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Abstract. In many engineering applications, we have to combine probabilistic and interval errors. For
example, in environmental analysis, we observe a pollution level x(t) in a lake at different moments of time
t, and we would like to estimate standard statistical characteristics such as mean, variance, autocorrelation,
correlation with other measurements. In environmental measurements, we often only know the values with
interval uncertainty. We must therefore modify the existing statistical algorithms to process such interval
data. Such modification are described in this paper.
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1. Formulation of the Problem

Computing statistics is important. In many engineering applications, we are interested in
computing statistics. For example, in environmental analysis, we observe a pollution level
x(t) in a lake at different moments of time t, and we would like to estimate standard
statistical characteristics such as mean, variance, autocorrelation, correlation with other
measurements. For each of these characteristics C, there is an expression C(x1, . . . , xn) that
enables us to provide an estimate for C based on the observed values x1, . . . , xn. For example,
a reasonable statistic for estimating the mean value of a probability distribution is the

population average E(x1, . . . , xn) =
1
n

(x1+. . .+xn); a reasonable statistic for estimating the

variance V is the population variance V (x1, . . . , xn) =
1
n
·

n∑
i=1

(xi− x̄)2, where x̄
def=

1
n
·

n∑
i=1

xi.

Interval uncertainty. In environmental measurements, we often only know the values with
interval uncertainty. For example, if we did not detect any pollution, the pollution value v
can be anywhere between 0 and the sensor’s detection limit DL. In other words, the only
information that we have about v is that v belongs to the interval [0, DL]; we have no
information about the probability of different values from this interval.

Another example: to study the effect of a pollutant on the fish, we check on the fish
daily; if a fish was alive on Day 5 but dead on Day 6, then the only information about the
lifetime of this fish is that it is somewhere within the interval [5, 6]; we have no information
about the probability of different values within this interval.

In non-destructive testing, we look for outliers as indications of possible faults. To detect
an outlier, we must know the mean and standard deviation of the normal values – and
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these values can often only be measured with interval uncertainty (see, e.g., (Rabinovich,
1993; Osegueda et al., 2002)). In other words, often, we know the result x̃ of measuring the
desired characteristic x, and we know the upper bound ∆ on the absolute value |∆x| of
the measurement error ∆x

def= x̃− x (this upper bound is provided by the manufacturer of
the measuring instrument), but we have no information about the probability of different
values ∆x ∈ [−∆,∆]. In such situations, after the measurement, the only information that
we have about the actual value x of the measured quantity is that this value belongs to
interval [x̃−∆, x̃ + ∆].

In geophysics, outliers should be identified as possible locations of minerals; the im-
portance of interval uncertainty for such applications was emphasized in (Nivlet et al.,
2001; Nivlet et al., 2001a). Detecting outliers is also important in bioinformatics (Shmulevich
and Zhang, 2002).

In bioinformatics and bioengineering applications, we must solve systems of linear equa-
tions in which coefficients come from experts and are only known with interval uncertainty;
see, e.g., (Zhang et al., 2004).

In biomedical systems, statistical analysis of the data often leads to improvements in
medical recommendations; however, to maintain privacy, we do not want to use the exact
values of the patient’s parameters. Instead, for each parameter, we select fixed values, and
for each patient, we only keep the corresponding range. For example, instead of keeping the
exact age, we only record whether the age is between 0 and 10, 10 and 20, 20 and 30, etc.
We must then perform statistical analysis based on such interval data; see, e.g., (Kreinovich
and Longpré, 2003; Xiang et al., 2004).

Estimating statistics under interval uncertainty: a problem. In all such cases, instead of
the actual values x1, . . . , xn, we only know the intervals x1 = [x1, x1], . . . ,xn = [xn, xn]
that contain the (unknown) actual values of the measured quantities. For different values
xi ∈ xi, we get, in general, different values of the corresponding statistical characteris-
tic C(x1, . . . , xn). Since all values xi ∈ xi are possible, we conclude that all the values
C(x1, . . . , xn) corresponding to xi ∈ xi are possible estimates for the corresponding statisti-
cal characteristic. Therefore, for the interval data x1, . . . ,xn, a reasonable estimate for the
corresponding statistical characteristic is the range

C(x1, . . . ,xn) def= {C(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.
We must therefore modify the existing statistical algorithms so that they would be able to
estimate such ranges. This is a problem that we solve in this paper.

This problem is a part of a general problem. The above range estimation problem is a
specific problem related to a combination of interval and probabilistic uncertainty. Such
problems – and their potential applications – have been described, in a general context,
in the monographs (Kuznetsov, 1991; Walley, 1991); for further developments, see, e.g.,
(Rowe, 1988; Williamson, 1990; Berleant, 1993; Berleant, 1996; Berleant and Goodman-
Strauss, 1998; Ferson et al., 2001; Ferson, 2002; Berleant et al., 2003; Lodwick and Jamison,
2003; Moore and Lodwick, 2003; Regan et al., (in press)) and references therein.
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2. Analysis of the Problem

Mean. Let us start our discussion with the simplest possible characteristic: the mean.
The arithmetic average E is a monotonically increasing function of each of its n variables
x1, . . . , xn, so its smallest possible value E is attained when each value xi is the smallest
possible (xi = xi) and its largest possible value is attained when xi = xi for all i. In
other words, the range E of E is equal to [E(x1, . . . , xn), E(x1, . . . , xn)]. In other words,

E =
1
n

(x1 + . . . + xn) and E =
1
n

(x1 + . . . + xn).

