the link imposed by a tolerance between the datum and the 
toleranced feature. Chase et al. (Chase et al., 1996; Gao et al., 1998) perform analysis of 
assembly using small kinematic adjustment between components based on linear approximation 
of implicit dimensional constraint functions. Joskowicz et al. (Joskowicz et al. 1997; Sack and 
Joskowicz, 1998) compute contact tolerance zones of planar parametric parts within configuration 
space. The kinematic methods distinguish size and each type of geometric tolerances. However, 
relations between variations are not modeled, and estimation result is hard to interpret. 

In the Monte Carlo simulation approach (e.g. Turner and Wozny, 1987; Gao et al., 1995; 
Ashiagbor et al., 1998), no assumptions on independence and distribution are needed. Based on 
tolerance response relation, large amount of samples are randomly generated and evaluated in 
statistical estimation. The drawback is that the computational time for the required sampling 
process is high if good estimation is needed. It also depends on the pre-assumption of certain 
statistical distributions for input variables.  

 The above modeling and analysis methods have been widely accepted and used in 
commercial software such as Vis VSA® and CE/Tol®. However, it is not easy to interpret the 
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meanings of the specifications for each type of tolerances in component and assembly. 
Furthermore, the rigid-body assumption tends to over-estimate the variation of flexible materials.  
 
 
2.2 TOLERANCE ANALYSIS FOR FLEXIBLE ASSEMBLY 
 
There is relatively little research on tolerance analysis for flexible materials. Takezawa (1980) 
applied linear regression models to predict auto body panel (sheet metal parts) assembly variation 
using real production data, and he found variation of assembly could be smaller than individual 
parts. He concluded that “the conventional addition theorem of variance is no longer valid for 
deformable sheet metal assemblies”.  

Liu and Hu (1997) proposed a linear finite element structural model to predict variation of 
sheet metal joining based on the concepts of mechanistic variation simulation and influence 
coefficient. Monte Carlo simulation is used to randomly displace nodes in a finite element model 
and the variance of the assembly can be estimated (Liu et al., 1996). Long and Hu (1998) 
extended the method to include the variation of fixtures during assembly operations. Camelio et 
al. (2003) extended the method to multi-station assembly systems with compliant parts. Camelio 
et al. (2004) further applied principle component analysis to simplify covariance matrix in 
variance computation.  

Merkley et al. (Merkley et al., 1996; Merkley, 1998) developed a finite element tolerance 
analysis method for flexible assemblies based on linear elastic contact assumption. Polynomial 
interpolation is used to model geometric covariance between nodes, and stiffness matrix describes 
material covariance. Bihlmaier (1999) extended the method to consider autocorrelation in 
geometric covariance matrices.  

The above finite element approaches have been integrated into some commercial software 
such as vis VSA and CATIA-TAA. However, tradeoff between fidelity and performance is 
always related to finite element methods. The computation becomes very expensive if the 
variance estimation involves complex assemblies. In most cases, accurate calculation of structural 
deformation and stress distribution is not the main purpose of tolerance analysis. Confidence of 
producibility and associated cost analysis need to be estimated without significant computation.  

 
2.3 INTERVAL ANALYSIS 
 
Interval mathematics is a generalization in which interval numbers replace real numbers, interval 
arithmetic replaces real arithmetic, and interval analysis replaces real analysis. The real number 
system  is geometrically complete for numerical representation, but not practical for digital 
computing. Not only intervals solve the problem of representation for real numbers on a digital 
scale, but they are the most suitable way to represent uncertainties and errors in technical 
constructions, measuring, computations, and ranges of fluctuation and variation.  

R
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The set of intervals corresponding to real numbers is . Let )(RI ],[][ aaa = , ],[][ bbb =  be 
real intervals and  be one of the four basic arithmetic operations for real numbers, { }/,,, ⋅−+∈ . 
The corresponding operations for interval [a] and [b] are defined by 

{ }][],[][][ byaxyxba ∈∈= . 
Interval analysis has been extensively used in reliable computing in computer science. In 

engineering fields, methods of interval analysis have been used in computer graphics (Mudur and 
Koparkar, 1984; Toth, 1985; Moore and Wilhelms, 1988; Duff, 1992; Snyder, 1999), robust 
geometry construction and evaluation (Abrams et al., 1998; Shen and Patrikalakis, 1998; Tuohy 
et al., 1997; Wallner et al., 2000), set-based modeling (Finch and Ward, 1997), imprecise 
structural analysis (Rao and Berke, 1997), design optimization (Rao and Cao, 2002), finite-
element formulation and analysis (Muhanna and Mullen, 1999; 2001; Muhanna et al., 2004), 
solving soft geometric constraint and preference (Wang, 2004; Wang and Nnaji, 2006), and 
worst-case tolerance analysis and synthesis (Yang et al., 2000).  

Interval analysis has intrinsic uncertainty and variance properties for tolerance analysis. 
However, it is based on a worst-case scenario as in traditional linear stack-up methods. The 
results usually are pessimistic in this variance addition scheme if dependency exists between 
variables. In contrast, modal interval analysis is an extension of the traditional interval analysis, 
which differentiates semantics of interval specification in different application situations. 

 
2.4 MODAL INTERVAL ANALYSIS 
 
Modal interval analysis (MIA) (Gardenes et al., 2001; Popova, 2001; Armengol et al., 2001) is a 
logical and semantic extension of traditional interval analysis. MIA extends real numbers to 
intervals. Unlike classical interval analysis which identifies an interval by a set of real numbers, 
MIA identifies the intervals by the set of predicates which is fulfilled by the real numbers.  

Given the set of closed intervals of , , and the set of logical existential (E or ) and 
universal (U or ∀ ) quantifiers, a modal interval is defined by a pair: 

R )(RI ∃

),'(: XQXX =  
in which and . X' is the classic interval and Q)(' RIX ∈ { UE,X ∈Q }

)

X is one of the two modalities.  
Similar to the way in which real numbers are associated in pairs with same absolute value but 

opposite + and − signs, modal intervals are associated in pairs too. Each member of a pair is 
corresponding to the same closed interval of real line, but having opposite modalities of 
existential or universal. The quantifiers are operators which transform real predicates into interval 
predicates. They are written as  and , indicating both arguments, the 
real index x and the interval argument X'. The notations  and  are interpreted as 

 and (  respectively. 

)()E( xPx,X' )()U( xPx,X'
)E(x,X' )U(x,X'

( )X'x∈∃ X'x∈∀
The canonical notation for modal interval is 
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⎩
⎨
⎧

≥
≤

=
baab
baba

ba
 if    ) U,]',([
 if    )E ,]',([

:],[ . 

A modal interval  is called existential or proper interval whereas  is 
called universal or improper interval. The set of modal intervals is denoted by . The modal 
quantifier Q is associated with every real predicate P(.). For a variable  and 

, Q is interpreted by Q

)E ,]',([ ba ) U,]',([ ab
)(* RI

R∈x
)()Q,'( *

x RIX ∈ x as 
)()',(Q:)())Q,'( ,Q( xx xPXxxPXx = . 

Predicates of modal intervals are defined as the set of real predicates. 
{ })())Q,'(,Q(|)((.):)Q,'( xx xPXxPredPXPred R∈= . 

Based on the above semantic extension, basic arithmetic operations of modal interval are 
defined as follows. For A = [a1,a2] and B = [b1,b2], 

],[ 2211 babaBA ++=+ , ],[ 1221 babaBA −−=−  

 
The inclusion relation between modal intervals is defined as 

. Semantically, ( 22112121 ,],[],[ bababbaa ≤≥⇔⊆
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) )()( BPredAPredBA ⊆⇔⊆ . If , 
the implication  is valid. The “less or equal” relation is defined as 

. Some modal interval operations are defined as 
, 

BA⊆
)(),(Q)(),(Q xPBxxPAx ⇒

( 22112121 ,],[],[ bababbaa ≤≤⇔≤ )
)],max(),,[min(:]),([ 212121 aaaaaaProp = )],min(),,[max(:]),([ 212121 aaaaaaImpr = , and 

2121 :]),([ aaaaidthW −= .  
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MIA is able to model problems on a logical basis and to obtain the interval functional 
evaluations for the mathematical model involved. Based on modal interval, we propose a new 
semantic tolerance modeling scheme, in which the implications of tolerance stacking can be 
embedded in the tolerance model. Accurate range estimation can be achieved compared to 
traditional worst-case interval methods. 

The purpose of semantic tolerance modeling is to capture logical therefore engineering 
meanings and implications in mathematical representation, which is to build a bridge between 
mathematic theory and engineering practice. Semantic tolerance modeling has two important 
characteristics: (1) Interpretability: being able to interpret tolerance intervals during analysis and 
synthesis processes and to provide the basic understanding of tolerancing semantics; and (2) 
Optimality: being able to analyze tolerance propagation and accumulation so that tolerances can 
be specified without losing the basic requirements of completeness and feasibility. Interpretability 
allows tolerance semantics to be embedded in interval results. Optimality assures tightness of 
variation estimation. The following sections will describe the properties of modal interval 
representation in semantic tolerancing.  

 
 

3 Interpretability 
 
The uniqueness of modal interval is the modal semantic extension. If a real relation 

 is extended to the interval relation ),,( 1 nxxfz = ),,)(( 1 nXXfFZ = , the interval 
relation Z  is interpretable if there is a semantic relation 

),,()),,)((,(Q),(Q),(Q 11111 nnznnn xxfzXXfFzXxXx = . 
A component x is uni-incident in a function f(X) if it occupies only one leaf of the syntax tree 

for the function. Otherwise, it is multi-incident. To reduce the interdependency effect of multi-
incidence, which usually over estimates interval function ranges, two interval extensions of real 
function , so-called semantic interval functions, are defined in min-max situation as: )(xf

)],(minmax),,(maxmin[:)(
''''

*
ipXxXxipXxXx

xxfxxff
iippiipp ∈∈∈∈

=X , 

)],(maxmin),,(minmax[:)(
''''

**
ipXxXxipXxXx

xxfxxff
ppiippii ∈∈∈∈

=X , 

where  is the component splitting corresponding to interval vector , with 
X

),( ip xx ),( ip XX=X
p and Xi are sub-vectors containing proper and improper components respectively. 

Important properties of interpretability are available and proved. 
Theorem 3.1 (Gardenes et al., 2001) Given a continuous function  and a modal 
vector , if there exists an interval , then  

RR →nf :
)(* nI R∈X )()( * RIF ∈X

),()',(E))(,(Q)',(U)()(*
ipiipp xxfzXxFzXxFf =⇔⊆ XXX . 
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Theorem 3.2 (Gardenes et al., 2001) Given a continuous function  and a modal 
vector , if there exists an interval , then 

RR →nf :
)(* nI R∈X )()( * RIF ∈X

),()',(E)))((,(Q)',(U)()(**
ipppii xxfzXxFDualzXxFf =⇔⊇ XXX , 

where Dual operator is defined as ],[:]),([ abbaDual = . 
 
3.1 UNI-INCIDENT INTERPRETATION 
 
Let  be a rational continuous function. Its modal rational extension 

 is simply replacing the real variables of f with modal interval variables. 
RR →nf :

)()(: ** RR IIfR n →
Theorem 3.3 (Gardenes et al., 2001) For a modal rational function , if all arguments of 

 are uni-incident, then 
)(XfR

)(XfR
)()()( *** XXX ffRf ⊆⊆ . 

 
From Theorems 3.1, 3.2, and 3.3, we know modal rational functions of uni-incident variables 

are interpretable. For example, yxyxf +=),(  is considered for X' = [1,3]' and Y' = [2,5]'. 
fR([1,3], [2,5]) = [1,3] + [2,5] = [3,8], 
fR([1,3], [5,2]) = [1,3] + [5,2] = [6,5], 
fR([3,1], [2,5]) = [3,1] + [2,5] = [5,6], 
fR([3,1], [5,2]) = [3,1] + [5,2] = [8,3], 

have the meanings of  
yxzzyx +=)]'8,3[,(E)]'5,2[,(U)]'3,1[,(U  or yxzzyx +=∈∃∈∀∈∀ ,]'8,3[,]'5,2[,]'3,1[ , 
yxzyzx +=)]'5,2[,(E)]'6,5[,(U)]'3,1[,(U  or yxzyzx +=∈∃∈∀∈∀ ,]'5,2[,]'6,5[,]'3,1[ , 
yxzzxy +=)]'6,5[,(E)]'3,1[,(E)]'5,2[,(U  or yxzzxy +=∈∃∈∃∈∀ ,]'6,5[,]'3,1[,]'5,2[ , 
yxzyxz +=)]'5,2[,(E)]'3,1[,(E)]'8,3[,(U  or yxzyxz +=∈∃∈∃∈∀ ,]'5,2[,]'3,1[,]'8,3[ , 

respectively. 
Different semantics of linear tolerance stack-up in assembly enclosure needs to be 

differentiated. For example, in Figure 3, dimensions a, b, and c in three components have relation 
a + b = c. According to different assembly sequences or manufacturing needs, we may specify 
tolerances in different ways. If Part A and B are provided by suppliers and Part C is built in house 
(Figure 3-b, Case I), the tolerance of c is determined by the tolerances of a and b. In this case, the 
semantics of “given A and B, C needs to fit A and B” is expressed as 

, which is different from the semantics of “given A, B and 
C need to fit A” when Part A is supplied and Part B and C are built in house (

cbaCcBbAa =+∈∃∈∀∈∀ ,',','
Figure 3-c, Case II). 

The relations between tolerances should be compatible with the semantics of specifications. In the 
semantic tolerance model, priori and posteriori tolerances are differentiated. In Case I, a and b 
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have priori tolerances, while c has a posteriori tolerance. With the modal extension, the semantics 
of specification sequence and rational can be embedded in the model. 

 

Dimensional relation a + b = c 

Part C 

Part A 
Part B 

c 

a b 

c 

a b 

Case I: given Part A and Part B, 
Part C needs to fit A and B. 

c 

a b 

Case II: given Part A, Part B and 
Part C need to fit A. 

c 

a b 

Case III: given Part C, Part A and 
Part B need to fit C. 

cbaCcBbAa =+∈∃∈∀∈∀ ,',',' cbaCcBbAa =+∈∃∈∃∈∀ ,',',' cbaBbAaCc =+∈∃∈∃∈∀ ,',','
(a) (b) (c) (d)  

Figure 3. Different types of semantics need to be captured, which are not differentiated in traditional modeling methods 

With the differentiation of priori and posteriori tolerances, strategy of tolerance allocation 
could vary in different scenarios. For example, in Figure 3-b, given two “uncontrollable” 
dimensions a and b, the “controllable” dimension ]8,3[]3,1[]5,2[ =+=+= bac . In Figure 3-c, 
one extra controllable dimension b allows a tighter tolerance of c. ]6,5[]1,3[]5,2[ =+=+= bac . 
The tolerance range of c is reduced from 5 to 1, which is smaller than the tolerance range of a. 
This implies that the principle of selective assembly can be applied to achieve assembly.  

 
3.2 MULTI-INCIDENT INTERPRETATION 
 
Theorem 3.4 (Gardenes et al., 2001) For a modal rational function , if there are multi-
incident improper arguments in  and  is obtained from X, by transforming, for every 
multi-incident improper component, all incidences but one into its dual, then   

)(XfR
)(XfR *TX

)()( ** TXX fRf ⊆ . 
 
Theorem 3.5 (Gardenes et al., 2001) For a modal rational function , if there are multi-
incident proper arguments in  and  is obtained from X, by transforming, for every 
multi-incident proper component, all incidences but one into its dual, then 

)(XfR
)(XfR **TX

)()( **** TXX fRf ⊇ . 
 

From Theorems 3.1, 3.2, 3.4, and 3.5, modal rational functions of multi-incident variables are 
interpretable with some modification. For example, )/(),( yxxyyxf +=  is extended to 

 and . ]3,1[−=X ]7,15[=Y
]5.1,5.0[])7,15[]3,1/([]7,15[]3,1[)( −=+−×−=XfR  

is not interpretable, whereas  
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]5.3,16667.1[])15,7[]3,1/([]7,15[]3,1[)( * −=+−×−=XTfR ,  
]21429.3,07143.1[])7,15[]3,1/([]15,7[]3,1[)( * −=+−×−=XTfR , 
]16667.1,388889.0[])7,15[]1,3/([]7,15[]3,1[)( ** −=+−×−=XTfR , 

]5.1,5.4[])7,15[]3,1/([]7,15[]1,3[)( ** −=+−×−=XTfR  
are interpretable. They are interpreted as 

)/()]'5.3,16667.1[,(E)]'15,7[,(E)]'3,1[,(U yxxyzzyx +=−− , 
)/()]'21429.3,07143.1[,(E)]'15,7[,(E)]'3,1[,(U yxxyzzyx +=−− , 
)/()]'16667.1,388889.0[,(E)]'15,7[,(E)]'3,1[,(U yxxyzzyx +=−− , 

)/()]'15,7[,(E)]'5.4,5.1[,(U)]'3,1[,(U yxxyzyzx +=−−  
respectively.  

Combining the first three results, we have 
)/()]'16667.1,388889.0[,(E)]'15,7[,(E)]'3,1[,(U yxxyzzyx +=−− , 

In assembly, parametric relations with multi-incident variables are common. Compared to 
traditional tolerance modeling, semantic tolerance modeling allows us to interpret explicit 
algebraic relations with the interpretability properties of modal intervals. Different numerical 
values can also be selected in order to derive specific semantics.  

 
3.3 RIGIDITY INTERPRETATION 
 
While existential intervals are looked as “fluctuation” or “autonomous” ranges, universal 
intervals are regard as “regulating” or “feedback” ranges. In material property domain, tolerance 
range for rigid material is corresponding to existential interval and flexible material is to universal 
interval.  
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Figure 4. variations of size and geometry, shape deformation, and kinematics form a closed loop in assembly 

In the one-way clutch example of Figure 4, the distance vector b, the length of the spring s, 
and the radius of the ball r satisfy the relation r+s=b. If ranges [5.2,5.7]' and [7.8,8.0]' are given to 
r and b respectively, the range for spring length s can be [2.1,2.8]', as in relation 

BSR ==+=+ ]8.7,0.8[]1.2,8.2[]7.5,2.5[ . 
It is interpreted as 

bsrsbr =+)]'8.2,1.2[,(E)]'0.8,8.7[,(U)]'7.5,2.5[,(U . 
The spring provides a “cushion” to absorb variance. If a larger range [7.8,8.5]' is allowed for b, 
no flexible material is required to absorb variance. Rigid material instead of spring for s can be 
chosen, as in relation 

BSR ==+=+ ]5.8,8.7[]8.2,6.2[]7.5,2.5[ . 
It is interpreted as 

bsrbsr =+)]'5.8,8.7[,(E)]'8.2,6.2[,(U)]'7.5,2.5[,(U . 
As illustrated in Figure 5, the semantic difference between rigid and flexible material is 

differentiated by interval modality. Selection of rigid or flexible materials is integrated into 
algebraic relation. 
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[a, b]

Rigid

a

b

Flexible

a=b 
(pointwise)

a>b 
(improper)

a<b 
(proper)

 
Figure 5. Rigidity diagram 

 
3.4 SEMANTIC TOLERANCING 
 
With modal extension, engineering semantics such as sequences of specification, manufacturing, 
and assembly, as well as material properties can be captured. Tolerance semantics can be grouped 
into existential and universal categories, including tolerancing intent, specification precedence 
and dependency, as well as differentiation of constraint and preference. Taxonomy of 
specification semantics thus can be developed. Some examples of such semantics are listed in 
Table 1. Semantic pairs exist in the domains of supply management, manufacturing and assembly 
sequences, etc.  
 

Table 1. Examples of tolerance semantics 

Domain Existential or Proper category Universal or Improper category 
Su Pre-determpply management ined, Uncontrollable, Supplied Un-determined, Controllable, Built 
M  anufacturing sequence Working dimension, Clearance Balance dimension, Stock removal 
Assembly sequence tual condition size Fit, Bonus tolerance Place, Vir
M Ri Flaterial property gid, Wearable exible, Deformable 
Process control Open loop, Manual mode Closed loop, Auto mode 

 
 

 Optimality 
 

or every , if  the modal  rational extension  satisfy 
 is called optimal. In other words, if the evaluation of a modal 

rational function  is both complete  is optimal for X. Optimal functions 
ive tight bounds of complete estimation.  

 

4

F )(* nI R∈X )(XfR
)*(*)()(* XXX ffRf == , (.)fR

)(XfR  and feasible, fR(.)
g
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4.1 UNI-INCID ALITY 

Theorem 4.1 (Ar l et al., 2001) If all arguments of )(XfR  are uni-incident and they have 
the same modality, 

)(* Xf

ENT OPTIM
 

mengo

XX ffR )*(*)(= = . 

For example,  is optimal for X = [1,3] and Y = [2,5]. The true range of the 
 = ([1

] is optimal. However,  is not optimal.  is not 
optimal for X = [1,3] and Y = [5,2]. 

4.2 DENT OPTIMALIT

rom X, by transform ulti-in
ual if the corresponding incidence has a mononicity sense 

o th then 
XDXX ffR

 
 2)(),( yxyxf +=

function Rf = [9,64]. The natural extension is fR([1,3], [2,5]) ,3] + [2,5])2 = [9,64]. Similarly, 
f([3,1], [5,2]) = [64,9 22 2),( yxyxyxg ++= ),( yxf

 
MULTI-INCI Y 

 
Theorem 4.2 (Armengol et al., 2001) If )(XfR  are totally monotonous for all of its multi-
incident arguments, and XD is obtained f ing, for every m cident 
component, all incidences into its d
contrary t e global one, 

*f )*(*)()( = = .  

 
[])15,7[]1,3/([]7,15[]3,1[)(

 
For example, )/(),( yxxyyxf +=  is extended to X = [1,3] and Y = [15,7]. The partial 

derivatives of f with respect to x and y are all positive within the domain. The partial derivatives 
of f with respect to the first incidences of x and y are positive, and negative respect to the second 
incidences of x and y. Therefore,

.0 ]1.2,9375× + ==XDfR  
is o d to 1/(1),(ptimal, compare ]1.2,9375.0[])7,15/[1]3,1/[1/(1)/1/ =+=+=YXgR

lity of odal interval in range estimation, a comp ison of MIA method 
et al., 1997) (as im ® 

y clutch example is made, as shown in Figure 6 and Table 2. Compared 
 the methods of DLM with Root-Sum-Square (RSS) and Worst-Case (WC), MIA gives accurate 

YX .  
 
4.3 EXAMPLE A: TRUE RANGE ESTIMATION OF ONE-WAY CLUTCH 
 
To illustrate the optima m ar

plemented in CE/Toland Direct Linearization Method (DLM) (Chase 
package) for the one-wa
to
estimation of true variation range.  
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 φ 

e 

r 

b 
a 

r re
ra

−
+

= −1cosφ

22 )()( rareb +−−=

φL 

φU 

bL 
bU 

 
Figure 6. Modal interval makes complex algebraic relations with multi-incident variables interpretable. Interpretations 

are corresponding to different value sets 

 
Table 2. Result comparison between MIA and DLM method 

Input Output: position of roller (b)    True Range is [4.0838,5.4405] 
Hub Height (a) Ring Radius (e) Roller Radius (r) DLM with Root-Sum-

Square (as in CE/Tol®) 
DLM with Wo
Case (as in C

rst-
E/Tol®) 

MIA 

[27.595, 27.695] [50.7875, 50.8125] [11.42, 11.44] [4.3585, 5.2625] [4.1368, 5.4842] [4.0838, 5.4405] 
 

 
4.4 EXAMPLE B: HARD DISK TRACKS 
 

igure 7 shows an example of hard disk tolerance analysis simulation. To seek tracks, the arm of 
ementally. Each disk surface may have tens of thousands 

acks. Thus, precise movement at high speed is critical to find correct tracks given uncertainty 

F
the hard drive moves certain angles incr
tr
involved in control and geometric variations. A traditional interval model to estimate the distance 
from each track to disk center is based on  

2
sin4

2
cos 22

1
Δ

−+
Δ

=+ kkk RLRR  

for L = [42.00, 42.02] mm, Δ = [0.0002, 0.00021], and R0 = [10.35, 10.37] mm. The over-
estimation of the range grows as the track number increases. How r, the optimal modal interval 
model based on  

eve

2
sin)]([4

2
cos 22

1
Δ

−+
Δ

=+ kkk RDualLRR  

gives a tighter range estimate, as compared in Figure 7-d.  
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l r 
θ 

2
sin4

2
cos 22

1
δδ

kkk rlrr −+=+
l: arm length 

rk: distance from track k to disk center  

θ: arm angle

δ: arm angle increment for each track 

r: distance to disk center 
(track number)

rk+1: distance from track k+1 to disk 

l 

rk+1 

rk 

δ 
δ/2

track k
track k+1

(a) In hard disk, precise arm movement is required to seek tracks (c) Incremental relation between track distances 

(b) Illustration of distance relation between adjacent tracks (d) Tighter variation estimation based on modal 
interval compared to traditional worst-case estimation 

Comparison of Rk tightness

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000
Track number k

W
id

th
 o

f R
k 

(m
m

)

Traditional

Modal Interval

 
Figure 7. Modal interval gives interpretable and tighter variation estimation result in track distance simulation 

 
4.5 EXAMPLE C: PROCESS CONTROL SIMULATION 
 
A third example of optimality is a derivative process control simulation, which shows the 
significant difference between modal interval and traditional interval methods, as compared in 
Figure 8. With uncertainty involved in parameters, the tooling speed range estimation with 
respect to time based on MIA optimal extension 

]))(([1))](([)()1( 0 ad VkVdual
S

kVdualVKkVkV −−−+=+   

is much better than that of the worst-case traditional interval extension  

])([1)]([)()1( 0 ad VkV
S

kVVKkVkV −−−+=+ .  
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kd: action factor of controller  

s: sensitivity factor of sensor 
va: sensor shift due to surroundings 

(a) A simple derivative controller model 
(b) Comparison of interval models with 
classic interval and modal interval  

(c) Optimal variation estimation based on modal interval 
compared to classic interval methods 

( ) ( )ad vv
s

vvk
dt
dv

−−−=
1

0

v: sensored tooling speed  
v0: nominal control speed 

])([1
)]([)()1( 0

a

d

VkV
S

kVVKkVkV

−−

−+=+

]))(([1
))](([)()1( 0

a

d

VkVdual
S

kVdualVKkVkV

−−

−+=+

Kd = [0.004,0.005]  Va = [2,3]  
S = [1000,1001]      V0 = [240,241]
V(0) = [3,3]  

Comparison of Tightness of V

-200

-100

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600
Iteration

Lbound-MIA
Ubound-MIA
Lbound-Classic
Ubound-Classic
Real Value Upper Bound-MIA

Lower Bound-MIA

Real Value

Upper Bound-Classic Interval

Lower bound-Classic Interval 

 
Figure 8. Modal interval shows optimal estimation of variation in a process control simulation 

 
 

5 Closed-Loop Tolerance Analysis 
 
Besides the semantic completion described in Section 3, MIA has the good property of structural 
completion. Traditional set-based interval analysis is not complete. The group properties of 
addition and multiplication operations are lost. There is no interval [x,y] such that 

 and the equation 0],[],[ =+ yxba ],[],[],[ dcyxba =+  has an interval solution only when 
. For example, cdab −≤− ]7,2[],[]3,1[ =+ yx  has solution ]6,1[]3,1[]7,2[],[ −=−=yx  instead 

of [1,4]. In contrast, arithmetic operations in MIA are complete. 
 
5.1 CLOSENESS OF MIA ARITHMETIC OPERATIONS 
 
In MIA, it is easy to find true solution for equation BXA =+ , which is , and )(AdualBX −=

BAX = , which is . Thus, )(/ AdualBX = ]7,2[],[]3,1[ =+ yx  has the true solution 
]4,1[]1,3[]7,2[])3,1([]7,2[],[ =−=−= dualyx . 

Given that a and b have values from intervals [2,4]' and [-2,6]', finding the interval estimation 
X for the equation  is interpreted as bax =

baxbaXx =− )]'6,2[,(E)]'4,2[,(E)',(U . 
Therefore, X will be the proper interval solution of the equation 

]6,2[]2,4[ −=× X . 
Thus, 

]3,1[])2,4([/]6,2[ −=−= dualX . 
The optimality of MIA arithmetic allows us to overcome the over-estimation barrier in worse-

case stack-up. True range estimation can be achieved without extensive computation as in 
simulation approach. In addition, the estimated 3D variation vectors from size, geometry, and 
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kinematic tolerances such as the one in Figure 4 should be closed in a complete assembly, that is, 
tolerance ranges Ri in x, y, and z directions should satisfy =0. This constraint in 
turn helps to estimate ranges more accurately. Traditional methods do not consider the closeness 
constraint. The closeness of MIA arithmetic operations provides the fundamentals for the 
soundness of semantic tolerancing.  

),,,( 21 nRRRf

 
5.2 TOLERANCE ANALYSIS 
 
Tolerance formulation and numerical methods based on MIA arithmetic operations maintain the 
completeness of interval computation. During the tolerance and kinematic chain formulation, if 
explicit functions are available in tolerance analysis, such as in Section 4, accurate and 
interpretable variation ranges can be estimated. If only implicit functions are available, methods 
to solve modal interval systems are needed.  

An interval system of MIA linear equations BXA =⋅ , where nnijA ×= )(A  and , is 
closely associated with two relations 

1)( ×= niBB
BXA ⊆⋅  and BXA ⊇⋅ .  

BXABXABXA ⊇⋅⊆⋅⇔=⋅  and . 
If a Jacobi interval operator is defined as 

( )niA
ADual

XDualADualB
X ii

ii

ji
jiji

i ,,1 and 0
)(

)()(
:)( =∉

×−

=ℑ
∑
≠ , 

the following theorem is the foundation of solving MIA linear systems optimally. 
 
Theorem 5.1 (Sainz et al., 2002a; 2002b) (1) If X is a solution to BXA ⊆⋅ ,  is a solution 
to . (2) If X is a solution to 

)(Xℑ
BXA ⊇⋅ BXA ⊇⋅ , )(Xℑ  is a solution to BXA ⊆⋅ . 

 
The Jacobi algorithm to solve MIA linear systems is listed in Figure 9. By means of the 

Jacobi interval operator associated with the linear system AX = B, it is possible to get a sequence 
of interval vectors , , …, which satisfies  )( )0()1( XX ℑ= )( )1()2( XX ℑ=

⊆⊇⊆⊇⊆⊇ + )12()2()2()1()0( kk XXXXX , 
such that  is a solution of )2( kX BXA ⊇⋅ , and  is a solution of )12( +kX BXA ⊆⋅ . 

The Jacobi algorithm does not necessarily converge. The sufficient condition for convergence 
is described in Theorem 5.2.  
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Theorem 5.2 (Sainz et al., 2002a) For system AX = B, if Prop(A) is a strictly diagonally 

dominant interval matrix, 1
)(

)(
<<

∑
≠ α

ii

ij
ij

AWidth

AWidth
, there exists a limit  satisfying 

. 

∞X

)( ∞∞ ℑ= XX
 

Input: modal interval matrix A, modal interval vector B 
Output: modal interval vector X that satisfies AX = B 
 
1. Initial estimation of )0(Y  such that 

)()( )0( BYA PropImpr ⊆⋅ ; 

2.  )( )0()0( YX ℑ= , which is the initial solution for BXA ⊇⋅ ; 

3. Iterate the follows for p times: )( )1()( −ℑ= tt XX .  
Figure 9. Jacobi algorithm to solve linear systems of modal intervals [Error! Bookmark not defined.] 

 
If A is not strictly diagonally dominant, general interval methods such as in references 

(Neumaier, 1990; Hansen, 1992; Ning and Kearfott, 1997) can be used to solve interval linear 
equations. However, the interpretability is compromised.  

When variation functions are nonlinear, a linearization process may be used to reduce the 
complexity of direct computation of nonlinear functions. This linear approximation changes 
semantics relation between variables. Again, as a result of linearization, the tolerance 
interpretability and optimality principles generally do not apply to the numerical results. 

 
5.3 EXAMPLE D: STACKED BLOCK ASSEMBLY – NONLINEAR 
 
A closed vector loop defines relations among size, geometry, and kinematic variations. The sum 
of vector components in each translational or rotational direction should be equal to zero. Figure 
10 shows an example of stacked block assembly. With known size tolerances, the kinematic 
variation of the stacked blocks can be calculated with three loops. The parameter values and 
formulation of loops are listed in Table 3. 
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u5 
b 

f 

φ4
φ2 

u3

c

e 

u4
b

d
f

φ3

φ2

u3

u2 

a a 

u3 

u1 

φ1 

φ2 

d 
c 

b 
a 

e f 

(b) vector loop 1 (c) vector loop 2 (d) vector loop 3 (a) known parameters   
Figure 10. Stacked block assembly 

 
Table 3. The variation formulation of loops 

Known size
tion 125.0905.335.022.2415.006.4

125.0675.10075.0805.62.062.6
±=±=±=
±=±=±=

fed
cba 

varia  

Unknown 
ki

?2965.27?1894.2?0477.10?6705.8?7181.18 54321 ±=±=±=±=±= uuuuu
nematic 

variation 
?2761.105?2761.105?7243.74?7243.74 4321 ±−=±−=±−=±= φφφφ

Loop 1 

⎪
⎩

⎪
⎨

=−+++++=
=−+++++++=

036090909090
0)180sin()180sin()90sin(

123

12122232

φφ
φφφφ

F
uaauuF  

⎧ =++++++= 0)180cos()180cos()90cos( 212221 φφφφ aauF

Loop 2 
⎪
⎧

=++++++=
=−+++++= 0)90cos()90cos()cos( 322424

φφφφ
φφφφ

dubuF
fdubF

 
⎪
⎩

⎨
=+−++−+= 018090909090

0)90sin()90sin()sin(

326

3224235

φφF

Loop 3 
⎪
⎨

⎧
=++++++=
−−+++++=

018090909090
0)90sin()90sin()sin(

0)90cos()90cos()cos(

429

4225238

422527

φφ
φφφφ

φφφφ

F
cubuF

fecubF
 

⎪
⎩ =+−++−+=

=

 
To solve nonlinear functions 0),( =ksF , where s is a size variation vector and k is a 

linearization process by Taylor’s expansion kinematic variation vector, 

 0=Δ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
⎥⎦⎢⎣∂ ××

k
iii

i

jij k
F

s
  Δ⎥

⎤
⎢
⎡∂ siF

with respect to nominal values is condu re interval linear method is used to estimate the 
variation. The results fro method (Chase et al., 
1997) are compared in Table 4. 

cted befo
m the MIA linearization method and the DLM 
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Table 4. Comparison of MIA linearization and DLM 

MIA Linearization DLM Worst-Case DLM Statistical 

]0.0228-   0.0228,[
]0.0228-   0.0228,[
]0.0228-   0.0228,[
]0.0228-   0.0228,[
]0.5209-   0.5209,[
]2729.0-   ,2729.0[
]3137.0-   ,3137.0[
]4672.0-   ,4672.0[
]5420.0-   ,5420.0[1

=
=

u
u

4

3

2

1

5

4

3

2

=Δ

=Δ
=Δ
=Δ

=Δ
=Δ

=Δ
Δ
Δ

φ
φ
φ
φ
u
u
u

 

4

3

2

1

5

4

3

2

=Δ

=Δ
=Δ
=Δ

=Δ
=Δ

=Δ
Δ
Δ

φ
φ
φ
φ
u
u
u
u
u

 

]

4

3

2

1

5

4

3

2

1

=Δ

=Δ
=Δ
=Δ

=Δ
=Δ

=Δ
Δ
Δ

φ
φ
φ
φ
u
u
u
u
u

 

]0.8156   -0.8156,[
]0.8156   -0.8156,[
]0.8156   -0.8156,[
]0.8156   -0.8156,[
]0.5174   -0.5174,[
]0.2384   -0.2384,[
]0.2942   -0.2942,[
]0.3899   -0.3899,[
]0.5421   -0.5421,[1

=
=

]0.4784   -0.4784,[
]0.4784   -0.4784,[
]0.4784   -0.4784,[
]0.4784   -0.4784,[
]0.3836   -0.3836,[
]0.1411   -0.1411,[
]0.1844   -0.1844,[

0.2725   -0.2725,[
]0.2998   -0.2998,[

=
=

 
5.4 EXAMPLE E: STACKED BLOCK ASSEMBLY – LINEAR 

o  example are known, 
ol lving. This linear problem can 

size variation 0.4=d

 
Supp se that the limits of angle variation in previous stacked block assembly
he t erance analysis problem is then reduced to linear equation sot

be solved using the Jocobi algorithm, and the result is interpretable, as listed in Table 5. 
Table 5. Linear problem in stacked block assembly 

Known  125.0675.10075.0805.62.062.6 ±=±=±= cba
125.0905.335.022.2415.06 ±=±=± fe

 

Known 

kinematic 
variation 

4281.02761.1054281.02761.105
4281.07243.744281.07243.74

43

21
±−=±−=

±−=±=
φφ
φφ  

Unknown 

kinematic 
va

?2965.27?1894.2 54 ±=

riation 

?0477.10?6705.8?7181.18 321 =±=±=±= uuu ± uu  

Linear 
equations 

⎪
⎪
⎪

⎩

⎪
⎨

=−−++
=−++

=−+++

0)cos()90cos(
0)cos()90cos(

0)sin()90sin(

225

224

2243

febu
fbu

dbuu

φφ
φφ

φφ   
⎪
⎪
⎧

=−+++
=+++++−

0)180cos()90cos(
0)180sin()90sin(

222

23221

aau
auuu
φφ

φφ
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡−

]7879.25,8754.26[
]9179.1,3054.2[
]3888.10,8602.10[

]0652.8,6659.8[
]5922.6,1804.6[

]9667.0,9626.0[0000
0]9667.0,9626.0[000
0]2707.0,2562.0[100
000]9667.0,9626.0[0
001]2707.0,2562.0[1

5

4

3

2

1

U
U
U
U
U

 

Result of 
Jacobi algorithm 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

]6762.26,9196.27[
]98397.1,39497.2[
]85174.9,2466.10[
]34302.8,0026.9[
]7335.18,7024.18[

5

4

3

2

1

U
U
U
U
U

 

Interpretation 
of result 

]9196.27,6762.26[,()]'39497.2,98397.1[,()]'2466.10,85174.9[,()]'0026.9,34302.8[,(
)]'8480.104,7042.105[,()]'8480.104,7042.105[,(

)]'2962.74,1524.75[,()]'1524.75,2962.74[,()]'03.4,78.3[,(]'57.24,87.23[,(
)]'21.4,91.3[,()]'8.10,55.10[,()]'88.6,73.6[,()]'82.6,42.6[,()]'7335.18,7024.18[,(

5432

43

21

1

uEuEuEuE
UU

UUfUeU
dUcUbUaUuU
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−−
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⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=−−++
=−++

=−+++
=−+++

=+++++−

0)cos()90cos(
0)cos()90cos(

0)sin()90sin(
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2243

222

23221
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6 Conclusion 

 
A semantic tolerance modeling scheme based on modal interval is proposed to enrich the 
modeling and analysis structure for tolerances such that tolerancing semantics can be embedded 
in mathematic representation in order to support better design and manufacturing specifications.  

The new semantic tolerancing method captures engineering and logic relation between 
specifications and prevents the degeneracy of engineering semantics during mathematic 
calculation. Priori and posteriori variations in tolerance specification are differentiated. The 
model captures the semantics of physical property difference between rigid and flexible materials 
as well as tolerancing intents such as sequence of specification, measurement, and assembly. 
Compared to traditional methods, the semantic tolerancing allows us to estimate true variation 
ranges such that feasible and complete solutions can be obtained.  

Future research may include tolerance chain formulation with the consideration of geometric 
tolerances and interaction between tolerances, optimization approach to solve linear and nonlinear 
modal interval equations, as well as tolerance synthesis based on global optimization methods of 
interval analysis.  
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Abstract:  It is valuable in engineering design to distinguish between two different types of 
uncertainty:  inherent variability and imprecision.  While variability is naturally random behavior 
in a physical process or property, imprecision is uncertainty that is due to a lack of knowledge or 
information. There are many sources of imprecision in design. Sequential decision making 
introduces imprecision because the results of future decisions are unknown. Statistical data from 
finite samples of environmental factors are inherently imprecise. Bounded rationality leads to 
imprecise subjective probabilities. Expert opinions and judgments often are imprecise due to a 
lack of information or conflict. Behavioral simulations and analysis models are imprecise 
abstractions of reality. Knowledge of a decision maker’s preferences may be imprecise due to 
bounded rationality or other constraints. Consequently, the engineering design community needs 
efficient computational methods for interval data and imprecise probabilities in order to support 
decision making in the design process. This paper introduces these sources and needs, with the 
aim of forming a foundation for future collaboration with the reliable engineering computing 
community. 
 
