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Abstract. Consider the systems of linear interval equations whose coefficients are affine-linear functions of
interval parameters. Such systems, called parametrized systems of linear interval equations, are encountered
in many practical problems, e.g in structure mechanics. A direct method for computing a tight enclosure
for the solution set is proposed in this paper. It is proved that for systems with real matrix and interval
right-hand vector the method generates the hull of the solution set. For such systems an explicit formula for
the hull is also given. Finally some numerical examples are provided to demonstrate the usefulness of the
method in structure mechanics.
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1. Introduction

A system of linear interval equations

[A]x = [b] (1)

with coefficient matrix [A] ∈ IRn×n and right-hand vector [b] ∈ IRn is defined as a family
of linear equations

Ax = b, (A ∈ [A], b ∈ [b]). (2)

The solution set of (1) is given by
∑ (

[A], [b]
)

= {x |Ax = b, A ∈ [A], b ∈ [b]}. (3)

When computing inner and outer bounds for the solution set (3) it is implicitly assumed
A and b to vary independently within [A] and [b]. In practice there might be further con-
straints on matrices within [A] and [b]. Taking into account these contraints leads to the
parametrized systems of linear interval equations. Consider the family of linear algebraic
systems of the following type

A(p)x = b(p), (4)

with

Aij(p) = ω(i, j)Tp (5a)

bj(p) = ω(0, j)Tp (5b)

and p ∈ [p] ∈ IRk [6]. Such systems are encountered in many practical applications, e.g. in
structure mechanics [3], [7].
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The family of systems (4) is usually written in the form

A([p])x = b([p]) (6)

and is called parametrized system of linear interval equations.
The (united) solution set of the system (6) is defined as

∑ (
A([p]), b([p])

)
= {x |A(p)x = b(p), p ∈ [p]} (7)

If the solution set is bounded then the interval hull for it exists. In order to guarantee that
the solution set is bounded matrix A([p]) must be regular (for all p ∈ [p] A(p) is regular).
In practice it is usually required that the matrix A([p]) is an H-matrix.

In this paper a direct method for computing a tight enclosure for (7) is proposed. The
method is based on the following inclusion

♦
( ∑

(A([p]), b([p]))
)
⊆ x̃ + 〈[D]〉|Z|[−1, 1] (8)

where

[Z]i =
n∑

j=1

Rij

(
ω(0, j)−

n∑

k=1

x̃kω(j, k)
)T

[p], (9)

[D]ij =
( n∑

k=1

Rikω(k, j)
)T

[p], (10)

R = mid
(
A([p])

)−1
and x̃ = Rb̌.

It is proved that for systems with rad
(
A([p])

)
= 0 the inclusion in (8) is an equality. For

such systems an explicit formula for the hull of the solution set (7) is also given.
Finally some numerical examples of truss structures are provided to demonstrate the

usefulness of the method in structure mechanics.

2. Basic notion

By IR, IRn, IRn×n denote the set of real compact intervals, respectively interval vectors
with n components and the set of interval n× n matrices.

For interval [a] = [a, a] = {x | a ≤ x ≤ a} define the midpoint

ǎ = mid([a]) = (a + a)/2

the radius
rad([a]) = (a− a)/2

and minimal absolute value (mignitude)

〈[x]〉 = mig([x]) = min{|x| | x ∈ [x]}.
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An interval matrix [A] ∈ IRn×n is interpreted as a set of real n× n matrices

[A] = {A ∈ Rn×n |Aij ∈ [A]ij , i, j = 1, . . . , n }
An n× 1 matrix is just an interval vector. In analogy to one-dimensional case certain real
matrices are related to each interval matrix. Middle matrix mid([A]) and the radius rad([A])
are computed componentwise. For square interval matrices an Ostrowsky matrix 〈[A]〉 is
defined with entries

〈[A]〉ij = mig([A]ij), i 6= j

〈[A]〉ij = −|[A]ij |, i = j.

A square matrix [A] ∈ IRn×n is called regular if all A ∈ [A] are nonsingular. If Ǎ[A] is
regular then [A] is strongly regular.

An interval matrix [A] is an H-matrix iff there exist a vector u > 0 such that

〈[A]〉u > 0.