Variance: computing the exact range is difficult. Another widely used statistic is the vari-
ance. In contrast to the mean, the dependence of the variance V on xi is not monotonic,
so the above simple idea does not work. Rather surprisingly, it turns out that the problem
of computing the exact range for the variance over interval data is, in general, NP-hard
(Ferson et al., 2002; Kreinovich, (in press)) which means, crudely speaking, that the worst-
case computation time grows exponentially with n. Moreover, if we want to compute the
variance range with a given accuracy ε, the problem is still NP-hard. (For a more detailed
description of NP-hardness in relation to interval uncertainty, see, e.g., (Kreinovich et al.,
1997).)

Linearization. ¿From the practical viewpoint, often, we may not need the exact range,
we can often use approximate linearization techniques. For example, when the uncertainty
comes from measurement errors ∆xi, and these errors are small, we can ignore terms that
are quadratic (and of higher order) in ∆xi and get reasonable estimates for the correspond-
ing statistical characteristics. In general, in order to estimate the range of the statistic
C(x1, . . . , xn) on the intervals [x1, x1], . . . , [xn, xn], we expand the function C in Taylor series
at the midpoint x̃i

def= (xi + xi)/2 and keep only linear terms in this expansion. As a result,

we replace the original statistic with its linearized version Clin(x1, . . . , xn) = C0−
n∑

i=1
Ci ·∆xi,

where C0
def= C(x̃1, . . . , x̃n), Ci

def=
∂C

∂xi
(x̃1, . . . , x̃n), and ∆xi

def= x̃i − xi. For each i,

when xi ∈ [xi, xi], the difference ∆xi can take all possible values from −∆i to ∆i, where
∆i

def= (xi − xi)/2. Thus, in the linear approximation, we can estimate the range of the

characteristic C as [C0 −∆, C0 + ∆], where ∆ def=
n∑

i=1
|ci| ·∆i.

In particular, for variance, Ci =
∂V

∂xi
=

2
n

(x̃i− ¯̃x), where ¯̃x is the average of the midpoints

x̃i. So, here, V0 =
1
n

n∑
i=1

(x̃i − ¯̃x)2 is the variance of the midpoint values x̃1, . . . , x̃n, and

∆ =
2
n

n∑
i=1

|x̃i − ¯̃x| ·∆i.
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It is worth mentioning that for the variance, the ignored quadratic term is equal to
1
n

n∑
i=1

(∆xi)2 − (∆x)2, where ∆x
def=

1
n

n∑
i=1

∆xi, and therefore, can be bounded by 0 from

below and by ∆(2) def=
1
n

n∑
i=1

∆2
i from above. Thus, the interval [V0 −∆, V0 + ∆ + ∆(2)] is a

guaranteed enclosure for V.

Linearization is not always acceptable. In some cases, linearized estimates are not suffi-
cient: the intervals may be wide so that quadratic terms can no longer be ignored, and/or
we may be in a situation where we want to guarantee that, e.g., the variance does not exceed
a certain required threshold. In such situations, we need to get the exact range – or at least
an enclosure for the exact range.

Since, even for as simple a characteristic as variance, the problem of computing its exact
range is NP-hard, we cannot have a feasible-time algorithm that always computes the exact
range of these characteristics. Therefore, we must look for the reasonable classes of problems
for which such algorithms are possible. Let us analyze what such classes can be.

First class: narrow intervals. As we have just mentioned, the computational problems
become more complex when we have wider intervals. In other words, when intervals are
narrower, the problems are easier. How can we formalize “narrow intervals”? One way to do
it is as follows: the actual values x1, . . . , xn of the measured quantity are real numbers, so
they are usually different. The data intervals xi contain these values. When the intervals xi

surrounding the corresponding points xi are narrow, these intervals do not intersect. When
their widths becomes larger than the distance between the original values, the intervals
start intersecting.

Definition. Thus, the ideal case of “narrow intervals” can be described as the case when
no two intervals xi intersect.

Second class: slightly wider intervals. Slightly wider intervals correspond to the situation
when few intervals intersect, i.e., when for some integer K, no set of K intervals has a
common intersection.

Third class: single measuring instrument. Since we want to find the exact range C of a
statistic C, it is important not only that intervals are relatively narrow, it is also important
that they are approximately of the same size: otherwise, if, say, ∆x2

i is of the same order as
∆xj , we cannot meaningfully ignore ∆x2

i and retain ∆xj . In other words, the interval data
set should not combine high-accurate measurement results (with narrow intervals) and low-
accurate results (with wide intervals): all measurements should have been done by a single
measuring instrument (or at least by several measuring instruments of the same type).

How can we describe this mathematically? A clear indication that we have two measuring
instruments (MI) of different quality is that one interval is a proper subset of the other one:
[xi, xi] ⊆ (xj , xj).
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Definition. So, if all pairs of non-degenerate intervals satisfy the following subset property
[xi, xi] 6⊆ (xj , xj), we say that the measurements were done by a single MI.

Comment. This restriction only refers to inexact measurement results, i.e., to non-
degenerate intervals. In additional to such interval values, we may have exact values
(degenerate intervals). For example, in geodetic measurements, we may select some point
(“benchmark”) as a reference point, and describe, e.g., elevation of each point relative to this
benchmark. For the benchmark point itself, the relative elevation will be therefore exactly
equal to 0. When we want to compute the variance of elevations, we want to include the
benchmark point too. ¿From this viewpoint, when we talk about measurements made by
a single measuring instrument, we may allow degenerate intervals (i.e., exact numbers) as
well.

A reader should be warned that in the published algorithms describing a single MI case
(Xiang et al., 2004), we only considered non-degenerate intervals. However, as one can easily
see from the published proofs (and from the idea of these proofs, as described below), these
algorithms can be easily modified to incorporate possible exact values xi.

Fourth class: same accuracy measurement. In some situations, it is also reasonable to
consider a specific case of the single MI case when all measurements are performed with
exactly the same accuracy, i.e., in mathematical terms, when all non-degenerate intervals

[xi, xi] have exactly the same half-width ∆i =
1
2
· (xi − xi).