Keywords:  imprecision, imprecise probabilities, probability boxes, p-boxes, uncertainty, 
engineering design, intervals 

1. Introduction 

The goal of this paper is to introduce the needs of the engineering design community for 
computations with intervals and imprecise probabilities to the reliable engineering computing 
community. Earlier work has demonstrated the value of using imprecise probabilities in 
engineering design (Aughenbaugh and Paredis 2005), the role of imprecise probabilities in 
applying information economics (Aughenbaugh, Ling et al. 2005), and the elimination of decision 
alternatives using interval comparisons (Rekuc, Aughenbaugh et al. 2006). However, significant  
computational challenges are faced in implementing these methods in applied problems.  
________________________________ 
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Consequently, the established expertise of the reliable engineering community in these areas 
could be very valuable in engineering design. By introducing the needs and context of 
engineering design problems, we hope to foster future collaboration between the design 
community and the reliable engineering computing community. 
 Section 2 provides an overview of the design process, including its structure and challenges. 
The third section describes sources of interval data and imprecise probabilities, together referred 
to as imprecision, in engineering design. The fourth section provides a brief overview of the 
computational challenges faced in engineering design due to imprecision. 

2. The engineering design process 

Design is a process of converting information about customer interests and requirements into a 
specification of a product. This process involves searching through a very large, unstructured 
space of solutions (Tong and Sriram 1992) based on vague and uncertain knowledge about 
possible solution alternatives (Gupta and Xu 2002), their physical behavior (Aughenbaugh and 
Paredis 2004), their cost (Garvey 1999), and the decision maker’s preferences (Kirkwood and 
Sarin 1985; Otto and Antonsson 1992; Carnahan, Thurston et al. 1994; Seidenfeld, Schervish et 
al. 1995). In order to guide engineers through this process, several approaches have been 
developed. In this paper, we introduce the general model of systematic design described by Pahl 
and Beitz (1996).  

2.1. SYSTEMATIC DESIGN 

In systematic design, the design process is broken into four main phases, as summarized in Table 
1. In the product planning and clarification of task phase, a need for a product is determined and 
described. Product planning is mostly in the domain of corporate strategy and marketing; a 
company’s situation and market condition are analyzed, profitable product ideas sought, and a 
product proposal made. The next step is to clarify the task by refining the product proposal and 
creating a detailed requirements list for the product. These requirements tell engineers what a 
product should be, should not be, and what it must be (at a minimum) in order to be successful. 
Once a list of requirements and objectives is created, conceptual design can begin. 
 The conceptual design phase takes the list of requirements and objectives and determines the 
principle solution structures to be pursued in embodiment design. To some, this is where 
traditional engineering begins. First, designers distill the problem down to its core, asking what 
are we really trying to build?  Then they identify what functions (for example in a car design, 
functions such as move person, protect person, monitor performance) the design must perform 
and how these functions interact at a high level, such as transfers  of energy, mass, and 
information. All of this information is combined into a function structure. Next, designers seek to 
enumerate possible physical implementations, or working principles, for each function. For 
example, three working principles for the function mark a piece of paper could be deposit 
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material by friction (e.g. a pencil), melt material onto paper (e.g. laser jet printing), or burn away 
material (e.g. scorching the paper with a laser). Since in general there are multiple functions, each 
with multiple working principles, they can be combined into an overall product in many different 
ways, or solution variants. Finally, these solution variants must be evaluated and a principal 
solution concept chosen. This concept forms the foundation for embodiment design.   
 In embodiment design, designers develop the design concept in more detail by considering 
additional technical and economic criteria. Essentially, embodiment design takes the working 
principles and concepts developed in conceptual design and develops an actual design 
specification, at which point detail design can lead directly into production. During detail 
designthe arrangement, dimensions, materials, and production methods of all parts of the product 
are finalized and documented. 
 

Table 1. Systematic Design Phases 

Phase Main tasks 

Planning and clarifying the task Investigation into the economic and technical viability of creating 
a given product, and the definition of the exact requirements of a 
system and the criteria surrounding its functioning. 

Conceptual design Development of function structure and the evaluation of different 
solution variants to this problem.  

Embodiment design Conversion of a conceptual working structure to a specification of 
layout. 

Detail design Finalization of the design and production details. 

  

2.2. PARTITIONING THE DESIGN PROBLEM 

Complex problems can rarely, if ever, be solved globally in one step. Most products have reached 
a level of complexity at which it is infeasible for one engineer or even engineers from one 
discipline to design them completely. Instead, the design problem must be broken down into 
smaller chunks that are designed by separate design teams. The solutions to these sub-problems 
are then synthesized and integrated into a complete design for the overall system. Systematic 
design is an appropriate approach for designing a product at one level of detail, but it does not 
address this higher-level process of decomposing a system into subsystems, concurrently 
designing subsystems, and subsequently integrating subsystem designs into the overall system. A 
holistic, hierarchical decomposition approach to the design process that addresses these problems 
is provided by systems engineering (Forsberg and Mooz 1992; Buede 2000; Forsberg, Mooz et al. 
2000; Blanchard 2004). This paper will not address systems engineering formally. However, it is 
useful to consider what happens when the design task is broken into sub-problems. 
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 When the design process is sub-divided, it becomes recursive—the overall design process is a 
sequence of design sub-problems. For example, consider the design of a car. A car can be broken 
down into many subsystems (such as engine, drivetrain, wheels, chassis, and so on), and each of 
these subsystems can be broken down into smaller subsystems, as simply shown in Figure 1. In 
many cases, a different team of engineers will perform the embodiment of each subsystem. 
Teams may also work on sub-problems concurrently, rather than sequentially. For example, one 
team may be designing the drivetrain while another team is designing the engine.  

Car

Engine

Drivetrain

(others)

Fuel 
intake

Exhaust

(others)

Power 
output

Shaft Gearbox

Differential

(others)(others)

(others)

 
Figure 1. Subsystems of a car 

 When a team is formed to design the engine, its members first must clarify their task by using 
their technical expertise to elaborate on the requirements. For example, a particular engine 
concept is one of the working solutions from the conceptual design (Phase 2) of the car, as shown 
in Figure 2. Part of this engine design process is subdividing the engine into its subsystems, such 
as the fuel intake, and so on down to the smallest component of the system. This design process is 
challenging because the performance of the overall system may be a function of the interactions 
between sub-systems. Thus, the decisions of one team depend on future decisions and on 
decisions made concurrently by other design teams. In such situations, engineers can adopt robust 
design strategies (Chen, Allen et al. 1996) or set-based design approaches (Sobek, Ward et al. 
1999; Rekuc, Aughenbaugh et al. 2006). In either case, each team recognizes that the decisions of 
other teams are uncertain, treating them as random variables, intervals, or sets. The nature of 
these uncertainties is addressed in Section  3 of this paper. First, the importance of decision 
making in the design process is discussed. 
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1 2 3 4

Design of drivetrain  (subsystem of car)

Design of car

1 2 3 4

Design of engine (subsystem of car)

Design of fuel intake (subsystem of engine)

…

1 2 3 4

1 2 3 4

…

 
Figure 2. Recursive design process, design phases numbered 1-4 

 

2.3. DECISION-BASED DESIGN 

Independent of the design process chosen, designers repetitively must identify problems, search 
for solutions, evaluate solutions, and choose a final design. Inspired by this process, decision-
based design recognizes that the principal role of an engineer in the design process is to make 
decisions (Mistree, Smith et al. 1990; Hazelrigg 1998; Marston, Allen et al. 2000). This paradigm 
shifts the emphasis of design research to decision making; one way to improve the design process 
is to enable engineers to make better decisions.  
 Engineers must make decisions while subject to many constraints, including limits on human 
cognitive abilities, or what Herbert Simon describes as bounded rationality (1947). According to 
Simon, humans cannot simultaneously consider all consequences of every alternative; there is a 
limit to how much a person can consider at one time. In engineering design, the problems of 
bounded rationality are exacerbated by the nature of the design process. For example, there are 
usually multiple people working on a single problem, and these people may be distributed in 
different geographic locations, organizational divisions, and technical disciplines. Consequently, 
it is very difficult for the right person to have the right information available at the right time in a 
format that he or she can comprehend (Cooper 2003). In many cases information, such as future 
decisions or concurrent decisions made by other design teams, is just inherently unavailable. 
 Finally, and perhaps most obviously, engineers have finite resources, such as time and 
money. Consequently, they cannot study every detail of every subsystem extensively. Decisions 
often are guided with approximate models, expert opinion, rules of thumb, and even pure 
intuition. One goal of decision-based design is to support these decisions with formal methods. It 
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has been recommended by some researchers in the engineering design community to base these 
methods on traditional statistical decision theory (Pratt, Raiffa et al. 1995), in which uncertainty 
is represented using precise probability distributions. However, it is important in engineering 
design to distinguish between two different types of uncertainty:  inherent variability and 
imprecision (Parry 1996; Nikolaidis, Chen et al. 2004; Aughenbaugh and Paredis 2005). 

2.4. VARIABILITY AND IMPRECISION 

Variability, also called aleatory uncertainty (from the Latin aleator = dice thrower), is naturally 
random behavior in a physical process or property (Oberkampf, DeLand et al. 2002; Haukaas 
2003). It is also known as objective uncertainty (Ferson and Ginzburg 1996) and irreducible 
uncertainty (Der Kiureghian 1989). Examples include manufacturing error, errors in 
communication systems, and radioactive decay. Inherent variability is best represented in 
stochastic terms, e.g., by a probability density function. 
 Imprecision, on the other hand, is due to a lack of knowledge or information (Parry 1996) and 
sometimes is called epistemic uncertainty (from the Greek episteme = knowledge), reducible 
uncertainty (Der Kiureghian 1989) or subjective uncertainty (Ferson and Ginzburg 1996). 
Imprecision is generally best represented in terms of intervals (Kreinovich, Ferson et al. 1999; 
Muhanna and Mullen 2004). While some authors doubt the philosophical distinction between 
aleatory uncertainty and imprecision, such distinctions are useful in practice (Ferson and 
Ginzburg 1996; Hofer 1996; Winkler 1996; Aughenbaugh and Paredis 2005). 
 The role of imprecision in engineering design is often overlooked, at least in part due to 
practical reasons—engineers do not know how to compute and make decisions effectively with 
imprecise information. They instead assume away or ignore imprecision. Since methods for 
representing and computing with imprecise information are research topics in the reliable 
engineering computing and imprecise probability communities, it is important to demonstrate the 
need for interval and imprecise methods in engineering design to these communities. Ideally, with 
a new understanding of the needs of engineers, researchers in these areas can help explain these 
methods to the design community and work with designers to expand these methods to meet the 
needs of engineering design practice.  

3. Sources of imprecision in engineering design decisions 

In this paper, the sources of imprecision in engineering design are considered in the context of the 
simplified design model illustrated in Figure 3. The partitioning of the design problem into sub-
problems results in a sequence of decisions (for simplicity, concurrent decisions are ignored), of 
which one is shown in detail in Figure 3. In this simple example, a designer, or decision maker 
(hereafter abbreviated as DM), has two decision alternatives. Based on characteristics of the 
alternatives and environmental factors, the DM performs multiple simulations ( i ) or other 
analyses (

S
iA ), including eliciting expert opinion, to study the performance of the alternatives. 
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Performance attributes are then combined or weighted according to the DM’s preferences 
(perhaps according to utility theory), and the most preferred alternative is selected (or 
alternatively when there are more than two decisions alternatives, the DM can proceed by 
selecting a set of the more preferred alternatives (Rekuc, Aughenbaugh et al. 2006)).  
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Figure 3. A sequential decision process in simulation-based design. 

 
Almost every aspect of this decision introduces imprecision. More specifically: 
− Sequential decision making introduces imprecision because the results of future decisions are 

unknown. 
− Statistical data from finite samples of environmental factors are inherently imprecise. 
− Bounded rationality leads to imprecise subjective probabilities. 
− Expert opinion and judgments are not precise, due to lack of information or conflict. 
− Behavioral simulations and analysis models are imprecise abstractions of reality. 
− Preferences may be imprecise due to bounded rationality or non-stationarity. 
− Numerical implementation of these models introduces additional imprecision. 
 
 In the following sub-sections, we elaborate on how these sources introduce imprecision into 
the design process. 

3.1. SEQUENTIAL DECISION MAKING 

As noted earlier, the complexity of the design problem makes it impossible to arrive at an optimal 
design in one step. Instead, the process is divided into a sequence of decisions. This process is 
illustrated using a simple design problem with two design variables: vehicle type and engine type. 
There are two options for vehicle type: car or bike. There are three options for engine type: 
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gasoline engine, diesel engine, or electric motor. If the DM chooses the design in one step, he or 
she would choose from the set of six design alternatives shown in Figure 4. In the context of this 
example, each of these design alternatives is a fully detailed design of a final product.   

 

Design alternatives

Electric carGas car

Diesel car Electric bike

Gas bike

Diesel bike
 

Figure 4. One stage decision 

 In order to choose the best design out of these six, the DM would need to evaluate and 
compare all six. While easy in this simple example, it is impractical to enumerate and evaluate all 
design alternatives by considering all possible combinations of all solution principles for all the 
subsystems of a complex product. Consequently, the decisions are broken down into sequences to 
allow for efficient exploration of the design space. For example, in the previous vehicle design 
example, a DM can follow a sequential approach in which he or she first chooses the vehicle 
type, and then the engine type, as shown in Figure 5.  

 

Vehicle type
decision alternatives car

Engine/motor type
decision alternatives gas electric

bike

diesel

D
ec

is
io

n 
1

D
ec

is
io

n 
2

 

Figure 5. Sequential decisions 

 Note that it is important here to distinguish clearly between decision alternatives and design 
alternatives. A design alternative is one of the possible complete product design specifications 
(recall Figure 4), while each decision alternative is a specific option for a specific decision and 
corresponds to a set of design alternatives. For example, when choosing the vehicle type, the DM 
has two decision alternatives: car or bike. Each of these decision alternatives actually corresponds 
to a set of design alternatives, as shown in Figure 6.  
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Vehicle type decision alternatives

car bike

Gas car

Electric car

Diesel car

Gas bike

Electric bike

Diesel bike

 

Figure 6. Sets of design alternatives 

 The choice of decision alternative car for vehicle type includes the gas car, diesel car, and 
electric car design alternatives, because the vehicle type decision will be followed by the engine 
type decision. Once a decision is made to pursue, for example, a car design rather than a bike, the 
DM does not need to consider explicitly the design alternatives gas bike, electric bike, and diesel 
bike; these design alternatives are eliminated from consideration. 
 One limitation of a sequential decision process is that decisions often are coupled. In general, 
one really needs to know the outcome of future decisions to select the best (or most preferred) 
decision alternative for the current decision. For example, a fully designed car will have a certain 
maximum horsepower, but this certain value is unknown when the vehicle type decision is made, 
because it depends on the future design decision of engine type. The set of car designs in Figure 6 
has multiple horsepower maxima, each corresponding to a sub-design (gas car, electric car, and 
diesel car). Thus, when selecting type car rather than bike, a DM is not selecting a precisely 
characterized horsepower, but rather a set or interval of horsepower. In a more complex problem, 
imprecision will remain once the engine type is chosen because a particular engine type is a set of 
designs. For example, even if a gas engine is chosen, characteristics such as horsepower, torque, 
mass, and fuel efficiency will be inherently imprecise because they depend on additional details 
of the design. 
 By itself, the inherent existence of sets in sequential decision making demonstrates the need 
to compute with intervals, sets, or otherwise imprecisely characterized information. However, 
other sources of imprecision are independent of the existence of sets of design alternatives. These 
may have different characteristics and may affect the design process differently, as described in 
the following. 

3.2. STATISTICAL DATA 

Engineers frequently gather statistical data about environmental or other factors to support design 
decisions. Such quantitative data gives an illusion of being well-characterized, but actually it is 
inherently imprecise. Assume one needs to design a pressure vessel, and the vessel will be made 
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of a new type of steel for which the yield strength X  is not well characterized. Engineers have 
strong theoretical evidence that the material strength is normally distributed, but they do not 
know the mean μ  or variance 2σ  of the distribution. Because the material is new and testing is 
relatively expensive, DMs have only measured the yield strength in a set Σ  of  independent 
tension tests, where n  is a relatively small number due a high cost of testing. These tests can at 
best give an estimate of the true distribution, so in addition to inherent randomness (irreducible 
uncertainty), engineers also face imprecision—they cannot characterize the parameters of the 
random variable precisely.  

n

 For example, assume the engineers have a set of 30 material strength measurements. They 
could use the 30 samples to estimate the true mean and variance of the distribution using standard 
statistics. However, these estimates ( μ̂  and 2σ̂ ) are exactly that—estimates. The resulting 
distribution 2ˆ ˆ~ ( , )X N μ σ  in general is not the true distribution. Alternatively, confidence 
intervals can be constructed on the true mean and variance at the α  confidence level as follows, 
where  is the number of samples and n s  is the sample standard deviation (Hines, Montgomery et 
al. 2003): 

 / 2, 1 / 2, 1ˆ ˆ, ,  n n
s st t
n nα αμ μ μ μ−

⎡ ⎤⎡ ⎤ = − +⎢ ⎥⎣ ⎦ ⎣ ⎦
−  (1) 

 
( ) ( )2 2

2 2
2 2

2, 1 1 2, 1

1 1
, ,

n n

n s n s

α α
σ σ

χ χ− − −

⎡ ⎤− −⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
. (2) 

The resulting structure: 

 ( 2 2~ , , ,X N μ μ σ σ )⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦  (3) 

is a probability box, or p-box (Ferson and Donald 1998; Aughenbaugh, Ling et al. 2005). All 
normal distributions with means and variances given by Equations (1) and (2) are contained 
inside this p-box. Previous work has suggested that accounting for the imprecision in statistical 
data with p-boxes will lead, on average, to better design decisions for high-risk application 
(Aughenbaugh and Paredis 2005). However, there are computational challenges for using p-
boxes, or more generally imprecise probabilities (Tintner 1941; Hart 1942; Levi 1974; Walley 
1991; Weichselberger 2000), in complex engineering problems, as described in the briefly in 
Section  4 and elaborated on in detail in another paper in this workshop (Bruns, Paredis et al. 
2006).  
 In this section, we focused on statistical data, emphasizing a rather frequentist interpretation 
of probability. The frequentist interpretation is based on the notion of relative frequencies of 
outcomes. Under a frequentist interpretation, a probability represents the ratio of times that one 
outcome occurs compared to the total number of outcomes in a series of identical, repeatable, and 
possibly random trials. In engineering design, events are not always repeatable. Even assuming 
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some events are essentially repeatable and data can be collected, there is no guarantee that a 
particular sample is representative of the true relative frequency. Although in theory the relative 
sample frequency approaches the true relative frequency as the sample size goes to infinity, an 
infinite sample size is impossible to acquire in practice. Consequently, engineers will always face 
imprecision in their characterizations of the frequentist probabilities. Other times, it is 
inappropriate to adopt a purely frequentist view of probabilities in engineering design. Often, a 
subjective interpretation is more applicable. 

3.3. IMPRECISE SUBJECTIVE PROBABILITIES 

Proponents of a subjective interpretation of probability assert that there is no such thing as a true 
or objective probability, but rather probabilities are an expression of belief based on an 
individual’s willingness to bet (de Finetti 1974; Lindley 1982; Winkler 1996). One of the 
subjectivists’ primary arguments against a frequentist perspective is the absence of truly 
repeatable events, especially in practical problems. For example, the probability that Team A 
beats Team B in a basketball game has no real meaning under a frequentist interpretation, because 
that event—that particular game—will occur exactly once. In this context, the notion of a long 
term frequency, and even random events, is meaningless (de Finetti 1974). However, many 
people are willing to express their belief of who will win in terms of bets. When framed 
appropriately, such bets can be taken as subjective probabilities. 
 We prefer to adopt a loosely subjective interpretation of probability because true relative 
frequencies cannot be determined with any finite number of data samples, and because a 
subjective interpretation is applicable to a broader class of problems, as it is not limited to 
repeatable events. Naturally, subjective probabilities should be consistent with available 
information, including knowledge about observed relative frequencies (when applicable) and the 
DM’s actual beliefs; such probabilities can be considered rationalist subjective probabilities 
(Walley 1991). Our interpretation is not as strict as the traditional views [see Lindley (1982) for a 
summary of the strict subjective tradition], because we admit imprecisely known subjective 
probabilities. The traditional school claims that by definition, subjective probabilities are known 
to a decision maker, because they are his or her beliefs. We prefer an interpretation that 
acknowledges the practical difficulties in arriving at a precise characterization of such beliefs.  
 The process of eliciting and assessing an individual’s beliefs, or willingness to bet, is 
resource intensive. Even assuming that precise beliefs—and hence precise probabilities—exist, it 
will often be impractical to fully characterize them due to constraints such as bounded rationality, 
time, and computational ability (Weber 1987; Walley 1991; Groen and Mosleh 2005). 
Consequently, only a partial—and therefore imprecise—characterization of subjective 
probabilities is normally available.  
 The notion of imperfectly known probabilities is not new. Decision theory has long 
differentiated between decision making with known probabilities (decision making under risk) 
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and decision making without knowledge of probabilities (decision making under uncertainty) 
(Knight 1921). Since then, researchers have explored the middle ground of incomplete knowledge 
of probabilities, such as ordered probabilities (Fishburn 1964) and linear constraints on the 
probabilities (Kmietowicz and Pearman 1984), in addition to the more general imprecise 
probabilities. The ability to compute with such uncertainties is crucial to the success of 
engineering design. 

3.4. EXPERT OPINION 

A significant source of information in engineering design are experts who use their knowledge 
and experience to form judgments, beliefs, and estimates (Cooke 1991; Ayyub 2001). 
Information from expert opinions is inherently imprecise. First, opinions may not always be cited 
precisely, especially when expressed in linguistic terms, such as unlikely, large, or poor, a case in 
which fuzzy set theory has a role (Zadeh 1965; Ayyub 2001). Because an opinion about the world 
is not necessarily the truth of the world, opinions also can differ from person to person. Often, 
these opinions will conflict. For example, two experts are asked the probability that a quantity X 
is below 5; that is, . The first expert says that { 5}P X < { 5} 0.3P X < =  (and consequently 

). The second expert states that  (and 
consequently ). The combination of such evidence, especially when conflicting, is 
an important research area, often focused on Evidence Theory (Dempster 1967; Shafer 1976; 
Yager, Kacprzyk et al. 1994; Oberkampf and Helton 2002; Mourelatos and Zhou 2005). Evidence 
Theory is a general theory that contains both traditional probability theory and possibility theory 
as special cases (Klir 1992). Consequently, interpretations of and methods for computing with 
evidence are of significant interest to engineering designers.   

{ 5} 0.P X ≥ = 7 { 5} 0.6P X < =
{ 5} 0.4P X ≥ =

3.5. IMPRECISE ANALYSIS MODELS 

An important step in decision making and design is to determine the DM’s preferences over 
design alternatives. As illustrated in Figure 3, this involves the application of multiple models: 
simulation models that predict the performance of the alternatives, models for the uncertain inputs 
to these behavioral models, and models of the DM’s preferences.  
 Behavioral models predict the performance of design alternatives in terms of attributes that 
are important to the DM, such as physical behavior, cost, and reliability. Since these models, like 
all models, are only an abstraction of reality, they are imprecise. Specifically, although the laws 
of physics are known very precisely, one often makes significant assumptions when applying the 
laws of physics to complex geometries, or one omits certain known—but less significant—
physical phenomena from the model to reduce the complexity.  
 For example, a model for an internal combustion engine is often abstracted into an algebraic 
relationship between engine speed and torque. The detailed physical phenomena (including 
airflow, gas-mixture combustion, friction, and inertia) are reduced into one simple algebraic 
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relationship. This simple relationship is an idealization that may contain a significant error—the 
unknown or unmodeled relationships between a variety of parameters that play a role in the 
engine performance, such as air density, acceleration, or engine temperature. The lack of 
knowledge of the influence of these parameters on engine performance results in imprecision in 
the model’s results. Since there is no probability distribution associated with such modeling and 
systematic errors, one cannot express the likelihood of occurrence for a particular error but can at 
best bound the size of the error, in which case the errors should be represented in terms of 
interval-based uncertainty. 
 In addition to the imprecision in the behavioral models themselves, there is often also 
significant imprecision in the parameter values or inputs to these models. For instance, the air 
resistance model of a car may include a drag coefficient, which can only be determined precisely 
through experimentation that is more extensive. Given the limited resources (cost, time, etc.) 
available for experimentation, the coefficient is only determined up to certain error bounds, which 
introduces additional imprecision in to the model predictions. There may also be stochastic 
environmental noise parameters. In this case, the uncertainty in the inputs can be modeled using 
imprecise probabilities or p-boxes; in addition to the inherent variability of such parameters, they 
will be imprecisely characterized, as described in the preceding sections for statistical data or 
subjective probabilities. 

3.6. IMPRECISE PREFERENCES 

Once the performance attributes of a particular design alternative have been determined, they are 
combined in a preference model to form a measure (such as expected utility) of the DM’s overall 
preference for the specific alternative, as is illustrated in Figure 3. Keeney and Raiffa (1993) 
propose a method for developing such a preference model by eliciting preferences with respect to 
single attributes, expressing the preferences under uncertainty in utils, and then combining the 
utility functions of the multiple attributes into an overall utility function. Due to resource 
constraints, such a complete elicitation and precise characterization is unachievable in practice. 
Instead, the preference model is an imprecise abstraction based on limited preference elicitations. 
Other literature has examined incomplete or partial information [see (Weber 1987) for a review] 
in the context of imprecisely characterized preferences (Otto and Antonsson 1992; Carnahan, 
Thurston et al. 1994; Seidenfeld, Schervish et al. 1995) and unknown weights for tradeoffs 
between objectives in multi-attribute decision making (Kirkwood and Sarin 1985).  
 There is also evidence that people cannot express their preferences well in a rational fashion. 
When presented with choices between which a rational decision maker should be indifferent, 
even knowledgeable experts with a strong background in decision theory often judge the choices 
differently  (Tversky and Kahneman 1974). This psychological evidence suggests that the 
environment and manner in which a choice is posed affects the elicited action, and thus choices 
are not a perfect indication of preference. It is also possible that preferences are non-stationary, 
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meaning they vary over time. Even if they are reasonably stationary over a relevant time horizon, 
practical and psychological evidence strongly suggest that preferences can only be modeled 
imprecisely. 

3.7. NUMERICAL CALCULATIONS ARE IMPRECISE 

This source of imprecision is probably the most familiar, but possibly the least significant. As is 
probably known to most readers, the precision of calculations implemented on a digital computer 
are only precise up to the machine’s numerical precision. In practice, modern computers have a 
very high precision, and this effect is generally not important, especially in comparison to the 
other sources of imprecision in engineering design. For example, consider the use of a model to 
calculate some parameter. It often does not matter whether the numerical solution of this model is 
within 10-10 or 10-15 of the model’s “true” answer, because the model being used is already 
imprecise; moving to 10-15 accuracy just means that one would know the model’s wrong answer 
better; it provides no further insight into the true answer for the real system. 
 Imprecision also can arise with the use of numerical methods, which are used to approximate 
analytical solutions when analytical methods are unavailable. Some of these methods are not 
guaranteed to converge on the exact solution for certain problems, and thus introduce 
considerable uncertainty that an analyst must explore. Other methods converge on the true 
solution, but this convergence is not exact in most algorithms; there is usually a tolerance set in 
them as a stopping criterion. For example, an iterative method may terminate when the solution 
changes by less than some small amount over several iterations. Consequently, the solution is 
known imprecisely. While these computational issues are of some interest, it is again believed 
that the imprecision they introduce generally is inconsequential compared to imprecision from 
other sources. In order to provide value in engineering design, research in reliable engineering 
computing must address these more substantial sources of imprecision. 

4. Challenges of designing with imprecise information 

The presence of imprecision in engineering design decisions obviously demands methods for 
making decisions and calculating with imprecise information. The goal of this paper is only to 
explain the context of engineering design and the sources of imprecision in design problems. A 
companion paper (Bruns, Paredis et al. 2006) in this workshop addresses the challenges of 
decision making and computing with imprecise information in detail, and a forthcoming 
conference paper details decision policies for eliminating alternatives in a set-based approach to 
design (Rekuc, Aughenbaugh et al. 2006). We conclude this paper with a brief overview of the 
decision-making problem and some references for computations with intervals and imprecise 
probabilities for completeness. 
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4.1. CHALLENGES IN DECISION MAKING  

In general, there are three possible scenarios of preference between alternatives A and B. Either A 
is preferred to B, B is preferred to A, or the DM is indifferent between A and B. When utilities 
are used to reflect preference, these relationships can be determined by the inequality or equalities 
of the expected utilities (von Neumann and Morgenstern 1944). However, when imprecision 
exists, the expected utilities are not known precisely and become intervals, as shown in Figure 7. 
Consequently, comparisons between the alternatives become more complicated. 
 For example, consider the intervals of expected utility for two alternatives (A and B) shown 
in Figure 7(a). In this example, the intervals overlap. Since the true expected utility of B can lie 
anywhere in the given interval, the point labeled 1b  is possible. Similarly, both 1a  and 2  are 
possible true values for the expected utility of A. Notice that 1  is greater than 1b , but 2a  is less 
than 1 . Consequently, the available evidence is 

a
a

b indeterminate; the DM cannot determine which 
alternative is the most preferred, nor can the DM determine that he or she is definitely indifferent.  
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Figure 7. Intervals of expected utility 

 

 Given indeterminacy, a DM has two choices: he or she can collect more information in an 
effort to reduce the imprecision and remove the indeterminacy, or he or she can arbitrarily choose 
an alternative. Arbitrary means not uniquely determined by the DM’s preferences, beliefs, and 
values (Walley 1991), but it does not necessarily imply without guidance or random. Several 
policies are possible to guide arbitrary choice, including Γ -maximin (Berger 1985) and the 
Hurwicz-criterion (Arrow and Hurwicz 1972). A Γ -maximin policy says that given 
indeterminacy in a maximization problem, a DM should select the alternative with the highest 
lower-bound. This is a conservative policy in that it seeks to mitigate the worst-case. Robust 
design strategies that choose solutions that are insensitive to imprecision are also applicable at 
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this stage. If the remaining uncertainty is extreme, it may be valuable to consider an alternative 
approach such as information gap theory (Ben-Haim 2001).  
 If a DM elects to continue collecting information, he or she will still need to compare 
imprecise information, such as intervals. When delaying a decision to collect more information, a 
designer is effectively adopting a set-based approach to design, in which multiple decision 
alternatives are considered in parallel. In this process, inferior decision alternatives are eliminated 
from the set under consideration as soon as they are determined to be less preferable than any 
other alternative. The simplest case of a clear choice between alternatives for which the DM’s 
preferences are characterized by intervals of expected utility is shown in Figure 7(b). In this case, 
it does not matter where in the given interval the true expected utility of A falls—it will always be 
greater than any value in the interval for expected utility of B. This illustrates a situation referred 
to as interval dominance, (For a brief synopsis, see Zaffalon, Wesnes et al. 2003). 
 While interval dominance is simple to understand and implement, it will rarely be sufficient 
for eliminating alternatives. Instead, a DM must turn to policies such as maximality (Walley 
1991) or E-admissibility (Levi 1974). The use of these policies is explained and demonstrated in 
much more detail in the forthcoming conference publication (Rekuc, Aughenbaugh et al. 2006). 
A summary of the topics is given here. 
 Consider five decision alternatives whose utility is expressed as a function of a single shared 
imprecise parameter (such five car designs whose performances all depend on the ambient air 
temperature) in Figure 8. The intervals for all of these alternatives overlap except for E and D, 
and hence only D can be eliminated according to interval dominance. Eliminations will have to be 
made using other criteria.  
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Figure 8. Performance of 5 alternatives influenced by a single uncertain parameter 
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 From Figure 8, one can see that alternative A performs better than alternative B at all 
temperatures, so A is clearly better than B—an illustration of the criterion of maximality. 
Similarly, C is always better than D, so D could be eliminated even if it were not interval 
dominated by E. Consequently, neither alternatives B nor D can be the best decision, so the DM 
should no longer consider them. 
 Another way to look at Figure 8 is to ask which alternatives are ever the best, at any 
temperature. In this case, these are only alternatives A and C. This is an illustration of the E-
admissibility criterion, which assumes that eventually all of the imprecision will be eliminated 
(the temperature will be known exactly), and then only the alternatives that are optimal at some 
temperature need to be considered. This may be true for some sources of imprecision (such as 
future decisions), but the DM should carefully consider the tradeoff between the value of 
obtaining more information and the cost of doing so by applying information economics 
(Aughenbaugh, Ling et al. 2005). Although the cost of additional investigation is often worth the 
improved ability to make a more informed decision, the DM will reach a point at which the cost 
of gathering additional information outweighs the expected benefits. Consequently, imprecision 
will rarely be eliminated, and the DM must resort to arbitrary choice. 
 In the case of arbitrary choice, it is desirable that robust alternatives be available. In Figure 8, 
alternative E is robust to temperature and would be a good arbitrary choice. However, alternative 
E is eliminated according to E-admissibility since it is never the optimal. Consequently, it appears 
that maximality is a better criterion than E-admissibility because maximality retains both the 
possible optimal solutions and the non-dominated robust solutions. In some cases, the 
imprecision can be reduced through additional analysis and design to the point that the optimal 
solution can be found, while in other cases a robust or otherwise arbitrary choice will need to be 
made. The key advantage of considering the alternatives in this manner is that the true optimal 
solution remains a candidate until late in the process, thus improving the chances of choosing it as 
the final design. The remaining question is how can such intervals be calculated, propagated, and 
compared in a computationally efficient manner? 

4.2. COMPUTATIONAL CHALLENGES 

For engineering applications, it is crucial to adopt a mathematical formalism that is convenient 
and inexpensive for computation and decision making. Various methods have been developed for 
propagating intervals (Moore 1979; Alefeld and Herzberger 1983; Kearfott and Kreinovich 1996) 
and imprecise distributions through known algebraic relationships (Springer 1979; Williamson 
and Downs 1990; Ferson and Ginzburg 1996; Berleant and Zhang 2004; Ferson and Hajagos 
2004). However, many engineering models are black boxes—unknown or very complex 
relationships modeled by simulations or other means—for which algebraic relationships are 
unavailable. The only existing methods for these types of models are based on brute-force, multi-
loop methods that include at least one Monte Carlo sampling loop. These methods are impractical 
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for engineering design because they are prohibitively expensive in terms of computations. 
Clearly, the methods that have been found effective for algebraic models must be extended, 
adapted, or replaced for computations in more general engineering design problems. This 
problem is formulated in substantially more mathematical detail in the companion paper (Bruns, 
Paredis et al. 2006). 

5. Summary 

There are many sources of imprecision in engineering design. The sequential nature of design 
decisions inherently leads to sets and intervals; probabilities and preferences are not known 
precisely, and models are imprecise approximations of reality. The presence of imprecision can 
lead to indeterminacy in decisions when traditional statistical decision theory is applied. 
Consequently, engineering researchers need to explore and develop new decision theories. The 
use of intervals and imprecise probabilities to capture a decision maker’s state of knowledge also 
leads to new computational challenges. The potential benefit of using such formalisms is clear, 
but the feasibility of implementing them efficiently in complex design problems has not been 
proven. The development and application of efficient algorithms for computations with imprecise 
structures would help advance the state of engineering design significantly. In order to develop 
such methods, strong collaboration between the engineering design community and the reliable 
engineering computing community is needed. As a starting point for such collaboration, this 
paper has outlined the sources and role of imprecision in engineering design. 
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Abstract: In this paper, we investigate computational methods for decision making based on 
imprecise information in the context of engineering design. The goal is to identify the subtleties 
of engineering design problems that impact the choice of computational solution methods, and to 
evaluate some existing solution methods to determine their suitability and limitations. Although 
several approaches for propagating imprecise probabilities have been published in the literature, 
these methods are insufficient for practical engineering analysis. The dependency bounds 
convolution approach of Williamson and Downs and the distribution envelope determination 
approach of Berleant work sufficiently well only for open models (that is, models with known 
mathematical operations). Both of these approaches rely on interval arithmetic and are therefore 
limited to problems with few repeated variables. In an attempt to overcome the difficulties faced 
by these deterministic methods, we propose an alternative approach that utilizes both Monte 
Carlo simulation and optimization. The Monte Carlo/optimization hybrid approach has its own 
drawbacks in that it assumes that the uncertain inputs can be parameterized, that it requires the 
solution of a global optimization problem, and that it assumes independence between the 
uncertain inputs. 
 
Keywords: engineering design, probability box, p-box, uncertainty propagation, imprecision, 
imprecise probability, Monte Carlo, optimization, interval. 
 
 

1. Introduction 

1.1. DESIGN DECISION MAKING 

 
Design is the process of converting information about system requirements into a specification of  
________________________ 
 
2006 by authors. Printed in USA 

REC 2006 – M. Bruns, C.J.J. Paredis, and S. Ferson 
 



342 M. Bruns, C.J.J. Paredis, and S. Ferson 

 
a system that satisfies those requirements. This set of system specifications constitutes a design 
solution. The space of possible design solutions is unstructured and effectively infinite both in 
dimension and size. In order to successfully navigate through the structurally complex design 
space, it is necessary to proceed systematically. 
 Decision-based design is a useful paradigm for thinking systematically about the design 
process (Mistree, Smith et al. 1990; Hazelrigg 1998; Marston, Allen et al. 2000). Designers 
progress through the design process with the help of basically two mechanisms:  the generation of 
design alternatives and decision making. From the decision-based design perspective, the critical 
elements of the design process are the decisions.  Note that decision-based design is not an 
approach to design—it is a perspective.  That is, from the decision-based design perspective, 
decisions should be the focus of the designer.  Within this perspective, there still exist many 
different approaches. 
 Every decision in the design process must be made under some degree of uncertainty. 
Uncertainty exists when the decision maker (DM) does not know the outcome of at least one 
decision alternative definitely. The dilemma that uncertainty poses for decision making is clear: 
different decision alternatives might be preferable in different possible (but uncertain) states of 
the world. 

1.2. IMPRECISION IN DESIGN 

 
Since uncertainty strongly influences decision making, and therefore design, it is necessary to 
study the nature of this uncertainty. Uncertainty is typically divided into two components that we 
call variability and imprecision. Although some authors question the philosophical validity of this 
distinction, it has been argued that such a distinction is useful in practice (Ferson and Ginzburg 
1996; Hofer 1996; Winkler 1996; Aughenbaugh and Paredis 2005). Variability corresponds to 
naturally random behavior of a physical system or process. The standard representation of 
variability is the probability distribution function. 
 Many of the uncertainties in engineering design are imprecise. Imprecision is uncertainty due 
to a lack of knowledge or information (Parry 1996). Imprecision is alternatively referred to as 
incertitude, but to maintain consistency with past research in the engineering design community 
we use the term “imprecision” in this paper. The standard representation of pure imprecision is 
the interval (Kreinovich, Ferson et al. 1999; Muhanna and Mullen 2004). Imprecision arises in 
design from sequential decision-making, statistical data from finite samples, bounded rationality, 
and many other sources. For a detailed discussion of the sources of imprecision in engineering 
design, see the companion paper (Aughenbaugh and Paredis 2006). 
 Traditional decision analysis assumes precise probabilities. That is, it is assumed that all 
uncertainty is representable as a precise probability distribution. Because of the high degree of 
imprecision in engineering design, this assumption is not valid. In order to properly account for 
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imprecise uncertainties in engineering design, alternative representations, methods for 
propagation, and decision methods must be developed. 

1.3. NEED TO PROPAGATE UNCERTAINTY THROUGH PERFORMANCE MODELS 

 
Any method for making decisions under uncertainty must provide three essential tools:  (1) a 
formal representation for uncertain quantities; (2) a method for computing with uncertain 
quantities; and (3) a decision policy that determines an action under uncertainty. Because of the 
widespread presence of imprecise uncertainty in engineering design, we seek to develop these 
three tools for the special case of imprecise probabilities. In particular, we need: (1) a formal 
representation for imprecise probabilities; (2) a method for computing with imprecise 
probabilities; and (3) a decision policy that determines the best action given imprecise 
probabilistic information. 
 This paper addresses item (2). For insight into the development of representations of 
imprecise probabilities see (Ferson and Ginzburg 1996; Ferson and Donald 1998; Ferson, 
Ginzburg et al. 2002). Decision making with imprecise probabilities has been addressed in (Levi 
1980; Walley 1991) and with specific emphasis on engineering design in (Aughenbaugh and 
Paredis 2005; Rekuc, Aughenbaugh et al. 2006). 