If S is a bounded set of real matrices then infS and supS exist, and the hull of S,

♦S = [infS, supS] = ♦S =
⋂
{[Y ] | [Y ] ∈ IR, [Y ] ⊇ S}

is the tightest interval matrix enclosing S.

3. Minimal enclosure

In case of parametrized systems with real matrices, rad
(
A([p])

)
= 0, the hull of the solution

set (7) is given by an explicit formula.

THEOREM 1. Let A([p])x = b([p]), [p] ∈ IRk R = mid
(
A([p])

)
and x̃ = R ·mid

(
b([p])

)
.

If rad
(
A([p])

)
= 0 then

♦
( ∑

(A([p]), b([p]))
)

= x̃ + [Z]′,

where

[Z]′i =
n∑

j=1

(
Rij · ω(0, j)

)T
[−rad([p]), rad([p])]. (11)

Proof. Since rad([A]) = 0, hence A([p]) = A, Ǎ = A, R = A−1 (RA = I) and x̃ = A−1b̌
(Ax̃ = b̌). Then one has

♦
( ∑

(A([p]), b([p]))
)

= ♦
( ∑

(A, b([p]))
)

=

= x̃ +♦
( ∑

(A, b([p])−Ax̃)
)

=

= x̃ +♦
( ∑

(A, b([p])− b̌)
)

=

= x̃ +♦
(
{R(b(p)− b̌), p ∈ [p]}

)
.
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♦
(
{R(b(p)− b̌), p ∈ [p]}

)
i
= ♦

{ n∑

j=1

Rij(b(p)− b̌)j , p ∈ [p]
}

=

= ♦
{ n∑

j=1

Rij(ω(0, j)T · p− ω(0, j)T · p̌), p ∈ [p]
}

=

= ♦
{ n∑

j=1

(Rij · ω(0, j))T(p− p̌), p ∈ [p]
}

=

=
( n∑

j=1

(Rij · ω(0, j))T
)
([p]− p̌) =

=
( n∑

j=1

(Rij · ω(0, j))T
)
[−rad([p]), rad([p])].

The equality before the last one holds since every component pi occurs at most once in the
preceding expression. ¤

4. Main result

Most of the methods for enclosing the solution set of parametized systems of equations
are iterative [1], [2], [5], [6]. However, each iteration enlarges the enclosure because of the
roundings has to be made in arithmetic operations. The method based on the formula (8)
has polynomial complexity and computes the enclosure of the solution set (7) in one step,
and hence has a great advantage over the iterative methods. In what follows the theoretical
background for the method is presented.

THEOREM 2 (Neumaier [4]). Let [A] ∈ IRn×n. If [A] is an H-matrix then for all [b] ∈ IRn

holds
♦

∑ (
[A], [b]

)
⊆ 〈[A]〉−1[b][−1, 1].

THEOREM 3. Let A([p])x = b([p]) with [p] ∈ IRk, R ∈ Rn×n, and x̃ ∈ Rn. If [D] given by
formula (10) is an H-matrix then

♦
( ∑ (

A([p]), b([p])
))
⊆ x̃ + 〈[D]〉−1|[Z]|[−1, 1], (12)

where [Z] is defined by formula (9).
Proof. Vector x ∈

∑
(A([p]), b([p])) iff there exists such p ∈ [p] that A(p)x = b(p). Since

[D] is an H-matrix then both sides of this equality can be multipled by A(p)−1. Hence

x = A(p)−1b(p) = x̃ + A(p)−1(b(p)−A(p)x̃) =

= x̃ + (R ·A(p))−1(R(b(p)−A(p)x̃)).
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Since R ·A(p) ∈ [D], R(b(p)−A(p)x̃) ∈ [Z] then the following relation holds

(R ·A(p))−1(R(b(p)−A(p)x̃)) ∈ ♦
( ∑

([D], [Z])
)
,

and hence
x ∈ x̃ +♦

( ∑
([D], [Z])

)
. (13)

Matrix [D] is an H-matrix then by theorem 2

♦
( ∑

([D], [Z])
)
⊆ 〈[D]〉−1|[Z]|[−1, 1]. (14)

Equations (13) and (14) gives the thesis of the theorem. ¤

It is recomended to choose
R = mid(A([p]))−1

and
x̃ = mid(A([p]))−1 ·mid(b([p]))

so that [D] and [Z] are of small norms (see theorem 4.1.10 [4]).