Fifth class: several MI. After the single MI case, the natural next case is when we have
several MI, i.e., when our intervals are divided into several subgroups each of which has the
above-described subset property.

Sixth class: privacy case. Although these definitions are in terms of measurements, they
make sense for other sources of interval data as well. For example, for privacy data, intervals
either coincide (if the value corresponding to the two patients belongs to the same range)
or are different, in which case they can only intersect in one point. Similarly to the above
situation, we also allow exact values in addition to ranges; these values correspond, e.g., to
the exact records made in the past, records that are already in the public domain.

Definition. We will call interval data with this property – that every two non-degenerate
intervals either coincide or do nor intersect – privacy case.

Comment. For the privacy case, the subset property is satisfied, so algorithms that work
for a single MI case work for the privacy case as well.

Seventh class: non-detects. Similarly, if the only source of interval uncertainty is detection
limits, i.e., if every measurement result is either an exact value or a non-detect, i.e., an inter-
val [0, DLi] for some real number DLi (with possibly different detection limits for different
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sensors), then the resulting non-degenerate intervals also satisfy the subset property. Thus,
algorithms that work for a single MI case work for this “non-detects” case as well.

Also, an algorithm that works for the general privacy case also works for the non-detects
case when all sensors have the same detection limit DL.

3. Results

Variance: known results. The lower bound V can be always computed in time O(n · log(n))
(Granvilliers et al., 2004).

Computing V is, in general, an NP-hard problem; V can be computed in time 2n. If
intervals do not intersect (and even if “narrowed” intervals [x̃i − ∆i/n, x̃i + ∆i/n] do not
intersect), we can compute V in time O(n · log(n)) (Granvilliers et al., 2004). If for some
K, no more than K interval intersect, we can compute V in time O(n2) (Ferson et al.,
2002; Kreinovich, (in press)).

For the case of a single MI, V can be computed in time O(n · log(n)); for m MIs, we need
time O(nm+1) (Xiang et al., 2004).

Variance: main ideas behind the known results. The algorithm for computing V is based
on the fact that when a function V attains a minimum on an interval [xi, xi], then either
∂V

∂xi
= 0, or the minimum is attained at the left endpoint xi = xi – then

∂V

∂xi
> 0, or xi = xi

and
∂V

∂xi
< 0. Since the partial derivative is equal to (2/n) · (xi− x̄), we conclude that either

xi = x̄, or xi = xi > x̄, or xi = xi < x̄. Thus, if we know where x̄ is located in relation to all
the endpoints, we can uniquely determine the corresponding minimizing value xi for every
i: if xi ≤ x̄ then xi = xi; if xi ≤ xi, then xi = xi; otherwise, xi = x̄. The corresponding
value x̄ can be found from the condition that x̄ is the average of all the selected values xi.

So, to find the smallest value of V , we can sort all 2n bounds xi, xi into a sequence
x(1) ≤ x(2) ≤ . . .; then, for each zone [x(k), x(k+1)], we compute the corresponding values xi,
find their variance Vk, and then compute the smallest of these variances Vk.

For each of 2n zones, we need O(n) steps, so this algorithm requires O(n2) steps. It turns
out that the function Vk decreases until the desired k then increases, so we can use binary
search – that requires that we only analyze O(log(n)) zones – find the appropriate zone k.
As a result, we get an O(n · log(n)) algorithm.

For V , to the similar analysis of the derivatives, we can add the fact that the second
derivative of V is ≥ 0, so there cannot be a maximum inside the interval [xi, xi]. So, in
principle, to compute V , it is sufficient to consider all 2n combinations of endpoints. When
few intervals intersect, then, when xi ≤ x̄, we take xi = xi; when x̄ ≤ xi, we take xi = xi;
otherwise, we must consider both possibilities xi = xi and xi = xi.

For the case of a single MI, we can sort the intervals in lexicographic order: xi ≤ xj if
and only if xi < xj or (xi = xj and xi ≤ xj). It can be proven that the maximum of V is
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always attained if for some k, the first k values xi are equal to xi and the next n− k values
xi are equal to xi. This result is proven by reduction to a contradiction: if in the maximizing
vector x = (x1, . . . , xn), some xi is preceding some xj , i < j, then we can increase V while
keeping E intact – which is in contradiction with the assumption that the vector x was
maximizing. Specifically, to increase V , we can do the following: if ∆i ≤ ∆j , we replace xi

with xi = xi − 2∆i and xj with xj + 2∆i; otherwise, we replace xj with xj = xj + 2∆j and
xi with xi − 2∆j .

As a result, to find the maximum of V , it is sufficient to sort the intervals (this takes
O(n · log(n)) time), and then, for different values k, check vectors (x1, . . . , xk, xk+1, . . . , xn).
The dependence of V on k is concave, so we can use binary search to find k; binary search
takes O(log(n)) steps, and for each k, we need linear time, so overall, we need time O(n ·
log(n)).

In case of several MI, we sort intervals corresponding to each of m MI. Then, to find
the maximum of V , we must find the values k1, . . . , km corresponding to m MIs. There are
≤ nm combinations of kis, and checking each combination requires O(n) time, so overall,
we need time O(nm+1).

Variance: new results. Sometimes, most of the data is accurate, so among n intervals, only
d ¿ n are non-degenerate intervals. For example, we can have many accurate values and
m non-detects. In this situation, to find the extrema of V , we only need to find xi for d
non-degenerate intervals; thus, we only need to consider 2d zones formed by their endpoints.
Within each zone, we still need O(n) computations to compute the corresponding variance.