1.4. SUMMARY OF THE LITERATURE 

 
Several solutions to the problem of computing with imprecise probabilities have been proposed in 
the literature. Although analytical methods exist for a limited class of operations on precise 
random variables (Springer 1979), no work has been done to extend these methods to 
accommodate imprecise random variables. A completely stochastic alternative involves double-
loop sampling. The current state-of-the-art methods numerically compute best-possible bounds on 
the resultant probability distribution of some function of imprecise random variables. While these 
methods are efficient and accurate, they are not practical for a large class of engineering design 
problems. The weaknesses of these methods will be discussed in section 2.6. 

Computing with imprecise probabilities is a generalization of the problem of computing the 
convolution of probability density functions where the probability density functions happen to be 
imprecise. In this paper, we use the term convolution to mean any operation on some set of 
random variables. Extensive summaries of analytical methods for computing convolutions of 
random variables is found in the book by Springer (Springer 1979) and in the thesis of 
Williamson (Williamson 1989). 

The most straightforward approach for propagating imprecise probabilities through 
mathematical models is double-loop Monte Carlo sampling – this is alternatively called two-
dimensional, 2-D, or second-order Monte Carlo. A formal description of double-loop sampling is 
given in section 3.2, and a good review is found in (Hoffman and Hammonds 1994). 
Modifications to pure double-loop sampling methods are presented in (Hofer, Kloos et al. 2002; 
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Helton and Davis 2003). Monte Carlo techniques are easy to implement, but for many complex 
problems, their computational cost becomes prohibitive. 

The first efficient numerical approach to the propagation of uncertain quantities was 
presented by Williamson and Downs in (Williamson 1989; Williamson and Downs 1990). 
Williamson’s work was motivated by the desire to develop numerical methods for precise 
probabilistic arithmetic, but his methods are compatible with imprecise probabilistic arithmetic. 
Williamson’s methods are referred to as dependency bounds convolutions because they result in 
bounds on the true probability distribution under any possible dependence relation between the 
uncertain quantities. Dependency bounds are “best-possible” in the sense that the resultant 
bounds are guaranteed to contain the true resultant distribution, and any reduction of the bounds 
results in the possible exclusion of the true distribution. The commercially available software 
Risk Calc 4.0 (Ferson 2002) provides an implementation of the dependency bounds methods. 

A very similar approach was developed independently by Berleant in (Berleant 1993; 
Berleant and Goodman-Strauss 1998). Both Berleant’s approach and Williamson’s approach 
discretize probability distribution functions and use maximization and minimization operations to 
find the best-possible probability bounds on the resultant quantity. Berleant’s approach is 
implemented in the software Statool (Berleant and Cheng 1998; Berleant, Xie et al. 2003). 
Berleant calls his approach distribution envelope determination or DEnv. Regan, Ferson, and 
Berleant (Regan, Ferson et al. 2004) have shown that DEnv and dependency bounds convolution 
are equivalent for cumulative distribution functions on the positive reals.  

These two approaches are fully sufficient for the propagation of uncertain quantities through 
functional relationships given explicitly as a sequence of binary operations, but they are 
insufficient for the computations in most realistic engineering design problems. In section 2, we 
present a formal statement of an engineering design problem and explain why the available 
methods are insufficient. 

1.5. MOTIVATION 

 
The presentation of this paper at this conference is motivated by a desire to facilitate 
collaboration between the design and reliable engineering computing research communities. 
While much effort has been expended developing algorithms for computing with uncertain 
information, much of the results of that effort have been inapplicable to realistic engineering 
design problems. To resolve this impasse, this paper attempts to present a clear, formal 
description of a general design problem. Our hope is that those in the reliable engineering 
community will find further motivation for their research and that we, in the engineering design 
community, will benefit from their technical expertise. 
 
 

2. Design Computing with Imprecise Uncertainty 
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In order to understand the computational challenges of using imprecise uncertainties, it is 
necessary to understand the computations present in the design process. As discussed in section 1, 
the design process progresses by a sequence of decisions in which the set of design alternatives 
under consideration is sequentially reduced. We denote a set of design alternatives at step i by Di. 
In the early stages of design, Di is complex and poorly defined. Much of design research focuses 
on developing heuristics for refining Di to a mathematically manageable size and structure. In this 
paper, we are not concerned with such methods. Instead we assume that Di is an interval vector 
(or hypercube) of dimension n, n

i ∈D I , where  is the space of real n-dimensional interval 

vectors: 

nI
[ ]{ }, : , ,x x x x x x≡ ∈I ≤ . More specifically, we assume that we can write  

1 1 2 2, , , ,..., ,i nd d d d d dn⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦D  

where each kd  and kd  represent the lower and upper bounds of some real, continuous design 

variable . Similarly, for discrete design variables, kd kd  and kd  correspond to the smallest and 
largest of the finite set of alternatives. In this context, the set reduction in each design step, 

, corresponds to a decrease in interval width for at least one of the n design variables. 
This process of sequential width reduction converges to a final decision which specifies a 
precisely defined (singleton) design alternative, 

1i i+→D D

[ ]* * * *
1 2, ,..., nd d d=D . 

 Since design computations often involve only a sequence of decisions that are assumed to be 
decoupled, we focus on the computations involved in a single decision. In the following sections, 
we will examine in greater detail the mechanics of a single design decision. This involves 
representing the DM’s beliefs and preferences and using performance models to predict how a 
particular design will satisfy the DM’s preferences. This section will close with a precise 
statement and discussion of the computational problem we hope to solve. 

2.1. ELEMENTS OF A DESIGN DECISION PROBLEM 

 
A rational decision should reflect the DM’s beliefs and preferences. Given a set of beliefs, 
preferences, and a set of design alternatives, the DM uses some decision policy to determine the 
preferred decision alternative. It is important here to differentiate a decision alternative and a 
design alternative. A decision alternative is any choice that the DM has available at any step in 
the sequential design process. A design alternative, on the other hand, is any completely specified 
design. A single decision alternative might correspond to multiple design alternatives. See the 
companion paper (Aughenbaugh and Paredis 2006) for a more detailed discussion.  
 A decision policy can be represented by the expression 

1 ( , , )i iπ+ =D DB P  

which can be translated into the decision to eliminate the set 1\e i i+=D D D . Here  is a 
functional representation of the DM’s belief state,  is a functional representation of the DM’s 

B
P
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preference state, and π  is the decision policy. The set of decision alternatives is the set of all the 
proper subsets of Di excluding the null set.  
 The belief state, , is some general multi-valued function that embodies the DM’s beliefs 
about the state of the relevant world at the time of the decision. It is a general but quantifiable 
measure of the DM’s uncertainty about the set of relevant states of affairs. In general,  is a 
multi-valued function because of the possibility of imprecision. Realizable relevant states 
(assumed to be quantifiable) will be represented as scalar vectors, 

B

B

n∈x , where each element, xj, 
of x corresponds to some relevant uncertain quantity. The set of all relevant states of affairs will 
be denoted by [ 1 2, ,..., n ]X X X=X . In the context of design, X can be thought of as the set of 

variables over which the DM has no control. Mirroring the notation for random variables, 
uppercase is used to emphasize that the actualized relevant state is an uncertain quantity ranging 
over the space of possible states of affairs. Note that the DM might choose to model any Xj as 
certain—that is, j jX x=  is a known quantity. The most common representation of a belief state 

is a precise probability measure over the sample space of relevant states of affairs. A precise 
probability measure is a single-valued function . That is,  such that : [0nP → ,1] p( )P =x

[ ]0,1p∈ . 

 The preference state, , is some general multi-valued function that embodies the DM’s 
preferences about possible consequences of the decision. Like ,  can be multi-valued in 
order to account for imprecision. The uncertain consequences of a decision are dependent on the 
actual relevant state of affairs 

P
B P

1 2, ,...,l ll
n
lx x x= ⎡ ⎤⎣ ⎦x  (corresponding to state l) as well as the 

decision,  (corresponding to decision k), taken. The preference state, , at 

the time of the decision is a measure of the value of a particular consequence to the designer. The 
most common representation of the preference state is a single-valued utility function 

. That is, 

1 2, ,...,k kk
md d d= ⎡ ⎤⎣D k ⎦

u

P

: k lU × → ( ),k lU =D x . The utility of a of a particular design, , given some 

specific outcome, , is deterministic, but since  is uncertain, the utility of   is also 
uncertain. 

kD
lx lx kD

 Unlike the uncertain state vector, X, the design alternative search space, , is controlled by 
the DM. Generally, each d

D
i in D might be continuous or discrete and bounded or unbounded. For 

simplicity, we make the assumption that D is an interval vector in  as was discussed at the 
beginning of this section.  

nI

 Finally, the decision policy, π , is a general multi-valued functional mapping from the DM’s 
beliefs and preferences to the set of non-dominated decision alternatives 1i+D . A non-dominated 
decision alternative is an alternative that, given some body of information, the DM cannot 
rationally eliminate. In classical decision theory, π  is “maximize expected utility.”  
Mathematically, the preferred solution is found as  
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1

* arg max ... ( , ) ( )
k mi

k
x x

u p
∈

⎡ ⎤= ∑ ∑⎢ ⎥⎣ ⎦D D
D D x x  

or  

1

*
1arg max ... ( , ) ( ) ...

nk
i

k
nx x u p dx dx

∈
⎡ ⎤= ∫ ∫⎣ ⎦D D

D D x x  

for discrete and continuous problems, respectively. In this case, *\e i=D D D . 
Two special cases of the general decision problem should be mentioned. Both of these 

specific cases make assumptions about the uncertainty of the DM’s beliefs and preferences. The 
decision is deterministic when all beliefs and preferences are certain. In this case, the DM can 
simply maximize the utility over . The preferred design solution will be 

. The DM selects the design that necessarily results in the best system 

performance. This case is unrealistic since design decisions always involve uncertainty with 
regards to beliefs and preferences. 

iD
* arg max( ( ))

k
i

kU
∈

=
D D

D D

D

 The second special case of a general design decision acknowledges the presence of 
uncertainty, but represents that uncertainty as precise probability distributions. That is the DM’s 
beliefs are purely probabilistic, and his or her preferences are deterministic. Sampling strategies 
such as Monte Carlo and Latin Hypercube are well-established and frequently-used solutions for 
propagating precise probabilistic uncertainty (Fishman 1996). The DM is able to make a decision 
by maximizing the expected utility of the design through stochastic programming. The resulting 
design solution will be . This case is more realistic than the purely 

deterministic solution described above but is still an approximation because the DM is not able to 
account for imprecise information. 

* arg max( [ ( )])
k

i

kE U
∈

=
D D

D

 Before we can study computational methods for handling imprecise information, we must 
first make some simplifying assumptions about the representation of uncertain quantities and the 
decision and performance models to be used. 

2.2. BELIEFS REPRESENTED AS P-BOXES 

 
An uncertain quantity is some event or variable characterized by sets of possible levels of belief. 
An uncertain quantity is a more general case of a random variable. Whereas a random variable 
characterizes a quantity by some precise belief function—namely, a probability distribution 
function, an uncertain quantity assigns a set of belief functions to a single quantity. For instance, 
consider a bent quarter. I am uncertain about whether it will land heads-up or tails-up, but until I 
have seen it flipped many times, I am also uncertain about how probable it is that it will land 
heads-up or tails-up. I believe that the probability of the bent quarter landing heads-up is less than 
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0.6 and greater than 0.3. My belief state then corresponds to the interval of probability values 
between 0.3 and 0.6.   
 The fundamental types of uncertain quantities are intervals and imprecise probabilities. An 
interval is a connected set of numbers on the real line. Specifically, the real interval 

{ }[ , ] :  and a b x x a x b= ∈ ≤ ≤ . An interval represents a perfectly imprecise uncertain quantity 

since no assumptions are made about beliefs between the upper and lower bounds. Under interval 
uncertainty, the DM believes only the fact that the true value of the quantity is constrained by two 
bounds. When a DM represents an uncertain quantity as an interval he or she has no beliefs about 
the likelihood of any value in the interval. This is an extreme case—most often the DM does have 
some beliefs about likelihoods. For extensive discussions of propagating interval uncertainty, see 
(Moore 1979; Alefeld and Herzberger 1983; Kearfott and Kreinovich 1996). 
 An imprecise probability is an interval-valued probability measure assigned to an uncertain 
event—for instance, my beliefs about the bent quarter. Imprecise probabilities are discussed and 
justified thoroughly in (Walley 1991). The theory of imprecise probabilities developed by Walley 
extends the operational definition of subjective probabilities to allow for imprecision. The 
primary advantage of using imprecise probabilities for representing uncertain beliefs is that they 
allow for the representation of both variability and imprecision. 
 The probability box (p-box) is a formalism for representing uncertain quantities (Ferson and 
Ginzburg 1996; Ferson and Donald 1998). The defining characteristic of a p-box are the 
probability bounds that define upper and lower limits on cumulative probability over the domain 
of the uncertain quantity. When defining a p-box formally, there are essentially two structures 

involved:  the p-box proper, and the p-box function. The p-box proper, X , of some uncertain 
quantity X defines the p-box as a set of distribution functions constrained by probability bounds 
and the property of being non-decreasing 

{ }( ) : ,  ( ) ( ) ( )X X X XX F x x F x F x F x= ∀ ∈ ≤ ≤  

where , , : [0,1X X XF F F → ] , (XF P X x)= ≤  and (X )F P X x= ≤  are the lower and upper 

cumulative probability bounds, and  is non-decreasing with x. These probability bound 
functions are determined by the p-box function. The p-box function is an interval-valued mapping 
from x to the interval [ . We express the p-box function as 

XF

0,1]

( ) ( ), ( )X XXF x F x F x⎡ ⎤= ⎣ ⎦  

where ( ) ( )X XF x F x≤  for all x. In other discussions, it might be useful to reverse the order of the 

bounding distributions in the interval above such that ( ) ( ), ( )X XXF x F x F x⎡ ⎤= ⎣ ⎦ . In this case, 

( )XF x  denotes the left bound on the p-box and ( )XF x  denotes the right bound. In other words, 
upper and lower are defined with respect to x rather than with respect to cumulative probability. 
For our purposes, however, it is more convenient to interpret upper and lower with respect to 
probability. 
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 The p-box is general enough to represent intervals, probability distributions, scalars, as well 
as imprecise probability distributions. An interval [ , ]X a b=  corresponds to the p-box defined by 
the probability bounds 

0,  
( )

1,  X
x b

F x
x b
<⎧

= ⎨ ≥⎩
 

and 
0,  

( )
1,  X

x a
F x

x a
<⎧

= ⎨ ≥⎩
. 

A normally distributed random variable, ~ ( , )X N μ σ , corresponds to the p-box containing only 

one cdf, { }, ( )X xμ σ= Φ , and the degenerate p-box function with ,( ) ( ) ( )X XF x F x xμ σ= = Φ   

where , ( )xμ σΦ  is the cumulative distribution function of the normal distribution with mean μ  

and standard deviation σ . A scalar, a, corresponds to the degenerate p-box function with  
0,  

( ) ( )
1,  X X

x a
F x F x

x a
<⎧

= = ⎨ ≥⎩
. 

Finally, and most importantly, the p-box can be used to represent imprecise probability 

distributions such as [ ](~ , , ,X N )μ μ σ σ⎡ ⎤⎣ ⎦ . Here it is known that the uncertain quantity has 

normal variability with an imprecise mean, ,μ μ μ⎡ ⎤∈⎣ ⎦ , and an imprecise variance, [ ],σ σ σ∈ . 

This imprecise probability distribution corresponds to the parameterized p-box 

[ ]{ },( ; , ) ( ) : , , ,
P

XX F x xμ σμ σ μ μ μ σ⎡ ⎤= = Φ ∈ ∈⎣ ⎦ σ σ  where the superscript P denotes that the p-

box is parameterized. It is not meaningful to speak of bounding functions for parameterized p-
boxes since the parameterized p-box will not contain all non-decreasing functions between its 
lower and upper bounding functions. Parameterized p-boxes will be discussed in greater detail in 
section 3.1. 
 In this paper, the DM’s beliefs are modeled as p-boxes. Relating back to previous notation, 

the DM’s beliefs are represented by ( ) ( )F= XxB x  where ( )FX x  represents the joint p-box 
function for the vector of relevant uncertain quantities. A joint p-box is the imprecise equivalent 
of a joint distribution function for precise probabilities. There are two steps for justifying this 
representation. First, the theory of imprecise probabilities is the most fully developed model for 
imprecise uncertainty. Unlike alternative representations of imprecise uncertainty such as 
possibilities (Dubois and Prade 1988) or fuzzy sets (Zadeh 1965), imprecise probabilities have a 
clear operational definition. An operational definition is “a rule which indicates how the 
mathematical notions are intended to be interpreted (Cooke 2004).”  The subjective interpretation 
of probability provides an operational definition in terms of subjective degree of belief expressed 
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through a willingness to bet (Savage 1972; de Finetti 1980). Walley extends the subjective 
interpretation to account for the imprecision between minimum selling prices and maximum 
buying prices of gambles (Walley 1991). For a criticism of uncertainty models without clear 
operational definitions, see (Cooke 2004). 
 The second step in the justification for using p-boxes to represent beliefs is that they are 
intuitive and used in most of the imprecise probability propagation literature for representing 
imprecise probabilities. Cumulative probabilities are a straightforward way in which to assign 
definite probabilities to events. As examples of the common use of p-boxes in the literature, see 
the work of Williamson and Downs (Williamson and Downs 1990), Ferson (Ferson and Ginzburg 
1996; Ferson and Donald 1998; Ferson 2002; Ferson and Hajagos 2004), and Berleant (Berleant 
1993; Berleant and Goodman-Strauss 1998; Berleant, Xie et al. 2003; Berleant and Zhang 2004).  

2.3. UTILITY MODELS REPRESENTED BY BLACK-BOX FUNCTIONS 

 
So far, we have only studied decision policy models in terms of abstract functional mappings 
from beliefs and preferences to a preferred action. To complete the link from generic decision 
theory to specific design practice, we must first present and justify several assumptions regarding 
the mathematical models to be used in design decision making. 
 For practical reasons, proposed solutions should assume that all mathematical models are 
black boxes. Although it is not true that engineering models are truly black-boxes, in the sense 
that nobody knows the mathematical operations inside, it is true that much of engineering practice 
uses previously developed models as if they were black-boxes. In the future, it is possible that the 
dependency bounds convolution or the distribution envelope determination methods will be 
implemented in much of the standard engineering software. At this point in time, however, this is 
not the case. Although Risk Calc 4.0 (Ferson 2002) and Statool (Berleant, Xie et al. 2003) are 
useful for propagating imprecise information through algebraic models, much of engineering 
design practice requires the aid of advanced simulation software such as FLUENT or ANSYS. If 
the representation of beliefs as p-boxes is to take hold in the engineering design community it is 
necessary that methods be developed that propagate imprecise beliefs through black-box models 
developed for advanced software. 

2.4. DECISION POLICIES FOR IMPRECISE BELIEFS AND PREFERENCES 

 
A rational DM must choose decision alternatives that maximize his or her utility. In the presence 
of uncertainty, utility is no longer certain. Therefore, in accordance with the axioms of decision 
theory, the DM should choose the alternative that maximizes his or her expected utility, [ ]E U . If 
the DM’s uncertainty is all due to variability, maximizing expected utility is sufficient. However, 
in the previous discussion, it has been argued that the DM’s beliefs and preferences are imprecise. 
The presence of imprecision results in intervals of expected utility, [ ], [ ]E U E U⎡ ⎤⎣ ⎦ . While 
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imprecise beliefs and preferences more accurately reflect the DM’s knowledge state, they also 
complicate considerably the act of decision making. A DM with an imprecise knowledge state 
needs a more sophisticated decision policy than classical decision theory’s prescription of 
“maximize expected utility.”  Specifically, imprecise preferences lead to indeterminacy, and 
indeterminacy results in sets of non-dominated decision alternatives. In other words, imprecise 
preferences result in situations in which rational decision makers cannot choose a single 
alternative from the set of non-dominated alternatives. Researchers in the imprecise probability 
community have proposed several decision policies to overcome the indeterminacy in imprecise 
decision making (Troffaes 2004; Rekuc, Aughenbaugh et al. 2006). Here we limit our discussion 
to two of these criteria: maximality (Walley 1991) and Γ -maximin (Berger 1985). Any proposed 
solution to the problem of computing for design decision making with imprecise uncertainty must 
be compatible with these decision criteria. 
 To understand the indeterminacy associated with imprecise knowledge better, consider a 
simple decision problem in which the DM must select a value for a continuous real-valued design 
variable, d. The DM in this situation can quantify his or her preferences for single values of d 
with an imprecise expected utility function, [ ] [ ] [ ]( ) ( ) , ( )E U d E U d E U d⎡ ⎤= ⎣ ⎦ . The upper and 

lower bounds of the DM’s utility function are shown in Figure 1. 
 

 

Figure 1. Decision indeterminacy with imprecise utilities. 

[ ]( )E U d

[ ]( )E U d

ld rdad bddΓ

[ ]( )E U dΓ

d

[ ]E U

 
Which value of d should the DM select?  The higher the utility the more preferred the design, but 
in this example the utility bounds overlap. Consider a comparison between design alternatives  

and  as shown in 
ad

bd Figure 1. The actual utility of either of these alternatives could fall anywhere 
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between their corresponding upper and lower utility bounds, but the DM has no information 
about where in those bounds. In some actual cases,  will be preferable, but in other cases,  

will more fully satisfy the DM’s preferences. We say that  and  are pairwise non-
dominated, and the decision between  and  is indeterminate. In our example, there is a set 

of dominated design alternatives. All designs between  and  are non-dominated by every 

other design alternative in [ . However, all design alternatives outside of this region are 

pairwise dominated by the design alternative 

ad bd

ad bd

ad bd

ld rd
],l rd d

dΓ . Therefore, a rational DM will eliminate the set 

of design alternatives d <  and d > . However, indeterminacy remains for all designs 
between these two bounds. In engineering design, indeterminacy is ultimately not an option since 
a final design for production cannot be imprecisely specified. Therefore, the DM needs a more 
sophisticated decision policy in order to further distinguish the space of decision alternatives. 

ld rd

 Indeed there is no decision policy that is able to identify a single rationally preferred solution 
in the presence of imprecise uncertainty because indeterminacy is inherent in the problem. 
Maximality can be used to reduce the size of the set of rational decision alternatives—the DM 
could rationally choose any of the alternatives in that set, but none of the decision alternatives in 
that reduced set is rationally preferable to any of the others in that set given the current 
knowledge state of the DM. Decision policies for imprecise uncertainty can be grouped into two 
general strategies: (1) those that seek to minimize the size of the set of non-dominated 
alternatives through more sophisticated comparisons of alternatives, and (2) those that select a 
single-valued solution based on some semi-arbitrary decision criterion. While strategies of type 
(1) are preferable for rational decision making, for practical purposes, the DM may need to 
employ some strategy of type (2) in order to find a single-valued design solution. 
 The decision policies that seek to minimize the set of non-dominated alternatives differ in the 
amount of information they take into account. Generally, as more information is considered, the 
resultant set of non-dominated alternatives will decrease in size. The maximality criterion (Walley 
1991) is well-suited for a broad-class of decision problems because it takes into account most of 
the available relevant information. By introducing differences in expected utility, the DM is able 
to identify alternatives that are dominated throughout the entire space of possible states of affairs, 
X. A strict comparison of utility bounds will lose this additional information. The maximality 
criterion takes into account shared uncertainty. Shared uncertain variables, sz , are those uncertain 
quantities that are independent from the design variables—i.e. no matter what design variable is 
selected the shared uncertain variable will take the same unknown value. Therefore, when 
comparing the utility of two designs, the DM should evaluate both utilities at the same values of 
the shared uncertain variables. The maximality criterion prescribes that the DM eliminate all 
decision alternatives for which, when compared to some other alternative evaluated at the same 
values for the shared uncertain variables, the upper bound on their expected difference in utility is 
strictly less than zero. Formally, 

REC 2006 – M. Bruns, C.J.J. Paredis, and S. Ferson 



 Computational Methods for Decision Making Based on Imprecise Information 353 
 

( ) ( ) ( ): max , , , ,
s s
j j

k k

j k j k
e i i j s k sz Z

z Z
z Z

E U z z U z z
∈
∈
∈

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎡ ⎤= ∈ ∃ ∈ − <⎨ ⎬⎣ ⎦⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

D D D D D D D 0  

where jD  and  are specific decision alternatives in the set , kD iD sZ  is the set of shared 

uncertain variables, jZ  is the set of uncertain variables specific to jD , and kZ  is the set of 

uncertain variables specific to . As an illustration of the use of the maximality criterion, 
consider again the example in which the DM is trying to select a single value for d. Based on past 
experience, or some other heuristic, the DM believes that  will most likely be the preferred 
solution. In order to eliminate a larger set of design alternatives, the maximality criterion requires 
that the DM calculate 

kD

*d

[ ]E * *( , , ) ( , , )i s i sU d Z Z U d Z Z− *
i d for all d ≠ . A plot of this expected 

difference in utility is shown in Figure 2.  
 
 

Figure 2. Elimination with the maximality criterion. 

* *( , , ) ( , , )s sE U d Z Z U d Z Z⎡ ⎤−⎣ ⎦

'
ld '

rd

[ ]E UΔ

d

0

 
 For all values of d less than  and greater that , '

ld '
rd [ ]* *( , , ) ( , , ) 0i s i sE U d Z Z U d Z Z− < . This 

means that no matter what the actual relevant state of affairs,  will outperform those designs, 
and these regions can be eliminated from consideration. In terms of previous notation, 

*d

{ }':  and e ld d d d d= < >D '
r . While application of the maximality criterion will identify a smaller 



354 M. Bruns, C.J.J. Paredis, and S. Ferson 

set of non-dominated alternatives, the DM will still remain indeterminate between the reduced set 
of alternatives—in this example the DM is indeterminate between all [ ]' ',l rd d d∈ . In general, the 

bounds found through application of the maximality criterion will be tighter than the bounds 
arising from the application of the interval dominance criterion—that is, [ ] [' ', ,l r l rd d d d⊆ ]  and 

most often [ ] . [ ]' ', ,l r l rd d d d⊂

 The use of shared uncertain variables is similar to the variance reduction technique of using 
common random numbers (CRNs) in simulation (Law and Kelton 2000). The goal of a simulation 
is usually to compare two scenarios or alternative designs by examining the difference in output 
for different combinations of control parameters. If different random numbers are used in the 
simulations for the different alternatives, additional noise is introduced into the model. CRNs are 
used to induce correlation between scenarios, thereby reducing the variances of the results. In 
engineering design, shared uncertainty is an inherent characteristic of the problem. Therefore, a 
DM does not have to add the commonality, he or she merely needs to recognize it and take 
advantage of that additional property when it exists. The maximality criterion is a means of 
exploiting this inherent commonality. A detailed discussion of shared uncertainty can be found in 
the Master’s Thesis of Rekuc (Rekuc 2005) as well as in (Rekuc, Aughenbaugh et al. 2006).  
 In order to identify a single-valued decision, the DM must employ some semi-arbitrary 
decision policy. The most conservative of these types of policies is the Γ -maximin criterion 
(Berger 1985). Very simply, -maximin prescribes that the DM select the alternative that 
maximizes the lower bound on expected utility. In other words, the DM selects the best worse 
case solution. Formally, the -maximin solution is found by the expression 

Γ

Γ

( )( )arg max ,
k

i

kE UΓ

∈
⎡ ⎤= ⎣ ⎦XD D

D D x  

where the subscript, X , on E  denotes that the lower expectation is taken over the entire 

uncertain state space. In Figure 1, the Γ -maximin solution is marked dΓ . Selecting the Γ -

maximin solution assures that in the worst-case actualized state of affairs, d  will outperform 
any other design alternative operating in its worst-case actualized state of affairs. This is semi-
arbitrary because the DM has no rational reason to believe that the worst-case will be actualized, 
but the DM can still be certain that performance will at least exceed 

Γ

[ ]( )E U dΓ . 

 In the presence of imprecision, the DM will generally need to resort to using some semi-
arbitrary decision policy such as -maximin to make a final decision. What value then are the 
interval dominance and maximality criteria? Should not the DM just compute and select the 

Γ
Γ -

maximin solution? The Γ -maximin solution is a function of the body of information available to 
the DM. Since the design process is not self-contained, this body of information is not static. As 
the DM progresses through the design process, new information about the structure of the design 
space and the likelihood of different relevant states of affairs become known. Therefore, the DM 
should delay making unnecessary (i.e. specific) decisions in the early stages of the design 
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process. The value of proceeding through the design process with sets of design alternatives is 
discussed in the set-based design literature (Sobek and Ward 1996; Sobek, Ward et al. 1999; 
Rekuc, Aughenbaugh et al. 2006). The maximality criterion leads to tight, but rational bounds, on 
the most-preferred solution and so it is therefore useful in the early stages of the design process.  

2.5. PROBLEM STATEMENT 

 
Now that the general issues involved in computing with imprecise information have been 
explicated, we can now present a concise statement of the problem. 
 
Given: 
 
1. A utility black-box function ( , )kU f= D x  where U is the utility of the design k m∈D  

dependent on some . Generally, f is an interval-valued mapping  

resulting in the lower and upper utilities 

n∈x : m nf × → IR
( , )kU D x  and ( ,kU D x) .  

 

2. A vector of p-boxes of dimension n, 1 2, ,..., nX X X⎡ ⎤= ⎣ ⎦X , describing the uncertainty 

about the relevant state of affairs, x. This assumes that no joint p-box distribution is known 
which is typically the case in engineering problems. In other words, nothing is known about 
the dependence relationships between the uncertain quantities. 

 
Find: 
 
1. The lower and upper expected utilities of a design, , with respect to the vector of uncertain 

quantities, 

kD
X :  ( ),kE U⎡ ⎤⎣ ⎦X D x  and ( ),kE U⎡ ⎤⎣ ⎦X D x . 

2. The set of dominated solutions under the maximality criterion:  

( ) ( ) ( ): max , , , ,
s s
j j

k k

j k j k
e i i j s k sz Z

z Z
z Z

E U z z U z z
∈
∈
∈

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎡ ⎤= ∈ ∃ ∈ − <⎨ ⎬⎣ ⎦⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

D D D D D D D 0 . 

3. The -maximin solution:  Γ ( )( )arg max ,
k

i

kE UΓ

∈
⎡ ⎤= ⎣ ⎦XD D

D D x . 
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2.6. INADEQUACIES OF THE AVAILABLE METHODS 

 
In section 1.4, four approaches for propagating uncertainty were discussed—1) distribution 
convolutions, 2) dependency bound convolutions, 3) distribution envelope, and 4) double-loop 
sampling. At present, the first three of these approaches are incapable of solving the problem 
stated in section 2.5. The fourth approach works but is relatively inefficient. Before an alternative 
method is proposed, it is necessary to explain why the existing methods fail. 
 The ideal solution would be to formulate and analytically solve the appropriate set of 
distribution convolutions. Unfortunately, this is practically impossible. The transformation 
methods described in Springer (Springer 1979)  are limited to basic binary algebraic operations 
for independent variables with a few distribution shapes. Yager’s method (Yager 1986) also 
requires independent distributions, although it can handle arbitrary shapes and operations. All 
these methods are impossible or very cumbersome for black-box computer models where the 
functional relationship is not given explicitly as a sequence of binary operations. Analytical 
methods appear even less tractable in the presence of imprecision where sets of distributions must 
be convolved. 
 The dependency bounds approach of Williamson and the distribution envelope approach of 
Berleant are considerably more promising, but they must overcome at least two obstacles before 
they can be used in engineering design. First, both of these approaches depend strongly on the 
methods of interval arithmetic for which the presence of repeated variables can result in over-
conservative (i.e. not best-possible) solution bounds. While sub-interval reconstitution methods 
work well for low-dimensional problems (Moore 1979; Ferson and Hajagos 2004; Ferson, Nelsen 
et al. 2004), they are prohibitively expensive in realistic engineering problems with a large 
number of imprecise quantities. Second, black-box propagation of intervals is still only workable 
for quasi-linear problems. Trejo and Kreinovich have developed a randomized algorithm for 
propagating interval uncertainty through black-box models (Trejo and Kreinovich 2001; 
Kreinovich and Ferson 2004), but the method assumes that the black-box model is broadly linear 
in the region of sampling. It is unclear at this point if this black-box method has general 
applicability towards complex engineering analysis models.  
 In order for the dependency bounds and distribution envelope methods to be applicable for 
engineering design, methods for better propagating intervals through black-box models in the 
presence or many repeated variables need to be developed. If these conditions were met, it would 
then be necessary to convince the producers of the standard engineering analysis software to 
incorporate these methods into their products. While this seems possible, and is perhaps the most 
desirable solution, our concern is more immediate:  how can engineers use the tools available to 
them today to make realistic design decisions under imprecise uncertainty? 
 One very simple and easy-to-implement approach is a double-loop sampling routine. A 
formal discussion will be presented in section 3, but double-loop sampling involves random 
sampling across the two dimensions of an uncertain quantity (Hoffman and Hammonds 1994; 
Helton and Davis 2003). Since sampling routines only require evaluations at scalar values of the 
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set of uncertain variables, these approaches meet our requirement of being compatible with black-
box utility models. For high-dimensional problems, double-loop sampling can become 
prohibitively expensive because the sampling in the outer loop does not retain the computational 
advantages of Monte Carlo simulation. Specifically, the outer loop sampling is not used to 
determine an expected value but rather the extrema of results of the inner loop. To approximate 
these bounds accurately an increasingly large number of samples must be taken as the 
dimensionality of the problem increases. As a possible solution to this, some authors have 
suggested a sensitivity analysis approach (Hofer, Kloos et al. 2002). In the next section, we 
present an alternative means of speeding up double-loop sampling in which one of the sampling 
loops is replaced by an optimization algorithm. 
 
 

3. Optimizing over Imprecise Distribution Parameters 
 
Of the available methods, double-loop sampling is the only solution convenient for functioning 
through a black-box utility model. For problems of high-dimensionality, though, double-loop 
sampling can be prohibitively expensive. In this section, a modification of double-loop sampling 
is proposed in order to attain a more efficient method for computing with uncertain quantities 
through black-box utility models. 

3.1. PARAMETERIZED P-BOXES 

 
In order to clarify the discussion, it is first necessary to present a simplified representation of the 
general p-box presented in section 2.2. A parameterized p-box is the set of all possible 
distributions resulting from some known distribution function with imprecisely known 
parameters. Formally, 

{ }( ; ) : ,
P

XX F x ⎡ ⎤= ∈⎣ ⎦θ θ θ θ  

where  is non-decreasing with x, and ( ; )XF x θ q∈θ  is a vector of distribution parameters that 

affect the shape or scale of . Imprecision is introduced through uncertainty in the parameters. 
Specifically, the DM is uncertain of the true values of the distribution parameters except for the 
fact that they lie within known bounds. That is, for all 

XF

kθ ∈θ , k k kθ θ θ≤ ≤ . 
 It is important to emphasize the difference between a parameterized p-box and a general p-
box. Similar to a general p-box, a parameterized p-box is a set of non-decreasing probability 
distribution functions constrained by upper and lower bounds. But unlike a general p-box, a 
parameterized p-box does not contain all possible non-decreasing distributions lying between its 

lower and upper bounds. In set notation, if X  and 
P

X  share the same bounding functions, 
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then 
P

X X⊂ . To see this, consider a p-box and a parameterized p-box with the same upper 
and lower bounds. 

{ }( ) : ( ) ( ) (X X X X )X F x F x F x F x= ≤ ≤  

where XF  is normally distributed with mean 4μ =  and standard deviation 1σ =  and XF  is 
normally distributed with 1μ =  and 1σ = . A parameterized p-box with identical bounds is 

[ ]( ){ }( ; , ) : ~ 1,4 , 1
P

XX F x X Normalμ σ μ σ= = = . 

Both of these sets of functions are constrained by the bounds XF  and XF , but X  contains 

functions not found in 
P

X  as shown in Figure 3. 
 

x

( )P X x≤
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0
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1
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Figure 3. Comparison of general and parameterized p-boxes. 
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 Though less general, a parameterized p-box is in many cases a better representation of the 
DM’s beliefs about an uncertain quantity. A common example of this arises in statistical 
parameter estimation where data gives rise to confidence intervals on the true parameter values 
for some random variable with a known distribution. If the DM’s beliefs cannot be represented as 
parameterized p-boxes, then double-loop sampling cannot propagate those beliefs.  

REC 2006 – M. Bruns, C.J.J. Paredis, and S. Ferson 



 Computational Methods for Decision Making Based on Imprecise Information 359 
 
3.2. DOUBLE-LOOP SAMPLING 

 
Double-loop sampling involves two layers of sampling: one associated with distribution 
parameters and the other associated with the distributions themselves. In effect, double-loop 
sampling involves sampling from sampled distributions. 

 Recall that our problem is to determine ( ),kE U⎡ ⎤⎣ ⎦X D x  and ( ),kE U⎡ ⎤⎣ ⎦X D x  for a given 

design, . The DM has some black-box utility function, kD , ( ,kU U f⎡ ⎤ =⎣ ⎦ D x) , that computes an 

interval of utility for a given design, , and a precisely known state of relevant affairs, x. 

Assuming that the DM’s belief state is representable by a vector of parameterized p-boxes, 

kD
P

X , 

the DM can determine the upper and lower expected utilities of design  with double-loop 
sampling. The outer loop will be called the “parameter” loop since it involves sampling different 
values for the set of distribution parameters for all of the uncertain quantities. The inner loop will 
be called the “probability” loop since it involves sampling from precise probability distribution 
functions. 

kD

 The first step in double-loop sampling is to define a vector containing all distribution 

parameters for all of the uncertain quantities. Each 
P P
jX ∈ X  has associated with it a set of 

imprecise parameters stored in the vector ,j j j⎡ ⎤∈⎣ ⎦θ θ θ . The number of parameters associated 

with a single uncertain quantity, jx , is denoted ( )j jq length= θ . For notational convenience, it is 

desirable to combine each of these 1jq ×  vectors into a single vector representing all relevant 

distribution parameters. This super-vector will be denoted Θ . Also, by extension from the lower 
and upper bounds of the sub-vectors, lower and upper bounds of the super-vector can be 

determined. That is, the vector of distribution parameters is constrained such that ,⎡ ⎤∈⎣ ⎦Θ Θ Θ . 

These parameter bounds are important as they represent all of the imprecision in the DM’s belief 
state. The purpose of the parameter loop is to experiment with these imprecise distribution 
parameters in order to approximate the smallest and largest utility that the DM should expect for 
design . kD
 In the parameter loop, the space of the parameter vector, , is explored by random sampling. 
Once the DM has defined the elements in , he or she must first randomly select a single point 
in the space of . This point corresponds to a set of precise distributions for all uncertain 
quantities and will be denoted . 

Θ
Θ

Θ
aΘ

 The probability loop uses these precise distribution functions to solve a purely probabilistic 
sampling problem. Specifically, the probability loop uses Monte Carlo samples from the 
distributions defined by  to compute an expected utility of the design . The expected utility aΘ kD
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of  given some  is denoted kD aΘ aE . The process of computing an aE  is repeated for s 

randomly sampled points, , in the parameter space, . That is, the DM computes an aΘ Θ aE  

corresponding to some  for .  aΘ 1,...,a s=
 If the sampled parameter vectors sufficiently cover the parameter space, then the largest and 
smallest values of the set { }aE  can be used to approximate the lower and upper expected utilities 

of the design . Formally, the lower and upper expected utilities are approximated by the 

expressions 

kD
( )

1
, minP

k
aa s

E U E
≤ ≤

⎡ ⎤ ≈⎣ ⎦X
D x  and ( )

1
, maxP

k
aa s

E U
≤ ≤

⎡ ⎤ ≈⎣ ⎦X
D x E . A schematic of the 

double-loop sampling process is sketched in Figure 4. 
 

 

Figure 4. Diagram of double-loop sampling method. 
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3.3. OPTIMIZING IN THE “PARAMETER” LOOP 

 
In an attempt to overcome the intractability of double-loop sampling for high-dimensional 
problems, we propose replacing the sampling in the “parameter” loop with an optimization 
algorithm. The “parameter” loop optimizer is used to locate the points  and  in the 
parameter space that result in the smallest and largest expected utilities, 

lΘ uΘ
lE  and uE . These 

utilities are then used to approximate the lower and upper expected utilities for design : kD
( ),P

k
lE U E⎡ ⎤ ≈⎣ ⎦X

D x  

( ),P
k

uE U E⎡ ⎤ ≈⎣ ⎦X
D x . 