THEOREM 4. Let A([p])x = b([p]), [p] ∈ IRk and R = Ǎ−1, x̃ = Rb̌.i If rad(A([p])) = 0
then

♦
( ∑

(A([p]), b([p]))
)

= x̃ + 〈[D]〉−1|[Z]|[−1, 1].

where [D] and [Z] are given respectively by formula (10) and (9).
Proof. To prove the theorem it suffices to show that

x̃ + 〈[D]〉−1|[Z]|[−1, 1] = x̃ + [Z]′

where [Z]′ is given by (11).
Since rad(A([p])) = 0, hence R = Ǎ−1 = A−1 and then matrix [D] and vector [Z] takes

the simpler form. [D] = I and

[Z]i = ♦{R(b(p)−Ax̃), p ∈ [p]}i = ♦{R(b(p)− b̌), p ∈ [p]}i = [Z]′i.

Hence
x̃ + 〈[D]〉−1|[Z]|[−1, 1] = x̃ + |Z ′|[−1, 1]. (15)

Let now α =
n∑

j=1

(Rij ·ω(0, j)). Then by symmetry of the interval [−rad([p]), rad([p])] holds

{|Z|′[−1, 1]}i = |
n∑

k=1

αk[−rad([p]k), rad([p]k)]|[−1, 1] =

|[−
n∑

k=1

αkrad([p]k),
n∑

k=1

αkrad([p]k)]|[−1, 1] =
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|
n∑

k=1

αkrad([p]k)|[−1, 1] = [−
n∑

k=1

αkrad([p]k),
n∑

k=1

αkrad([p]k)] =

n∑

k=1

αk[−rad([p]k), rad([p]k)] = [Z]′i

This and equation (15) gives the thesis of the theorem. ¤

Table I. Algorithm

R := mid(A([p]))−1;

x̃ := R ·mid(b([p]));

[Z]i =

n∑
j=1

Rij

(
ω(0, j)−

n∑
k=1

x̃kω(j, k)
)T

[p]

[D]ij :=
( n∑

ν=1

Riνω(ν, j)
)T

[p];

outer := x̃ + [−1, 1]〈[D]〉−1|[Z]|

5. Examples

Example 1. Baltimore bridge (1870).
For the plane truss structure (all bars, loads and displacements are in the same x-y plane)
shown in Figure 1 subjected to downward forces of 80 [kN] at node No 11, 120 [kN] at node
No 12 and 80 [kN] at node No 15, the displacements of the nodes are computed. Young’s
modulus E= 2.1× 1011 [Pa] and cross-section area A= 0.004 [m2]. The lenghts of the bar
elements are shown in the figure (unity equals 1 [m]). Assume the stiffness of some of the
bar elements (denoted in the figure with thick lines) to be uncertain by ±5%. To compute
the displacement, the parametrized system of linear interval equations must be sovled. The
results are in table II and III.

Example 2. Plane truss with uncertain stiffness of 8 bar elements.

The plane truss shown in Figure 2 is subjected to downward forces of 30 [kN] at nodes No

2, 3 and 4. All bar elements have the same Young’s modulus E=7 · 1010 and cross-section
area A=0.003 [m2]. Assume the stiffness of 8 bar elements to be uncertain by ±5%. The
resultimg intevals vectors are presented is tables IV and V.
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Figure 1. Scheme of the Baltimore bridge
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Figure 2. Truss structure with uncertain stiffnesses of 8 bar elements

Example 3. Plane truss with uncertain displacements of the supports.

The plane truss shown in Figure 3 has two supports: partial (sliding) support along y axis
at node No 1 and full support at node No 12. Allow the movements of the supports at node
1 by ∆1−2 = 0.2 [m] along y axis, at node 12 by 0.3 [m] along x axis and by 0.4 [m] along
y axis. Now assume all movements to be uncertain by ±5% Uncetrain displacements of the
support cause interval parameters appear only in the right-hand vector. In this case the
method should give the hull. The results in tables VI and VII prove this to be true.
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Figure 3. Truss structure with uncertain displacements of the supports

6. Results

The results produced by the method described in section 4 are presented in tables below.
Column No 2 contains exact solution of non-interval system, comulmn No 3 contains the
inner estimation obtained using the method of random sampling of parameter intervals
(RSPI), column No 4 contains the results of the proposed method. Columns No 3 and 5
contain the relative error of the resulting intervals (in percent).
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Table II. Example 1 (x-coords.)