So, in this case, to compute V , we need time O(n · log(d)), and to compute V , we need
O(n ·2d) steps. If narrowed intervals do not intersect, we need time O(n · log(d)) to compute
V ; if for some K, no more than K interval intersect, we can compute V in time O(n · d).

For the case of a single MI, V can be computed in time O(n · log(d)); for m MIs, we need
time O(n · dm).

In addition to new algorithms, we also have a new NP-hardness result. In the original
proof of NP-hardness, we have x̃1 = . . . = x̃n = 0, i.e., all measurement results are the same,
only accuracies ∆i are different. What if all the measurement results are different? We can
show that in this case, computing V is still an NP-hard problem: namely, for every n-tuple
of real numbers x̃1, . . . , x̃n, the problem of computing V for intervals xi = [x̃i−∆i, x̃i +∆i]
is still NP-hard.

To prove this result, it is sufficient to consider ∆i = N ·∆(0)
i , where ∆(0)

i are the values
used in the original proof. In this case, we can describe ∆xi = x̃i − xi as N ·∆x

(0)
i , where

∆(0)
i ∈ [−∆(0)

i , ∆(0)
i ]. For large N , the difference between the variance corresponding to

the values xi = x̃i + N · ∆x
(0)
i and N2 times the variance of the values ∆x

(0)
i is bounded

by a term proportional to N (and the coefficient at N can be easily bounded). Thus, the
difference between V and N2 ·V (0) is bounded by C ·N for some known constant C. Hence,
by computing V for sufficiently large N , we can compute V

(0) with a given accuracy ε > 0,
and we already know that computing V

(0) with given accuracy is NP-hard. This reduction
proves that our new problem is also NP-hard.
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Covariance: known results. In general, computing the range of covariance Cxy =
1
n

n∑
i=1

(xi−
x̄) · (yi − ȳ) based on given intervals xi and yi is NP-hard (Osegueda et al., 2002). When
boxes xi × yi do not intersect – or if ≥ K boxes cannot have a common point – we can
compute the range in time O(n3) (Beck et al., 2004).

The main idea behind this algorithm is to consider the derivatives of C relative to xi and
yi. Then, once we know where the point (x̄, ȳ) is in relation to xi and yi, we can uniquely
determine the optimizing values xi and yi – except for the boxes xi×yi that contain (x̄, ȳ).
The bounds xi and xi divide the x axis into 2n + 2 intervals; similarly, the y-bounds divide
the y-axis into 2n + 2 intervals. Combining these intervals, we get O(n2) zones. Due to the
limited intersection property, for each of these zones, we have finitely many (≤ K) indices i
for which the corresponding box intersects with the zone. For each such box, we may have
two different combinations: (xi, yi

) and (xi, yi) for C and (xi, yi) and (xi, yi
) for C. Thus,

we have finitely many (≤ 2K) possible combinations of (xi, yi) corresponding to each zone.
Hence, for each of O(n2) zones, it takes O(n) time to find the corresponding values xi and
yi and to compute the covariance; thus, overall, we need O(n3) time.

Covariance: new results. If n− d measurement results (xi, yi) are exact numbers and only
d are non-point boxes, then we only need O(d2) zones, so we can compute the range in time
O(n · d2).

In the privacy case, all boxes xi × yi are either identical or non-intersecting, so the only
case when a box intersects with a zone is when the box coincides with this zone. For each
zone k, there may be many (nk) such boxes, but since they are all identical, what matters
for our estimates is how many of them are assigned one of the possible (xi, yi) combinations
and how many the other one. There are only nk +1 such assignments: 0 to first combination
and nk to second, 1 to first and nk − 1 to second, etc. Thus, the overall number of all
combinations for all the zones k is

∑
k

nk +
∑
k

1, where
∑

nk = n and
∑
k

1 is the overall

number of zones, i.e., O(n2). For each combination of xi and yi, we need O(n) steps. Thus,
in the privacy case, we can compute both C and C in time O(n2)·O(n) = O(n3) (or O(n·d2)
if only d boxes are non-degenerate).

Another polynomial-time case is when all the measurements are exactly of the same
accuracy, i.e., when all non-degenerate x-intervals have the same half-width ∆x, and all
non-degenerate y-intervals have the same half-width ∆y. In this case, e.g., for C, if we have
at least two boxes i and j intersecting with the same zone, and we have (xi, yi) = (xi, yi

)
and (xj , yj) = (xj , yj), then we can swap i and j assignments – i.e., make (x′i, y

′
i) = (xi, yi)

and (x′j , y
′
j) = (xj , yj

) – without changing x̄ and ȳ. In this case, the only change in Cxy

comes from replacing xi ·yi +xj ·yj . It is easy to see that the new value C is larger than the

old value if and only if zi > zj , where zi
def= x̃i ·∆y + ỹi ·∆x. Thus, in the true maximum,

whenever we assign (xi, yi
) to some i and (xi, yj) to some j, we must have zi ≤ zj . So, to get

the largest value of C, we must sort the indices by zi, select a threshold t, and assign (xi, yi
)

to all the boxes with zi ≤ t and (xj , yj) to all the boxes j with zj > t. If nk ≤ n denotes the
overall number of all the boxes that intersect with k-th zone, then we have nk + 1 possible
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choices of thresholds, hence nk + 1 such assignments. For each of O(n2) zones, we test ≤ n
assignments; testing each assignment requires O(n) steps, so overall, we need time O(n4).

If only d boxes are non-degenerate, we only need time O(n · d3).

Detecting outliers: known results. Traditionally, in statistics, we fix a value k0 (e.g., 2 or
3) and claim that every value x outside the k0-sigma interval [L,U ], where L

def= E − k0 · σ,
U

def= E +k0 ·σ (and σ
def=
√

V ), is an outlier; thus, to detect outliers based on interval data,
we must know the ranges of L and U . It turns out that we can always compute U and L
in O(n2) time (Kreinovich et al., 2003a; Kreinovich et al., 2004). In contrast, computing
U and L is NP-hard; in general, it can be done in 2n time, and in quadratic time if ≤ K
intervals intersect (even if ≤ K appropriately narrowed intervals intersect) (Kreinovich et
al., 2003a; Kreinovich et al., 2004).