 Essentially, the modified double-loop sampling method is the same as in pure double-loop 
sampling except that  is updated intelligently. The modified approach requires the solution of 
the following two optimization problems: 

aΘ

( )

( )
,

,

(1)   minimize

(2)   maximize

l

u

E f E

E f E

Θ∈⎡Θ Θ⎤⎣ ⎦

Θ∈⎡Θ Θ⎤⎣ ⎦

= ⇒

= ⇒

Θ

Θ
 

where Θ  and Θ  are the upper and lower bounds on the parameter space. 
 Numerically, solving these optimization problems poses two challenges: the objective 
function, , 1) is approximated non-deterministically and 2) could have local extrema. 

Different random deviates in the “probability” loop will result in different approximations of 

( )E f= Θ

aE  

for a given vector of parameters,  . For gradient-based optimizers, this is problematic since the 
approximation to the objective function will develop sharp local gradients. One possible solution 
to challenge 1) is to use the same set or random deviates for each step of the optimization 
algorithm. This of course introduces a bias into the resulting 

aΘ

lE  and uE , but this bias can be 
made arbitrarily small by increasing the number of “probability” loop samples, t. The second 
challenge to solving these optimization problems is due to the nature of the true objective 
function. For realistic engineering problems, ( )E f= Θ  is often multi-modal. One possible 

solution to challenge 2) is to repeat the optimizations from multiple starting points, . Both of 
these solutions have proven to be effective in the design of an off-road vehicle gearbox (Rekuc, 
Aughenbaugh et al. 2006).  

1Θ

3.4. WEAKNESSES OF THE ALGORITHM 

 
For many problems, the modified double-loop sampling algorithm described above will more 
efficiently locate the minimal and maximal sets of distribution parameters. However, the 
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modified approach retains some of the weaknesses of the pure double-loop sampling and even 
introduces some new difficulties. 
 Like pure double-loop sampling, the modified approach assumes a known dependence 
between the uncertain quantities involved in the computation. If a parameterized joint distribution 
function of all uncertain quantities were available, it would be compatible with either approach, 
but for practical problems it is almost never the case that the DM knows a fully characterized 
joint distribution. The dependency bounds approach, as described in section 1, makes no 
assumptions about the dependence between uncertain bounds. Indeed, dependency bounds are 
best-possible bounds that contain the results of the computation under any possible case of 
dependency. For problems in which the computation involves variables with possibly strong but 
unknown dependency, the methods of Williamson and Berleant maintain a distinct advantage 
over both the pure and modified double-loop sampling methods. 
 Also, like pure double-loop sampling, the modified double-loop sampling method might 
become too computationally expensive for high-dimensional problems. Replacing the 
“parameter” loop with an optimizer should result in decreased computational cost due to the 
decreased number of function evaluations, but optimization over a high-dimensional space can 
itself remain costly. The most that can be claimed of the modified double-loop sampling approach 
is that it allows for the solution of a wider class of problems than pure double-loop sampling. 
 Although the modified double-loop sampling method retains some of the weaknesses of pure 
double-loop sampling, it also introduces an additional difficulty. Specifically, the functions to be 
optimized, , are complex and non-linear and therefore multi-modal. This means that 

the optimization problems become global optimization problems. Depending on the complexity 
of the global optimization problem, the modified double-loop sampling method might be 
computationally infeasible. Although many sophisticated algorithms for solving global 
optimization problems have been developed (see (Pinter 1996; Horst, Pardalos et al. 2000; 
Hansen and Walster 2004)), for many problems with relatively few local minima, it is often 
sufficient to repeat the optimization from multiple starting points.  

( )E f= Θ

 
 

4. Discussion and Future Work 
 
In this paper, we have introduced and formally described a computational design problem. The 
goal of this research is to develop computational strategies for propagating imprecise beliefs 
through design decision models. We argued that the currently available computational methods 
are unsatisfactory, and an alternative approach was introduced. The main purpose of this paper 
has been to clarify and communicate the problem, but we do not yet feel that the research 
question has been satisfactorily answered. Further work remains to be done. In particular, the 
proposed method needs to be numerically validated, the problem of global optimization needs to 
be addressed, methods for parameterizing more general p-boxes need to be studied, and means of 
accounting for unknown dependence need to be developed. While we believe that the 
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optimization method proposed in this paper is an improvement over the available methods for 
some classes of design problems, we do not yet feel that we have found a fully satisfactory 
solution. Hopefully, this paper will lead to development of new alternative strategies for 
computing with imprecise information. 
 
Numerical validation 
 
Before the advantage of using the modified double-loop sampling method can be confirmed, 
numerical experiments must first be completed. Essentially, two questions need to be asked:  does 
the modified double-loop sampling method provide results that are reasonably close to the 
theoretical best-possible bounds, and is the modified double-loop sampling method substantially 
more computationally efficient that pure double-loop sampling?  Some experimentation with 
these methods has already been carried out (Rekuc, Aughenbaugh et al. 2006), but thorough 
validation requires a more systematic study. 
 The proposed experiments will involve three stages. First, in order to assure accuracy, the 
modified and pure double-loop sampling methods will be compared with the best-possible bounds 
approaches for a simple sum of p-boxes. It needs to be shown that an arbitrarily small degree of 
error can be achieved with both of these methods using only a reasonable number of samples. At 
this stage in the experimentation, a study of the relative efficiency of the two double-loop 
sampling methods can be conducted. The two sampling methods will be compared in terms of the 
number of function evaluations required as well as the overall CPU processing time. 
 The second stage of the proposed numerical validation, will involve another simple algebraic 
model. The second model will be sufficiently more complex so as to involve several more 
uncertain quantities as well as repeated variables. The presence of repeated variables results in 
over-conservative bounds for interval arithmetic operations. Since the best-possible bound 
methods for propagating imprecise probabilities make use of the operations of interval arithmetic, 
they result in over-conservative bounds in the presence of repeated variables. This is one aspect in 
which the double-loop sampling methods have an advantage over the dependency bounds 
convolution and the distribution envelope approaches. Although Ferson has solved repeated 
variable problems using subinterval reconstitution within the dependency bounds convolution 
algorithms (Ferson and Hajagos 2004), it is unclear how efficient this method is for handling 
problems with a large number of uncertain inputs. The purpose of this second stage is to test the 
efficiency of the modified double-loop sampling method for problems with a greater number of 
uncertain quantities. It will also be interesting to compare the accuracy and the efficiency of the 
modified double-loop sampling method to the dependency bounds convolution with subinterval 
reconstitution methods. 
 The third and final stage of the numerical validation of the modified double-loop sampling 
method will involve applying the method towards a realistic engineering design problem. At this 
stage, it will be impossible to compare to the dependency bounds convolution approach because 
of the large number of repeated variables. The previous two stages will test the accuracy of the 
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modified double-loop sampling as compared to the dependency bounds approach, and the final 
stage will test to see if the modified double-loop sampling is computationally efficient enough to 
propagate uncertainty through realistic engineering design problems. 
 
The problem of global optimization 
 
As mentioned previously, some numerical experimentation has been done with the modified 
double-loop method. Specifically, the method was applied towards the design of a gearbox. The 
utility curve of the gearbox as a function of the distribution parameters turned out to be multi-
modal. A quick fix to this problem was attained by using multiple starting points, and this worked 
well for the gearbox problem. However, the gearbox utility model is relatively simple compared 
to other realistic design decision problems. Therefore, it is uncertain whether or not more 
sophisticated global optimization algorithms will be needed for complex design decision 
problems. If it is the case that many design utility models have a very large number of modes, 
then an efficient, reliable global optimization algorithm will need to be found that is compatible 
with the modified double-loop sampling method. 
 
Parameterizing general p-boxes 
 
Both the pure and modified double-loop sampling methods assume that the DM’s imprecise 
beliefs can be represented as parameterized p-boxes. As was discussed previously, parameterized 
p-boxes are special cases of general p-boxes. It was argued that parameterized p-boxes arise 
frequently in practice, but not all realistic belief states can be easily represented as parameterized 
p-boxes. For instance, Dempster-Shafer structures are general p-boxes that result from the 
methods of evidence theory (Ferson, Kreinovich et al. 2002; Ferson, Hajagos et al. 2005), but 
there appears to be no straightforward way in which to model a Dempster-Shafer structure as a 
distribution with imprecise parameters. If any version of a double-loop sampling method is to be 
generally applicable, a means of parameterizing more general p-boxes needs to be discovered. 
 
Accounting for known and unknown dependence 
 
One of the primary advantages of the dependency bounds approaches is that they allow for the 
determination of theoretical best-possible bounds on the resultant p-box under any state of 
dependence between the uncertain quantities. By comparison, the double-loop sampling methods 
assume some dependence between the uncertain quantities. This is in violation of the problem 
statement presented in section 2.5. If a joint distribution is known, then sampling in the 
“probability” loop can take into account that dependence information by simply sampling from 
the joint distribution. However, joint distributions are not often known for engineering design 
problems. It is therefore desirable to further modify the double-loop sampling method such that it 
provides something similar to best-possible bounds in cases of unknown dependence. 
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Possibility of alternative approaches 
 
As was discussed in section 1.5, the purpose of this paper has been to pose a problem. While a 
possible solution to that problem has been presented, obstacles still remain to putting the 
proposed method into practice. Engineering designers desire a method that allows for reliable, 
efficient propagation of their imprecise beliefs through complex engineering design models. The 
dependency bounds convolution and distribution envelope approaches are efficient and provide 
best-possible bounds, but they are not currently compatible with black-box models. Additionally, 
these methods face the dilemma of interval arithmetic with repeated variables. The pure and 
modified double-loop sampling methods discussed in this paper are compatible with black-box 
models, but they seem to be inefficient for complex engineering design problems. It is our hope 
that by presenting this problem statement to the reliable engineering computing community, 
alternative approaches will be suggested. 
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Abstract. In this paper a novel technique for random vector sampling starting from rare data is presented.
This model-free sampling technique is developed to operate without a probabilistic model. Instead of es-
timating a distribution function, the information contained in a given small sample is extracted directly
to produce the sampling result as a second sample of considerably larger size that completely reflects the
properties of the original small sample. As a further enhancement, the new sampling technique is extended
to processing imprecise data.

Model-free sampling can be coupled to stochastic structural analysis and safety assessment by appli-
cation to input data or to result data. In the case of limited data, for instance, due to a high numerical cost
of the underlying computational model, the novel technique can be applied to generate a proper estimation
of stochastic structural responses and, thanks to a sound reproduction of distribution tails, of structural
reliability. In this context it can provide a basis for increasing the numerical efficiency of Monte Carlo
simulations in computational stochastic mechanics.

The usefulness of the model-free sampling technique is underlined by means of numerical examples.

Keywords: Sampling; Monte Carlo simulation; Imprecise data; Fuzzy randomness; Uncertain structural
analysis; Safety assessment.

1. Introduction

Simulation techniques often offer the only possibility for solving problems in which random properties
must be taken into account. Indeed, Monte-Carlo simulation and further developments thereof have become
versatile tools for solving a variety of problems in a wide range of engineering disciplines, see (Schuëller
and Spanos, 2001).

An essential precondition for obtaining realistic results from a simulation is the availability of statistically-
validated probability distributions for the input variables. The specification of these distributions thus plays
an essential role, see (Schuëller, 2001b). For determining reliably parameters and forms of probability
distributions, extensive data in the form of samples are required. This enables using well-developed and
sophisticated methods of statistical estimation theory and test theory, which operate parametrically or non-
parametrically (Mood et al., 1974). Further, the numerical procedure for processing the specified random
quantities in structural analysis and safety assessment must be computationally efficient to enable the
stochastic analysis of large and nonlinear systems (Schenk et al., 2005; Schenk and Schuëller, 2005;
Schuëller et al., 2003). Only if a sufficient amount of structural response data is produced, their stochastic
properties can be identified reliably, and failure probabilities can be estimated appropriately with the aid of
statistical methods.

c© 2006 by authors. Printed in USA.
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In any case, problems may primarily occur in the following three situations. First, the available infor-
mation is limited in the form of small samples (Problem I). Second, structural response data can only be
produced to a limited extent due to a high computational cost in analyzing the underlying structural problem
in correspondence with the simulation of random input quantities (Problem II). Third, the sample elements
are characterized by uncertainty or imprecision (Problem III). As a result, probability distributions for input
variables and structural responses, or probabilities of defined events such as structural failure cannot be
specified to a sufficient degree of reliability.

1.1. PROBLEM I – SMALL SAMPLES

In this case statistical estimations and tests based on small samples may yield vague and ambiguous results.
For an appropriate level of confidence wide intervals for the estimated values are obtained. The variety of
possible probabilistic models can almost not sufficiently narrowed with the aid of tests. This applies, in
particular, if the distribution type is not pure in the form of a compound or multimodal distribution, or if
general, for example nonlinear, dependencies in multi-dimensional cases are present. The less information
the sample contains the more subjectivity is introduced with the specification of a certain probabilistic
model. On the other hand, there is no evidence that the information that is actually contained in the sample
is extracted completely but only to a certain degree. The results obtained on such basis may vary dramat-
ically. Approaches to remedy this problem aim at determining bounds for the possible range of stochastic
models and prognoses. A distiction can be made here between pure probabilistic methods (Deodatis et al.,
2003; Papadopoulos et al., 2005; Red-Horse and Benjamin, 2004), which are focused on finding the bounds
with different externally applied search strategies, and methods based on extended uncertainty models such
as p-box (Berleant and Zhang, 2004), random sets (Hall and Lawry, 2004; Tonon et al., 2000), sets of
probability measures (Fetz and Oberguggenberger, 2004), or fuzzy randomness (Möller and Beer, 2004),
which cover the possible range of probabilistic models at once and intrinsically contain the search for
probabilistic bounds. For this intrinsic search, a generally applicable and numerically efficient optimization
algorithm has been developed as modified evolution strategy (Möller et al., 2000), the usefulness of which
has already been shown, for example, in safety assessments coupled to a nonlinear structural analysis (Möller
et al., 2003). Moreover, the model of fuzzy randomness provides a basis for an evaluation of those problems
on several levels of subjective confidence in an encapsulated manner. Further, a variety of methods based on
Bayesian theory (Bernardo and Smith, 1994) can be employed if subjective information is available beyond
the small sample.

1.2. PROBLEM II – HIGH COMPUTATIONAL COST

The solution to Problem II comprises a wide variety of methods to increase numerical efficiency of stochastic
structural analysis and safety assessment (Schuëller, 2001a). The corresponding developments primarily
concern enhancements in Stochastic Finite Element Methods and in the numerical simulation of stochastic
processes, which have already reached practical relevance in solving engineering problems (Ghanem and
Spanos, 1991; Schenk and Schuëller, 2005). Their practical applicability substantially hinges on an efficient
representation of the random input quantities. In this context, spectral representations of stochastic processes
have attracted considerable attention, which particularly refers to Karhunen-Loéve or Polynomial Chaos
expansion (Du et al., 2005; Field Jr. and Grigoriu, 2004; Gutierrez and Zaldivar, 2000; Phoon et al., 2005;
Schuëller et al., 2003; Spanos and Ghanem, 1989). For reliability analysis, which focuses on rare events,
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further efficiency improvements of simulation techniques are pursued. Among several strategies, the class of
variance reducing methods such as Importance Sampling and variants thereof (Rackwitz, 2001; Schuëller,
2001a) probably represents the most popular kind of approaches. As these developments are not directly
related to the approach pursued in this paper but only act as a motivation, their consideration is not extended
at this point.

1.3. PROBLEM III – IMPRECISE DATA

This problem exceeds the limits of traditional methods in uncertainty quantification and processing, and rep-
resents a reasearch field of increasing interest. Traditionally, imprecision or uncertainty of sample elements
is either neglected totally or taken into account approximately by selecting "probably adverse values” with
respect to structural responses and safety measures from a possible value range. However, the actual impact
of such a selection of input parameters can generally not be evaluated at the pre-stage of a simulation.
On the other hand, the question arises as to how to model that uncertainty or imprecision realistically.
It appears, for example, in situations in which the precision of measuring devices is strongly limited,
the measuring points cannot be defined precisely (rough surfaces in thickness measurements), the expert
evaluations influence the value specification, the measured values are gained under dubious conditions, and
linguistic assessments are accounted for. In those cases the data possess random properties and non-random
properties simultaneously. A pure probabilistic solution by applying the aforementioned approaches for
dealing with limited information in the form of small samples is thus somewhat critical. Only Bayesian
methods (Bernardo and Smith, 1994) are capable of incorporating subjective uncertainty, but still in terms of
probability, which contradicts the non-random nature of some information. For a more pertinent uncertainty
modeling in the case of non-probabilistic phenomena generalized uncertainty models have been developed
(Fellin et al., 2005; Helton and Oberkampf, 2004), which are related to or covered by the framework
of evidence theory. A comprehensive direct modeling of the imprecision or uncertainty of the individual
elements of a random sample can be realized with the aid of a fuzzy randomness approach (Möller and Beer,
2004). Statistical investigations of uncertain or imprecise data and of properties of fuzzy random variables
are, to a great extend, in an initial stage of development. Related research in this regard may be found
in (Bandemer and Näther, 1992), in (Viertl, 1996), and in (Körner, 1997). These developments concern
the analysis of imprecise data, the definition of statistical parameters, and the investigation of statistical
laws for fuzzy random variables. Publications discussing the simulation of fuzzy randomness are rare. An
approach evaluating fuzzy probability distribution functions on a trajectory-by-trajectory basis is presented
in (Sickert et al., 2003). Numerical investigations of statistical properties of fuzzy random variables based
on simulation are discussed in (Colubi et al., 2002). However, these methods require prior knowledge about
the fuzzy probability distributions or the fuzziness of the realizations to be generated. General techniques
for generating fuzzy realizations of fuzzy random variables are not known at the present time. Moreover,
the application of traditional sampling methods to the numerical generation of fuzzy realizations encounters
considerable difficulties. For instance, the numerical effort for estimating fuzzy parameters and fuzzy prob-
ability distributions from fuzzy-valued samples (fuzzy samples) is significantly high, in particular, when
interaction between the fuzzy parameters is taken into account. Further, the simulation of fuzzy realizations
starting from fuzzy probability distribution functions is not unique. That is, different fuzzy samples may have
identical empirical fuzzy probability distribution functions. These conflicts hinder the pursuing of traditional
sampling and simulation approaches.
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1.4. SOLUTION IDEA

Despite considerable developments in answering the aforementioned three problems, an overall satisfying
solution does not exist. In the following an attempt is made to develop a basis for a sampling technique
to improve uncertainty processing in structural analysis and safety assessment in those problematic cases.
The novel sampling technique is intended to circumvent an explicit specification of a probabilistic model,
which avoids an introduction of subjectivity and motivates its denotation as ”model-free sampling”. Further,
it should be capable of attaining appropriate results starting from samples of small size that may consist of
uncertain or imprecise data.

The development starts from the basic statistical assumption that all information is contained in the
sample. On the basis of a small sample a second sample of considerably larger size is numerically generated
that completely reflects the statistical properties and uncertainty characteristics of the original small sample.
This sampling technique can be applied to rare input data as well as to rare result data of a stochastic
structural analysis and might thus be helpful as a preprocessor or as a postprocessor in combination with
established simulation methods in diverse cases to improve estimations of stochastic structural responses
and of structural reliability, and to increase the numerical efficiency of the computations. For enhancing the
model-free sampling technique to processing imprecise data the generalized uncertainty model fuzzy ran-
domness is taken as a basis, which enables to transfer stochastic uncertainty and non-stochastic uncertainty
of the input data completely and simultaneously to the results of structural analysis and safety assessment.
Finally, predictions of uncertain stochastic structural responses and of uncertain structural reliability are
obtained.

2. Numerical Procedure

The basic concept of the model-free sampling technique is to generate the sampling result directly from a
given sample instead of estimating a probability distribution and performing the sampling according to this.
The characteristics of a population are described by a sufficiently large sample. As the mathematical model
of a distribution function is not employed herein, conventional statistical estimations are dispensed with.
The concept of statistical estimation is applied in a generalized sense.

The starting point is the observed sample

S 0 =
{
s0,i, i = 1, ..., n0

}
(1)

of size n0 as a set of realizations s0,i = x0,i in Rnof the underlying continuous random vector X0 with
unknown properties. A second concrete sample

S 1 =
{
s1,k, k = 1, ..., n1

}
(2)

of a considerably larger size n1 À n0 is then sought that represents the original sample S 0 "as well as
possible". That is, the new sample S 1 is expected to exhibit statistical characteristics "comparable" to S 0.
This is realized by the following heuristic iterative approach with the superscript [.] indicating the iteration
step.
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1. The starting point is an arbitrary estimate

S [0]
1 =

{
s[0]
1,k, k = 1, ..., n1

}
(3)

for the sample S 1. This is broadly specified without consideration of the information contained in the
observed sample S 0. All sample elements s[0]

1,k = x[0]
1,k of S [0]

1 should possess the same information

content. That is, they should exhibit the same probability density f [0]
1 in their immediate surroundings,

∫

‖δ‖≤‖ε‖
f [0]
1

(
s[0]
1,p + δ

)
dδ =

∫

‖δ‖≤‖ε‖
f [0]
1

(
s[0]
1,q + δ

)
dδ (4)

∀ s[0]
1,p, s[0]

1,q ∈ S [0]
1 , ‖ε‖ ¿ 1.

This leads to the specification of S [0]
1 by continuous uniform distribution over a sufficiently large (phys-

ically meaningful), bounded domain D ⊂ Rn of possible (not excludable) realizations of the random
vector X0 represented by S 0,

(X1 ∼ U(D)) → S [0]
1 . (5)

2. The sample S [0]
1 is compared with the observed sample S 0. The purpose of this comparison is to obtain

a measure G[0] for the statistical dissimilarity between the samples S [0]
1 and S 0. For this dissimilarity

measure, a real valued function

G[.] = g
(
S 0, S [.]

1

)
:

(
S 0, S [.]

1

)
→ R (6)

is selected which yields a global minimum for G[.] if the samples S [.]
1 and S 0 are "as similar as possible"

in a statistical sense. That is, G[.] is intended to be minimal if S [.]
1 and S 0 originate from the same

population X with probability one,

P
(
S 0 ⊂ X ∧ S [.]

1 ⊂ X
)
→ 1 ⇒ G[.] ⇒ MIN. (7)

Due to the fact that intended application is for samples consisting of imprecise data, established statis-
tical test methods cannot be implemented.

3. The sample S [0]
1 is modified in such a way that a subset

S [0]−
1 =

{
s[0]−
1,k1

, ..., s[0]−
1,km1

}
⊂ S [0]

1 (8)

of m1 elements s[0]−
1,k (stipulated number with m1 ¿ n1) are specified by discrete uniform distribution

over the indices k of the elements s[0]
1,k of S [0]

1 ,

(
X− ∼ U(1, 2, ..., n1)

) → {k1, k2, ..., km1} , (9)
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and are removed from S [0]
1 to obtain the reduced sample

S [0]
1,red = S [0]

1 \ S [0]−
1 . (10)

As an replacement for the removed elements s[0]−
1,k , a set

S [0]+

1 =
{
s[0]+

1,k1
, ..., s[0]+

1,km1

}
(11)

of m1 new elements s[0]+

1,k are generated randomly – again with the aid of a uniform distribution over the
domain D of possible realizations specified in Step 1,

(X1 ∼ U(D)) → S [0]+

1 . (12)

Their union with the reduced sample S [0]
1,red then yields the modified sample

S [1]
1 = S [0]

1,red ∪ S [0]+

1 . (13)

Then, the measure value G[1] is computed for the modified sample S [1]
1 .

4. The measure values G[1] and G[0] are compared. If G[1] ≥ G[0], it is concluded that the modification in
Step 3 has not led to an improved estimation for S 1. The modification is then nullified,

S [0]
1 =

(
S [1]

1 \ S [0]+

1

)
∪ S [0]−

1 , (14)

and a repeat modification of S [0]
1 is carried out according to Step 3. If G[1] < G[0], on the other hand, the

modified sample S [1]
1 yields an improved estimation compared with S [0]

1 . The sample S [1]
1 is then taken

as the basis for the next iteration step and modified anew according to the rules in Step 3 to produce
S [2]

1 . Again, the result is assessed. This procedure is repeated with an iteration counter r for successful
modifications,

S [r+1]
1 =

{
s[r+1]
1,1 , ..., s[r+1]

1,k , ..., s[r+1]
1,n1

}
(15)

=
({

s[r]1,1, ..., s[r]1,k, ..., s[r]1,n1

}
\

{
s[r]

−
1,k1

, ..., s[r]
−

1,km1

})

∪
{
s[r]

+

1,k1
, ..., s[r]

+

1,km1

}
,

until it is no longer possible to obtain an improvement of S 1 beyond S [r]
1 . The dissimilarity measure G[r]

then attains its minimum value. As the configuration of S 1 that corresponds to the minimum of G[.] can
only be realized with probability zero (continuous case), a termination limit is defined for the probability
with which an improvement can be obtained. The iteration is terminated if the average success rate of
modifications attains a predefined and sufficiently small value. Finally, the sample S [r∗]

1 obtained from
the last successful modification is taken as the sampling result,

S 1 = S [r∗]
1 . (16)
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The random modifications of S [r]
1 within the iteration ensure that the goal sample S 1 is obtained as a random

sample in consistency with established sampling principles. By virtue of its general concept the model-free
sampling technique is a priori not limited in its applicability.

3. Real-Valued Samples

The model-free sampling technique is developed first, to apply for processing real-valued samples. The
samples are deemed real-valued in the sense that their elements are denoted by scalars or vectors consisting
of real numbers. This enables assessing the sampling results with the aid of established test methods. In this
manner, the effectiveness of the model-free sampling may be evaluated.

3.1. BASIC ASPECTS

The critical point of the proposed technique is to formulate an appropriate function for characterizing the
statistical dissimilarity G[.] between the samples S [.]

1 and S 0 in each iteration step r (see Step 2 in Section
2). This function G[.] according to Eq. (6) is required to possess the following four general properties:

1. The measure G[.] and established statistical test methods (homogeneity tests) must lead to basically
analogous propositions regarding the statistical dissimilarity between S [.]

1 and S 0. These propositions
must be free of contradictions.

2. The mathematical formulation of the dissimilarity measure G[.] must be extendable to apply for impre-
cise data in the form of fuzzy-valued samples. That is, the mathematical operations used in the definition
of G[.] for the real-valued case must possess appropriate counterparts in fuzzy arithmetics.

3. G[.] is required to decrease at least tendentiously with decreasing statistical dissimilarity between S [.]
1

and S 0. For samples S [.]
1 and S 0 originating from the same population the measure G[.] should take its

global minimum value, see Eq. (7).

4. The mathematical structure of the measure G[.] should be as simple as possible to ensure a fast numerical
evaluation and thus to keep the computational cost reasonably low.

To develop a measure G[.] that satisfies these requirements the following theoretical experiment is consid-
ered.

According to statistical estimation theory it is assumed that all available information is contained in the
observed sample S 0. Then, the best description of S 0 is its empirical distribution function F(e)

S0
(x), as

it is a complete and unique representation of the information in S 0. Moreover, in inferential statistics,
the empirical distribution function is one of the most powerful estimators. If this F(e)

S0
(x) is taken as the

basis for sampling to numerically generate the sample S 1 , and no smoothing is applied, the resulting
sample S 1 and the observed sample S 0 possess identical empirical distributions (in the limit),

lim
n1→∞

F(e)
S1

(x) = F(e)
S0

(x) . (17)
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This corresponds to two significant properties of the samples S 0 and S 1 with respect to each other. First,
the positions of the elements of S 0 and S 1 coincide. Second, each element of S 0 has the same number
of uniquely assigned elements from the sampling result S 1. In the case of an underlying continuous
random variable and an accordingly slightly smoothed empirical distribution F(e)

S0
(x), the elements

of the sampling result S 1 are obtained in a close neighborhood of the elements of S 0 with the same
assignment property. Sampling results generated in this manner are high quality representations of the
underlying sample S 0 as may be shown by applying a variety of two-sample tests of homogeneity.

The measure G[.] is thus formulated based on the configuration of the sampling result S 1 from the theoretical
experiment. This provides two criteria for monitoring the dissimilarity G[.] between S [.]

1 and S 0, which are
defined as an assignment criterion and a distance criterion.

3.2. ASSIGNMENT CRITERION

The assignment criterion evaluates some order in the element configuration in the samples S [.]
1 and S 0 with

respect to each other. Each element s0,i, i = 1, ..., n0 from sample S 0 is supposed to have the same number

nass

(
s0,i

)
of uniquely assigned elements s[.]1,k, k = 1, ..., n1 from sample S [.]

1 . The element assignment is
defined on the basis of the Euclidean distance

d
(
s0,i, s[.]1,k

)
=

∥∥∥s[.]1,k − s0,i

∥∥∥ (18)

between the respective elements s[.]1,k and s0,i. For each s[.]1,k one assigned element s0,i

(
s[.]1,k

)
is determined

with

s0,i

(
s[.]1,k

)
= s0,i | d

(
s0,i, s[.]1,k

)
= min

i=1, ..., n1

[
d

(
s0,i, s[.]1,k

)]
, (19)

see Figure 1. If Eq. (19) leads to a multiple assignment of elements s0,i to the same s[.]1,k, which occurs
with probability zero in the continuous case but can appear in the numerical procedure due to limited
computational precision, the element s0,i with the smallest index i is selected for the assignment. The number

nass

(
s0,i

)
may then be obtained by means of an indicator function,

nass

(
s0,i

)
=

n1∑

k=1

I
(
s0,i, s[.]1,k

)
, (20)

I
(
s0,i, s[.]1,k

)
=

{
1 if s0,i = s0,i

(
s[.]1,k

)

0 otherwise
. (21)

The target value for the number nass

(
s0,i

)
is given by the ratio of the sample sizes n1 and n0,

ntarget
ass

(
s0,i

)
=

n1

n0
. (22)
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elements s0,i from S0

elements s1,k from S1

distances d(s0,i(s1,k), s1,k)

[r][r]

[r] [r]

x1

x2

nass(s0,1) = 6

nass(s0,2) = 8

nass(s0,3) = 4

nass(s0,4) = 7

nass(s0,5) = 5

Figure 1. Assignment of sample elements

The assignment criterion is then defined as the total sum of the quadratic differences between the actual
numbers nass

(
s0,i

)
and the target value ntarget

ass

(
s0,i

)
,

C[.]
1 =

n0∑

i=1

(
nass

(
s0,i

)
− n1

n0

)2

⇒ MIN . (23)

The smallest possible value of C[.]
1 depends on the sample sizes n1 and n0. With the parameter

a ∈ N | a · n0 ≤ n1 < (a + 1) · n0 (24)

this limit is
min C1 = − 1

n0
(a · n0 − n1)

2 + n1 − a · n0 (25)

In the special case that the size n1of sample S [.]
1 is a whole multiple of the size n0 of S 0 the value min C1

is equal to zero.

3.3. DISTANCE CRITERION

The distance criterion supplements the assignment criterion by additionally evaluating the particular posi-
tions of the sample elements s[.]1,k and s0,i

(
s[.]1,k

)
with respect to each other. The distances between assigned

sample elements are supposed to be as small as possible. Specifically,
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C[.]
2 =

n1∑

k=1

d
(
s0,i

(
s[.]1,k

)
, s[.]1,k

)2 ⇒ MIN, (26)

with s0,i

(
s[.]1,k

)
specifying the assignment of s[.]1,k to s0,i determined with Eq. (19), see Figure 1. The smallest

possible value of the distance criterion is zero.

3.4. COMPOSING THE DISSIMILARITY MEASURE

To define the dissimilarity measure G[.] for real-valued samples S [.]
1 and S 0 the assignment criterion accord-

ing to Eq. (23) and the distance criterion according to Eq. (26) are combined. As a standard formulation, the
quantity

G[.] =
√

C[.]
1 + C[.]

2 (27)

is selected. An extension of Eq. (27) by introducing weighting factors for the criteria C[.]
1 and C[.]

2 has
been investigated in several numerical tests; it has not been found particularly effective for improving the
simulation results.

3.5. ASSEMBLING THE ITERATION PROCEDURE

The dissimilarity measure G[.] in Eq. (27) is implemented into the numerical procedure according to Steps
1 through 4 in Section 2. Moreover, the number m1 of elements, see Step 3, which are modified in each
iteration step, is not held constant during the iteration but varied frequently by a random selection of m1

from a predefined range of values [a, b] with the aid of a discrete uniform distribution,

(Xm1 ∼ U(a, a + 1, ..., b− 1, b)) → m1, a, b ∈ N. (28)

As an alternative to the random generation of the m1 new elements with the aid of a uniform distribution
according to Eq. (12), the (slightly smoothed) current empirical distribution F(e)

S
[r]
1

(x) of the sample S [r]
1 from

the last successful modification r can be used for a kind of bootstrap sampling,
(

X1 ∼ F(e)

S
[r]
1

(x)
)
→ S [r]+

1 . (29)

In this manner, use is made of the statistical information already gathered in S [r]
1 during the iteration, which

leads to an increase of numerical efficiency. The termination limit in Step 4 is chosen to be 2% and is applied
to the moving average of the recent 100 successful iteration steps.

4. Samples of Imprecise Data

4.1. MODELING IMPRECISE DATA

For dealing with imprecise data, we must select a suitable data model that combines the benefits of the
well-established probabilistic approach with an appropriate modeling of non-frequentative uncertainty or
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imprecision. From the class of available uncertainty models in this context, the concept of fuzzy random
variables originally presented in (Kwakernaak, 1978) is selected for further investigation. This model pos-
sesses the advantage of simultaneously covering the models of real-valued random variables, intervals, fuzzy
sets, rough sets, random sets, and convex models as special cases.

To define a fuzzy random variable the probability space [X, S, P] is extended by the dimension
fuzziness. If the space of the random elementary events, as in probabilistics, is described by Ω, a fuzzy
random vector X̃ on the fundamental set X = Rn may be defined as the fuzzy result of the mapping

Ω → F (Rn) (30)

where F (Rn) is the set of all fuzzy numbers in Rn. An ordered n-tupel of fuzzy numbers x̃i is assigned to
each (crisp) elementary event ω ∈ Ω. Every n-tupel x̃ (ω) = (x̃1, ..., x̃n) ⊆ X is a realization of the fuzzy
random vector X̃. Both objective and subjective information are accounted for simultaneously. The theory
of fuzzy random variables permits the modeling of uncertain structural parameters which partly exhibit
randomness but which cannot be described using real-valued random variables without an element of doubt.
The randomness is "disturbed" by a fuzziness component.

A comprehensive discussion on fuzzy randomness particularly with regard to engineering problems
may be found in (Möller and Beer, 2004). In this context the concepts of fuzzy structural analysis, see also
(Möller et al., 2000), and fuzzy probabilistic safety assessment, see also (Möller et al., 2003), describe
the processing of uncertain structural parameters with the aid of numerical procedures. This basis ensures
an appropriate evaluation or further processing of the results from model-free sampling of fuzzy random
variables within the framework of structural analysis and safety assessment.

The model-free sampling technique is extended to apply for fuzzy samples by implementing the un-
certainty model fuzzy randomness into the basic procedure according to Section 2. Due to the generalized
character of this uncertainty model, the capability of processing real-valued samples is hereby preserved as
a special case.

4.2. EXTENSION OF CRITERIA C[.]
1 AND C[.]

2

As the starting point for the extension of the model-free sampling technique to processing imprecise data,
these data are described with the aid of Fuzzy Set Theory (Zimmermann, 1992). Each imprecise observation,
which represents a sample element as a realization of an underlying fuzzy random vector X̃, is modeled as
a normalized fuzzy set or fuzzy vector s̃ = x̃ ∈ F (Rn) with the membership function µs (s), see Figure 2.
The real-valued samples S 0 and S 1 from Eqs. (1) and (2) therewith become fuzzy samples,

S̃ 0 =
{
s̃0,i, i = 1, ..., n0

}
, (31)

S̃ 1 =
{
s̃1,k, k = 1, ..., n1

}
, (32)

with the underlying fuzzy random vector X̃0 for S̃ 0.
The processing of the fuzzy samples S̃ 0 and S̃

[.]
1 within the procedure according to Steps 1 through 4 in

Section 2 requires the extension of the dissimilarity measure G[.] and thus of the criteria C[.]
1 and C[.]

2 to apply

for fuzzy vectors s̃0,i and s̃[.]1,k as elements of S̃ 0 and S̃
[.]
1 . As a basis a suitable replacement for the Euclidean
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distance d
(
s0,i, s[.]1,k

)
in Eq. (18) must be introduced as a distance measure between fuzzy vectors s̃0,i and

s̃[.]1,k. For this purpose the fuzzy vectors s̃0,i and s̃[.]1,k are represented with the aid of α-discretization, see

Figure 2. For a sufficiently high number of α-levels the fuzzy vectors s̃0,i and s̃[.]1,k are completely described

by the sets of their α-level sets s0,i,α and s[.]1,k,α, respectively. Specifically, for real numbers α ∈ (0, 1],

s0,i,α=
{

s ∈ Rn |µs0,i
(s) ≥ α

}
, (33)

s [.]
1,k,α=

{
s ∈ Rn |µ

s
[.]
1,k

(s) ≥ α

}
, (34)

and

s̃0,i =
{(

s0,i,α, µs0,i
(s0,i,α)

)
|µs0,i

(s0,i,α)= α ∀ α ∈ (0, 1]
}

, (35)

s̃[.]1,k =
{(

s [.]
1,k,α, µ

s
[.]
1,k

(s [.]
1,k,α)

)
|µ

s
[.]
1,k

(s [.]
1,k,α)= α ∀ α ∈ (0, 1]

}
. (36)

1.0

0.0 "-level set s"" membership
function µs(s)

s" l s" r

Figure 2. α-discretization of a fuzzy variable

On this basis, the distance dF

(
s̃0,i, s̃[.]1,k

)
between the fuzzy vectors s̃0,i and s̃[.]1,k may be defined by

recombining the distances dH

(
s0,i,α, s[.]1,k,α

)
between the associated α-level sets s0,i,α and s[.]1,k,α (for the

same α-level). Specifically, the metric

dF

(
s̃0,i, s̃[.]1,k

)
=

α=1∫

α=+0

dH

(
s0,i,α, s[.]1,k,α

)
dα (37)

is applied, see (Körner, 1997), which makes use of the Hausdorff metric

dH

(
s0,i,α, s[.]1,k,α

)
= max

[
d[.]

H1,i,k, d[.]
H2,i,k

]
,
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d[.]
H1,i,k

(
s0,i,α, s[.]1,k,α

)
= sup

s0∈s0,i,α

inf
s1∈s

[.]
1,k,α

[d (s0, s1)] , (38)

d[.]
H2,i,k

(
s0,i,α, s[.]1,k,α

)
= sup

s1∈s
[.]
1,k,α

inf
s0∈s0,i,α

[d (s0, s1)] ,

between the associated α-level sets s0,i,α and s[.]1,k,α with d (s0, s1) being the Euclidean distance between

crisp elements s0 and s1 from s0,i,α and s[.]1,k,α, respectively, see Figure 3. The outcome of Eq. (38) and hence

the distance dF

(
s̃0,i, s̃[.]1,k

)
from Eq. (37) are crisp values, which can be directly applied in Eqs. (19) and

(26) to eventually compute criteria C[.]
1 and C[.]

2 .
The application of criteria C[.]

1 and C[.]
2 to evaluate the dissimilarity of fuzzy-valued samples enables

a consideration of the order in the element configuration and the distance between the respective sample
elements. Dissimilarities in the fuzziness of the elements s̃0,i and s̃[.]1,k, however, are taken into account only

to a partial degree. In addition to the criteria C[.]
1 and C[.]

2 , the fuzziness of the realizations provides a basis
for a third dissimilarity criterion.

Figure 3. Hausdorff metric applied to α-level sets

4.3. FUZZINESS CRITERION

The fuzziness criterion evaluates the matching in the fuzziness of the respective fuzzy sample elements
s̃0,i and s̃[.]1,k. Fuzzy sample elements that are assigned to each other according to the assignment rule Eq
(19) are supposed to exhibit the same fuzziness. For this purpose, the fuzziness of the sample elements is
computed with an analog to Shannon’s entropy applied to the membership functions µ(s0,i) = µs0,i

(s) and

µ(s[.]1,k) = µ
s
[.]
1,k

(s) of s̃0,i and s̃[.]1,k, respectively. For the fuzzy vector s̃, this uncertainty measure is defined as

Hu = −k ·
∫

s

g (µ (s)) ds,

g (µ (s)) = µ (s) · ln (µ (s)) + (1− µ (s)) · ln (1− µ (s)) . (39)

And the fuzziness criterion is

C[.]
3 =

n1∑

k=1

(
Hu

(
s̃0,i

(
s̃[.]1,k

))
−Hu

(
s̃[.]1,k

))2 ⇒ MIN. (40)
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For a "perfect matching", the fuzziness criterion C[.]
3 becomes zero.