d0 RSPI r[∗]/d0 Method r[∗]/d0

[×10−5] [×10−5] [%] [×10−5] [%]

dx
2 16.67 16.67 0 16.67 0

dx
3 190.24 [189.72, 190.76] 0.3 [189.34, 191.13] 0.5

dx
4 33.33 33.33 0 33.33 0

dx
5 300 [298.96, 301.05] 0.3 [298.21, 301.79] 0.6

dx
6 190.24 [189.72, 190.76] 0.3 [189.34, 191.13] 0.5

dx
7 50 50 0 50 0

dx
8 66.67 66.67 0 66.67 0

dx
9 233.33 [232.29, 234.38] 0.4 [231.54, 235.12] 0.8

dx
10 172.01 [170.6, 173.38] 0.8 [169.84, 174.17] 1.3

dx
11 104.76 104.76 0 104.76 0

dx
12 142.86 142.86 0 142.86 0

dx
13 142.86 [141.81, 143.9] 0.7 [141.07, 144.65] 1.3

dx
14 113.71 [112.38, 114.93] 1.1 [111.54, 115.88] 1.9

dx
15 180.95 180.95 0 180.95 0

dx
16 219.05 219.05 0 219.05 0

dx
17 52.38 [51.34, 53.43] 2 [50.59, 54.17] 3.4

dx
18 235.71 235.71 0 235.71 0

dx
19 95.48 [94.96, 96] 0.5 [94.58, 96.37] 0.9

dx
20 252.38 252.38 0 252.38 0

dx
21 −14.29 [−15.33, −13.24] 7.3 [−16.08, −12.5] 12.5

dx
22 95.48 [94.96, 96] 0.5 [94.58, 96.37] 0.9

dx
23 269.05 269.05 0 269.05 0

dx
24 285.71 285.71 0 285.71 0
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Table III. Example 1 (y-coords.)

d0 RSPI r[∗]/d0 Method r[∗]/d0

[×10−5] [×10−5] [%] [×10−5] [%]

dy
2 −237.38 [−237.9, −236.86] 0.2 [−238.27, −236.48] 0.4

dy
3 −237.38 [−237.9, −236.86] 0.2 [−238.27, −236.48] 0.4

dy
4 −394.28 [−395.33, −393.24] 0.3 [−396.07, −392.49] 0.5

dy
5 −394.28 [−395.33, −393.24] 0.3 [−396.07, −392.49] 0.5

dy
6 −551.18 [−552.75, −549.62] 0.3 [−553.87, −548.5] 0.5

dy
7 −551.18 [−552.75, −549.62] 0.3 [−553.87, −548.5] 0.5

dy
8 −721.9 [−723.99, −719.81] 0.3 [−725.47, −718.32] 0.5

dy
9 −745.7 [−747.96, −743.69] 0.3 [−749.81, −741.6] 0.5

dy
10 −840.7 [−842.68, −838.87] 0.2 [−843.9, −837.5] 0.4

dy
11 −850.23 [−852.2, −848.39] 0.2 [−853.43, −847.03] 0.4

dy
12 −890.06 [−893.29, −887.27] 0.3 [−895.42, −884.69] 0.6

dy
13 −890.06 [−893.29, −887.27] 0.3 [−895.99, −884.12] 0.7

dy
14 −840.7 [−842.64, −838.75] 0.2 [−843.9, −837.5] 0.4

dy
15 −850.23 [−852.17, −848.27] 0.2 [−853.43, −847.03] 0.4

dy
16 −721.9 [−723.98, −719.8] 0.3 [−725.47, −718.32] 0.5

dy
17 −745.7 [−748.02, −743.3] 0.3 [−749.81, −741.6] 0.6

dy
18 −551.18 [−552.75, −549.61] 0.3 [−553.87, −548.5] 0.5

dy
19 −551.18 [−552.75, −549.61] 0.3 [−553.87, −548.5] 0.5

dy
20 −394.28 [−395.32, −393.23] 0.3 [−396.07, −392.49] 0.5

dy
21 −394.28 [−395.32, −393.23] 0.3 [−396.07, −392.49] 0.5

dy
22 −237.38 [−237.9, −236.85] 0.2 [−238.27, −236.48] 0.4

dy
23 −237.38 [−237.9, −236.85] 0.2 [−238.27, −236.48] 0.4
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Table IV. Example 2 (x-coords.)