For every x, we can also determine the “degree of outlier-ness” R as the smallest k0 for
which x 6∈ [E − k0 · σ,E + k0 · σ], i.e., as |x − E|/σ. It turns out that R can be always
computed in time O(n2); the lower bound R can be also computed in quadratic time if ≤ K
narrowed intervals intersect (Kreinovich et al., 2003a).

Detecting outliers: new results. Similar to the case of variance, if we only have d ¿ n non-
degenerate intervals, then instead of O(n2) steps, we only need O(n · d) steps (and instead
of 2n steps, we only need O(n · 2d) steps).

For the case of a single MI, similarly to variance, we can prove that the maximum of U
and the minimum of L are attained at one of the vectors (x1, . . . , xk, xk+1, . . . , xn); actually,
practically the same proof works, because increasing V without changing E increases U =
E + k0 ·

√
V as well. Thus, to find U and L, it is sufficient to check n such sequences;

checking each sequence requires O(n) steps, so overall, we need O(n2) time. For m MI, we
need O(nm+1) time.

If only d ¿ n intervals are non-degenerate, then we need, correspondingly, time O(n · d)
and O(n · dm).

Moments. For population moments
1
n
·

n∑
i=1

xq
i , known interval bounds on xq leads to exact

range. For central moments Mq =
1
n
·

n∑
i=1

(xi− x̄)q, we have the following results (Kreinovich

et al., 2004a). For even q, the lower endpoint M q can be computed in O(n2) time; the upper
endpoint M q can always be computed in time O(2n), and in O(n2) time if ≤ K intersect.
For odd q, if ≤ K intervals do not intersect, we can compute both M q and M q in O(n3)
time.

If only d out of n intervals are non-degenerate, then we need O(n · 2d) time instead of
O(2n), O(n · d) instead of O(n2), and O(n · d2) instead of O(n3).

For even q, we can also consider the case of a single MI. The arguments work not only

for Mq, but also for a generalized central moment Mψ
def=

1
n

n∑
i=1

ψ(xi − E) for an arbitrary

convex function ψ(x) ≥ 0 for which ψ(0) = 0 and ψ′′(x) > 0 for all x 6= 0. Let us first show
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that the maximum cannot be attained inside an interval [xi, xi]. Indeed, in this case, at the
maximizing point, the first derivative

∂Mψ

∂xi
=

1
n
· ψ′(xi − E)− 1

n2
·

n∑

j=1

ψ′(xj −E)

should be equal to 0, and the second derivative

∂2Mψ

∂x2
i

=
1
n
· ψ′′(xi −E) ·

(
1− 2

n

)
+

1
n3
·

n∑

j=1

ψ′′(xj − E)

is non-positive. Since the function ψ(x) is convex, we have ψ′′(x) ≥ 0, so this second
derivative is a sum of non-negative terms, and the only case when it is non-negative is
when all these terms are 0s, i.e., when xj = E for all j. In this case, Mψ = 0 which, for
non-degenerate intervals, is clearly not the largest possible value of Mψ.

So, for every i, the maximum of Mψ is attained either when xi = xi or when xi = xi.
Similarly to the proof for the variance, we will now prove that the maximum is always
attained for one of the vectors (x1, . . . , xk, xk+1, . . . , xn). To prove this, we need to show that
if xi = xi and xj = xj for some i < j (and xi ≤ xj), then the change described in that proof,
while keeping the average E intact, increases the value of Mψ. Without losing generality,
we can consider the case ∆i ≤ ∆j . In this case, the fact that Mψ increase after the above-
described change is equivalent to: ψ(xi+2∆i−E)+ψ(xj−E) ≤ ψ(xi−E)+ψ(xj +2∆i−E),
i.e., that ψ(xi + 2∆i −E)− ψ(xi −E) ≤ ψ(xj + 2∆j −E)− ψ(xj −E). Since xi ≤ xj and
xi−E ≤ xj −E, this can be proven if we show that for every ∆ > 0 (and, in particular, for
∆ = 2∆i), the function ψ(x+∆)−ψ(x) is increasing. Indeed, the derivative of this function
is equal to ψ′(x + ∆)− ψ′(x), and since ψ′′(x) ≥ 0, we do have ψ′(x + ∆) ≥ ψ′(x).

Therefore, to find Mψ, it is sufficient to check all n vectors of the type
(x1, . . . , xk, xk+1, . . . , xn), which requires O(n2) steps. For m MIs, we similarly need
O(nm+1) steps.

Summary. These results are summarized in the following table. In this table, the first
row corresponds to a general case, other rows correspond to different classes of problems
described in Section 2:
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class number class description

0 general case

1 narrow intervals: no intersection

2 slightly wider intervals
≤ K intervals intersect

3 single measuring instrument (MI):
subset property –

no interval is a “proper” subset of the other

4 same accuracy measurements:
all intervals have the same half-width

5 several (m) measuring instruments:
intervals form m groups,

with subset property in each group

6 privacy case:
intervals same or non-intersecting

7 non-detects case:
only non-degenerate intervals are [0, DLi]