4.4. PROCEDURE FEATURES FOR IMPRECISE DATA

The generation and the iterative modification of a fuzzy sample S̃
[.]
1 require not only determining the position

of the sample elements s̃[.]1,k but also specifying their membership functions µ(s[.]1,k). New fuzzy realizations

s̃[.]1,k are generated in the following three steps.

1. The mean values
s[.]1,k,µ=1 = s[.]1,k ∈ s̃[.]1,k | µ(s[.]1,k) = 1 (41)

of the fuzzy sample elements s̃[.]1,k (different from the definition of a statistical mean value, see (Zimmer-

mann, 1992)) are specified analogous to the crisp sample elements s[.]1,k of the S [.]
1 in Eqs. (5), (12), and

(29). That is, the initialization is realized with

(X1 ∼ U(D)) →
{
s[0]
1,k,µ=1, k = 1, ..., n1

}
, (42)

and during the iteration

(X1 ∼ U(D)) →
{
s[r]

+

1,k,µ=1, k = k1, ..., km1

}
(43)

or, alternatively, (
X1 ∼ F(e)

S
[r]
1,µ=1

(x)
)
→

{
s[r]

+

1,k,µ=1, k = k1, ..., km1

}
(44)

are applied, in which F(e)

S
[r]
1,µ=1

(x) represents the smoothed empirical distribution of the mean values

s[r]1,k,µ=1 in the fuzzy sample S̃
[r]
1 in iteration step r.

2. The fuzziness Hu

(
s̃[.]1,k

)
is determined by means of a logarithmic normal distribution F(log) (Hu) es-

timated from the fuzziness Hu

(
s̃0,i

)
of the fuzzy sample elements s̃0,i in the observed fuzzy sample

S̃ 0, {
Hu

(
s̃0,i

)
, i = 1, ..., n0

}
→ F(log) (Hu) , (45)

(
XH ∼ F(log) (Hu)

)
→

{
Hu

(
s̃[0]
1,k

)
, k = 1, ..., n1

}
, (46)

(
XH ∼ F(log) (Hu)

)
→

{
Hu

(
s̃[r]

+

1,k

)
, k = k1, ..., km1

}
. (47)

3. The shape of the membership function µ(s[.]1,k) is also randomly specified according to the ”empirical
distribution” of the shape of µ(s0,i) in S̃ 0. This is realized with the aid of a parametric representation of
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the fuzzy sample elements s̃0,i and s̃[.]1,k in a zero-mean (in fuzzy terminology, see (Zimmermann, 1992))
form normalized to a unit maximum spread tr. In general terms,

t̃ = s̃− sµ=1, (48)

t̃(n) =
1
tr
· t̃, tr = max

t|µ(t)>0
‖t‖ , (49)

µ
(
t(n)

)
= µ

(
p1, ..., pnp

)
. (50)

The ”empirical distribution” of the shape is then represented by the smoothed joint empirical distribution
of the parameters p1, ..., pnp ,

t̃0,i = s̃0,i − s0,i,µ=1, i = 1, ..., n0, (51)

t̃(n)
0,i =

1
tr,0,i

· t̃0,i, tr,0,i = max
t|µ(t0,i)>0

‖t‖ , i = 1, ..., n0, (52)

{
µ

(
t(n)
0,i

)
, i = 1, ..., n0

}
→

(
F(e) (

p1, ..., pnp

))
. (53)

The random shape of new elements s̃[.]1,k is determined according to
(
Xp ∼ F(e) (

p1, ..., pnp

)) →
{
µ

(
t(n) [0]
1,k

)
, k = 1, ..., n1

}
(54)

and (
Xp ∼ F(e) (

p1, ..., pnp

)) →
{
µ

(
t(n) [r]+

1,k

)
, k = k1, ..., km1

}
, (55)

respectively. The obtained new normalized fuzzy elements t(n) [0]
1,k and t(n) [r]+

1,k are backtransformed
inverse to Eqs. (48) and (49),

s̃[0]
1,k = t(n) [0]

1,k · t′r,k + s[0]
1,k,µ=1, k = 1, ..., n1, (56)

s̃[r]
+

1,k = t(n) [r]+

1,k · t′r,k + s[r]
+

1,k,µ=1, k = k1, ..., km1 , (57)

with s[0]
1,k,µ=1 and s[r]

+

1,k,µ=1 from Eqs. (42) and (43) or (44). The spread factors t′r,k are obtained implicitely

by the fuzziness Hu

(
s̃[0]
1,k

)
and Hu

(
s̃[r]

+

1,k

)
, respectively, specified according to Eqs. (46) and (47).

The consideration of fuzzy samples requires incorporating the criterion C[.]
3 into the iterative procedure. Tests

have shown that it is effective to perform the iteration for fuzzy samples in two parts. In the first part, only
the criteria C[.]

1 and C[.]
2 are satisfied. Subsequently, the obtained element assignment and the mean value

positions are frozen. In the second part, criterion C[.]
3 is applied in a separate fuzziness iteration. That is, in

the second iteration part, only the Hu

(
s̃[.]1,k

)
and the shape of the membership functions of the fuzzy sample

elements s̃[.]1,k are adjusted. The iteration termination criterion is also applied separately in both iteration
parts.
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5. Application to Structural Engineering Problems

5.1. GENERAL APPLICATION SCHEMES

The general concept of model-free sampling provides a beneficial basis for a coupling with structural
engineering computations in various ways. Generally, the following application schemes can be pursued
– separately or combined.

5.1.1. Processing of input data
Model-free sampling can be applied to crisp or imprecise input data of structural computations, in particular,
if the available data are rare, and a probabilistic model is not known to a sufficient degree of confidence.
The sampling result S 1

input or S̃ 1
input then reflects the stochastic or fuzzy stochastic properties of the input

data in the form of a numerically generated data set of crisp or imprecise input vectors for further processing
in structural computations. This is equivalent to the result of a Monte Carlo simulation based on a known
probabilistic model for the input quantities. The coupling to structural computations can be realized as
follows.

− The sampling result S input
1 or S̃ 1

input can be directly used for a subsequent stochastic or fuzzy stochas-
tic structural analysis to compute stochastic or fuzzy stochastic structural responses. It represents the
input sample, which contains n1 input vectors sinput

1,k or s̃input
1,k for a subsequent n1-fold structural analy-

sis. In the case of samples comprising imprecise data, the generalized uncertainty processing algorithms
presented in (Möller and Beer, 2004) may be applied. As results fuzzy probabilistic structural responses
are obtained, which are characterized by imprecise probability distributions with fuzzy parameters such
as a fuzzy mean and a fuzzy variation.

− As a postprocessing attached to a stochastic or fuzzy stochastic structural analysis based on the gener-
ated sample S input

1 or S̃ 1
input, a safety assessment can be carried out by evaluating limit states in the

result space, which may be advantageous if limit state surfaces cannot be specified in the input space
for some reason. This is simply realized by counting those sample elements in the stochastic or fuzzy
stochastic structural responses, which lead to failure according to the defined limit states. The result is
obtained as a failure probability or a fuzzy failure probability. As a difference to traditional methods,
this procedure can involve imprecise sample elements, which is explained in Section 5.2.

− In contrast to the latter, a safety assessment can also be performed by evaluating limit state surfaces
in the input space. This is particularly useful if the underlying structural analysis to produce structural
responses is computationally expensive, and the limit state surfaces can be described in the space of the
structural input parameters, for example, within the framework of a response surface method. Again,
counting of the elements in the failure domain – with an evaluation of imprecise data according to
Section 5.2 – yields a failure probability or a fuzzy failure probability.

5.1.2. Processing of result data
The model-free sampling technique can also be used for processing result data from structural computations.
This can be instrumental if the set of structural response data is limited and cannot be described with a
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probabilistic model on a satisfying confidence level. Also, in the case of imprecise measurements of struc-
tural responses this method may be helpful. The stochastic or fuzzy stochastic properties of the structural
responses are then described with the aid of the numerical sampling result S 1

result or S̃ 1
result of a sufficiently

large size n1 – equivalent to the outcome from a Monte Carlo simulation with a sufficiently high number n1

of structural analyses. As a prerequisite for obtaining reliable results in this manner, the underlying sample
of structural responses must comprise essential information about the properties of the computational model.
That is, physical, mechanical, or chemical phenomena that are effective in the underlying structural analysis
must be already reflected in the sample of structural responses for being reproduced in a subsequent model-
free sampling and thus in the final result result S 1

result or S̃ 1
result. In correspondence with Section 5.1.1,

the following two approaches can be pursued for a coupling to structural computations.

− The uncertain structural responses from stochastic or fuzzy stochastic structural analysis can be in-
troduced into model-free sampling to obtain a sufficiently large sample size n1 for describing crisp
or imprecise probability distributions of the responses empirically instead of performing a weak and
ambiguous distribution estimation.

− For a safety assessment, limit states in the result space can be directly evaluated with the aid of the
sampling result S 1

result or S̃ 1
result. For the technique of counting fuzzy sample elements in the failure

domain, see Section 5.2.

5.2. RELIABILITY ASSESSMENT FOR IMPRECISE DATA

The application of model-free sampling may be particularly useful in reliability assessment as the available
data do usually not cover failure domains. It is thus of great interest in this application field to reproduce the
tails of the underlying probability distributions to obtain reliable estimations of failure probabilities.

Structural reliability assessment based on model-free sampling is realized as a straightforward exten-
sion to traditional methods. The sampling result S 1 or S̃ 1 is directly evaluated with regards to the limit
states either in the input space or in the result space, see Section 5.1. That is, the structural reliability is
determined by counting the sample elements that lead to failure. For dealing with imprecise data, however,
this counting needs to be extended in an appropriate manner, see (Möller and Beer, 2004). Due to their
fuzziness, some fuzzy sample elements s̃1,k lie only partly in the failure domain S f , or, in the case of an
underlying computational model that involves model uncertainty as fuzziness (Möller et al., 2003), in the
fuzzy failure domain S̃ f . This leads to a fuzzy failure probability P̃f . For computing P̃f α-discretization is
applied again, see Section 4.2. Specifically,

P̃f = {(Pf,α, µ (Pf,α))} ,

Pf,α = [Pf,α l, Pf,α r] , (58)
µ (Pf,α) = α ∀ α ∈ (0, 1].

The interval bounds Pf,α l and Pf,α r (see Figure 2 for general illustration) are calculated with the aid of
indicator functions and particular conditions for evaluating fuzzy realizations, see (Möller and Beer, 2004).
Specifically,

Pf,α l = 1
n1
·∑n1

k=1 Iα l

(
s̃1,k

)
,
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Iα l

(
s̃1,k

)
=

{
1 if s1,k,α ⊆ S f,α

0 otherwise , (59)

and

Pf,α r = 1
n1
·∑n1

k=1 Iα r

(
s̃1,k

)
,

Iα r

(
s̃1,k

)
=

{
1 if s1,k,α ∩ S f,α 6= ∅
0 otherwise . (60)

6. Examples

6.1. REAL-VALUED DATA

6.1.1. Sampling
A one-dimensional real-valued sample S0 of size n0 = 200 is taken as the basis, see Figure 4. This is
numerically generated from a compound distribution consisting of two extreme value distributions of Ex-
Max type I. The extreme values of the sample S0 are min s0 = 5.1 and max s0 = 21.55.

An initial estimate S [0]
1 is numerically generated according to Eq. (5) by uniformly distributing n1 =

10, 000 sample elements s1,k over the interval D = [0, 25], see Figure 4. Then, the iteration Eq. (15) to
improve the generalized estimation S [0]

1 is started. The number m1 of modified elements is randomly selected
from the interval [a, b] = [5, 30], see Eq. (28), and frequently changed during the iteration. For generating
the new elements s[.]

+

1,k the bootstrap-like method of Eq. (29) is applied. After about r = 4, 000 iteration
steps the average success rate starts decreasing distinctly and attains the termination limit in iteration step
r = 4, 710, see Figure 4.

Clearly, there is no visible difference between the empirical distribution functions of the samples S0 and
S1 = S [4,710]

1 . Homogeneity tests (Kolmogorov-Smirnov, Mann-Whitney, and chi-squared) yield rejection
probabilities of P < 0.012 for the H0-hypothesis that both samples originate from the same population. The
tails of the generated sample S1 run beyond the extreme values of S0 with min s1 = 3.26 and max s1 =
24.01. A total of 39 elements s1,k are smaller than min s0 = 5.1 and, and 48 elements s1,k are bigger
than max s0 = 21.55. The proportions of S1 therewith correspond to an extreme value distribution with
a thicker tail on the right side than on the left side. Fisher’s exact probability test yields a probability of
P = 0.386 with which the H0-hypothesis is not rejected. Further, the sampling result S1 shows no clumping
of the generated sample elements s1,k around the original sample elements s0,i, which has been verified by
investigating the distribution of the elements s1,k within the ”gaps” between the original elements s0,i.

Results generated via traditionally estimated probability distributions did not attain the quality level of
the present sample S1. Kernel-based estimation methods led to samples showing test results comparable to
the present approach. Their tails, however, did not run significantly beyond min s0 = 5.1 and max s0 =
21.55 and were pre-determined in their form depending on the (subjectively) selected kernels. The same
applies to even generalized bootstrap methods. In contrast to that, the tails of S1 from model-free sampling
are not influenced by subjectivity and obtained in a form with orientation to the structure of the underlying
sample S0, which possesses significant importance in reliability assessment.
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25.00

empirical probability
distribution functions average success rate
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1

iteration step r
1 4,000 4,710

0

1

0.00
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S1
[4,710]

S1
[0]

S0

Figure 4. Empirical distribution functions of S0, S [0]
1 , and S

[4,710]
1 ; average success rate (last 100 steps) during iteration

6.1.2. Reliability assessment
The reliability assessment is pursued by directly evaluating the sampling result S1 with respect to a given
limit state surface. Since the related procedures are well-known, these are not highlighted in the example.
Herein, it is focused on the dependency of the assessment result on the quality of the sampling result.

For demonstration, the observed sample S0 is interpreted as a possible record of a live load s resulting
from road traffic and acting on a structural member of a road bridge. The sampling result S1 then represents a
statistical loading prognosis for future traffic. For defining a limit state surface, the serviceability requirement
s = 22 is defined.

The empirical failure probability obtained from sample S0 is Pf = 0, whereas the sampling result S1

yields Pf = 3.4 · 10−3. A compound probability distribution estimated from S0 without additional prior
knowledge leads to Pf = 1.7 ·10−3. According to the underlying extreme value distribution Pf = 8.9 ·10−3

is obtained. These results indicate a good agreement between the prognoses from traditional approaches and
from model-free sampling.

6.2. IMPRECISE DATA

6.2.1. Sampling
As a starting point the sample S0 from Section 6.1 is "fuzzified" to represent an uncertain measurement
series, for example, of a live load, see Section 6.1.2. That is, the underlying bimodal distribution from
Section 6.1.1 is retained for the mean values s0,i,µ=1. The resulting fuzzy sample S̃0 consists of n0 = 200
fuzzy triangular numbers with fluctuating fuzziness Hu (s̃0,i) over the sample elements s̃0,i; for relevant
concepts and terminology see (Bandemer and Näther, 1992) and (Möller and Beer, 2004). An initial estimate
S̃ [0]

1 of size n1 = 10, 000 is generated in compliance with Section 4.4 starting from uniformly distributed
mean values s[0]

1,k,µ=1 and restricting the fuzzy sample elements completely to s̃[0]
1,k ⊆ [0, 25], see Figure 5.

Again, the iteration in carried out with a randomly selected number m1 ∈ [5, 30] of modified elements. First,
the dissimilarity measure G[.]

(
C[.]

1 , C[.]
2

)
, see Eq. (27) with the extension from Section 4.2, is minimized in

5,990 iteration steps. The empirical fuzzy probability distributions of S̃0 and S̃ [5,990]
1 agree very well. How-

ever, there is almost no correspondence between the fuzziness Hu (s̃0,i) and Hu

(
s̃[5,990]
1,k

)
of the respective
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fuzzy sample elements, see Figure 5. The subsequent fuzziness iteration (minimization of criterion C[.]
3 up

to iteration step r = 16,150) almost does not affect the empirical distribution, but improves considerably the
fuzziness agreement, see Figure 5.

0

1
empirical fuzzy probability distribution functions

S0

S1
[0]

S1
[5,990]

S1
[16,150]

0
0

s0

fuzziness Hu

25

8
25

Hu(s1
[5,990])~

Hu(s1
[16,150])~

Hu(s0)

~

~

~

~

0

µ = 0
µ = 1

0
0

s1

fuzziness Hu

25

8

0
0

s1

fuzziness Hu

25

8

Figure 5. Empirical fuzzy probability distribution functions of S̃0, S̃
[0]
1 , S̃

[5,990]
1 , and S̃

[16,150]
1 ; fuzziness Hu of the associated

fuzzy sample elements

6.2.2. Reliability assessment
The serviceability requirement s = 22 specified in Section 6.1.2 is evaluated with the fuzzy samples S̃0 and
S̃1 = S̃ [16,150]

1 . The fuzzy failure probability P̃f is computed according to Eqs. (58), (59), and (60) with
eleven α-levels, see Figure 6. Whereas sample S̃0 yields an almost useless result with an overestimated
fuzziness, sample S̃1 leads to a more meaningful result. The probability values covered by P̃f from S̃1 again
comprise a reasonable range with respect to the results from traditional estimations and from the underlying
distribution for the mean values s0,i,µ=1 presented in Sect. 6.1.2.

7. Conclusions

The presented model-free sampling technique may be useful if the data bank comprises, solely, a small sam-
ple with uncertain or imprecise elements. It operates free of a probability model, is capable of considering
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1
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10–4 10–3 10–2

obtained from S0

~
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~

1
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Figure 6. Empirical fuzzy failure probability obtained from S̃0 and from S̃1

randomness and non-stochastic uncertainty simultaneously, and can be attached to engineering computations
that involve uncertainty in various schemes.

Beyond the demonstrated capabilities in the one-dimensional case, promising experiences have al-
ready been made in processing vector valued data including nonlinear stochastic dependencies. A further
consideration of multidimensional problems for fuzzy valued data is pursued.
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Abstract: Early in the engineering design cycle, it is difficult to quantify product reliability or 
compliance to performance targets due to insufficient data or information for modeling the 
uncertainties. Design decisions are therefore, based on fuzzy information that is vague, imprecise 
qualitative, linguistic or incomplete. The uncertain information is usually available as intervals 
with lower and upper limits. In this paper, the possibility and evidence theories are used to 
account for uncertainty in design with incomplete information. The formal theories to handle 
uncertainty are first introduced using the theoretical fundamentals of fuzzy measures. The first 
part of the paper highlights how the possibility theory can be used in design. A computationally 
efficient and accurate hybrid (global-local) optimization approach is used to calculate the 
confidence level of “fuzzy” response combining the advantages of the commonly used vertex and 
discretization methods. A possibility-based design optimization method is proposed where all 
design constraints are expressed possibilistically. It is shown that the method gives a conservative 
solution compared with all conventional reliability-based designs obtained with different 
probability distributions. Also, a general possibility-based design optimization method is 
presented which handles a combination of random and possibilistic design variables. The second 
part of the paper describes a design optimization method using evidence theory. The method can 
be used when limited and often conflicting, information is available from “expert” opinions. A 
computationally efficient design optimization formulation is presented, which can handle a 
mixture of epistemic and random uncertainties. It quickly identifies the vicinity of the optimal 
point and the active constraints by moving a hyper-ellipse in the original design space, using a 
reliability-based design optimization (RBDO) algorithm. Subsequently, a derivative-free 
optimizer calculates the evidence-based optimum, starting from the close-by RBDO optimum, 
considering only the identified active constraints. The computational cost is kept low by first 
moving to the vicinity of the optimum quickly and subsequently using local surrogate models of 
the active constraints only. Two numerical examples demonstrate the application of possibility 
and evidence theories in design and highlight the trade-offs among reliability-based, possibility-
based and evidence-based designs.   
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1. INTRODUCTION 
 
Engineering design under uncertainty has recently gained a lot of attention. Uncertainties are 
usually modeled using probability theory. In Reliability-Based Design Optimization (RBDO), 
variations are represented by standard deviations which are typically assumed constant, and a 
mean performance is optimized subject to probabilistic constraints (Tu, Choi and Park, 1999; 
Liang, Mourelatos and Tu, 2004; Wu, Shin, Sues and Cesare, 2001; Lee, Yang and Ruy, 2002; 
Youn, Choi and Park, 2001). In general, probability theory is very effective when sufficient data 
is available to quantify uncertainty using probability distributions. However, when sufficient data 
is not available or there is lack of information due to ignorance, the classical probability 
methodology may not be appropriate. For example, during the early stages of product 
development, quantification of the product’s reliability or compliance to performance targets is 
practically very difficult due to insufficient data for modeling the uncertainties. A similar problem 
exists when the reliability of a complex system is assessed in the presence of incomplete 
information on the variability of certain design variables, parameters, operating conditions, 
boundary conditions etc.  
 Uncertainties can be classified in two general types; aleatory (stochastic or random) and 
epistemic (subjective) (Oberkampf, Helton, and Sentz, 2001; Sentz and Ferson, 2002; Klir and 
Yuan, 1995; Klir and Filger, 1988; Yager, Fedrizzi and Kacprzyk, 1994) Aleatory or irreducible 
uncertainty is related to inherent variability and is efficiently modeled using probability theory. 
However, when data is scarce or there is lack of information, the probability theory is not useful 
because the needed probability distributions cannot be accurately constructed. In this case, 
epistemic uncertainty, which describes subjectivity, ignorance or lack of information, can be 
used. Epistemic uncertainty is also called reducible because it can be reduced with increased state 
of knowledge or collection of more data.  
 Formal theories to handle uncertainty have been proposed in the literature including evidence 
theory (or Dempster – Shafer theory) (Klir and Filger, 1988; Yager, Fedrizzi and Kacprzyk, 
1994], possibility theory [Dubois and Prade, 1988) and interval analysis (Moore, 1966). Two 
large classes of fuzzy measures, called belief and plausibility measures, respectively, characterize 
the mathematical theory of evidence. They are mutually dual in the sense that one of them can be 
uniquely determined from the other. Evidence theory uses plausibility and belief (upper and lower 
bounds of probability) to measure the likelihood of events. When the plausibility and belief 
measures are equal, the general evidence theory reduces to the classical probability theory. 
Therefore, the classical probability theory is a special case of evidence theory. 
Possibility theory handles epistemic uncertainty if there is no conflicting evidence among experts 
(Klir and Filger, 1988). It uses a special subclass of dual plausibility and belief measures, called 
possibility and necessity measures, respectively. In possibility theory, a fuzzy set approach is 
common, where membership functions characterize the input uncertainty (Zadeh, 1965). Even if a 
probability distribution is not available due to limited information, lower and upper bounds 
(intervals) on uncertain design variables are usually known. In this case, interval analysis (Moore 
1966; Muhanna and Mullen, 2001; Mullen and Muhanna, 1999) and fuzzy set theory (Zadeh, 
1965) have been extensively used to characterize and propagate input uncertainty in order to 
calculate the interval of the uncertain output. An efficient method for reliability estimation with a 
combination of random and interval variables is presented in (Penmetsa and Grandhi, 2002). 
However, it is not implemented in a design optimization framework. A few design optimization 

REC 2006 - Zissimos P. Mourelatos and Jun Zhou 



Non-Probabilistic Design Optimization with Insufficient Data using Possibility and Evidence Theories 393 

studies have been also reported, where some or all of the uncertain design variables are in interval 
form (Du and Sudjianto, 2003; Rao and Cao, 2002; Gu and batill, 1998). 
 Optimization with input ranges has also been studied under the term anti-optimization 
(Elishakoff, Haftka and Fang, 1994; Lombardi and Haftka, 1998). Anti-optimization is used to 
describe the task of finding the “worst-case” scenario for a given problem. It solves a two-level 
(usually nested) optimization problem. The outer level performs the design optimization while the 
inner level performs the anti-optimization. The latter seeks the worst condition under the interval 
uncertainty (Lombardi and Haftka, 1998). A decoupled approach is suggested in (Lombardi and 
Haftka, 1998) where the design optimization alternates with the anti-optimization rather than 
nesting the two. It was mentioned that this method takes longer to converge and may not even 
converge at all if there is strong coupling between the interval design variables and the rest of the 
design variables. A “worst-case” scenario approach using interval variables has also been 
considered in multidisciplinary systems design [(Gu and Batill, 1998; Du and Chen, 2000).  
 Very recently, possibility-based design algorithms have been proposed (Mourelatos and 
Zhou, 2005; Choi, Du and Youn, 2004) where a mean performance is optimized subject to 
possibilistic constraints. It was shown that more conservative results are obtained compared with 
the probability-based RBDO. A comprehensive comparison of probability and possibility theories 
is given in (Nikolaidis, Chen, Cudney, Haftka and Rosca, 2004) for design under uncertainty. 
 Evidence theory is more general than probability and possibility theories, even though the 
methodologies of uncertainty propagation are completely different (Oberkampf and Helton, 2002; 
Bae, Grandhi and Canfield, 2004). It can be used in design under uncertainty if limited, and even 
conflicting, information is provided from experts. Furthermore, the basic axioms of evidence 
theory allow to combine aleatory (random) and epistemic uncertainty in a straightforward way 
without any assumptions (Bae, Grandhi and Canfield, 2004). Evidence theory however, has been 
barely explored in engineering design. One of the reasons may be its high computational cost due 
mainly to the discontinuous nature of uncertainty quantification. Evidence-based methods have 
been only recently used to propagate epistemic uncertainty (Bae, Grandhi and Canfield, 2004; 
Bae, Grandhi and Canfield, 2004) in large-scale engineering systems. Although a computationally 
efficient method is proposed in (Bae, Grandhi and Canfield, 2004; Bae, Grandhi and Canfield, 
2004], the design issue is not addressed. We are aware of only one study which propagates 
epistemic uncertainty using evidence theory and also performs a design optimization (Agarwal, 
Renaud, Preston and Padmanabhan, 2004). The optimum design is calculated for 
multidisciplinary systems under uncertainty using a trust region sequential approximate 
optimization method with surrogate models representing the uncertain measures as continuous 
functions. 
 In this paper, the possibility and evidence theories are used to account for uncertainty in 
design with incomplete information. The formal theories to handle uncertainty are first introduced 
using the theoretical fundamentals of fuzzy measures. The first part of the paper highlights how 
the possibility theory can be used in design. A computationally efficient and accurate hybrid 
(global-local) optimization approach is presented for calculating the confidence level of “fuzzy” 
response, combining the advantages of the commonly used vertex and discretization methods. A 
possibility-based design optimization method is subsequently described where all design 
constraints are expressed possibilistically. The method gives a conservative solution compared 
with all conventional reliability-based designs obtained with different probability distributions. 
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Also, a general possibility-based design optimization method is presented which handles a 
combination of random and possibilistic design variables. 
 In the second part of the paper, a computationally efficient design optimization method is 
proposed based on evidence theory, which can handle a mixture of epistemic and random 
uncertainties. The method can be used when limited and often conflicting, information is 
available from “expert” opinions. The algorithm quickly identifies the vicinity of the optimal 
point and the active constraints by moving a hyper-ellipse in the original design space, using an 
RBDO algorithm. Subsequently, a derivative-free optimizer calculates the evidence-based 
optimum, starting from the close-by RBDO optimum, considering only the identified active 
constraints. The computational cost is kept low by first moving to the vicinity of the optimum 
quickly and subsequently using local surrogate models of the active constraints only. 
 The paper is organized as follows. Section 2 gives an introduction to fuzzy measures. Section 
3 describes the fundamentals of possibility theory based on fuzzy measures as well as some 
numerical methods for propagating non-probabilistic uncertainty, which are essential in 
possibility-based design. A detailed formulation of Possibility-Based Design Optimization 
(PBDO) where design constraints are satisfied possibilistically, is presented in section 4. Section 
5 presents a detailed formulation of an Evidence-Based Design Optimization (EBDO) method 
and its implementation. All principles are demonstrated with examples in section 6. Results are 
compared among deterministic optimization, RBDO, PBDO and EBDO. Finally, a summary and 
conclusions are given in section 7. 
 
 

2. FUZZY MEASURES 
 
The evidence and possibility theories are based on the mathematical foundation of fuzzy 
measures which provide the foundation of fuzzy set theory. Before we introduce the basics of 
fuzzy measures, it is helpful to review the used notation on set representation. A universe X 
represents the entire collection of elements having the same characteristics. The individual 
elements in the universe X are denoted by x, which are usually called singletons. A set A is a 
collection of some elements of X. All possible sets of X constitute a special set called the power 
set ℘(X). 
 A fuzzy measure is defined by a function  g: ℘(X) [0,1] which assigns to each crisp 
[Ross 1995] subset of X a number in the unit interval [0,1]. The assigned number in the unit 
interval for a subset A∈

→

℘(X), denoted by g(A), represents the degree of available evidence or 
belief  that a given element of X belongs to the subset A.  
In order to qualify as a fuzzy measure, the function g must obey the following three axioms:  
 Axiom 1 (boundary conditions): g(∅ )=0 and g(X)=1. 
 Axiom 2 (monotonicity): For every A, B∈℘(X), if A⊆B, then g(A) ≤   g(B). 

 Axiom 3 (continuity): For every sequence ( iA ∈℘(X), i=1,2,…) of subsets of ℘(X), if 

either … or 1A ⊆ 2A ⊆ 1A ⊇ 2A ⊇  … (i.e., the sequence is monotonic),  then  

. )Alim(g)A(glim i
i

i
i ∞→∞→

=
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 A belief measure is a function Bel: ℘(X) which satisfies the three axioms of fuzzy 
measures and the following additional axiom [9]:  

]1,0[→

                                  Bel( )1A ∪ 2A ≥ )()()( 2121 AABelABelABel ∩−+ .                              (1) 

      The axiom (1) can be expanded for more than two sets. For ( )XA∈℘ , Bel(A) is interpreted 
as the degree of belief, based on available evidence, that a given element of X belongs to the set 
A. 
 A plausibility measure is a function 
                                                          ( ) [ ]1,0: ⇒℘ XPl                           (2) 
which satisfies the three axioms of fuzzy measures and the following additional axiom [(Klir and 
Filger, 1988) 
       ( ) ( )212121 )()( AAPlAPlAPlAAPl ∪−+≤∩                              (3)  
      Every belief measure and its dual plausibility measure can be expressed with respect to the 
non-negative function 
                                                        ( ) [ ]1,0: ⇒℘ Xm                                      (4)  

such that m( ) = 0 and ∅
                                                           ( )

( )
1=∑

℘∈ XA
Am  .                                                         (5) 

 The function m is called Basic Probability Assignment (BPA) due to the resemblance of Eq. 
(5) with a similar equation for probability distributions. The basic probability assignment m(A) is 
interpreted either as the degree of evidence supporting the claim that a specific element of X 
belongs to the set A or as the degree to which we believe that such a claim is warranted. At this 
point, it should be noted that the BPA is very different from the probability distribution function. 
Basic probability assignments are defined on sets of the power set (i.e., on A∈℘(X)), whereas 
the probability distribution functions are defined on the singletons x of the power set (i.e., on 
x∈℘ (X)). Every set  for which m(A)>0 is called a focal element of m. Focal 
elements are subsets of X on which the available evidence focuses; i.e. available evidence exists. 

( )XA∈℘

 Given a BPA m, a belief measure and a plausibility measure are uniquely determined by 
                                                           ( ) ( )∑

⊆

=
AB

BmABel                       (6) 

and 
                                                           ( ) ( )∑

≠∩

=
0AB

BmAPl .                                  (7) 

which are applicable for all .  ( )XA∈℘
 In Eq. (6), Bel(A) represents the total evidence or belief that the element belongs to A as well 
as to various subsets of A. The Pl(A) in Eq. (7) represents not only the total evidence or belief 
that the element in question belongs to set A or to any of its subsets but also the additional 
evidence or belief associated with sets that overlap with A. Therefore, 
                                                           ( ) ( )ABelAPl ≥ .                      (8) 
 Probability theory is a subset of evidence theory. When the additional axiom of belief 
measures (see Eq. (1)) is replaced with the stronger axiom 
            )()()( BBelABelBABel +=∪  where ∅=∩ BA ,                                           (9)                
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we obtain a special type of belief measures which are the classical probability measures. In this 
case, the right hand sides of Eq. (6) and (7) become equal and therefore, 
                                          ( ) ( ) ( ) ( )∑∑

∈∈

===
AxAx

xpxmAPlABel                       (10) 

for all , where p(x) is the classical probability distribution function (PDF). Note that 
the BPA m(x) is equal to p(x). Therefore with evidence theory, we can simultaneously handle a 
mixture of input parameters. Some of the inputs can be described probabilistically (random 
uncertainty) and some can be described through expert opinions (epistemic uncertainty with 
incomplete data). In the second case, the range of each input parameter will be discretized using a 
finite number of intervals. The BPA value for each interval must be equal to the PDF area within 
the interval. 

( )XA∈℘

 It should be noted that according to evidence theory, the Bel(A) and Pl(A) bracket the true 
probability P(A) [9],  i.e.   
                                      ( ) ( )APlAPABel ≤≤ )( .                                             (11) 

 Evidence obtained from independent sources or experts must be combined. If the BPA’s   

and  express evidence from two experts, the combined evidence m can be calculated by the 
following Dempster’s rule of combining (Sentz and Ferson, 2002) 

1m

2m

                                          ( )
( ) ( )

K

CmBm
Am ACB

−
=
∑

=∩

1

21

  for  0≠A                                           (12) 

where 
                                                  ( ) ( )∑

=∩

=
0

21
CB

CmBmK                                  (13) 

represents the conflict between the two independent experts. Dempster’s rule filters out any 
conflict, or contradiction among the provided evidence, by normalizing with the complementary 
degree of conflict. It is usually appropriate for relatively small amounts of conflict where there is 
some consistency or sufficient agreement among the opinions of the experts. Yager (Yager, 
Fedrizzi and Kacprzyk, 2004) has proposed an alternative rule of combination where all degrees 
of contradiction are attributed to total ignorance. Other rules of combining can be found in (Sentz 
and Ferson, 2002). 
 The possibility theory is a subcase of the general evidence theory. It can be used to 
characterize epistemic uncertainty, when incomplete data is available. It applies only when there 
is no conflict in the provided body of evidence. In such a case, the focal elements of the body of 
evidence are nested and the associated belief and plausibility measures are called consonant. In 
contrary, when there is conflicting evidence, the belief and plausibility measures are dissonant. A 
family of subsets of the universal set is nested if they can be ordered in such a way that each is 
contained within the next. Thus,  are nested sets. Consonant belief and 

plausibility measures are usually known as 
nAAA ⊂⊂⊂ 21

necessity measures n and possibility measures π , 
respectively. Therefore, if there is no conflicting information, n  and ( ) ( )ABelA =
( ) ( )APlA =π . The necessity and possibility are dual measures, related by 

                                                          ( ) ( )AAn π−=1 .                                                     (14)  

where A  is the complement of set A.          
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3. FUNDAMENTALS OF POSSIBILITY THEORY 
 
This section highlights the fundamentals of possibility theory as it was originally introduced in 
the context of fuzzy set theory (Zadeh, 1978). In the fuzzy set approach to possibility theory, 
focal elements are represented by a-cuts of the associated fuzzy set. Focal elements are subsets 
that are assigned nonzero degrees of evidence. The possibility theory can be used to bracket the 
true probability based on the fuzzy set approach at various confidence intervals (a-cuts). The 
advantage of this is that as the design progresses and the confidence level on the input parameter 
bounds increases, the design need not be reevaluated to obtain the new bounds of the response.  
Similarly to the probability measures, which are represented by the probability distribution 
functions, the possibility measures can be represented by the possibility distribution function 

 such that [ 1,0: ⇒Xr ]
                                                           ( ) ( )xrA

Ax∈
= maxπ .                    (15)  

 It can be shown that possibility measures are formally equivalent to fuzzy sets. In this 
equivalence, the membership grade of an element x corresponds to the plausibility of the 
singleton consisting of that x. Therefore, a consonant belief structure is equivalent to a fuzzy set 
of X. 
 A fuzzy set is an imprecisely defined set that does not have a crisp boundary. It provides 
instead, a gradual transition from “belonging” to “not belonging” to the set. A function can be 
defined such that the values assigned to the elements of the set are within a specified range and 
indicate the membership grade of these elements in the set. Larger values denote higher degrees 
of set membership. Such a function is called a membership function and the set defined by it a 
fuzzy set. 
 The membership function  by which a fuzzy set A is usually defined has the form Aμ

Aμ : X  [0, 1]  where [0, 1] denotes the interval of real numbers from 0 to 1, inclusive. Given a 

fuzzy subset A of X with membership function 

→

Aμ , Zadeh (Zadeh, 1978) defines a possibility 

distribution function r associated with A as numerically equal to Aμ , i.e. ( ) ( )xxr Aμ=  for all 

. Then, he defines the corresponding possibility measure Xx∈ π as 
                                       ( ) ( )xrA

Ax∈
= supπ   for each ( )XA ℘∈ .                   (16) 

Eq. (16) is equivalent to Eq. (15) when X is finite. In the fuzzy set approach to possibility theory, 
focal elements are represented by a-cuts of the associated fuzzy set. For the remaining of this 
discussion, we will follow the fuzzy set approach to possibility theory. 
 Eq. (11) states that the true probability is bracketed by the belief and plausibility measures. If 
we know the possibility distribution function ( )yYμ  of the response Y, then the true probability 
P(Y) can be also bracketed as  
                                             )()()( YYPYn π≤≤                                                         (17) 

where the necessity  and possibility )(Yn )(Yπ  measures are calculated from Eqs (14) and (16), 
respectively. The “extension principle” (Klir and Filger, 1988; Yager, Fedrizzi and Kacprzyk, 
1994; Ross, 1995) is used to calculate the possibility distribution function ( )yYμ  of the response. 
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3.1. FUZZIFICATION PROCESS AND EXTENSION PRINCIPLE 

The process of quantifying a fuzzy variable is known as fuzzification. If any of the input variables 
is imprecise, it is considered fuzzy and must be therefore, fuzzified in order for the uncertainty to 
be propagated using fuzzy calculus. The fuzzification is done by constructing a possibility 
distribution, or membership function, for each imprecise (fuzzy) variable. Details can be found in 
(Ross, 1995). The membership function takes values in the [0,1] interval. Here, we use convex 
normal possibility distributions to characterize the fuzzy variables. An example of a convex 
normal triangular possibility distribution is shown in Fig. 1. The point for which the possibility is 
equal to one is called normal point. The possibility distribution is convex since it is strictly 
decreasing to the left and right of the normal point. At each confidence level, or a-cut, a set  

is defined as 
aX

                                              [ ]{ }1,0,: ∈≤≤= axxxxX a
R

a
La ,                 (18a) 

which is a monotonically decreasing function of a; i.e. 
                                    for every 

2121 aa XXaa ⊂⇒> [ ]1,0, 21 ∈aa .                (18b) 

 Due to the convexity of the possibility distribution function, all sets generated at different a-
cuts are nested according to Eq. (18b). Therefore, the convexity and normality of the possibility 
distribution function satisfies the basic requirement of nested sets (no conflicting evidence) in 
possibility theory. 
 After the fuzzification of the imprecise input variables, the “extension principle” is used to 
propagate the epistemic uncertainty through the transfer function in order to calculate the fuzzy 
response. The “extension principle” calculates the possibility distribution of the fuzzy response 
from the possibility distributions of the fuzzy input variables. In particular, given the transfer 
function ( )xfy = , where the output y depends on the N independent fuzzy inputs 

{ Nxxx ,,1= }, the “extension principle” states that the possibility distribution Yμ  of the output 

is given by 
                                            ( )[ ] ( )( )[ ]{ }jXjy

Y xfxfy μμ minsup==                               (19) 

where “sup” denotes the suprenum operator that gives the least upper bound. The above equation 
can be interpreted as follows. For a crisp value of the output y, there may exist more than one 
combination of crisp values of input variables x  resulting in the same output.  
The possibility of each combination is given by the smallest possibility value for all fuzzy input 
variables. The possibility that ( )xfy = , is given by the maximum possibility for all these 
combinations. Note that in probability theory, the probability of an outcome is equal to the 
product of the probabilities of the constituent events. In fuzzy set theory however, the possibility 
of an outcome is equal to the minimum possibility of the constituent events. 
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If the outcome can be reached in many ways, then the outcome probability, in probability theory, 
is given by the sum of the probabilities of all the ways. In fuzzy theory, the possibility of the 
outcome is given by the maximum possibility of all the possibilities (Ross, 1995). 
 The direct (“brute force”) solution of Eq. (19) is practically intractable except for simple 
cases involving one or two fuzzy variables. The computational effort increases exponentially with 
increasing number of fuzzy input variables. For this reason, approximate numerical techniques 
have been proposed, among which the discretization method (Akpan, Rushton and Koko, 2002) 
and the vertex method (Penmetsa and Grandhi, 2002) are the most popular ones. 
 In the discretization method, the domain of each fuzzy variable Nii ≤≤1;  is discretized 

with  discrete values at each a-cut. Then the output y is evaluated at all possible combinations 

for each a-cut. Subsequently, Eq. (19) is used to calculate the possibility distribution of the 

output. The range of the output is defined by the minimum and maximum response from all 
combinations. Although this method can be very accurate, the associated computational cost is 
practically prohibitive. 

iM

∏
=

N

i
iM

1

 In the vertex method, all the binary combinations of only the extreme values of the fuzzy 
variables at an a-cut are fed into the deterministic transfer function. The bounds of the fuzzy 
response are then obtained at the a-cut, by choosing the maximum and minimum responses. The 
procedure is repeated for all a-cuts of interest. The method has the potential to give accurate 

bounds of the response based on the bounded input. However, when the transfer function exhibits 
minima or maxima within the domain defined by the extreme values of the input variables, the 
vertex method is inaccurate. This is due to the fact that the function is evaluated only at the binary 
combinations of the input variable bounds. For a problem with N fuzzy input variables, the 
required number of function evaluations for the vertex method is , where A is the number 
of a-cuts.  
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Figure 1. Triangular possibility distribution for a fuzzy variable. 