d0 RSPI r[∗]/d0 Method r[∗]/d0

[×10−5] [×10−5] [%] [×10−5] [%]

dx
2 −152.38 [−160.4, −145.13] 5 [−160.4, −144.36] 5.3

dx
3 −228.57 [−236.59, −221.32] 3.3 [−236.59, −220.55] 3.5

dx
4 −152.38 [−163.76, −141.34] 7.4 [−165.26, −139.51] 8.5

dx
5 −76.19 [−87.56, −65.15] 14.7 [−89.06, −63.32] 16.9

dx
6 427.38 [419, 435.56] 1.9 [416.48, 438.28] 2.5

dx
7 427.38 [419, 435.56] 1.9 [417.52, 437.24] 2.3

dx
8 351.19 [342.81, 359.37] 2.4 [341.33, 361.05] 2.8

dx
9 351.19 [342.81, 359.37] 2.4 [341.33, 361.05] 2.8

dx
10 267.86 [262.19, 273.57] 2.1 [261, 274.7] 2.5

dx
11 115.48 [109.81, 121.19] 4.9 [108.63, 122.32] 5.9

Table V. Example 2 (y-coords.)

d0 RSPI r[∗]/d0 Method r[∗]/d0

[×10−4] [×10−4] [%] [×10−4] [%]

dy
1 −308.25 [−312.45, −304.18] 1.3 [−315.09, −301.41] 2.2

dy
2 −251.27 [−255.54, −247.22] 1.6 [−258.08, −244.46] 2.7

dy
3 −149.84 [−152.8, −147.16] 1.9 [−153.43, −146.25] 2.4

dy
4 −37.14 [−37.97, −36.34] 2.2 [−38.19, −36.1] 2.8

dy
5 4.29 4.29 0 4.29 0

dy
6 −251.27 [−255.53, −247.22] 1.7 [−258.08, −244.46] 2.7

dy
7 −154.13 [−157.19, −151.38] 1.9 [−158.32, −149.93] 2.7

dy
8 −32.86 [−33.48, −32.24] 1.9 [−33.6, −32.11] 2.3

dy
9 0 0 0 0 0

dy
10 −4.29 −4.29 0 −4.29 0

dy
11 24.29 [−25.04, −23.52] 3.1 [−25.2, −23.37] 3.8
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Table VI. Example 3 (x-coords.)

d0 Method (hull) r[*]/d0

[×10−3] [×10−3] [%]

dx
2 20 [19, 21] 5

dx
3 20 [19, 21] 5

dx
4 20 [19, 21] 5

dx
5 20 [19, 21] 5

dx
6 13.33 [11.67, 15] 12.5

dx
7 13.33 [11.67, 15] 12.5

dx
8 13.33 [11.67, 15] 12.5

dx
9 13.33 [11.67, 15] 12.5

dx
10 6.67 [4.33, 9] 35

dx
11 6.67 [4.33, 9] 35

Table VII. Example 3 (y-coords.)

d0 Method (hull) r[*]/d0

[×10−3] [×10−3] [%]

dy
1 35.56 [28.44, 42.67] 20

dy
2 26.67 [21.33, 32] 20

dy
3 17.78 [14.22, 21.33] 20

dy
4 8.89 [7.11, 10.67] 20

dy
5 0 0 –

dy
6 26.67 [21.33, 32] 20

dy
7 17.78 [14.22, 21.33] 20

dy
8 8.89 [7.11, 10.67] 20

dy
9 0 0 –

dy
10 0 0 –

dy
11 8.89 [7.11, 10.67] 20
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7. Conclusions

The problem of solving parametrized systems of linear interval equations is very important
in practical applications. Well known classical methods, such as interval version of Gauss
Elimination or Preconditioned Interval Gauss-Seidel iteration fail since they compute en-
closure for the solution set (3) which is generally much larger then solution set (7). A direct
method for solving paraterized systems of linear interval equations based on the inclusion (8)
was proposed and checked to be usefull in structure mechanics. The method produced tight
enclosure for the solutions set of parametrized systems for all exemplary truss structures.
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