# E V Cxy L,U,R M2p M2p+1

0 O(n) NP-hard NP-hard NP-hard NP-hard ?

1 O(n) O(n · log(n)) O(n3) O(n2) O(n2) O(n3)

2 O(n) O(n2) O(n3) O(n2) O(n2) O(n3)

3 O(n) O(n · log(n)) ? O(n2) O(n2) ?

4 O(n) O(n · log(n)) O(n4) O(n2) O(n2) ?

5 O(n) O(nm+1) ? O(nm+1) O(nm+1) ?

6 O(n) O(n · log(n)) O(n3) O(n2) O(n2) ?

7 O(n) O(n · log(n)) ? O(n2) O(n2) ?
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The case when only d out of n data points are intervals is summarized in the following
table:

# E V Cxy L,U,R M2p M2p+1

0 O(n) NP-hard NP-hard NP-hard NP-hard ?

1 O(n) O(n log(d)) O(n · d2) O(n · d) O(nd) O(nd2)

2 O(n) O(nd) O(n · d2) O(n · d) O(nd) O(nd2)

3 O(n) O(n log(d)) ? O(n · d) O(nd) ?

4 O(n) O(n log(d)) O(n · d3) O(n · d) O(nd) ?

5 O(n) O(ndm) ? O(n · dm) O(ndm) ?

6 O(n) O(n log(d)) O(n · d2) O(n · d) O(nd) ?

7 O(n) O(n log(d)) ? O(n · d) O(nd) ?

Weighted mean and weighted average. In the above text, we considered the case when
we only know the upper bound ∆i on the overall measurement error. In some real-life
situations (see, e.g., (Rabinovich, 1993)), we know the standard deviation σi of the random
error component and the bound ∆i on the absolute value of the systematic error component.
If we had no systematic errors, then we would able to estimate the mean E by solving the

corresponding Least Squares problem
∑

σ−2
i ·(xi−E)2 → min

E
, i.e., as Ew =

n∑
i=1

pi ·xi, where

pi
def=

σ−2
i

n∑

j=1

σ−2
j

. In this case, the variance can be estimated as Vw =
n∑

i=1
pi · (xi − Ew)2 =

n∑
i=1

pi · x2
i − E2

w. Due to the presence of systematic errors, the actual values xi may be

anywhere within the intervals [xi, xi]
def= [x̃i −∆i, x̃i + ∆i]. Thus, we arrive at the problem

of estimating the range of the above expressions for weighted mean and weighted variance
on the interval data [xi, xi].

The expression for the mean is monotonic, so, similar to the average, we substitute the
values xi to get Ew and the values xi to get Ew.

For the weighted variance, the derivative is equal to 2pi ·(xi−Ew), and the second deriva-
tive is always≥ 0, so, similarly to the above proof for the non-weighted variance, we conclude
that the minimum is always attained at a vector (x1, . . . , xk, Ew, . . . , Ew, xk+l, . . . , xn). So,
by considering 2n + 2 zones, we can find V w in time O(n2).
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For V w, we can prove that the maximum is always attained at values xi = xi or xi = xi,
so we can always find it in time O(2n). If no more than K intervals intersect, then, similarly
to the non-weighted variance, we can compute V w in time O(n2).

Robust estimates for the mean. Arithmetic average is vulnerable to outliers: if one of the
values is accidentally mis-read as 106 times larger than the others, the average is ruined.
Several techniques have been proposed to make estimates robust; see, e.g., (Huber, 2004).
The best known estimate of this type is the median; there are also more general L-estimates

of the type
n∑

i=1
wi · x(i), where w1 ≥ 0, . . . , wn ≥ 0 are given constants, and x(i) is the i-th

value in the ordering of x1, . . . , xn in increasing order. Other techniques include M-estimates,

i.e., estimates a for which
n∑

i=1
ψ(|xi − a|) → max

a
for some non-decreasing function ψ(x).

Each of these statistics C is a (non-strictly) increasing function of each of the variables
xi. Thus, similarly to the average, C = [C(x1, . . . , xn), C(x1, . . . , xn)].

Robust estimates for the generalized central moments. When we discussed central mo-

ments, we considered generalized central moments Mψ =
1
n
·

n∑
i=1

ψ(xi−E) for an appropriate

convex function ψ(x). In that description, we assumed that E is the usual average.
It is also possible to consider the case when E is not the average, but the value for which

n∑
i=1

ψ(xi − E) → min
E

. In this case, the robust estimate for the generalized central moment

takes the form

M rob
ψ = min

E

(
1
n
·

n∑

i=1

ψ(xi − E)

)
.

Since the function ψ(x) is convex, the expression
n∑

i=1
ψ(xi − E) is also convex, so it only

attains its maximum at the vertices of the convex box x1 × . . . × xb, i.e., when for every
i, either xi = xi or xi = xi. For the case of a single MI, the same proof as for the average
E enables us to conclude that the maximum of the new generalized central moment is also
always attained at one of n vectors (x1, . . . , xk, xk+1, . . . , xn), and thus, that this maximum
can be computed in time O(n2). For m MIs, we need time O(nm+1).

Correlation. For correlation, we only know that in general, the problem of computing the
exact range is NP-hard (Ferson et al., 2002d).

4. Additional Issues

On-line data processing. In the above text, we implicitly assumed that before we start
computing the statistics, we have all the measurement results. In real life, we often con-
tinue measurements after we started the computations. Traditional estimates for mean
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and variance can be easily modified with the arrival of the new measurement result xn+1:
E′ = (n · E + xn+1)/(n + 1) and V ′ = M ′ − (E′)2, where M ′ = (n · M + x2

n+1)/(n + 1)
and M = V + E2. For the interval mean, we can have a similar adjustment. However,
for other statistics, the above algorithms for processing interval data require that we start
computation from scratch. Is it possible to modify these algorithms to adjust them to on-line
data processing? The only statistic for which such an adjustment is known is the variance,
for which an algorithm proposed in (Wu et al., 2003; Kreinovich et al., (in press)) requires
only O(n) steps to incorporate a new interval data point.