 In general, the vertex method is computationally more efficient compared with the 
discretization method. However, the required computational effort grows exponentially with the 
number of input fuzzy variables (Ross, 1995). For this reason, most of the reported applications 
are restricted to very few fuzzy variables (Mullen and Muhanna, 1999; Chen and Rao, 1997; Rao 
and Sawyer, 1995).  
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 A hybrid (global-local) optimization method has been reported in (Mourelatos and Zhou, 
2005], which ensures computational efficiency without loss of accuracy. An optimization 
algorithm is used to calculate the minimum and maximum values of the response at each a-cut. 
Because the global minimum and maximum values of the response are needed, a derivative free, 
global optimizer called DIRECT (DIvisions of RECTangles), is used in order to avoid being 
trapped at a local optimum and obtain therefore, an inaccurate solution. DIRECT is a 
modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz 
constant (Jones, Perttunen and Stuckman, 1993). Although global optimizers may get close to the 
global optimum quickly, it takes them longer to achieve a high degree of accuracy because they 
usually have a slow rate of convergence. This suggests that the best performance can be obtained 
by combining DIRECT with a gradient-based local optimizer in a hybrid approach. In this work, 
DIRECT is first used, followed by a local optimizer based on Sequential Quadratic Programming 
(SQP). DIRECT provides a converged global optimum based on “loose” convergence criteria. 
Subsequently, the DIRECT solution is used as starting point for SQP, which identifies the 
optimum accurately and efficiently.  
 
3.2. A MATHEMATICAL EXAMPLE 

The following two-variable, six-hump camel function (Wang, 2003) is used  

                       ( ) ,44
3

1
1.24, 4

2
2
221

6
1

4
1

2
121 xxxxxxxxxy +−++−=     [ ]2,22,1 −∈x . 

 
 
to illustrate the accuracy and efficiency of the hybrid optimization method of the previous section 
and compare it with the vertex and discretization methods. For demonstration reasons, the 

following simple triangular membership functions are used for the two input variables  and                                    1x 2x

 

 
Figure 2. Contour plot for mathematical example. 
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Fig. 2 shows the contour plot of the six hump camel function. The H’s indicate all extreme points. 
Points H2 and H5 with coordinates (0.0898, -0.7127) and (-0.0898, 0.7127) respectively, are two 
global optima with an equal function value of ymin= -1.0316. The calculated membership 

functions of the response y using the vertex, discretization and hybrid optimization methods are 
plotted in Fig. 3. Ten a-cuts are used for all three methods. For the discretization method, the 
range of each input fuzzy variable, at each a-cut, is equally split in 15 divisions. It is known that 
if the input membership functions are convex normal, the response membership function must 
also be convex normal. The justification is that when the input uncertainty increases (low a-cut 
values), the uncertainty of the response must remain the same or increase. As shown in Fig. 3, the 
response membership function obtained by the vertex method is not convex and therefore, it is 
wrong.  
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Figure 3. Response membership function for mathematical example. 

 As explained in section 3.1, the discretization method evaluates the function not only at the 
upper and lower limits of the input variables at each alpha cut but also between the bounds. Thus, 
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it can capture the extreme points that might be present in between the upper and lower bounds. At 
each alpha cut, all combinations are obtained and the minimum and maximum response values 
are calculated in order to get the response membership function. It is clear that the response 
becomes more accurate as the number of divisions per alpha cut increases. As shown in Fig. 3, 
the response membership function calculated with the discretization method, is convex and 

normal. The uncertainty decreases as the level of confidence increases (increasing a-cut values). 
The major disadvantage of this method is that as the number of design variables increases and the 
number of divisions per a-cut also increases, the method becomes computationally very 
expensive. In this example, the number of a-cuts is 10 and the number of divisions per a-cut is 
15. Therefore, the number of function evaluations is 10*(15+1)2=2560. The response membership 
function of the six hump camel function is also calculated using the proposed hybrid optimization 
method. The result is identical with that obtained with the discretization method (see Fig. 3).  

Table 1. Accuracy and efficiency comparison of vertex, discretization and hybrid optimization methods 
 

 Vertex Discretization Hybrid Optimization 
Lower Bound 47.73 -1.01 -1.03 

Upper Bound 55.73 55.73 55.73 

No of F.E. 4 256 140 

 Table 1 summarizes the lower and upper bound values of the response at the zero a-cut, as 
calculated by the vertex, discretization and hybrid optimization methods. The vertex method is 
very efficient but inaccurate. The hybrid optimization method however, has the same accuracy 
with the “brute force” discretization method but it is much more efficient. 
 
 

4. POSSIBILITY-BASED DESIGN OPTIMIZATION 
 
In deterministic design optimization, an objective function is minimized subject to satisfying a set 
of constraints. In Reliability-Based Design Optimization (RBDO), where all design variables are 
characterized probabilistically, an objective function is usually minimized subject to the 
probability of satisfying each constraint being greater than a specified high reliability level.  
 In this section, a methodology is presented on how to use possibility theory in design. We 
will show that the possibility-based design is conservative compared with all RBDO designs 
obtained with different probability distributions. In RBDO, some optimality is usually sacrificed 
in order to accommodate the random uncertainty. The possibility-based design sacrifices a little 
more optimality in order to accommodate the lack of probability distribution information. It 
therefore, encompasses all RDBO designs obtained with different distributions.  
 According to Eq. (11), the probability P(A) of event A is bracketed by the belief Bel(A) and 
plausibility Pl(A); i.e. ( ) ( )APlAPABel ≤≤ )( . We have also mentioned that for consonant (no 
conflicting evidence) belief structures, the plausibility measures are equal to the possibility 
measures, resulting in ( ) ( )AAPA πη ≤≤ )( , where η  and π are the necessity and possibility 

measures, respectively (see Eq. 17). This means that the possibility ( )Aπ  provides an upper 
bound to the probability P(A). From the design point of view, we can thus conclude (Klir and 
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Filger, 1988; Ross, 1995; Zadeh, 1978) that what is possible may not be probable, and what is 
impossible is also improbable. 
 Note that for an impossible event A, the possibility ( )Aπ  is zero. If we therefore, make sure 
that the possibility of violating a constraint is zero, then the probability of violating the same 
constraint will be also zero. If feasibility of a constraint g is expressed with the positive null form 

, the constraint is always satisfied if                                                  0≥g
                                                            ( ) 00 =≤gπ .                                                               (20) 

The possibility π in Eq. (20) is calculated using Eq. (16). Fig. 4 shows the membership 

function ( )gGμ  of constraint g. The possibility of set [ ]{ }1,0,: minmin ∈≤≤= ααggggA  is 

( ) απ =A  and the possibility of set [ ]{ }1,0,: maxmin ∈≤≤= ααα ggggB  is ( ) 1=Bπ . Similarly, 

the possibility of constraint violation is ( ) 10 απ =≤g .  Eq. (20) can be relaxed as 

                                                    ( ) απ ≤≤ 0g                      (21) 

where the a-cut level is small; i.e. 1<<α . Based on Fig. 4, the relation (21) is satisfied if 

                                                                                          (22) 0min ≥
αg

 )g(Gμ

1

1α

ming
α
ming Ng α

maxg maxg g
0g≤

α

 
 

Figure 4. Used notation in possibility-based design optimization 

where  is the α
ming global minimum of g at the a-cut. Eq. (22) is analogous to the R-percentile 

formulation [1] of a probabilistic constraint in RBDO. The possibilistic constraint of Eqs (21) or 

(22) becomes active if . 0max =
αg

 Based on this discussion, a possibility-based design optimization (PBDO) problem can be 
formulated as 
                                                            ( )NNf

N
p,xd,

xd,
min        
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                                                    s.t.   ( )( ) απ ≤≤ 0,, PXdig ,   ni ,...,1=                               (23) 

                                                            UL ddd ≤≤  ,     U
N

L xxx ≤≤

where is the vector of deterministic design variables, kR∈d mR∈X is the vector of possibilistic 

design variables, qR∈P is the vector of possibilistic design parameters and  and  are the 
normal point vectors for the possibilistic design variables and parameters, respectively. 
According to the used notation, a bold letter indicates a vector, an upper case letter indicates a 
possibilistic variable or parameter and a lower case letter indicates a deterministic variable or a 
realization of a possibilistic variable or parameter. Feasibility of the i

Nx Np

th deterministic constraint is 
expressed with the positive null form .  0≥ig
 The possibilistic design variables are represented with convex normal possibility distributions 
(membership functions). Note that they may not be necessarily triangular. The superscript N 
denotes the normal point of each distribution where the membership function value is equal to 
one. Subscripts L and U denote lower and upper bounds, respectively. In PBDO, we will assume 
that the membership functions of the possibilistic design variables have a constant shape and that 
their normal points are design variables moving within predetermined bounds. This is analogous 
to RBDO where the PDF of each random design variable stays constant while its mean value is a 
design variable. 
 Based on Eq. (22), the PBDO formulation (23) is equivalent to 
                                                             ( )NNf

N
p,xd,

xd,
min        

                                                    s.t.     0
min
≥α

ig ni ,...,1=                                            (24) 

                                                             UL ddd ≤≤  , . U
N

L xxx ≤≤
 The PBDO formulation (23) or (24) is a double-loop optimization problem where an 
optimization is performed (inner loop) when the design optimization (outer loop) calls for a 
possibilistic constraint evaluation. It should be noted that the PBDO optimum at a=1 coincides 
with the deterministic optimum. 
 
4.1. PBDO WITH A COMBINATION OF RANDOM AND POSSIBILISTIC VARIABLES 

Reliability-based design optimization (RBDO) provides optimum designs in the presence of only 
random (or aleatory) uncertainty (Tu, Choi and Park, 1999; Liang, Mourelatos and Tu, 2004; Wu, 
Shin, Sues and Cesare, 2001).  A typical RBDO problem is formulated as (Liang, Mourelatos and 
Tu, 2004] 
                                                        ( )ZYμd,

μ,μd,
Y

fmin         

                                               s.t.    ( )( )
ifii pRgP −=≥≥ 10,, ZYd ,   ni ,...,1=                  (25) 

                                                         ,     UL ddd ≤≤ UL
Y YY μμμ ≤≤

where R∈Y is the vector of random design variables and rR∈Z is the vector of random design 
parameters. 
 For a variety of practical applications however, there may not be enough information to 
characterize all design variables and parameters probabilistically. A subset of them can be 
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therefore, characterized possibilistically using membership functions. A possibility-based design 
optimization problem with a combination of random and possibilistic (or fuzzy) variables can be 
formulated as   
                                                ( )NNf

Y
N

p,xμμd, ZY
μxd,

,,min
,

                   (26)  

                                         s.t.    , 0
min
≥α

ig ni ,...,1=                             

                                                   ,   UL ddd ≤≤ UL
YYY μμμ ≤≤

                                                      U
N

L xxx ≤≤

                                        with   , 0)(min
min

≥−=
ii tig ββα

X
ni ,...,1= ,  

                                                   ,  αα
UL

xxx ≤≤ αα
UL

ppp ≤≤
                                        and     U

U
min=β        

                                          s.t.   ( ) 0=UG  

where tβ is the target reliability index. Note that  and  are the lower and upper limits of X 

at an a-cut. 

α
L

x α
U

x

 Problem (26) represents a triple-loop optimization sequence. The design optimization of the 
outer loop calls a series of possibilistic constraints in the middle loop. Each possibilistic 
constraint is in general, a global optimization problem. Finally, each possibilistic constraint is a 
function of the corresponding reliability index β which represents the third loop of the 
optimization sequence. For computational purposes, two out of the three nested loops can be 
easily combined. 
 

5. EVIDENCE-BASED DESIGN OPTIMIZATION (EBDO) 
 
In this section, a methodology is presented on how to use evidence theory in design. We will 
show that the evidence theory-based design is more conservative compared with all RBDO 
designs obtained with different probability distributions and less conservative compared with the 
PBDO design.  
 If feasibility of a constraint g is expressed with the non-negative null form , we have 

shown that 

0≥g
( ) ( )0)0(0 ≥≤≥≤≥ gPlgPgBel  where ( )0≥gP  is the probability of constraint 

satisfaction. Therefore,  
                 ( ) fpgP ≤< 0  is satisfied if ( ) fpgPl ≤< 0                               (27) 

where  is the probability of failure which is usually a small prescribed value. The above 

statement is equivalent to 
fp

                 is satisfied if ( ) RgP ≥≥ 0 ( ) RgBel ≥≥ 0                  (28) 

where  is the corresponding reliability level. fpR −=1

 Hence, an evidence theory-based design optimization (EBDO) problem can be therefore, 
formulated as 
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                                                            ( )NNf
N

p,xd,
xd,

min       

                               s.t.   ( )( )
ifi pgPl ≤< 0,, PXd , ni ,...,1=                         (29) 

                                                             ,     UL ddd ≤≤ N
U

NN
L xxx ≤≤

where  mR∈X  and qR∈P  are the vectors of uncertain design variables and parameters. The 
superscript “N” indicates nominal value of uncertain variables or parameters. The uncertainty is 
provided by expert opinions. 
 It should be noted that the plausibility measure is used instead of the equivalent belief 
measure, in Problem (29). The reason is that at the optimum, the failure domain for each active 
constraint is usually much smaller than the safe domain over the frame of discernment (FD) 
(domain of all focal elements with nonzero combined BPA; see next section). As a result, the 
computation of the plausibility of failure is much more efficient than the computation of the 
belief of safe region.  
 
5.1. ASSESSING BEL AND PL WITH DEMPSTER-SHAFER THEORY

Evidence theory can quantify epistemic uncertainty, even when the experts provide conflicting 
evidence. This section shows how to propagate epistemic uncertainty through a given model 
(transfer function) which is necessary in calculating the plausibility of constraint violation in 
Problem (29). The uncertainty propagation will be illustrated using the following simple transfer 
function 
                                                               ( )bafy ,=                                 (30) 

where are two independent input parameters and y is the output. The combined 
BPA’s for both a and b are obtained from Dempster’s rule of combining of Eq. (12) if multiple 
experts have provided evidence for either a or b. With combined information for each input 
parameter, we define a vector 

BbAa ∈∈ ,

[ ]cjci bac ,= , needed to calculate the output y as 

                                        [ ]{ }BbAabacBAC cjcicjci ∈∈==×= ,,,                               (31) 

where subscript c stands for “combined” and i,j  indicate focal elements.  
Taking advantage of assumed parameter independency, the BPA for c is 

                                                      ( ) ( ) ( )cjciijc bmamhm =                                  (32) 

 

a

b

B P A

a

b

a

b

B P A
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Figure 5. Representative BPA structure for two parameters a and b. 
 
where  [ ]cjciij bah ,=  and ,  denote intervals such that cia cjb ciaa∈  and . Eq. (32) can 

be used to calculate the combined BPA structure for the entire domain C. For every 
cjbb∈

( ) Cccba ∈∈, , needed to evaluate the output y, the combined BPA  is used. A 

representative combined BPA structure is shown in Fig. 5. 
cm

 The Cartesian product C of Eq. (31) is also called frame of discernment (FD) in the literature. 
It consists of all focal elements (rectangles in Fig. 5 with nonzero combined BPA) and can be 
viewed as the finite sample space in probability theory. 
If a domain F is defined as  
                                    ( ) ( ) [ ]{ }CbaccbaybafggF cc ⊂=∈>−== ,,,,0,: 0      (33) 

where  is a specified value. According to evidence theory,  0y
                                                         ( ) ( )FPlpFBel f ≤≤ .                               (34) 

where  is the true probability. ( 0>= gPp f )
 The Bel (F) and Pl (F) are calculated using Eqs (6) and (7) where set A is equal to set F of 
Eq. (33) and B is a rectangular domain (focal element) such that  for Eq. (6) and 

 for Eq. (7).  means that the focal element must be entirely within the domain 
g>0 and  means that the focal element must be entirely or partially within the domain 
g>0 (see Fig. 6). In order to identify if a focal element B satisfies  or , the 
following minimum and maximum values of g must be calculated  

AB ⊆
0≠∩ AB AB ⊆

0≠∩ AB
AB ⊆ 0≠∩ AB

          [ ] ( ) ( )[ ]xx
xx

gggg max,min, maxmin =                    (35) 

for where UL xxx ≤≤ ( )UL xx ,  defines the focal element domain. For monotonic functions, the 
vertex method [34] can be used to calculate the minimum and maximum values in Eq. (35) by 
simply identifying the minimum and maximum values among all vertices of the focal element 
domain. If for a focal element,  and  are both positive, the focal element will contribute 

to the calculation of belief and plausibility. On the other hand, if  and  are both 

negative, the focal element will not contribute to the calculation of belief or plausibility. If 
however,  is negative and  is positive, the focal element will not contribute to the belief 

but it will contribute to the plausibility calculation. This is shown schematically in Fig. 6. 

ming maxg

ming maxg

ming maxg

 

ming

maxg
0g>

0g<
0g=

ming

maxg

0g>
0g< 0g=

ming

maxg
0g>

0g<

0g=

 
 
 
 
 
 
 

Figure 6. Schematic illustration of focal element contribution to belief and plausibility measures. 
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 In summary the following tasks are performed in order to calculate the belief and plausibility 
of the failure region: 
 
1) For each input parameter, combine the evidence from the experts by combining the individual 
BPA’s from each expert using Dempster’s rule of combining (Eq. (12)). 
2) Construct the BPA structure for the m-dimensional frame of discernment, where m is the 
number of input parameters. Assuming independent input parameters, Eq. (32) is used. 
3) Identify the failure region space (set F of Eq. (33)). 
4) Use Eqs (6) and (7) to calculate the belief and plausibility measures of the failure region. The 
failure region must be identified only within the frame of discernment. The true probability of 
failure is bracketed according to Eq. (34). 
 
5.2. IMPLEMENTATION OF THE EBDO ALGORITHM  

A computationally efficient solution of Problem (29) is presented here. As a geometrical 
interpretation of it, we can view the design point (d,x) moving within the feasible domain so that 
the objective f is minimized (see Fig. 7). If the entire FD is in the feasible domain, the constraints 
are satisfied and are inactive. A constraint becomes active if part of the FD is in the “failure” 
region so that the plausibility of constraint violation is equal to . In general, Problem (29) 

represents movement of a hyper-cube (FD) within the feasible domain. 
fp
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Figure 7. Geometrical interpretation of the EBDO algorithm 
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 In order to save computational effort, the bulk of the FD movement, from the initial design 
point to the vicinity of the optimal point (point B of Fig. 7), can be achieved by moving a hyper-
ellipse which contains the FD. The center of the hyper-ellipse is the “approximate” design point 
and each axis is arbitrarily taken equal to three times the standard deviation of a hypothetical 
normal distribution. This assumes that each dimension of the FD hyper-cube is equal to six times 
the standard deviation of the hypothetical normal distribution. The hyper-ellipse can be easily 
moved in the design space by solving a RBDO problem. The RBDO optimum (point B of Fig. 7) 
is in the vicinity of the solution of Problem (29) (EBDO optimum). The RBDO solution also 
identifies all active constraints and their corresponding most probable points (MPP’s). The 
maximal possibility search algorithm (Choi, Du and Youn, 2004) can also be used to move the 
FD hyper-cube in the feasible domain. It should be noted that the 3-sigma axes hyper-ellipse is 
arbitrary. The size of the hyper-ellipse is not however, crucial because it is only used to calculate 
the initial point (point B of Fig. 7) of the EBDO algorithm. The latter calculates the true EBDO 
optimum accurately. From our experience, a 3 to 4-σ  size works fine. 
 At this point, we generate a local response surface of each active constraint around its MPP. 
In this work, the Cross-Validated Moving Least Squares (CVMLS) [39] method is used based on 
an Optimum Symmetric Latin Hypercube (OSLH) [40] “space-filling” sampling. 
 A derivative-free optimizer calculates the EBDO optimum. It uses as initial point the 
previously calculated RBDO optimum which is close to the EBDO optimum. Problem (29) is 
solved, considering only the identified active constraints. For the calculation of the plausibility of 
failure  of each active constraint, an algorithm presented in (Mourelatos and Zhou, 
2005) is used. It identifies all focal elements which contribute to the plausibility of failure. The 
computational effort is significantly reduced because accurate local response surfaces are used for 
the active constraints. The cost can be much higher if the optimization algorithm evaluates the 
actual active constraints instead of their efficient surrogates (response surfaces). It should be 
noted that a derivative-free optimizer is needed due to the discontinuous nature of the combined 
BPA structure. The DIRECT derivative-free, global optimizer is used (Jones, Perttunen and 
Stuckman, 1993). 

( 0<gPl )

 

6. EXAMPLES 
 
In this section, the possibility-based and evidence-based design algorithms are demonstrated with 
a cantilever beam example and a pressure vessel example. For both examples, comparisons are 
made with deterministic design and reliability-based design results. It should be noted that 
theoretically, the possibility and reliability-based results can not be compared because the 
possibility and reliability theories are based on different axioms. However for practical purposes, 
we attempt to compare them by arbitrarily using membership functions which “resemble” the 
probability density functions used in the reliability-based results. 
 
6.1. A CANTILEVER BEAM EXAMPLE 

In this example, a cantilever beam in vertical and lateral bending (Wu, Shin, Sues and Cesare, 
2001) is used (see Fig. 8). The beam is loaded at its tip by the vertical and lateral loads Y and Z, 
respectively. Its length L is equal to 100 in. The width w and thickness t of the cross-section are 
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deterministic design variables. The objective is to minimize the weight of the beam. This is 
equivalent to minimizing , assuming that the material density and the beam length are 

constant. 

twf ∗=

L=100 in w

Y

Z 
t

 
 

Figure 8. Cantilever beam under vertical and lateral bending 

 Two non-linear failure modes are used. The first failure mode is yielding at the fixed end of 
the cantilever; the other failure mode is that the tip displacement exceeds the allowable value of 

. The PBDO problem is formulated as,  "5.20 =D
                                             twf
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                                             5,0 ≤≤ tw  

where and are the limit states corresponding to the two failure modes. The design variables 
w and t are deterministic. In the RBDO study of [2], Y, Z, y and E are normally distributed 
random parameters with Y~ N (1000, 100) lb, Z~ N (500,100) lb, y~ N (40000,2000) psi and E~ 

N ( psi; y is the random yield strength, Z and Y are mutually independent 
random loads in the vertical and lateral directions respectively, and E is the Young modulus. A 
reliability index 

1g 2g

)10*45.1,10*29( 66

3=β has been used in [2] for both constraints. 
 For the PBDO case, Y, Z, y and E are possibilistic parameters described with the triangular 

membership functions ( )σσ *3,,*3 +− NNN xxx  where  is the normal point of each variable 
and 

Nx
σ  is the used standard deviation in the RBDO study. The frame of discernment defined by 

the ( )σσ *3,*3 +− NN xx  coordinates is also used in EBDO.  
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Table 2. Comparison of PBDO, EBDO and RBDO optima for the cantilever beam example 
 

 
Determ. 

Optimum 
Reliability 
Optimum Possibility Optimum Evidence Optimum 

Design Variables   α=0.1 α=0 0.1pf =  0.0013pf =

w 2.0470 2.4781 2.5298 2.5901 2.4534 2.5028 

t 3.7459 3.8421 4.1726 4.210 3.6162 3.9902 

Objective       

f(w,t) 7.6679 9.5212 10.556 10.901 8.8721 9.9868 

Constraints       

1g (x) / y  0 0 0 0 0 0.0032 

2g 0D(x) /  0 0.1436 0.15 0.168 0.00428 0.0835 
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 Table 2 compares the deterministic optimization, RBDO, PBDO and EBDO results. The 
PBDO optimum (objective function) with a=0 is higher than the RBDO optimum. Because it 
represents the worst case design, it provides an upper bound of all RBDO optima obtained with 
different distributions, as long as these distributions have similar variability ranges (e.g. different 
beta distributions defined over the same range). For a higher a-cut (a=0.1), the PBDO optimum 
reduces. It should be noted that the PBDO optimum at a=1 coincides with the deterministic 
optimum. The last two rows of Table 2 show the normalized values of the two constraints at the 

optimum. The first constraint is normalized by the mean yield strength 40000=y  and the 

second constraint is normalized by the allowable tip displacement 5.20 =D . Although both 

constraints are active at the deterministic optimum, only the first constraint is active for both the 
RBDO and PBDO optima. 

Table 3. BPA structure for y, Y, Z and E 
 

Z y (x10 ) 3

Interval BPA Interval BPA 

[200  300] 2.2% [35  37] 6.1% 

[300  400] 13.6% [37  38] 9.2% 

[400  450] 15% [38  39] 15% 

[450  500] 19.2% [39  40] 19.2% 

[500  550] 19.2% [40  41] 19.2% 

[550  600] 15% 

 

[41  42] 15% 

[600  700] 13.6%  [42  43] 9.2% 

[700  800] 2.2%  [43  45] 7.1% 
 

Y E (x10 ) 6

Interval BPA Interval BPA 
[700  800] 2.2% [26.5  27.5] 10% 

[800  900] 13.6% [27.5  28.5] 21% 

[900  1000] 34.1% [28.5  29] 13.5% 

[1000  1100] 34.1% [29  29.5] 13.5% 

[1100  1200] 13.6% [29.5  30.5] 21% 

[1200  1300] 2.4% 

 

[30.5  31.3] 21% 

 The EBDO problem formulation is the same with Problem (40) but with different constraints. 
The new constraints are ( ) fi pgPl ≤< 0 , i=1,2. The uncertain parameters P=[Y,Z,y,E] have the 
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BPA structure of Table 3. The BPA for each interval of an uncertain parameter is assumed to be 
equal to the area under the PDF used in RBDO, in order to compare the EBDO design with the 
corresponding RBDO design. This is not how the BPA is obtained in general. As it has been 
mentioned, expert opinions are used to construct the BPA structure. If however, a random 
variable or parameter is described probabilistically, equivalent BPA values within specified 
intervals are calculated as equal to the area under the PDF. In doing so, the evidence theory can 
be used to handle a mixture of probabilistic and non-probabilistic variables.  

The last two columns of Table 2 show the EBDO results for  = 0.1 and 0.0013 (fp 3=β ). 

As expected, the deterministic optimum of 7.6679 is less than the RBDO optimum of 9.5212 
which in turn, is less than the EBDO optimum of 9.9868 at =0.0013 (fp 3=β ). For 1.0=fp  , 

the EBDO optimum reduces. Furthermore, the EBDO optimum of 9.9868 at =0.0013 is better 

than the worst case PBDO optimum of 10.901 (a=0). Although only the first constraint is active 
for the RBDO and PBDO optima, both constraints are active for the EBDO optima, similarly to 
the deterministic case.  

fp

 
 

6.2. A PRESSURE VESSEL EXAMPLE

This example considers the design of a thin-walled pressure vessel (Lewis and Mistree, 1997) 
which has hemispherical ends as shown in Fig. 9. The design objective is to calculate the radius 
R, mid-section length L and wall thickness t in order to maximize the volume while avoiding  
yielding  of  the  material in both the circumferential and radial directions under an internal 
pressure P. Geometric constraints are also considered. The material yield strength is Y. A safety 

factor SF = 2 is use 
 

Figure 9. Thin-walled pressure vessel. 
 
 The PBDO problem is stated as  

                                NNN
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REC 2006 - Zissimos P. Mourelatos and Jun Zhou 



Non-Probabilistic Design Optimization with Insufficient Data using Possibility and Evidence Theories 413 

where,  
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Table 4. BPA structure for R, L, t, P and Y 
 

R  L  t  BPA 

[ - 6.0  - 4.5] NR NR [ - 12  - 9] NL NL [ t - 0.4  - 0.3] N Nt 0.13% 

[ - 4.5  - 3.0] NR NR [ - 9  - 6] NL NL [ t - 0.3  - 0.2] N Nt 2.15% 

[ - 3.0   ] NR NR [ - 6   ] NL NL [ -0.2   t ] Nt N 47.72% 

[ + 3.0] NR NR [  + 6] NL NL [  t +0.2] Nt N 47.72% 

[ + 3.0  + 4.5] NR NR [ + 6  + 9] NL NL [ t + 0.2  + 0.3] N Nt 2.15% 

[ + 4.5  + 6.0] NR NR [ + 9  + 12] NL NL [ t + 0.3  + 0.4] N Nt 0.13% 

                                                      

P Y BPA 

[800 850] [208000 221000] 0.13% 

[850 900] [221000 234000] 2.15% 

[900 1000] [234000 260000] 47.72% 

[1000 1100] [260000 286000] 47.72% 

[1100 1150] [286000 299000] 2.15% 

[1150 1200] [299000 312000] 0.13% 

 
 The EBDO problem formulation is the same but with 
constraints 5,...,1)0)(( =≤< jpgPl fj X . For the EBDO case, the uncertainty in design 

variables R, L, and t and design parameters P and Y are represented with the combined BPA 
structure of Table 4. To compare results with RBDO, the BPA values of R, L, t, P and Y are taken 
equal to the area under the PDF of a normal distribution for the intervals shown in Table 4. The 
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normal distributions for R, L, t, P and Y have standard deviations equal to 1.5, 3, 0.1, 50 and 
13000, respectively. The mean values for parameters P and Y are taken equal to 1000 and 
260000. The intervals for R, L, t, P and Y extend four standard deviations from each side of the 
normal point, in an attempt to use a similar variation with the RBDO study.  Finally, EBDO and 
PBDO use the same frame of discernment.   
 Table 5 compares the deterministic optimization, RBDO, PBDO and EBDO results. Similar 
conclusions with the previous example are drawn. A reliability index 0.2=β  (  = 0.0228) has 

been used in the RBDO study for all constraints. As expected, the deterministic maximum 
volume of 22400 is higher than the RBDO volume of 10791 which in turn, is higher than the 
EBDO volume of 7644. Also, the PBDO optimum of 6132 (a=0) which represents the worst case, 
is the lowest. For comparison purposes, the PBDO and EBDO results are also presented for a=0.2 
and =0.0228, respectively. It is noted that the constraint activity changes among the 

deterministic, RBDO, PBDO and EBDO optima. Only the third and fourth constraints are active 
for the deterministic case. However, the second, third and fourth constraints become active at the 
RBDO and PBDO optima. At the EBDO optimum all constraints are active except the fifth one.  

fp

fp

 

 

Table 5. Comparison of deterministic, RBDO, PBDO and EBDO optima for vessel example 
 

 
Determ. 

Optimum 
Reliability 
Optimum Possibility Optimum Evidence Optimum 

Design 
Variables 

  a=0.2 a =0 f fp =0.2 p =0.0228

NR  11.750 8.7244 7.9107 7.0107 8.333 8.1111 

NL  36.000 33.5186 30.3867 30.3867 30.407 26.1852 

Nt  0.250 0.269 0.2893 0.2893 0.347 0.3472 

 Objective       

( )NN LRf ,−
 

22400 10791 8044 6132 9053 7644 

Constraints       

g1(x) 0.8173 0.5003 0.5 0.5 0 0 

g2(x) 0.6346 0 0 0 0.0137 0 

g3(x) 0 0 0 0 0 0.0183 

g4(x) 0 0 0 0 0 0.0118 

g5(x) 0.8936 0.6891 0.4325 0.0256 0.9994 0.1038 
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7. SUMMARY AND CONCLUSIONS 
 
In this paper, the possibility and evidence theories were used to assess design reliability with 
incomplete information. The possibility theory was viewed as a variant of fuzzy set theory. The 
different types of uncertainty and formal uncertainty theories were first introduced using the 
fundamentals of fuzzy measures. Subsequently, the commonly used vertex and discretization 
methods which are used for propagating non-probabilistic uncertainty were reviewed and 
compared with a hybrid (global-local) optimization method. It was showed that the hybrid 
optimization method is very efficient and has the same accuracy with the “brute force” 
discretization method.   
 The possibility theory was also used in design. A possibility-based design optimization 
method was proposed where all design constraints are expressed possibilistically. It was shown 
that the method gives a conservative solution compared with all conventional reliability-based 
designs obtained with different probability distributions. A general possibility-based design 
optimization method was also presented which handles a combination of random and possibilistic 
design variables.  
 Furthermore, a computationally efficient design optimization method was described, which 
can handle a mixture of epistemic and random uncertainties. A mean performance is optimized 
subject to the plausibility of constraint violation being small. Uncertainty is quantified using 
“expert” opinions. Two examples demonstrated the proposed possibility-based and evidence-
based design optimization methods. It was shown that both the PBDO and EBDO designs are 
more conservative compared with the RBDO design. However, the EBDO design is usually less 
conservative compared with the PBDO design. 
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Abstract. In this paper mathematical methods for prediction of uncertain structural responses with the aid
of fuzzy time series are presented. Uncertain measurments of structural loads and responses respectively at
equally spaced discrete time points are modeled as fuzzy variables. Hence uncertain measurments over
time are considered as time series with fuzzy data. The fuzzy variables are processed on the basis of
generally applicable numerical methods for descriptive analysis as well as for stochastic analysis. Algo-
rithms of stochastic analysis are used to forecast fuzzy time series. At this the new fuzzy-ARMA-process is
introduced. Forecasts of fuzzy time series provides informationen about future structural responses.

The algorithm of analysis and forecast of fuzzy time series are presented in detail and demonstrated by
way of numerical examples.

Keywords: Fuzzy time series; Fuzzy random processes; Fuzzy random variables; forecast

1. Introduction

The prediction of future structural responses is a challenging problem in civil engineering. The knowledge
of unknown future impact and future system behavior enables the prediction of such important effects like
damage behavior, development of safety level, development of durability or the expected life time of a
system. The well established numerical structural analysis and safety assessment however presuppose the
knowledge of adequate theoretical models.

As alternative fuzzy time series can be applied. They describe sequences of measurements consisting
of imprecise data (Hareter, 2003). The uncertainty of the imprecise data is modeled as fuzziness (Möller and
Beer, 2004). Time series with fuzzy data are regarded as realizations of a fuzzy random process, that can be
viewed as a random process extended by the dimension fuzziness (Möller et al., 2005). In extension to a
random process a fuzzy random process is defined as a sequence of fuzzy random variables. Therein, a fuzzy
random variable is declared as set of uncertain realizations (fuzzy variables) in the space of the random
elementary events. Each realization of a fuzzy random process then appears as a fuzzy function, which
characterizes a sequence of fuzzy variables. In other words time series with fuzzy data can be interpreted as
random realizations of an underlying fuzzy random process.

Methods for identification and quantification of the underlying fuzzy random process are presented. A
new description of fuzzy variables by so called lαrα-discretization has been developed. This description
enables prediction without the usually performed defuzzification and refuzzification of fuzzy data. The
following types of fuzzy random processes are investigated: fuzzy-AR-processes, fuzzy-MA-processes,
fuzzy-ARMA-processes, and fuzzy-white-noise-processes. Strategies for parameter estimation have been

c© 2006 by authors. Printed in USA.
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developed that are applicable for stationary and non-stationary fuzzy time series. After parameter estimation
the underlying fuzzy random process is known and can be used for forecasting.

The developed theory is demonstrated by way of examples among others the heavy goods vehicle traffic
over a bridge is forecasted. Furthermore, on the basis of measured settlements over a period of four years
the future settlements for the next three years are predicted with a h-step-forecast.

2. Definition and description of fuzzy time series

Fuzzy time series are interpreted as random realizations of an underlying fuzzy random process. A fuzzy
random process (X̃τ )τ∈T is defined as a family of fuzzy random variables X̃τ with τ ∈ T. Thereby T
denotes the space of equidistant points in time. In other words a fuzzy random process (X̃τ )τ∈T is defined
as the fuzzy result of the mapping

X̃τ : Ω → F(R) (1)

in which Ω denotes the space of the random elementary events ω and F(R) characterizes the set of all
fuzzy numbers on R. Fuzzy realizations X̃τ (ω) = x̃τ with τ ∈ T are assigned to each random elementary
event ω ∈ Ω. Consequently the realizations of a fuzzy random process (X̃τ )τ∈T form the fuzzy time series
(x̃τ )τ∈T. A realization (x̃τ )τ∈T of a fuzzy random process is plotted in Fig. 1.

1 2 3     . . . . . . -2 -1k N N N. . . . . . t
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x1~ x2~ x3~ x
N-2~ x

N-1~ x
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)
x

~

x
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~
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Figure 1. Fuzzy time series as realization of a fuzzy random process

At each specified point τ ∈ T a fuzzy time series specifies a fuzzy variable x̃τ in accordance with
Eq. 1. A fuzzy variable x̃ is characterized by its membership function µx̃(x). A normalized membership
function µx̃(x) is defined by the following equations.

0 ≤ µx̃(x) ≤ 1 ∀ x ∈ R (2)

∃ xl, xr mit µx̃(x) = 1 ∀ x ∈ [xl;xr] (3)
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A fuzzy variable x̃ is referred to as convex if its membership function µx̃(x) monotonically decreases
on each side of the maximum value, i.e., if

µx̃(x2) ≥ min [µ(x1); µ(x3)] ∀x1, x2, x3 ∈ R mit x1 ≤ x2 ≤ x3 (4)

applies.
A convex fuzzy variable x̃ is referred to as fuzzy number x̃Z if its membership function µx̃(x) is at least

segmentally continuous and has the functional value µx̃(x) = 1 at precisely one of the x values according
to Eq. (5).

xl = xr with xl = min [x ∈ R|µx̃τ (x) = 1] (5)
and xr = max [x ∈ R|µx̃τ (x) = 1]

In the case xl < xr the fuzzy variable x̃ is a fuzzy interval x̃I . The point xl is referred to as the peak point
of the fuzzy variable.

A convex fuzzy variable x̃ is characterized by a family of α-level sets Xα according to Eq. (6). Each
α-level set Xα is a connected interval [xαl, xαr].

x̃ = (Xα = [xαl, xαr] |α ∈ [0, 1]) (6)

The number of α-level sets is denoted by n. For i = 1, 2, ..., n− 1 the following holds.

0 ≤ αi ≤ αi+1 ≤ 1 (7)
α1 = 0 und αn = 1 (8)
Xαi+1 ⊆ Xαi (9)

An example of a convex fuzzy variable x̃ characterized by n = 4 α-level sets Xα is shown in Fig. 2.
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Figure 2. α-discretization of a convex fuzzy variable

In the following the new lαrα-discretization is presented. The interval boundaries [xαil, xαir] of an
α-level set Xαi are expressed by Eqs. (10) and (11).

xαil = xαi+1l −∆xαil with ∆xαil = xαilr − xαill (10)
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xαir = xαi+1r + ∆xαir with ∆xαir = xαirr − xαirl (11)

The counter i = 1, 2, ..., n − 1 specifies α-level sets with α < 1. For i = 1 the following equations hold,
whereat the term ∆xαnl is assigned to the peak point xl.

xαnl = ∆xαnl with ∆xαnl = xl (12)

xαnr = xαnl + ∆xαnr with ∆xαnr = xr − xl (13)

The terms ∆xαil and ∆xαir are called lαrα-increments. The α-level sets have to fulfill Eq. (14).

Xαk
⊆ Xαi ∀αi, αk ∈ [0; 1] with αi ≤ αk (14)

With Eqs. (10) to (14) the lαrα-discretization is introduced. Fig. 3 illustrates the lαrα-discretization for
n = 4.
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Figure 3. lαrα-Diskretisierung with 4 α-level sets

The lαrα-discretization enables an alternative, discrete representation of a fuzzy variable x̃ in the
form of a column matrix introduced by Eq. (15), thereby ∆x1, ∆x2, ..., ∆x2n is a shortened form of
∆xα1l, ∆xα2l, ..., ∆xα1r.

x̃ =




∆xα1l

∆xα2l
...