In this algorithm, we store the sorting corresponding to the zones and we store auxiliary
results corresponding to each zone (finitely many results for each zone). So, if only d out of
n intervals are non-degenerate, we only need O(d) steps to incorporate a new data point.

Fuzzy data. Often, in addition to (or instead of) the guaranteed bounds, an expert can
provide bounds that contain xi with a certain degree of confidence. Often, we know several
such bounding intervals corresponding to different degrees of confidence. Such a nested
family of intervals is also called a fuzzy set, because it turns out to be equivalent to a more
traditional definition of fuzzy set (Nguyen and Kreinovich, 1996; Nguyen and Walker, 1999)
(if a traditional fuzzy set is given, then different intervals from the nested family can be
viewed as α-cuts corresponding to different levels of uncertainty α).

To provide statistical analysis of fuzzy-valued data, we can therefore, for each level α,
apply the above interval-valued techniques to the corresponding α-cuts (Martinez, 2003;
Nguyen et al., 2003).

Can we detect the case of several MI? For the several MI case, we assumed that measure-
ment are labeled, so that we can check which measurements were done by each MI; this
labeling is used in the algorithms. What if we do not keep records on which interval was
measured by which MI; can we then reconstruct the labels and thus apply the algorithms?

For two MI, we can: we pick an interval and call it MI1. If any other interval is in subset
relation with this one, then this new interval is MI2. At any given stage, if one of the un-
classified intervals is in subset relation with one of the already classified ones, we classify it
to the opposite class. If none of the un-classified intervals is in subset relation with classified
ones, we pick one of the un-classified ones and assign to MI1. After ≤ n iterations, we get
the desired labeling.

In general, for m MI, the labeling may not be easy. Indeed, we can construct a graph
in which vertices are intervals, and vertices are connected if they are in a subset relation.
Our objective is to assign a class to each vertex so that connected vertices cannot be of the
same class. This is exactly the coloring problem that is known to be NP-hard (Garey and
Johnson, 1979).

Parallelization. In the general case, the problem of computing the range C of a statistic C
on interval data xi requires too much computation time. One way to speed up computations
is to use parallel computations.
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If we have a potentially unlimited number of parallel processors, then, for the mean, the
addition can be done in time O(log(n)) (Jaja, 1992). In O(n · log(n)) and O(n2) algorithms
for computing V and V , we can perform sorting in time O(log(n)), then compute Vk for
each zone in parallel, and find the largest of the n resulting values Vk in parallel (in time
O(log(n))). The sum that constitutes the variance can also be computed in parallel in time
O(log(n)), so overall, we need O(log(n)) time.

Similarly, we can transform polynomial algorithms for computing the bounds for
covariance, outlier statistics (L, U , and R), and moments into O(log(n)) parallel algorithms.

In the general case, to find V and other difficult-to-compute bounds, we must compute
the largest of the N

def= 2n values corresponding to 2n possible combinations of xi and
xi. This maximum can be computed in time O(log(N)) = O(n). This does not mean, of
course, that we can always physically compute V in linear time: communication time grows
exponentially with n; see, e.g., (Morgenstein and Kreinovich, 1995).

It is desirable to also analyze the case when we have a limited number of processors
p ¿ n.

Quantum algorithms. Another way to speed up computations is to use quantum com-
puting. In (Martinez, 2003; Kreinovich and Longpré, 2004), we describe how quantum
algorithms can speed up the computation of C.

What if we have partial information about the probabilities? Enter p-boxes. In the above
text, we assumed that the only information that we have about the measurement error ∆x
is that this error is somewhere in the interval [−∆, ∆], and that we have no information
about the probabilities of different values from this interval. In many real-life situations, we
do not know the exact probability distribution for ∆x, but we have a partial information
about the corresponding probabilities. How can we describe this partial information?

To answer this question, let us recall how the complete information about the probability
distribution is usually described. A natural way to describe a probability distribution is
by describing its cumulative density function (cdf) F (t) def= Prob(∆x ≤ t). In practice, a
reasonable way to store the information about F (t) is to store quantiles, i.e., to fix a natural
number n and to store, for every i from 0 to n, the values ti for which F (ti) = i/n. Here,
t0 is the largest value for which F (t0) = 0 and tn is the smallest value for which F (tn) = 1,
i.e., [t0, tn] is the smallest interval on which the probability distribution is located with
probability 1.

If we only have partial information about the probabilities, this means that – at least for
some values t – we do not know the exact value of F (t). At best, we know an interval F(t) =
[F (t), F (t)] of possible values of F (t). So, a natural way to describe partial information about
the probability distribution is to describe the two functions F (t) and F (t). This pair of cdfs
is called a p-box; see, e.g., a book (Ferson, 2002). In addition to the theoretical concepts,
this book describes the software tool for processing different types of uncertainty, a tool
based on the notion of a p-box.

Similarly to the case of full information, it is reasonable to store the corresponding
quantiles, i.e., the values ti for which F (ti) = i/n and the values ti for which F (ti) = i/n.
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(The reason why we switched the notations is because F (t) ≤ F (t) implies ti ≤ ti.) This is
exactly the representation used in (Ferson, 2002).

What if we have partial information about the probabilities? Processing p-boxes and how the
above alorithms can help. Once we have a probability distribution F (t), natural questions
are: what is the mean and the variance of this distribution? A p-box means that several
different distributions are possible, and for different distributions, we may have different
values of means and variance. So, when we have a p-box, natural questions are: what is the
range of possible values of the mean? what is the range of possible values of the variance?

The mean E is a monotonic function of F (t); so, for the mean E, the answer is simple:
the mean of F (t) is the desired upper bound E for E, and the mean of F (t) is the desired
lower bound E for E. The variance V is not monotonic, so the problem of estimating the
variance is more difficult.