∆xαnl

∆xαnr
...

∆xα2r

∆xα1r




=




∆x1

∆x2
...

∆xn

∆xn+1
...

∆x2n−1

∆x2n




(15)
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In context of time series with fuzzy data the following operators are introduced.
The multiplication of a real-valued [2n, 2n] matrix A with a fuzzy variable x̃ represented by n α-levels

is defined by the operator ¯ according to Eqs. (16) and (17). The arithmetic operation is equivalent to the
matrix product and results the lαrα-increments ∆zj (j = 1, 2, ..., 2n) of the fuzzy result variable z̃.

A¯ x̃ = z̃ (16)




a1,1 a2,2 . . . a1,2n

a2,1 a2,2 . . . a2,2n
...

...
. . .

...
a2n,1 a2n,2 . . . a2n,2n







∆x1

∆x2
...

∆x2n


 =




∆z1

∆z2
...

∆z2n


 (17)

The fuzzy result variable z̃ requires compliance with Eq. (14), so that Eq. (18) must be satisfied for j =
1, 2, ..., n− 1, n + 2, ..., 2n.

∆zj = aj,1∆x1 + ... + aj,2n∆x2n ≥ 0 (18)

Furthermore a special fuzzy sum and subtraction respectively is required. The operators ⊕ and ª respec-
tively between two fuzzy variables x̃ and ỹ pursuant to Eq. (19) are introduced as the addition and subtraction
respectively of the lαrα-increments according to Eq. (19)

z̃ = x̃⊕ ỹ bzw. z̃ = x̃ª ỹ (19)

The fuzzy result variable z̃ requires compliance with Eq. (14), too. The corresponding conditions are shown
in Eq. (20) in which the upper operators are applied for the fuzzy sum and the lower for the fuzzy difference.

∆zj = ∆xj ±∆yj ≥ 0 for j = 1, 2, ..., n− 1, n + 2, ..., 2n (20)

Considering the priority rule (¯ comes before ⊕) a combination of the introduced operators according to
Eq. (21) is feasible.

z̃ = A¯ x̃⊕ ...ª ...⊕ ...⊕B ¯ ỹ (21)

The fuzzy result variable z̃ also requires compliance with Eq. (14). But only the final lαrα-increments ∆zj

must be nonnegative, negative intermediate results due the application of the associative law are allowed.

∆zj ≥ 0 for j = 1, 2, ..., n− 1, n + 1, ..., 2n (22)

The demand according to Eq. (22) also represents an boundary condition for the models introduced in the
paper.

According to Eq. (1) a fuzzy variable x̃τ is interpreted as a random realization of a fuzzy random
variable X̃τ . Under the assumption of convex fuzzy realizations X̃τ (ω) = x̃ a fuzzy random variable X̃τ is
characterized by a family of random α-level sets Xα according to Eq. (23). At this the intervall boundaries
Xαl and Xαr are real-valued random variables.

X̃τ = (Xα = [Xαl,Xαr] |α ∈ [0, 1]) (23)
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The lαrα-discretization enables a new definition of a fuzzy random variable X̃τ according to Eq. (24) for
i = 1, 2, ..., n− 1.

X̃τ =
(
Xαi = [Xαi+1l −∆Xαil; Xαi+1r + ∆Xαir] |αi ∈ [0, 1); (24)
Xαn = [Xαnl; Xαnl + ∆Xαnr] |αn = 1 )

In this definition the terms ∆Xαil and ∆Xαir are correlated random variables and called random lαrα-
increments. The lαrα-discretization enables an alternative, discrete representation of a fuzzy random vari-
able X̃τ in the form of a column matrix introduced by Eq. (25), whereby the real-valued random variables
∆X1, ∆X2, ..., ∆X2n are shortened forms of the random lαrα-increments ∆Xα1l, ∆Xα2l, ..., ∆Xα1r.

X̃τ =




∆Xα1l

∆Xα2l
...

∆Xαnl

∆Xαnr
...

∆Xα2r

∆Xα1r




=




∆X1

∆X2
...

∆Xn

∆Xn+1
...

∆X2n−1

∆X2n




(25)

According to Eq. (1) a fuzzy random process (X̃τ )τ∈T is defined as a family of fuzzy random variables
X̃τ . For characterization of a fuzzy random process the first and second order moments of the process –
like for random processes – are used. The first order moment is a fuzzy variable, that can be represented
by lαrα-discretization. The lαrα-increments of the fuzzy expected value E[X̃τ ] = m̃X̃τ

of a fuzzy random
process (X̃τ )τ∈T are obtained according to Eq. (26).

E[X̃τ ] = m̃X̃τ
=




∆mα1l(τ)
...

∆mαnl(τ)
...

∆mα1r(τ)




(26)

=




∞∫
0

∆xα1l f∆Xα1l
(∆xα1l, τ)d∆xα1l

...
∞∫
−∞

∆xαnl f∆Xαnl
(∆xαnl, τ)d∆xαnl

...
∞∫
0

∆xα1r f∆Xα1r(∆xα1r, τ)d∆xα1r




The functions f∆Xαil
(∆xαil, τ) and f∆Xαir(∆xαir, τ) (i = 1, 2, ..., n) are probability density functions of

the random lαrα-increments ∆Xαil(τ) and ∆Xαir(τ) of the fuzzy random variable X̃τ at time point τ .
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Linear dependencies between two fuzzy random variables X̃τa and X̃τb
of a fuzzy random process at

time points τa and τb are quantified by the lαrα-covariance function lrKX̃τ
(τa, τb) according to Eq. (27).

lrKX̃τ
(τa, τb) =




kα1l
α1l(τa, τb) kα2l

α1l(τa, τb) · · · kα1r
α1l (τa, τb)

kα1l
α2l(τa, τb) kα2l

α2l(τa, τb) · · · kα1r
α2l (τa, τb)

...
...

. . .
...

kα1l
α1r(τa, τb) kα2l

α1r(τa, τb) · · · kα1r
α1r(τa, τb)




(27)

The elements of the lαrα-covariance function lrKX̃τ
(τa, τb) are defined by Eq. 28 where i, j = 1, 2, ..., n.

kαil
αjr(τa, τb) =

∞∫

−∞

∞∫

−∞
(∆xαil −∆mαil(τa))(∆xαjr −∆mαjr(τb))... (28)

...f
(
∆xαil,∆xαjr, τa, τb

)
d∆xαild∆xαjr

The lαrα-variance lrV ar[X̃τ ] = lrσ
2
X̃τ

corresponds to the diagonal elements of the lαrα-covariance function

lrKX̃τ
(τa, τb) with τa = τb = τ .

A fuzzy random process is stationary if the lαrα-covariance function lrKX̃τ
(τa, τb) does not depend on

τa and τb but just on the time lag ∆τ = τa − τb and if the fuzzy expected value E[X̃τ ] = m̃X̃τ
is constant

over time.
In the following a special case of fuzzy random processes is introduced. The known ARMA model

is extended to time series with fuzzy data and results the fuzzy-ARMA-model. A fuzzy random process
(X̃τ )τ∈T ist called fuzzy-ARMA[p, q]-process if it can be described by Eq. (29).

X̃τ = A1 ¯ X̃τ−1 ⊕ ...⊕Ap ¯ X̃τ−p⊕︸ ︷︷ ︸
fuzzy-AR-component

Ẽτ ª (29)

B1 ¯ Ẽτ−1 ª ...ªBq ¯ Ẽτ−q︸ ︷︷ ︸
fuzzy-MA-component

The parameters A1, ..., Ap und B1, ..., Bq are real-valued [2n, 2n] matrices. The factors Ẽτ are elements of
a fuzzy-white-noise-process (Ẽτ )τ∈T at time point τ and therefore fuzzy random variables. A fuzzy-white-
noise-process (Ẽτ )τ∈T is characterized by Eqs. (30) to (32).

E[Ẽτ ] = m̃Ẽτ
= constant ∀ τ ∈ T (30)

lrV ar[Ẽτ ] = lrσ
2
Ẽτ

= constant ∀ τ ∈ T (31)

lrKẼτ
(∆τ) =

{
lrKẼτ

(0) for ∆τ = 0
0 for ∆τ 6= 0

(32)
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3. Parameter estimation

Within the scope of modeling fuzzy time series the parameters A1, ..., Ap and B1, ..., Bq of a fuzzy-
ARMA[p, q]-process have to be determined so that the empirical time series is a representative realization.
Fundamental condition is the demand of non-negativity of the lαrα-increments ∆xj (j = 1, 2, ...n− 1, n +
2, ...2n) of all realizations x̃τ of the fuzzy-ARMA-process.

The first method is based on the postulation that the differences between the empirical and model
characteristics (first and second order moments) are minimal. This condition results in the optimization
problem given by Eq. (33), in which P is a shortened form of the process parameters A1, ..., Ap and
B1, ..., Bq

2n∑

j=1

(∆xj −∆mj(P ))2 + (33)

∞∑

∆τ=−∞

2n∑

k,l=1

(
k̂k,l(∆τ)− kk,l(∆τ, P )

)2 != min

The lαrα-increments ∆xi of the empirical fuzzy mean value x̃ are compared with the lαrα-increments ∆mi

of the fuzzy expected value m̃X̃τ
as well as the elements k̂k,l(∆τ) of the empirical lαrα-covariance function

lrK̂x̃τ (∆τ) with the elements kk,l(∆τ) of the theoretical lαrα-covariance function lrKX̃τ
(∆τ). The solution

of the minimization problem is found with the aid of the modified evolution strategy by (Möller and Beer,
2004). Constraint of the optimization problem is Eq. (22) for all realizations of the process.

The parameter estimation according to Eq. (33) postulates stationary and ergodic fuzzy time series,
otherwise it would be obviously futile to estimate the empirical parameters for each point in time. On this
account a second approach for parameter estimation of nonstationary fuzzy time series is presented. The aim
is to minimize the mean distance dF between optimal one-step forecasts ˚̃xτ (P ) and the known fuzzy values
x̃τ of the fuzzy time series for p < τ ≤ N according to Eq. (34). Advantage of this method is the fact,
that neither stationary nor ergodic fuzzy time series are presupposed. The approach allows the modeling
of nonstationary fuzzy time series with the aid of nonstationary fuzzy random processes without empiric
parameters.

dF (P ) =
1

N − p

N∑

τ=p+1

dF

(
x̃τ ;˚̃xτ (P )

)
!= min (34)

Depending on the demanded process parameters P (i. e. A1, ..., Ap and B1, ..., Bq) the optimal one-step-
forecasts ˚̃xτ (P ) are computed for each point in time. The distances dF between ˚̃xτ (P ) and the fuzzy values
x̃τ of the fuzzy time series are averaged over time. The minimization of the mean distance dF provides
unbiased estimators of the process parameters. The calculation of the optimal one-step forecasts ˚̃xτ (P ) is
given in Section 4. The definition of the distance dF between two fuzzy variables is given as follows.

According to the metrics introduced in (Körner, 1997) the distance dF (x̃; ỹ) between fuzzy variables
x̃ and ỹ is defined as the integral over the Hausdorff distance dH(·; ·) between the α-level sets Xα and Yα
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of x̃ and ỹ given by Eq. (35).

dF (x̃; ỹ) =
1∫

0

dH (Xα;Yα) dα (35)

The Hausdorff distance dH (Xα; Yα) between two non-empty compact sets Xα; Yα ⊆ R is defined by Eq.
(36).

dH (Xα; Yα) = max

{
sup

x∈Xα

inf
y∈Yα

dE (x; y) ; sup
y∈Yα

inf
x∈Xα

dE (x; y)

}
(36)

At this dE(x; y) is the Euclidean distance between two real-valued variables x, y ∈ R according to Eq. (37).

dE (x; y) = |x− y| =
√

(x− y)2 (37)

In the following a third approach for estimation of the parameters A1, ..., Ap and B1, ..., Bq of fuzzy-
ARMA-processes is presented. This approach also does not presuppose stationary or ergodic fuzzy time
series. The concept is to compare the optimal one-step forecasts ˚̃xτ (P ) with the known fuzzy values x̃τ of
the fuzzy time series for p < τ ≤ N according to Eq. (38). The error E is defined as the square deviation of
the forecasted lαrα-increments ∆x̊j(τ, P ) (j = 1, 2, ..., 2n) to the known lαrα-increments ∆xi(τ) of the
fuzzy time series. Advantage of this method is that the solution of the minimization problem can be found
with the method of gradients.

E =
1
2

N∑

τ=1+p

2n∑

i=1

(∆xi(τ)−∆x̊i(τ, P ))2 != min (38)

After initialization the parameter matrices A1, ..., Ap and B1, ..., Bq are improved with the aid of matrices
∆A1, ..., ∆Ap and ∆B1, ..., ∆Bq according to Eqs. (39) and (40).

Ar(new) = Ar(old) + ∆Ar with r = 1, 2, ..., p (39)

Bs(new) = Bs(old) + ∆Bs with s = 1, 2, ..., q (40)

The matrices ∆A1, ..., ∆Ap and ∆B1, ..., ∆Bq are built proportional to the partial derivativs of the error
E with respect to the belonging parameter matrices according to Eqs. (41) and (42). The factor η (η > 0)
defines the increment.

∆Ar = −η
∂E

∂Ar

= −η




∂E
∂a1,1(r) · · · ∂E

∂a1,2n(r)
...

. . .
...

∂E
∂a2n,1(r) · · · ∂E

∂a2n,2n(r)


 (41)

∆Bs = −η
∂E

∂Bs

= −η




∂E
∂b1,1(s) · · · ∂E

∂b1,2n(s)
...

. . .
...

∂E
∂b2n,1(s) · · · ∂E

∂b2n,2n(s)


 (42)
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The partial derivatives ∂E
∂au,v(r) and ∂E

∂bu,v(s) of the error E with respect to the single elements of the parameter
matrices are defined by Eqs. (43) and (44) (u, v = 1, 2, ..., 2n).

∂E

∂au,v(r)
=

N∑

τ=1+p

(∆xu(τ)−∆x̊u(τ, P ))∆xv(τ − r) (43)

∂E

∂bu,v(s)
=

N∑

τ=1+p

(∆xu(τ)−∆x̊u(τ, P ))∆ε̂v(τ − s) (44)

The terms ∆ε̂v(τ − s) are the lαrα-increments of the estimated realizations ˆ̃ετ of the fuzzy-white-noise-
process (Ẽτ )τ∈T. For each point in time τ − s ≤ p the (not ascertainable) realizations ∆ε̂v(τ − s) are
replaced by the estimated expected value Ê [∆εv].

∂E

∂bu,v(s)
=

N∑

τ=1+p

(∆xu(τ)−∆x̂u(τ, P )) Ê [∆εv] (45)

Constraint of the minimization problem is the demand of non-negativity of the estimated lαrα-increments
∆ε̂j(τ) and furthermore the ˆ̃ετ have to satisfy the conditions of a fuzzy-white-noise-process.

4. Forecast strategies

Goal of forecast is the determination of future fuzzy data x̃N+h (h = 1, 2, ...) following an observed time
series with fuzzy data x̃1, x̃2, ..., x̃N . Fundamental precondition for this purpose is the assumption and
estimation of an underlying fuzzy random process (X̃τ )τ∈T. Thus the validity of a forecast is associated
with the validity of the postulated fuzzy random process.

Therefor a time series with fuzzy data x̃1, x̃2, ..., x̃N is interpreted as a realization of a fuzzy random
process (X̃τ )τ∈T. Consequently forecast is the estimation of fuzzy variables x̃N+h belonging to the same
realization. Analogical the classical time series analysis (Schlittgen and Streitberg, 2001) a forecasted fuzzy

data is regarded as a realization ~̃xN+h of a fuzzy random forecast process ~̃XN+h = ~̃XN+h(x̃1, x̃2, ..., x̃N ), at

which ~̃XN+h is a random variable depending on the realizations x̃1, x̃2, ..., x̃N of the fuzzy random variables
X̃1, X̃2, ..., X̃N .

The fuzzy random forecast process (~̃Xτ )τ∈T of an underlying fuzzy-ARMA[p, q]-process (X̃τ )τ∈T is
defined according to Eq. (46) where h = 1, 2, ... .

~̃XN+h = A1 ¯ ~̃XN+h−1 ⊕ ...⊕Ap ¯ ~̃XN+h−p ⊕ ẼN+h ª (46)

B1 ¯ ẼN+h−1 ª ...ªBq ¯ ẼN+h−q

with ~̃XN+h−u =

{
x̃N+h−u for N + h− u ≤ N
~̃XN+h−u for N + h− u > N

, u = 1, 2, ..., p

and ẼN+h−v =

{
ε̃N+h−v for N + h− v ≤ N

ẼN+h−v for N + h− v > N
, v = 1, 2, ..., q
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Thereby for each point in time τ = N + h− u ≤ N the observed fuzzy variables x̃N+h−u are inserted for
~̃XN+h−u. For each point in time τ = N + h− v ≤ N the ẼN+h−v are replaced by the realizations ε̃N+h−v

of the fuzzy-white-noise-process (Ẽτ )τ∈T.

4.1. OPTIMAL FORECAST

The optimal forecast ˚̃xN+h to the time point τ = N + h is defined as the conditional fuzzy expected value
according to Eq. (47).

˚̃xN+h(x̃1, x̃2, ..., x̃N ) = E[X̃N+h | x̃1, x̃2, ..., x̃N ] = E[~̃XN+h] (47)

In the following the optimal forecast of a fuzzy-ARMA-process, which is the underlying fuzzy random
process of an observed sequence of fuzzy data, is introduced.

The optimal one-step forecast of a fuzzy-ARMA[p, q]-process (X̃τ )τ∈T according to Eq. (29) is defined
by Eq. (48).

˚̃xN+1 = A1 ¯ x̃N ⊕ ...⊕Ap ¯ x̃N+1−p ⊕ E[Ẽτ ]ª (48)
B1 ¯ ε̃N ª ...ªBq ¯ ε̃N+1−q

The optimal h-step forecast is obtained by recursive use of the optimal one-step forecast according to Eq.
(48). Consequently the forecasted fuzzy data converge with increasing forecast step h on the fuzzy expected
value E[X̃τ ]. The optimal h-step forecast of a fuzzy-ARMA[p, q]-process (X̃τ )τ∈T is defined by Eq. (49).

˚̃xN+h = A1 ¯ x̃N+h−1 ⊕ ...⊕Ap ¯ x̃N+h−p ⊕ E[Ẽτ ]ª (49)

B1 ¯ ˆ̃εN+h−1 ª ...ªBq ¯ ˆ̃εN+h−q

with x̃N+h−u =

{
x̃N+h−u für N + h− u ≤ N
˚̃xN+h−u für N + h− u > N

, u = 1, 2, ..., p

and ε̃N+h−v =

{
ε̃N+h−v für N + h− v ≤ N

E[Ẽτ ] für N + h− v > N
, v = 1, 2, ..., q

Thereby for each point in time τ = N +h−u ≤ N the optimal forecasts ˚̃xN+h−u are inserted for x̃N+h−u.
For each point in time τ = N + h− v > N the ε̃N+h−v are replaced by the fuzzy expected value E[Ẽτ ] of
the fuzzy-white-noise-process (Ẽτ )τ∈T.

4.2. FUZZY FORECAST INTERVALS

A fuzzy interval x̃I is refered to as fuzzy forecast interval x̃κ
N+h, if realizations ~̃xN+h of the fuzzy random

forecast process (~̃Xτ )τ∈T are contained in x̃I with the probability κ. Fuzzy forecast intervals x̃κ
N+h at time

point τ = N+h of a fuzzy time series x̃1, x̃2, ..., x̃N can be estimated with the aid of monte-carlo-simulation

of the fuzzy random forecast process (~̃Xτ )τ∈T. The monte-carlo-simulation of the fuzzy random forecast

process (~̃Xτ )τ∈T (with an underlying fuzzy-ARMA[p, q]-process (X̃τ )τ∈T) is obtained by the recursive
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procedure according to Eq. (50). In the first step a realization ~̃xN+1 at time point τ = N + 1 of the fuzzy

random forecast process (~̃Xτ )τ∈T is simulated. The realization ~̃xN+1 of the fuzzy random variable ~̃XN+1

depends on the realization ε̃N+1 of the fuzzy-white-noise-variable ẼN+1. The fuzzy variables x̃τ and ε̃τ at
time points τ ≤ N are given by the time series.

~̃XN+1 = A1 ¯ x̃N ⊕ ...⊕Ap ¯ x̃N+1−p ⊕ ẼN+1 ª (50)
B1 ¯ ε̃N ª ...ªBq ¯ ε̃N+1−q

The fuzzy variable ~̃xN+1 is obtained by monte-carlo-simulation of a realization ε̃N+1. By use of the obtained
fuzzy variable ~̃xN+1 and monte-carlo-simulation of a realization ε̃N+2 the fuzzy variable ~̃xN+2 is obtained
in the next step. A successive computing at time points τ = N + 1, N + 2, ... results one potential future
gradient of the fuzzy time series (x̃τ )τ∈T. By repetition of this procedure a number of potential future
realizations is obtained.

With the aid of s simulated potential future realizations of a fuzzy time series (x̃τ )τ∈T fuzzy forecast
intervals x̃κ

N+h can be estimated as follows. The interval boundaries ~xαil(N + h) and ~xαir(N + h)] of
the α-level sets ~Xαi(N + h) of the s simulated fuzzy variables ~̃xN+h are arranged according to size and
subscripted according to Eq. (51).

~x1
αil(N + h) ≤ ~x2

αil(N + h) ≤ ... ≤ ~xs
αil(N + h)

(51)
~x1

αir(N + h) ≤ ~x2
αir(N + h) ≤ ... ≤ ~xs

αir(N + h)

The interval boundaries xκ
αil

(N + h) and xκ
αir(N + h) of the α-level sets Xκ

αi
(N + h) of a fuzzy forecast

interval x̃κ
N+h at time point τ = N + h can be estimated according to Eq. (52) for a confidence level κ. Eq.

(52) is valid for an even number of s.

xκ
αil(N + h) =

{
≤ ~x1

αil
(N + h) für a = 0

~xa
αil

(N + h) für 0 < a ≤ s
2

(52)

with a = int
[
s ·

(
1
2
− κ

2

)]

xκ
αir(N + h) =

{
~xb+1

αir (N + h) für s
2 ≤ b < s

≥ ~xs
αir(N + h) für b = s

with b =
s

2
+ int

[
s ·

(
κ

2

)]

The interval boundaries xκ
αil

(N + h) and xκ
αir(N + h) of the α-level sets Xκ

αi
(N + h) according to Eq.

(52) correspond with the lower and upper quantile of the empiric distribution of the interval boundaries.
Therewith future realizations ~̃xN+h of a fuzzy time series (x̃τ )τ∈T are contained in the fuzzy forecast
interval x̃κ

N+h with a probability κ.
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4.3. FUZZY RANDOM FORECAST

The forecast strategies presented in sections 4.1 and 4.2 provide concrete fuzzy variables and fuzzy intervals.
In the following a fuzzy random forecast is presented, which provides estimators for future fuzzy random

variables ~̃Xτ of the fuzzy random forecast process (~̃Xτ )τ∈T at time points τ = N +h. Therewith statements
about the probability of future fuzzy variables are feasible.

By monte-carlo-simulation of s potential future realizations (~̃xN+h | x̃1, x̃2, ..., x̃N ) of the fuzzy time

series (x̃τ )τ∈T the fuzzy random variable ~̃XN+h can be estimated. For characterization of ~̃XN+h the first

and second order moments of the fuzzy random variable ~̃XN+h are used. With the aid of the simulated fuzzy

variables ~̃xc
N+h (c = 1, 2, ..., s) the estimator of the fuzzy expected value E[~̃XN+h] is obtained as the fuzzy

mean value x̃N+h at time point τ = N + h according to Eq. (53).

Ê[~̃XN+h] = x̃N+h =
1
s

s⊕

c=1

~̃x
c
N+h (53)

The fuzzy expected value E[~̃XN+h] is identical with the optimal forecast ˚̃xN+h. The lαrα-subtraction

Ê[~̃XN+h] ª E[~̃XN+h] (and x̃N+h ª ˚̃xN+h respectively) is a measure for the performance of the simu-
lation. With increasing number of s the norm of the empiric lαrα-variance lrV ar of the lαrα-subtraction
x̃N+h(c)ª ˚̃xN+h (c = 1, 2, ..., s) according to Eq. (54) converges on zero. Consequently, with increasing
number s of realizations ~̃xc

N+h (c = 1, 2, ..., s) the simulation represents the characteristics of the fuzzy

random forecast process (~̃Xτ )τ∈T superiorly.

lim
s→∞

∣∣∣lrV ar
[
x̃N+h(c)ª ˚̃xN+h | c = 1, 2, ..., s

]∣∣∣ = 0 (54)

By defining a maximal value η for the norm of the empiric lαrα-variance lrV ar according to Eq. (55) a
minimum number sm of realizations can be obtained. In other words, for a wanted performance η of the
simulation a number of sm realizations is needed.

∣∣∣lrV ar
[
x̃N+h(c)ª ˚̃xN+h | c = 1, 2, ..., sm

]∣∣∣ ≤ η (55)

The elements of the lαrα-covariance function lrK~̃Xτ
(τa, τb) of the fuzzy random forecast process (~̃Xτ )τ∈T

are defined by Eq. 56 where i, j = 1, 2, ..., n.

k̂αil
αjr(τa, τb) =

1
s

s∑

c=1

[
(∆~xc

αil(τa)−∆x̊αil(τa)) (56)

(∆~xc
αjr(τb)−∆x̊αjr(τb))

]
(57)

Thereby the terms ∆~xc
αil∗(τ) are the lαrα-increments of the simulated fuzzy variables ~̃xc

τ at time point
τ > N and the terms ∆x̊αil∗(τ) are the lαrα-increments of the optimal forecast ˚̃xτ . The estimator for

the lαrα-variance lrV ar[~̃Xτ ] = lrσ
2
~̃Xτ

corresponds the diagonal elements of the estimated lαrα-covariance

function lrK̂ ~̃Xτ
(τa, τb) with τa = τb = τ .
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5. Examples

5.1. EXAMPLE 1

Analysis of time series with fuzzy data is demonstrated by way of heavy goods vehicle traffic over the
brigde Blaues Wunder in Dresden. Since October 1999 a weight-in-motion measuring point records the
entire traffic over the brigde. The data are kindly provided by the highway board department of Dresden.
For the projected analysis the measured data for heavy goods vehicle are revised of weekend and holiday
data and thereafter fuzzified based on the histogramms of each weekday. The time series thus obtained is
assumed to be stationary. June 2002 to April 2003 is considered as time period analyzed. An section of the
time series is shown in Fig. 4.

1 2 3     . . .              September 2002 . . .       19  20  21

x1.9~
20

10

x2.9~
x3.9~ x19.9~ x20.9~

x21.9~

t

x
t

[t]~

Figure 4. Time series with fuzzy data of heavy goods vehicle traffic over the bridge Blaues Wunder in Dresden (section)

The lαrα-discretization is applied to α-levels α1 = 0.0, α2 = 0.25, α3 = 0.5, α4 = 0.75 and α5 = 1.0.
Fig. 5 shows exemplarily the plot of lαrα-increments ∆xαil and ∆xαir.
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Figure 5. Plot of the lαrα-increments

Modeling of this time series with fuzzy data bases on a fuzzy-ARMA [10,0]-process. For estimation
of the parameters A1, A2, ..., A10 the minimization problem according to Eq. (33) is solved. On this ac-
count the empirical fuzzy mean value x̃ (see Fig. 6), the empirical lαrα-covariance function, and thus the
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empirical lαrα-variance are estimated from the time series under assumption of ergodicity. Consequently,
it is demanded that the differences between the empirical and model characteristics (first and second order
moments) are minimal.

0.98 2.75                   19.75 x [t]

1

0.5
x~

m ( )x
x~

Figure 6. Fuzzy mean value

The solution of the optimization problem yields the following estimators: the process parameters
A1, A2, ..., A10 as well as the fuzzy expected value E[Ẽτ ], the lαrα-variance lrV ar[Ẽτ ] and the lαrα-
covariance function lrKẼτ

(∆τ) as parameters of the fuzzy white noise process (Ẽτ )τ∈T. With the aid of
the estimated underlying fuzzy-ARMA[10,0]-process forecast of the following fuzzy data in May 2003 is
feasible. The optimal 1-step-forecast of the fuzzy-ARMA[10,0]-process is given by Eq. (58).

˚̃xN+1 = A1 ¯ x̃N ⊕ ...⊕A10 ¯ x̃N−9 ⊕ E[Ẽτ ] (58)

A repeated application of Eq. (58) results in the h-step forecast. The forecasted fuzzy data converge on
the fuzzy expected value. The resulted fuzzy data in comparison to the real measured data are shown in
Fig. 7. The forecast refers to the data for heavy goods vehicle on 12 weekdays in May 2003. The optimal
forecasts differ somewhat from the real measurd data. Reason for it is, that the analysed fuzzy time series is
characterized by a comparatively minor random influence

N+1 2 3    . . .            May 2003 . . . 10 11 12N N N N N+ + + + +

x
N+1~

20

10

x
N+2~ x

N+3~
x

N+10~
x

N+11~

x
N+12~real measured forecast

t

x [t]~
t

x
t~

Figure 7. Optimal forecasts in comparison with the measured fuzzy time series
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5.2. EXAMPLE 2

Analysis and forecast of nonstationary fuzzy time series is demonstrated by example of extensometer mea-
surements. The given series was measured from 1999 to 2002 and is kindly provided by the EIBS GmbH,
Dresden. Table I shows a short section of the measured time series over five days. Three different measuring
data exist at each time point. Instead of computing the mean value the measuring difference is considered
as uncertainty and modeled as fuzzy variable. The lαrα-discretization is realized for α-levels α1 = 0 and
α2 = 1. Fig. 8 shows the plot of the fuzzy time series.

Table I. Section of extensometer measurements

date 1st meas. 2nd meas. 3rd meas. mean value
[mm] [mm] [mm] [mm]

...
...

...
...

...
30.05.2000 22.51 22.50 22.52 22.510
27.06.2000 22.50 22.52 22.53 22.517
27.07.2000 22.40 22.40 22.41 22.403
30.08.2000 22.35 22.36 22.35 22,353
27.09.2000 21.72 21.80 21.77 21.763

...
...

...
...

...

1999       2000      2001       2002
t

x
t

[mm]

34.5

29.5

24.5

19.5

14.5

~

1 2  . . . . . .  49

Figure 8. Time series with fuzzified extensometer measurements
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The modeling of this fuzzy time series obviously requires a nonstationary fuzzy stochastic process
model. The fuzzy time series is specified as nonstationary fuzzy-ARMA-process of the order p = 10 and
q = 3. The estimation of the parameters A1, A2, ..., A10 and B1, B2, B3 is done with the aid of the
optimization problem given by Eq. (34). This procedure yields optimal 1-step-forecasts with a minimized
distance to the empirical fuzzy variables in the considered space of time. The result is shown in Fig. 9.

t

x
t

[mm]

34.5

29.5

24.5

19.5

14.5

real measured
forecast

~ x
t

~

1999       2000      2001       2002
1 2  . . . . . .  49

Figure 9. Optimal 1-step-forecasts of the fuzzy time series

For parameter estimation of the underlying fuzzy-ARMA[10,3]-process was based on the empirical
fuzzy time series in the space of time from December 1998 until November 2002. The estimated fuzzy
stochastic process enables the forecast of future settlements. The optimal long running forecast for the
following 37 month is shown in Fig. 10. This is equivalent to a forecasting horizon of 3 years.

With the aid of the fuzzy-ARMA[10,3]-process the estimation of fuzzy forecast intervals is feasible.
The fuzzy forecast intervals specify domains in which future realizations are contained with a confidence
level κ. Exemplarily the fuzzy forecast intervals with the confidence level 0.95 are shown in Fig. 11.

6. Conclusions

In this paper a new approach for description and modeling of time series with uncertain data is presented.
Uncertain data at equally spaced discrete time points are modeled as time series with fuzzy data. In this
context a new method for representation of fuzzy data is presented. The lαrα-discretization enables a new
statistical evaluation of fuzzy samples. At this the new fuzzy-ARMA-process is introduced. This process en-
ables analysis and forecast of suitable time series with fuzzy data. The fuzzy-ARMA-process is successfully
applied to a time series of heavy goods vehicle traffic data and a time series with uncertain extensometer
measurements.
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Figure 10. Optimal long running forecast of the fuzzy time series
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Figure 11. Fuzzy forecast intervals for a confidence level 0.95
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Abstract: In engineering, most governing partial differential equations of physical systems are 
solved using finite element or finite difference methods. Applications of interval methods have 
been explored in finite element analysis to model systems with uncertainty in parameters and to 
account for the impact truncation error on solutions. An alternative to finite element analysis is 
boundary element method. The boundary element method uses singular functions to reduce the 
dimension of the domain by transforming the domain variables to variables on the boundaries. In 
this work, new methods using interval variables are developed to enhance boundary element 
method for considering impreciseness such as uncertain boundary conditions, truncation errors, 
integration errors and discretization errors. Exemplars are presented to illustrate the effectiveness 
and potential of interval approach in boundary element method analysis. 
 
Keyword: boundary element method, interval analysis, truncation error, discretization errors 
 
 
 

1. Introduction 
 
Boundary element analysis (BEA) is a method for obtaining approximate solution of partial 
differential equations. This method requires less meshing than finite element analysis and thus, it 
is comparatively faster in generating or refining the mesh. BEA is performed by transformation of 
the domain variables to the variables on the boundaries of the system. The domain transformation 
is constructed using singular solutions of the governing partial differential equation. Though 
extensions to non-linear problems can be of the domain, straight forward BEA   
________________________ 
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REC 2006 – B.F. Zalewski, R.L. Mullen and R.L. Muhanna 

mailto:bxz10@case.edu
mailto:rlm@case.edu
mailto:rafi.muhanna@gtsav.gatech.edu


B.F. Zalewski, R.L. Mullen and R.L. Muhanna 
 

440 

formulations apply to linear problems. Then the transformed boundary integral equations are 
solved using collocation methods, i.e., source points are located sequentially at all boundary 
nodes that map the domain variables such that they coincide to their values at the nodes.  

 
Errors in BEA can be classified into the following sources: 
 
1) Uncertainty in the boundary conditions 
2) Uncertainty in parameters of the system 
3) Errors in integration 
4) Errors in the solution of the resulting linear system of equations 
5) Discretization errors. 
 
In this paper we will address the use of concepts from interval methods to address all of the 

above except for the issue of uncertainty in system parameters. If system parameters such as 
material properties change, one may need to develop a new analytical singular solution. When the 
boundary conditions are uncertain, the use of intervals to bound this uncertainty leads to a system 
of linear equations with an interval right hand side. The incorporation of this source of 
uncertainty can be treated is a manner similar to that used in finite element analysis (Mullen and 
Muhanna, 1999).    
 

Most boundary element programs use numerical quadrature to integrate terms in the resulting 
system of linear equations. In some problems, one can perform the integration explicitly; other 
BEA may require integration that may not be generally performed explicitly. One procedure to 
overcome this issue is to expand the mapping functions as a series, such as Taylor series 
expansion. This expansion, in fact, is an approximation of the function in the form of a 
polynomial, using the function’s derivatives evaluated at a point inside the domain of the 
function. The truncation error is considered as an interval variable obtained from the maximum 
Taylor series expansion remainder. Then, the BEA is performed in the presence of variation in 
the corresponding linear system of equations. Based on present error bounds, the enclosure on the 
bounds of the results is quantified. This procedure can lead to interval bounds on errors due to 
integration.     

 
Truncation errors in the solution of the resulting system of linear equations can be included in 

BEA using conventional interval methods for linear equations (Alefeld 1983, Gay 1982, Hansen 
1965, Jansson 1991, Moore 1979, Neumaier 1987, 1988, 1990, Rump 1990, Sunaga 1958).  

 
Finally we explore the bounding of discretization errors using local functions that are 

bounded by interval values. An example for a two dimensional Laplace equation using constant 
elements is presented. Sharp bounds require a method for solving parametrically constrained 
systems of linear equations.    
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2. Boundary Element Analysis of Laplace Equation 
 
2.1. BEA FORMULATION FOR LAPLACE EQUATION 
 
The theory of boundary elements is discussed in the books by Brebbia 1992 and Hartmann 1889. 
In the following, we will review a two dimension boundary element formulation for Laplace 
equation.  

 
The Laplace equation is: 
 

   0      Ωin   2 =∇ u
     uu ˆ=         (1) 1Γon

 qq
n
u

ˆ==
∂
∂

     2Γon

 
where  is the domain of the system, )(Ω )(Γ  is the boundary of the system and  and  are 
the values at the boundary.  

)ˆ(u )ˆ(q

 
To minimize the error introduced as the exact solution of  and  is approximated, 

orthogonalization of Eq. (1) with respect to a test function  is performed: 

)(u )(q
)(w

 

 Γ
∂
∂

−−Γ−=Ω∇ ∫∫∫
ΓΓΩ

d
n
wuudwqqduw

12

)ˆ()ˆ(2  (2) 

 

Twice integrating by parts on the left side of Eq. (2) and considering  and  
yields: 

wu =* nuq ∂∂= /**

 

  (3) Γ+Γ+Γ−Γ−=Ω∇ ∫∫∫∫∫
ΓΓΓΓΩ

dquduqdquduqduu
1212

*****2 ˆˆ

or: 
 

      ,ˆˆ)(
1212

**** Γ+Γ=Γ+Γ+ ∫∫∫∫
ΓΓΓΓ

dquduqdquduqu ξ Ω∈ξ  (4) 

 
where )(ξ  is a source point.  
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The term  is the fundamental solution satisfying Laplace equation that represents a field 

generated by a singular source at some point 

)( *u
)(ξ . Hence, at a field point ,  must satisfy: )(x )( *u

 

  (5) 0)(*2 =−+∇ ξδ xu
 
The solution to Eq. (5) for a two-dimensional isotropic domain is: 
 

 )ln(
2
1* ru
π

−=  (6) 

 

 nx
r

q ⋅−−= )(
2

1
2

* ξ
π

 (7) 

 
where || ξ−= xr  is the distance between the source point )(ξ  and any point of interest . 

Allowing the boundary to be along  and rewriting Eq. (4) before the application of boundary 
conditions: 

)(x
)(x

 

       ,)(),()(),()( ** ∫∫
ΓΓ

Γ=Γ+
xx

xx dxqxudxuxqu ξξξ Ω∈ξ  (8) 

 
Integrating Eq. (8) such that the source point, )(ξ , is included on the circular boundary of radius 

)(ε , as 0→ε , results in the left side integral vanishing. For constant elements the right side 

integral results in )(
2
1 ξu− . Thus, Eq. (8) can be rewritten as: 

 

 ,)(),()(),()(
2
1 ** ∫∫

ΓΓ

Γ=Γ+
xx

xx dxqxudxuxqu ξξξ      Ω∈ξ  (9) 

 
2.2. CONSTANT ELEMENT BOUNDARY  DISCRETIZATION 
 
Any boundary Γ  can be discretized into boundary elements iΓ  consisting of nodes at which a 

value of either  or  is known and assumed polynomial shape functions between nodes. In 
this work, only boundary elements with constant shape functions are used. 

)(u )(q
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These elements contain one node per element, leading to the following discretization: 
 

 )()( xuxu iΦ=  (10) 

 
 )()( xqxq iΦ=  (11) 

 
where  and  are the vectors of nodal values of  and , respectively, at node  

and  is the vector of constant shape functions. The discretized Eq. (9) is written as: 

}{ iu }{ iq )(u )(q )(i
)(xΦ

 

 ∑ ∫∑ ∫
ΓΓ

ΓΦ=ΓΦ+
Elements

xi
Elements

xii

xx

dxxuqdxxquu )(),()(),(
2

1 ** ξξ  (12) 

 
Eq. (12) is written in a matrix form: 
 
 GqHu =  (13) 
 
where matrix  satisfies the rigid body motion. Eq. (13) is rearranged and solved as: ][H
 
 fAx =  (14) 
 
The terms of  and  matrices can either be determined explicitly or are computed 
numerically, by numerical  integration using Taylor series expansion.  

][H ][G

 
 
 

3. Taylor Series Expansion 
 
A function can be expressed as a polynomial in terms of its derivatives at some point  using 
Taylor series expansion [Taylor, 1715]: 

)(a

 

 m
m

ax
m

afaxafaxafafxf )(
!

)(
...)(

!2
)(

)(
!1

)(
!0

)(
)( 2 −++−

′′
+−

′
+=  (15) 

 
where . ∞→m
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 If the function has a finite amount of nonzero derivatives, it can be integrated exactly: 
 

 ∫∫ −++−
′′

+−
′

+=
x

n
n

x

dxax
n

afaxafaxafafdxxf ])(
!

)(
...)(

!2
)(

)(
!1

)(
!0

)(
[)( 2  (16) 

 
where  corresponds to the last nonzero derivative of the function. Since a function  is 
represented by a polynomial, its integration can be performed: 

)(n )(xf

 

 
x

n
n

x

ax
n

afaxafaxafxafdxxf ⎥
⎦

⎤
⎢
⎣

⎡
−

+
++−

′′
+−

′
+= +∫ 132 )(

)!1(

)(
...)(

6

)(
)(

2

)(
)()(  (17) 

 
However, if the function has an infinite amount of nonzero derivatives, integration of the Taylor 
Series introduces truncation errors, since not all terms in the series can be accounted for. 
 
 
 
 

4. Error Analysis on Taylor Series Expansion 
 
A function can also be expressed using Taylor series expansion with remainder as: 
 

 n
n

n

Rax
n

afaxafaxafafxf +−
−

++−
′′

+−
′

+= −
−

1
1

2 )(
)!1(

)(
...)(
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)(
)(

!1

)(

!0

)(
)(  (18) 

 
where  corresponds to the  derivative of the function and and  is the series 

remainder as: 

)(n )( thn nR

 
!

))((
n

axfR
nn

n
−

=
ζ

     xa << ζ  (19) 

 
Thus, any function can be integrated exactly as: 
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Hence, truncation error can be defined as: 
 
 

∫∫∫ −
−

−
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++−
′′

+−
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x

n
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xx
n dxax

n
afaxafaxafafdxxfdxR ])(
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Integrating Eq. (19) yields: 
 

 
x

nn

x
n n

axfdxR
)!1(

))(( 1

+
−

=
+

∫
ζ

 (22) 

 

However, the closed form solution of  cannot be obtained since ∫
x

ndxR )(ζ  is unknown. 

 
The truncation error can be represented by an interval variable. The interval number is a 

closed set as: 
 

 }|{],[
~ xzxxxxX ≤≤ℜ∈==  (23) 

 
The maximum truncation error is found: 
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The bounds on the truncation error are computed: 
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These interval Taylor series expansion bounds are used in order to represent truncation error of 
 and  matrices when numerical integration is not used. The approximate terms of the 

 and  matrices for an element of length  are computed as: 

][H ][G
][H ][G )(L
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 (26) 

 
 
 

5. Interval Boundary Element Formulation 
 
 
 The bounds on the exact value of the non-diagonal terms of  and  matrices are computed 

using Eqs. (26) and (25). The diagonal terms of the  matrix are computed such that the 

matrix  satisfies the rigid body motion constraint. The diagonal terms of the  matrix 

require special consideration since they contain singular integrals, as the distance |

][H ][G
][H

][H ][G
| ξ−= xr  

vanishes at the node. The approximate value of the diagonal terms is computed using Eq. (26).  
 

Since the function is singular at the node, { })(max ζnf  becomes infinite, Eq. (25) cannot be 
used to meaningfully determine the error bound. The closed form solution of the improper 
integral of the diagonal terms of the  matrix is found, whish is not necessarily in the domain 
of the actual problem. If the domain of the improper integral is different than that of the problem, 
the remaining domain is integrated numerically using Eq. (26) and the error found using Eq. (25). 
If the domain of the improper integral is that of the problem, the difference between the closed 
form solution and the numerical integration is considered as truncation error. 

][G

 
 Interval Boundary Element Analysis using the interval bound on the truncation error is 

performed as: 

 qGuH ~~~~ =  (27) 
 
Eq. (14) is rearranged as: 

 fxA ~~~ =  (28) 
 
The interval linear system of equation can be solved by Matlab Interval Toolbox [MATLAB 
6.5.1], which uses Newton-Krawczyk iteration. 
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6. Discretization error 
 
In the analysis of the discretiztion error, we will look for interval bounded unknown functions 
that will satisfy the continuous problem.   
 

 ∫∫
ΓΓ

Γ=Γ+ dxqxudxuxqu )(),()(),()(
2

1 ** ξξξ        Γ∈ξ  (29) 

 
The existence and uniqueness of the solution to the above problem for two dimensional Laplace 
equation when  or  (but not both) is given is well studied [Friedman 1976]. We will 

assume that the exact solution to Eq. (29) is  and .  

)(u )(q
)(xu )(xq

 
The boundary  is subdivided into elements. For each element, we will seek the interval values 

 and  that bound the functions  and  over an element  (see Figure 2) such that: 
Γ

)~(u )~(q )(u )(q )(i
 

 [ ] [ ] ∑ ∫∑ ∫
ΓΓ

Γ=Γ+∀∈∈
i

i
i

iiiiiii

ii

dxqxudxuxquqqquuu )(),()(),()(
2
1

   | ,~, ,~ ** ξξξξ  (30) 

  
If  or  are specified as boundary conditions, the bounds of the function are assumed to be 
given explicitly. Each term of the summation in Eq. (30) is represented graphically in Figure 1. 

)(u )(q

 

 
Figure 1. Integration from element B from point P on element A. 
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The integral of the product will be expanded to the product of two intervals:  the interval value of 
u or q and the interval bounds of the integral of the singular solution over the element for all 
values of )(ξ . For example: 
 

  (31) ∫∫
ΓΓ

Γ⊂Γ
ii

udxqdxuxq i
~),()(),( ** ξξ

 
if  has the same sign over the element. If not, the integration domain is subdivided into 

portions that have the same sign for . Then the integral is replaced by interval bounds. 

)( *q
)( *q

 

  (32) jjii uhudxq
i

Γ∈∀⊂Γ∫
Γ

ξξ ~~
),(*

 
Eq. (31) is illustrated in Figure 2 schematically.  
 

 
 

Figure 2. Interval bounds on solution to an element. 
 
Thus, the interval bounds on the solution of Eq. (30) can be expressed as a generalized interval 
system of linear equations.    
 

For sharp bounds, the parametric dependence of each row of the  or  matrices on ][H ][G
)(ξ  must be included in the solution of the interval system. 
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7. Examples 
7.1.  EXAMPLE 1
 
The first example is a demonstration of the interval treatment of uncertain boundary conditions. 
The unit square domain of the problem as well as the BEA mesh is shown in Figure 3. The left 
and right hand sides have a zero flux boundary condition while the bottom is between a [0,1] 
potential and the top is at at a [1,2]  potential. 
 
 

 

1:1 ratio 

 
Figure 3. Boundary discretization using six constant boundary elements. 

 
 
Boundary Conditions: u1=[0,1], q2=0, q3=0, u4=[1,2], q5=0, q6=0 
 
 
The interval bounds are shown and compared with the combinatorial solution (Table 1) for the 
unknown boundary values. In this solution, the interval solution has significantly larger width 
compared with the combinatorial solution.    
 

We attribute this over estimation to the fact that right hand side in a boundary element 
solution includes terms that involve products of the interval boundary conditions with terms from 
the  or  matrices. Methods for preserving the parameterization of the right hand side 
vector need to be explored to provide sharper results. 

][H ][G
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Node Value 

 

 
Lower Bound 

 
Combinatorial 
Lower Bound 

 

 
Combinatorial 
Upper Bound 

 
Upper Bound 

q1 -2.5770 -2.0763 0.0000 0.5007 

q2 0.0922 0.2451 1.2451 1.3981 

u3 0.6019 0.7549 1.7549 1.9078 

u4 -0.5007 0.0000 2.0763 2.5770 

q5 0.6019 0.7549 1.7549 1.9078 

q6 0.0922 0.2451 1.2451 1.3981 

 
Table 1. Solutions to Laplace equation with uncertain boundary conditions. 

 
7.2.  EXAMPLE 2
 

The second example uses interval BEA to solve Laplace equation on a 2 x 1 domain using six 
constant boundary elements with a node located at the mid-point (Figure 4).  The sides of the 
domain have zero flux while the bottom is at zero potential and a potential of 50 is at the top.  In 
this example we will use a four point integration method based on a Taylor series to develop 
interval terms in the  and   matrices.   The interval system of equations is then solved 
using Matlab. 

][H ][G

 

 

1:2 ratio 

Figure 4. Boundary discretization using six constant boundary elements. 
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Boundary Conditions: u1=0, q2=0, q3=0, u4=50, q5=0, q6=0 
 
 
The solution obtained by exact integration is shown and compared to the bounds of the solution 
using the proposed method (Table 2). 
 
 

Node Value Lower Bound Solution with exact integration Upper Bound 

q1 -33.6604 -28.1967 -23.9615 

u2 11.1689 11.9357 12.4285 

u3 37.5192 38.0643 38.8833 

q4 23.4502 28.1967 34.1717 

u5 37.5192 38.0643 38.8833 

u6 11.1690 11.9357 12.4285 

 
Table 2. Solutions to Laplace equation in presence of truncation error. 

 
The results obtained by the present method shows that the presence of truncation errors in 
integration as well as in solution of the system of linear equations can be bounded using Interval 
Boundary Element Analysis.   
 
 
7.3.  EXAMPLE 3
 

The third example obtains the bounds on discretization error for the BEA of the Laplace 
equation. We consider a unit domain with zero flux on each side, a zero potential on the bottom 
and a unit potential on the top.  With the coarse meshes used as well as the need to improve the 
solution of a parameterized system of interval equations, we will present bounds calculated by a 
“brut force” construction of interval bounds by constructing terms in the  and  matrices 

by moving the point 

][H ][G
)(ξ  over the domain of an element to evaluate terms in Eq. (32).  Thus, the 

results represent the potential to efficiently calculate bounds only of  an optimal interval solution 
method to the parametric problem can be developed.   
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Three different meshes are considered and the solutions in presence of the discretization error 
are compared. 

 

1:1 ratio 

Figure 5. Boundary discretization using four constant boundary elements. 
 
Boundary Conditions: u1=0, q2=0, u3=1, q4=0 
 

 

1:1 ratio 

 
Figure 6. Boundary discretization using six constant boundary elements. 

 
Boundary Conditions: u1=0, q2=0, q3=0, u4=1, q5=0, q6=0 
 

 

1:1 ratio 

 
Figure 7. Boundary discretization using eight constant boundary elements. 

 

 
Boundary Conditions: u1=0, q2=0, q3=0, q4=0, u5=1, q6=0, q7=0, q8=0 
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The bounds of the interval BEA solution are shown and compared with a conventional BEA 
solution where the node of each element is located at its mid-point of the element for the three 
different meshes (Tables 3-5).  
 

 
Node Value 

 

 
Lower Bound 

 
Middle Value 

 
Upper Bound 

 
Width 

 
Mid-point Node 

Solution 
 

q1 -1.9896 -1.2512 -0.5129 1.4768 -1.1746 

u2 0.0000 0.5000 1.0000 1.0000 0.5000 

q3 0.5129 1.2512 1.98961 1.4768 1.1746 

u4 0.0000 0.5000 1.0000 1.0000 0.5000 

 
Table 3. Solutions to Laplace equation in presence of dicretization error for a four node mesh. 

 
 
 
 

 
Node Value 

 

 
Lower Bound 

 
Central Value 

 
Upper Bound 

 
Width 

 
Mid-point Node 

Solution 
 

q1 -1.4389 -1.0823 -0.7258 0.7131 -1.0382 

u2 -0.0793 0.2431 0.5655 0.6448 0.2451 

u3 0.4345 0.7569 1.0793 0.6448 0.7549 

q4 0.7258 1.0823 1.4389 0.7131 1.0382 

u5 0.4345 0.7569 1.0793 0.6448 0.7549 

u6 -0.0793 0.2431 0.5655 0.6448 0.2451 

 
Table 4. Solutions to Laplace equation in presence of dicretization error for a six node mesh. 
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Node Value 

 

 
Lower Bound 

 
Central Value 

 
Upper Bound 

 
Width 

 
Mid-point Node 

Solution 
 

q1 -1.2737 -1.0397 -0.8057 0.4680 -1.0161 

u2 -0.0731 0.1539 0.3808 0.4539 0.1639 

u3 0.2856 0.5000 0.7144 0.4288 0.5000 

u4 0.6192 0.8461 1.0731 0.4539 0.8361 

q5 0.8057 1.0397 1.2737 0.4680 1.0161 

u6 0.6192 0.8461 1.0731 0.4539 0.8361 

u7 0.2856 0.5000 0.7144 0.4288 0.5 

u8 -0.0731 0.1539 0.3808 0.4539 0.1639 

 
Table 5. Solutions to Laplace equation in presence of discretization error for a eight node mesh. 

 
The bounds on the discretization error are fairly sharp and enclose the exact solution for this 
problem.    In fact, for the edges of the 4 element mesh, the bounds are sharp.  In addition, the  
results show that the width of discretization error bounds reduces with mesh refinement.  
 
 
 

8. Conclusion 
 
In this work, new methods are presented to perform boundary element analysis in the presence of 
the truncation and discretization errors as well as uncertain boundary conditions.  The methods 
rely on interval methods to quantify local errors in BEA.   The examples presented demonstrate 
the potential of interval based boundary element methods to provide reliable engineering 
computations.  Further work is needed to optimally solve the parametric form of the interval 
equations to advance interval based BEA to a truly reliable and efficient engineering analysis 
tool.  
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Abstract: In transportation engineering, dynamic analysis is an essential procedure for designing 
reliable systems. However, in current procedures of dynamic analysis for transportation systems, 
the possible presence of uncertainty in the system’s mechanical properties and/or applied forces is 
not considered. In this work, a new method is developed for the dynamic analysis of continuous 
uncertain systems subjected to uncertain loads induced by passage of moving vehicles. First, an 
interval formulation is used to quantify the uncertainty present in the system’s mechanical 
characteristics and/or magnitude of dynamic force. Then, having the interval parameters, the 
bounds on modal responses of the continuous system are obtained leading to determination of the 
upper-bounds of total response that may be used for design purposes. An example problem that 
illustrates the behavior of the method and a comparison with Monte-Carlo simulations are 
presented. 
 

Keywords: Transportation, Dynamics, Interval, Uncertainty 
 
 

 
1. Introduction 

 
In design of transportation facilities, the performance of the system must be guaranteed over its 
lifetime. Moreover, dynamic analysis is a fundamental procedure for designing reliable systems 
that are subjected to dynamic forces induced by passage of moving vehicles.  
 

However, in current procedures for dynamic analysis of transportation systems, the possible 
existence of uncertainty in either mechanical properties of the system or the characteristics of 
forcing function is generally not considered. These uncertainties can be attributed to physical 
imperfections, modeling inaccuracies and system complexities.  
 

Although, in a design process, uncertainty is accounted for by a combination of load 
amplification and strength reduction factors that are based on probabilistic models of historic 
data, consideration of the effects of uncertainty has been removed from current dynamic analysis  
of transportation systems.  
____________________________ 
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 In this work, a new method is developed to perform dynamic analysis of a continuous system 
subjected to a moving load in the presence of uncertainty in the system’s mechanical properties as 
well as uncertainty in the magnitude of dynamic loads. An interval formulation is used to 
represent the presence of uncertainty.  
 

Using interval calculation procedures, the upper bounds of system’s response are obtained 
which can be used for reliable design purposes. It is shown that this method can achieve the 
bounds of dynamic response without Monte-Carlo simulation procedure. 
 
 
 

2. Deterministic Dynamic Analysis 
 

The partial differential equation of motion for a flexural beam subjected to a load moving with 
constant velocity (Figure 1) is: 
 

 )(
),(),(

2

2

4

4

vtxP
t

txum
x

txuEI −=
∂

∂
+

∂
∂ δ  )0(

v
Lt ≤≤           (1) 

 
where, E is modulus of elasticity, I is the moment of inertia, u is the displacement, t  is time, m  
is mass per unit length,  is the magnitude of load, v is the velocity of the load and P δ is the 
Dirac-delta function. 

 
Figure 1. Simply-supported beam with moving load. 

 
Considering free vibration of the system and assuming a harmonic solution of the form: 

, in whichtiextxu ωϕ )(),( = )(xϕ a spatial function andω is the circular natural frequency, the 
linear eigenvalue problem is: 
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Applying boundary conditions for the simply-supported flexural Bernoulli beam, 
( 0)()()0()0( =′′==′′= LL ϕϕϕϕ ), the solution to the characteristic equation for natural 
circular frequencies and corresponding mass-orthonormalized eigenfunctions (mode shapes) are: 
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where,  is the mode number. n
 

The solution for the forced vibration may be expressed as: 
 

  (5) ∑
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Where, are the modal coordinates. )(tyn

 
Substituting Eq. (5) in the governing equation, Eq. (1), premultiplying by )(xnϕ , integrating 

over the domain, decoupling and adding modal damping ratio ( nζ ), the modal equation becomes: 
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where, LmPn /2=Γ is the modal participation factor.  

 
Defining a scaled generalized modal coordinate: 
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Eq. (7) is rewritten in terms of the scaled modal coordinate, , as:  )(tdn

 

 )sin()()(2)( 2 t
L

vntdtdtd nnnnnn
πωωζ =++  )0(

v
Lt ≤≤      (9) 

 
For each decoupled generalized modal equation, the maximum modal coordinate is obtained 

from the response spectrum (maximum ratio of dynamic to static response) for modal frequency 
and assumed modal damping ratio (Figure 2). 

 
  

Figure 2. A generic response spectrum. 
  

Then, the maximum modal displacement response is obtained as the multiplication of the 
maximum modal coordinate, modal participation factor, and mode shape as: 
 

 )sin()
2

)(())()()(( max,max,max, L
xn

Lm
Pdxdu nnnnn

πϕ =Γ=  (10) 

 
Finally, the total displacement response is obtained using superposition of modal maxima. 

The superposition can be performed by considering Square Root of Sum of Squares (SRSS) of 
modal maxima as (Rosenblueth 1962): 
  

 ∑
∞

=

=
1

max,
2

max
n

nuu  (11) 
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For practical purposes, the infinite series must be truncated. For systems with different 

patterns of load and boundary conditions, the same procedures can be used. 
3. Interval Variables 

 
The concept of interval numbers has been originally applied in the error analysis associated with 
digital computing.  Quantification of the uncertainties introduced by truncation of real numbers in 
numerical methods was the primary application of interval methods (Moore 1966).  
 

A real interval is a closed set defined by extreme values as (Figure 3): 
 

 }|{],[
~ ulul zzzzzzZ ≤≤ℜ∈==  (12) 

 
 

 
 

],[~ bax = 
 

Figure 3. An interval variable. 
 
 

In this work, the symbol (~) represents an interval quantity. One interpretation of an interval 
number is a random variable whose probability density function is unknown but non-zero only in 
the range of interval.  
 

Another interpretation of an interval number includes intervals of confidence for α -cuts of 
fuzzy sets. The interval representation transforms the point values in the deterministic system to 
inclusive set values in the system with bounded uncertainty. 
 
 
 

4. Interval Dynamic Analysis 
 

The partial differential equation of motion for a flexural beam subjected to a load moving with 
constant velocity with interval uncertainty in modulus of elasticity and magnitude of load is: 
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where,  and . ],[
~ ul EEE = ],[

~ ul PPP =
 

Then, the interval eigenvalue problem becomes: 
 

 )(~)(~ 2
2

2

2

2

xm
dx

xdIE
dx
d ϕωϕ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (14) 

 
Applying boundary conditions, the solution for natural circular frequencies and 

corresponding mode shapes are: 
 

 4
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Eq. (15) can be rewritten as: 

 

 4
22 ]),([~

Lm
IEEn ul

n πω =  (17) 

 
This shows that the lower bound of modulus of elasticity (or in general stiffness) yields the 

lower bound of natural circular frequency and similarly, the upper bound of modulus of elasticity 
yields the upper bound of natural circular frequency. This leads to an evident realization of 
monotonic behavior of natural circular frequencies due to variation in stiffness in continuous 
dynamic systems. 
 

In discrete systems, because of the complexity of the eigenvalue problem, this realization is 
not straightforward. Modares and Mullen (2004) proved this monotonic behavior of natural 
frequencies in discrete systems using monotonicity of eigenvalues for symmetric matrices 
subjected to non-negative definite perturbations. 
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The interval modal coordinate is determined using the excitation response spectrum evaluated for 
the corresponding interval of natural circular frequency and assumed modal damping ratio 
(Figure  4). 
 

 
Figure 4.  Determination of nd~ corresponding to a nω~  for a generic response spectrum 

 
 

Having the interval modal coordinate, the maximum (upperbound) modal coordinate  

is determined as: 
max,nd

 

  )
~

max(max, nn dd =  (18) 

 
 The interval modal participation factor is: 
 

 
Lm

Pn
2~~ =Γ  (19) 

 
Therefore, the maximum modal coordinate is:  
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Then, the maximum modal displacement response is obtained as the multiplication of 

maximum modal coordinate, maximum modal participation factor and mode shape as: 
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Finally, the total displacement response is obtained using superposition of modal maxima. 
Using SRSS, the total response is:  
 

 ∑
∞

=

=
1

max,
2

max
n

nuu  (22) 

 
 
 

5. Numerical Example 
 
The example obtains the bounds on dynamic mid-span displacement for a continuous flexural 
simply-supported beam with interval uncertainty in the modulus of elasticity and magnitude of 
moving load. 
 

 
 

Figure 5. Flexural beam with uncertainty in modulus of elasticity  
and magnitude of moving load. 

 
The beam’s length is , mass is ftL 200= gkipsm /11=  per foot, the moment of inertia is 

, assumed modal damping ratio 4700 ftI = %1=ζ ,  and uncertain modulus of elasticity is 

. The moving load’s velocity is2/576000])1.1,9.0([ ftkipsE = mphv 55=  , and its parametric 

uncertain magnitude of load is . PP ]1.1,9.0[
~ =

 
 
5.1.  SOLUTION 
 
The problem is solved using the present method and the results are compared with Monte-Carlo 
simulation solution using bounded uniformly distributed random variables in 10000 simulations.  
 

The solution for bounds on modal natural circular frequencies is summarized in table (1). 
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Lower Bound 
Present Method 

 

Lower Bound 
Monte-Carlo 
Simulation 

 

 

Upper Bound 
Monte-Carlo 
Simulation 

 

Upper Bound 
Present Method 

)( 2n
nω  1.41717 1.41718 1.56673 1.56675 

 
Table1. Bounds on Natural Circular frequencies 

 
 

The response spectrum for the first (fundamental) mode is obtained and shown in figure (6). 
 

 
 

Figure 6. Response spectrum for fundamental mode of the example problem. 

 
 

The upperbounds the mid-span displacement response for the fundamental mode is 
summarized in table (2). 
 
 

 
 

Upper Bound 
Monte-Carlo Simulation 

 

 

Upper Bound 
Present Method 

P
u1  8.06557e-004 8.12128e-004 

 
Table2. Upper bounds of displacement response  
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The first-mode beam response is depicted in figure (7). 
 

 
 

Figure 7. Beam deflection for the fundamental mode response of the example problem. 
 
 

The results show that using the proposed method, the system’s physics is preserved and also, 
the obtained sharp solutions are upper-bounds to solutions obtained by methods that produce 
inner-bound results such as Monte-Carlo simulation. 
 
 
 

6. Conclusions 
 
A new method for dynamic analysis of transportation systems with uncertainty in the mechanical 
characteristics of the system as well as the properties of the moving load is developed. 
 

This computationally efficient method shows that implementation of interval analysis in a 
continuous dynamic system preserves the problem’s physics and the yields sharp and robust 
results. This may be attributed to completeness of the closed-form solution in continuous dynamic 
systems. 
 

The results show that obtaining bounds does not require expensive stochastic procedures such 
as Monte-Carlo simulations. 

 
The simplicity of the proposed method makes it attractive to introduce uncertainty in analysis 

of continuous dynamic systems. 
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Abstract: In this work, geometric uncertainty due to fabrication errors and/or thermal changes in 
engineering systems is addressed. The system components’ deviation from the nominal 
dimensions (missfitting) are introduced as intervals. Such geometric uncertainty is converted into 
an equivalent nodal load uncertainty. In the case of elastic truss systems the Interval Finite 
Element formulation leads to a linear interval system of equations with interval right hand side. 
An exact enclosure on the final system geometry is obtained. Results are illustrated in example 
problems. 
 
Keywords: geometric uncertainty, interval finite elements, fabrication errors 
 
 
 

1. Introduction 
 
Engineering systems are usually designed with a pre-described geometry in order to meet the 
intended function for which they are designed. However, due to fabrication errors and/or thermal 
changes, the dimensions of system components will deviate from their nominal values creating a 
missfitting problem during the manufacturing/construction process. In engineering practice, such 
a fabrication deviation is defined in a form of maximum allowable tolerance for individual 
components or for the completed system after the assemblage. Usually, the design and 
manufacturing processes of mechanical components require a complete definition of geometry of 
these components, however the definition of the geometries of the components are only 
________________________________ 
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considered complete if tolerances are included in the design. Thus, the proper design 
should be a "completely toleranced" design, which means that geometries of the 
geometrical elements of a workpiece are completely defined and toleranced (Henzold, G., 
1995).  More information about the allowable values of fabrication tolerances can be 
found in the publications of the American National Standards Institute (ANSI) or other 
similar international organizations such as the International Organisation for Standardization 
(ISO). 

State of the art technologies are striving for higher performance, higher efficiency and greater 
reliability.  To achieve such goals, the analysis and design procedures have to account for all 
possible factors that could affect the product. Tolerances represent one of the main sources of 
uncertainty that should be accounted for. 

Tolerances, usually, are defined as absolute deviation from the nominal values. Thus, 
including the tolerance, in the analysis and design, as a possible value within a given interval that 
possesses known bounds might be a realistic or natural way of representing such type of 
uncertainty.  

In the present work, tolerances (geometrical uncertainty) will be introduced as interval values 
i.e., the true value is known to lie between two bounding values, but the exact value is unknown.    

 
During the last decade, Interval Finite Element Methods (IFEM) have been developed in a 
number of works to handle uncertainty in structural mechanics, as an example we can mention a 
few such as  the works of Koyluoglu, Cakmak and Nielsen (1995), Rao, S.S. and Sawyer, J.P. 
(1995), Rao, S.S. and Berke L (1997), Rao, S.S. and Li Chen (1998), Nakagiri and Suzuki (1999) 
Muhanna and Mullen (1995), Muhanna and Mullen (1999), Mullen and Muhanna (1999); Corliss, 
G., C. Foley, and R. B. Kearfott (2004); Popova, E.D, M. Datcheva, R. Iankov, and T. Schanz 
(2003), Neumaier and Pownuk (2004); Muhanna, Mullen, and Zhang (2005). The accounted for 
uncertainty in these works has included load, stiffness, and element cross sectional area. 
However, the uncertainty in the components’ length has not been addressed. 

In the present work we introduce a new formulation for geometric uncertainty due to 
fabrication errors and/or thermal changes in engineering system components with an application 
to elastic truss systems.  

The formulation will be presented in section 2. Sample calculations are given in section 3. 

In this paper, boldface will denote interval quantities (interval number, interval vector, interval 
matrix). All interval quantities are implicitly real interval quantities. Non-boldface will denote 
real (deterministic) quantities. For an interval quantity x or A, the notation x and A is used to 
denote a generic (arbitrary) element x ∈ x and A ∈ A. 
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2. Formulation 
 
The present formulation will be developed for the case of truss structures. A truss is a structure 
composed of straight bars connected at their points of intersection by means of momentless joints 
called pins or hinges (frictionless joints). All loadings are assumed to be applied only at these 
points of intersection. Thus each straight bar is subjected only to axial force, not to shear forces, 
bending nor twisting moments. 
Due to fabrication errors and/or thermal changes certain bars could have improper length. In 
practice, the bar is forced into its position between two joints by applying some initial extension 
or compression. Under such a condition, some axial forces are introduced in the bars in the 
absence of external loads. The solution of such a problem in the absence of uncertainty is well 
known in the text books of structural engineering. However, based on the engineering practice, 
the length of the truss bar is introduced as a random value that is equal to the nominal value 
plus/minus a tolerance. That means, the bar length can have any value between two bounds, 
namely Lo − δL and Lo +δL, where Lo is the bar nominal length and δL is the given tolerance. In 
this study we will incorporate uncertainty in the bar length as the range between the lower and 
upper bounds on the nominal length of the bar. 
 

 L ∈L,  [ , ] : { | }≡ = ∈ ≤ ≤L L L R L L LL  (1) 
 
 L = [Lo − δL, Lo +δL] (2) 
 
The formulation includes two steps and the results of the two steps are then superimposed. 
Since it is required that all bars have to fit the nominal pre-described geometry, then if a bar is 
longer than its nominal length it should be compressed to fit into its position between two joints. 
So when the bar is released it will apply equal and opposite compressive forces on its joints, and 
if the bar is shorter it will apply a tensile forces. The axial forces developed in all bars due to 
initial extension/compression or temperature changes can be determined and then can be used to 
calculate the nodal forces within the finite element context.  By doing that, the geometric 
uncertainty in the bar’s length is converted into an equivalent load uncertainty. The interval axial 
force for a typical bar element will be given by 
 

 
δ

=
o

EA
L
LF  (3a) 
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Where δL = [− δL, +δL] = [δL,δL]  is the interval deviation from the nominal value of the bar’s 
length, E is the modulus of elasticity, and A is the cross sectional are of the bar. In the case of a 
temperature change of the interval amount δT the interval force will be given by 
 

 EAF Tαδ=  (3b) 
 

Where δT = [−δT +δT ] = [δT ,δT ]  is the interval of the temperature change, and α is the 
coefficient of thermal expansion. 
The combination of fabrication errors and temperature changes can be analyzed using the sum of 
equivalent forces. 

To illustrate how the above mentioned procedure can be applied, let us consider a typical 
truss bar element as shown in figure 1. According to finite element formulation (Bathe, 
Gallagher, Zienkiewicz and Taylor) the nodal forces induced by a given bar due fabrication error 
or temperature change can be determined as 

 

1x

1y

2x o

2y

c c
s s

=EA
c cL
s s

o

F
F LP F
F
F

δ
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⎟− −
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 (4) 

 
Where Po is the interval vector of nodal forces obtained as a result of the missfitting problem,  
c = cosϕ, and s = sinϕ. In the absence of external loading the final interval finite element system 
of equations can be given by 
 

 K MU F=  (5) 
 

 

 

2 

1  

E, A, L 

F2 , u2  

ϕ

x  

y 

x'   

y' 

 F 1 
 u 1   

F2y, u2y 

F2x, u2x 

F 1 y , u 1 y   

F 1x , u 1 x   

 
Figure 1. Local (x', y') and global (x, y) coordinate systems for a truss bar element 
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Where K is the stiffness matrix of the system and U is the vector of interval displacements, M is a 
matrix that relates the system’s degrees of freedom with the elements loads, the complete 
derivation of this matrix can be found in Mullen and Muhanna 1999, and F is the interval vector 
of elements’ fabrication errors or temperature changes. Equation (5) is an interval linear system, 
where only the right hand side is interval and an exact enclosure can be obtained. This enclosure 
represents the final deformed geometry of the truss due to missfitting. 

To obtain the final internal force in each bar, first we need to calculate the internal force in 
each bar due to the nodal forces Po using the following equation  
 
 i iK LiS U=  (6) 
 
where Si is the interval force of the ith bar of the truss, Ki is ith element stiffness matrix, and Li is 
a Boolean matrix with 1 and 0 entries, and secondly the obtained force should be added to that 
force given in equation 1 or 2, depending on the case under consideration, i.e. fabrication error or 
temperature change. In the next section we will introduce some example problems. 
 
 
 

3. Examples 
 
Numerical solution a one-bay truss (6 elements) shown in Figure 2. The following data: E=200 
GPa, the same cross-sectional area for all members A=0.01 m2, the same fabrication error for all 
members δL = [-0.001, 0.001] is assumed. The results for displacement of all nodes (upper and 
lower bounds) are given in Table 1. 
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Figure 2. One-Bay Truss 
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Table 1. One Bay Truss (6 Elements) Nodes Displacement 
 

Node Ux (m) Uy (m) 
1 [0, 0] [0, 0] 
2 [-0.00150,0.00150] [0, 0] 
3 [-0.003414, 0.003414] [-0.00150,0.00150] 
4 [-0.003207,0.0032071] [-0.00150,0.00150] 

 
 
 

4. Conclusions 
 

A method for the analysis of structures and mechanical components with geometric uncertainties 
given in the form of dimensional tolerances is presented.  This method is based on the use of 
interval computations in the context of a finite element analysis.  The geometric uncertainties are 
transformed to equivalent uncertain loads. The need for maintaining parametric relationships 
within the interval formulations is ensured by an element-by-element approach to the 
formulations. Exact enclosure on the deformed geometry is obtained. Example calculations are 
presented that show the sharpness of the interval calculations. 
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Abstract: To control the alignment of prestressed concrete bridge during construction, it is 
reasonable to treat the prediction of the deflection as an uncertainty. This paper presents a Bayesian 

updating approach to predict the deflection of prestressed concrete girders. A prior distribution is 

developed by using Monte Carlo stimulation with a proposed deterministic model under a variety 

of prestressing levels, material properties and environmental conditions. Then the posterior 

distribution is obtained by updating the prior distribution based on a limited number of initial 

measurements, thus greatly reducing the uncertainty of the deflection prediction. The method is 

applied to predict the camber of two actual prestressed T girders, and the predictions are satisfied. 

 

Keywords: PC, deflection, Bayesian approach, prediction 
 

 

 
1. Introduction 

 
In order to obtain a good alignment design for a particular prestressed concrete (PC) bridge, the 

deflection is a very important aspect in its construction control. It is obvious that the deflection of 

PC girders varies with the different cases because of various random effects; these effects include 
________________________________ 
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concrete strength, elastic modulus, creep and shrinkage as well as section properties. All these 

make the deterministic prediction of the deflection unrealistic. It is therefore reasonable to treat the 

prediction of the deflection as an uncertainty. This paper provides an assessment of the variability 

of the deflection for PC girders with a Bayesian updating approach (Bazant and Wittman,1987; 

Zhang and Du, 1994) . Based on a deterministic model for deflection, the numerical calculation is 

repeated many times using Monte Carlo simulation (Li Jihua,1988), the results of which is used as 

a prior distribution. With a limited number of measurements available, a posterior distribution can 

be obtained by updating the prior distribution and a more believable long-term prediction for the 

deflection of the PC girders can be assessed.   

 
 

2. Deterministic model for time-dependent deflection 
 
Time-stepping approaches for deformation calculations based on the principle of superposition 

have appeared in many literatures. For the case of changing stress, the stress history can be divided 

into several sections [tj, tj+1], the stress is assumed as a series of stress increments ∆σ (tj)applied at 

times tj , then the creep strains can be expressed as follows based on the principle of 

superposition: 

( ) ( ) ( ) ( )∑ Φ∆+Φ=
=

+++

i

1j
j1ij01i01i t,ttt,tt σσε                                  (1) 

 The Eq.(1) can also be written in a form of a section curvature as follows: 

( ) ( ) ( ) ( )∑
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t ii
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ψ                             (2) 

where ε(ti+1) and ψ(ti+1) are the total strain and section curvature at time ti+1 respectively; σ  0 and 

∆σ (tj)are the instantaneous stress at time t0 and the increment at time tj; M0 and ∆M (tj)are the 

instantaneous moment at time t0 and the increment at time tj respectively; I is the moment inertia 

of the section; and Φ(ti+1, tj) is a creep function for creep strain at time ti+1. Among all the creep 

and shrinkage models, ACI Committee 209, CEB-FIP (MC78, MC90), BP2 (Bazant and Lisa, 

1980) are often recommended. Although the BP2 is the most complex in form, it takes the effects 

of aggregation into account and it is adopted in this paper. The deflection then can be calculated 

by many approaches (Glali and Azarnejad, 1996) such as the finite element method. For a simply 
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supported beam, the deflection f at the mid span can be accurately calculated using the following 

equation: 

[ ])(t,)(t,10)(t,
96
l

E2ME1

2

τψτψτψ ++=f                                   (3) 

where ψ is the section curvature. The subscripts E1 and E2 mean both the end sections of beam, 

and M the mid section. 
 

Table 1.  Parameter statistical distributions for prestressed concrete girder  
Variables  Mean  Std. Dev.  Cov. 

C50 concrete strength（MPa） 39.9088 4.9088 — 

Unit weight of concrete（kg/m3） 2400 80 — 

permissible prestressσk（MPa） 1.00σk — 0.055 

Prestressing aere Ap（cm2） 1.01176Ap — 0.0125 

Moment inertia I（cm4） 1.006I 0.0107 — 

Location of duct d（cm） 1.00d 1.20 — 

Volume surface ratio V/S 1.00V/S — 0.0528 

Coarse aggregate W1(kg) 1.00W1 — 0.100 

Fine aggregate W2(kg) 1.00 W2 — 0.100 

Cement W3(kg) 1.00 W3 — 0.050 

Water W4(kg) 1.00 W4 — 0.050 

Humidity  70% — 13.3% 

 
 Based on the deterministic approaches mentioned above, Monte Carlo simulation can be 

used. The basic idea of a Monte Carlo analysis is repeatedly to simulate random input parameters. 

These statistical parameters are listed in Table 1 based on related information. (Zhao and Jin, 

2000). All variables are considered to be normally distributed for simplicity. 
 

 

3. Bayesian approach for deflection prediction 
 
According to the Bayesian formula, if the initial probability P (Xik) of all hypotheses Xik are 
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known, the posterior probability P’(Xik) then could be obtained in conjunction with a set of limited 

measurements SM which were taken during the early life of the girder. As stated in the former 

section, the probability obtained by Monte Carlo stimulation can be taken as a prior probability:   

( ) ( ) ( )ikjkMik XPXSLCXP ⋅⋅=′                                          （4） 

where Xik  represents the predicted deflection at time ti on the kth Monte Carlo run; SM is a set of  

measured deflection; C is a normalizing constant and L(·)  represents the likelihood function, 

which means the likelihood of obtaining the measured values. Assuming that the deflection is 

normally distributed, N(µik,σi) and the statistical independence is appropriate, then, 
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replacing them into Eq.(3) and since C should ensure the total probability to be unity, the 

probability of the deflection Xik appeared at the time ti in the kth Monte Carlo run becomes, 

( ) ( )
∑

∑=′
k

ikk
ik w

XPw
XP                                                   （8） 

 The mean and standard deviation of the posterior distribution for the deflection at time ti can 

be further written as  

∑
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i w

Xw
X                                                         （9） 



         Prediction of Deflection for Prestressed Concrete Girders Using a Bayesian Approach              481

REC 2006 - X.J. Chen, C.W. Shen & L.J. Jacobs 

( )
∑

∑ ′−
=′

k

iikk
i w

XXw
V

2

                                                 （10） 

 

 

4. Experiments on T girders  
 
The cambers of two of prestressed concrete T girders were measured during the early phase of the 

bridge. Both of the girders (T1 and T2) are the same in section and span with a height and a span 

1.68m and 30m respectively, prestresing strand 270(low relaxation), the total prestressing steel 

area 0.0028m2, permissible prestress 0.75Ry
b, concrete C50. Area and moment of inertia of the 

section are 0.615m2 and 0.2115m4. The prestresing ages for T1 and T2 girders are 5 and 4 days, 

respectively. The camber measurement was taken before sunrise so as to reduce the effect of the 

temperature. 

 

Table 2.  The mean and standard deviation of the girders at loading age of 100 days 
T1 T2 

State  
Number of 

samples used mean std. dev. mean std. dev. 

Before updating 0 2.8742 0.4873 2.9816 0.5095 

5 2.8679 0.2057 3.0616 0.2146 
After updating 

15 2.9211 0.1268 3.0273 0.1367 

 

 Numerical calculations were conducted with the Bayesian updating algorithm outlined above 

using only the five data values at the early period. The results for both T1 and T2 girders are 

shown in Figure 1 and 2. These figures show the camber (prior) mean of the girders based on the 

Monte Carlo simulation and the updated (posterior) mean based on the limited measured data and 

their 95% confidence limits are also indicated. In both experiments, the measured data produce a 

significant narrowing of the confidence limit band as shown in Table 2, which demonstrates an 

improvement in the confidence of long-term prediction. It is also noticed that the later measured 

data are all fallen within the narrowed limit band which verifies the confidence of the proposed 

method. From the comparison of the two girders, the deviation of initial measured data has great 

effects on the long-term prediction, so correctly measured data should be ensured. 
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Figure 1.  Camber of T1 at midspan (cm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Camber of T2 at midspan (cm) 
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5. Conclusion  
 
This paper presents a method to reduce the uncertainties in the long-term prediction of a 

prestressed concrete girder. By updating the prior distribution based on a limited number of 

measurements in the early stage of the girder, the uncertainty of its deflection prediction can be 

greatly reduced. Two practical experiments show that the results are accurate. It is also noticed 

that the deviation of the measurements has great effects on the long-term prediction.  
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