For the case of the exact distribution, if we have the quantiles t(α) corresponding to all
possible probability values α ∈ [0, 1], then we can describe the mean of the corresponding
probability distribution as E =

∫
t(α) dα, and the variance as V =

∫
(t(α) − E)2 dα. If we

only know the quantiles t1 = t(1/n), . . . , tn = t(n/n), then it is reasonable to replace the

integral by the corresponding integral sum; as a result, we get the estimates E =
1
n

n∑
i=1

ti

and V =
1
n

n∑
i=1

(ti −E)2.

In these terms, a p-box means that instead of the exact value ti of each quantile, we have
an interval of possible values [ti, ti]. So, to find the range of V , we must consider the range
of possible values of V when ti ∈ [ti, ti]. There is an additional restriction that the values ti
should be (non-strictly) increasing: ti ≤ ti+1.

The resulting problem is very similar to the problems of estimating mean and variance
of the interval data. In this case, intervals satisfy the subset property, i.e., we are in the
case that we called the case of single MI. The only difference between the current problem
of analyzing p-boxes and the above problem is that in the above problem, we looked for
minimum and maximum of the variance over all possible vectors xi for which xi ∈ xi for
all i, while in our new problem, we have an additional monotonicity restriction ti ≤ ti+1.
However, the solutions to our previous problems of computing V and V for the case of a
single MI are actually attained at vectors that are monotonic. Thus, to find the desired
value V , we can use the same algorithm as we described above.

Specifically, to find V , we find k for which the variance of the vector t =
(t1, . . . , tk, t̄, . . . , t̄, tk+l, . . . , tn) for which the variance is the smallest. To find V , we find
k for which the variance of the vector t = (t1, . . . , tk, tk+1, . . . , tn) for which the variance is
the largest. Intuitively, this makes perfect sense: to get the smallest V , we select the values
ti as close to the average t̄ as possible; to get the largest V , we select the values ti as far away
from the average t̄ as possible. In both case, we can compute V and V in time O(n · log(n)).

The above algorithm describes a heuristic estimate based on approximating an integral
with an integral sum. To get reliable bounds, we can take into consideration that both
bounds F (t) and F (t) are monotonic; thus, we can always replace the p-box by a larger
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p-box in which the values t(α) are piecewise-constant: namely, we take t′i = [ti−1, ti] for
each i. For this new p-box, the integral sum coincides with the integral, so the range [V , V ]
produced by the above algorithm is exactly the range of the variance over all possible
distributions from the enlarged p-box. It is therefore guaranteed to contain the range of
possible values of the variance V for the original p-box.

What if we have partial information about probabilities? Multi-dimensional case. How can
we describe partial information about probabilities in multi-dimensional case? A traditional
analogue of a cdf is a multi-dimensional cdf

F (t1, . . . , tp) = Prob(x1 ≤ t1 & . . . &xp ≤ tp);

see, e.g., (Wadsworth, 1990). The problem with this definition is that often multi-D data
represent, e.g., vectors with components x1, . . . , xp. The components depend on the choice
of coordinates. As a result, even if a distribution is symmetric – e.g., a rotation-invariant
Gaussian distribution – the description in terms of a multi-D cdf is not rotation-invariant.

It is desirable to come up with a representation that preserves such a symmetry. A natural
way to do it is to store, for each half-space, the probability that the vector ~x = (x1, . . . , xp)
is within this half-space. In other words, for every unit vector ~e and for every value t, we
store the probability F (~e, t) def= Prob(~x · ~e ≤ t), where ~x · ~e = x1 · e1 + . . . + xn · en is a
scalar (dot) product of the two vectors. This representation is clearly rotation-invariant: if
we change the coordinates, we keep the same values F (~e, t); the only difference is that we
store each value under different (rotated) ~e. Moreover, this representation is invariant under
arbitrary linear transformations.

Based on this information, we can uniquely determine the probability distribution. For
example, if the probability distribution has a probability density function (pdf) ρ(~x), then
this pdf can be reconstructed as follows. First, we determine the characteristic function
χ(~ω) def= E[exp(i · (~x · ~ω))], where E[·] stands for the expected value. To get the value
of χ(~ω), we apply the 1-D Fourier transform, to the values F (~e, t) for different t, where
~e

def= ~ω/‖~ω‖ is a unit vector in the direction of ~ω. Then, we can find ρ(~x) by applying the
p-dimensional Inverse Fourier Transform to χ(~ω).

It is therefore reasonable to represent a partial information about the probability distri-
bution by storing, for each ~e and t, the bounds F (~e, t) and F (~e, t) that describe the range
of possible values for F (~e, t).

It is worth mentioning that since for continuous distributions, F (~e, t) = 1−F (−~e,−t), we
have F (~e, t) = 1 − F (−~e,−t). So, it is sufficient to only describe F (~e, t), the lower bounds
F (~e, t) can then be uniquely determined (or, vice versa, we can only describe the values
F (~e, t); then the values F (~e, t) will be uniquely determined).

In order to transform this idea into an efficient software tool, we need to solve two types
of problems. First, we must solve algorithmic problems: develop algorithms for estimating
the ranges of statistical characteristics (such as moments) for the corresponding multi-D
p-boxes.
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Second, we must solve implementation problems. Theoretically, to uniquely describe a
probability distribution, we need to know infinitely many values F (~e, t) corresponding to
infinitely many different vectors ~e and infinitely many different numbers t. In practice, we
can only store finitely many values F (~e, t) corresponding to finitely many vectors ~e.

In principle, we can simply select a rectangular grid and store the values for the vectors
~e from this grid. However, the selection of the grid violates rotation-invariance and thus,
eliminates the advantage of selecting this particular multi-D analogue of a cdf. It turns
out that there is a better way: instead of using a grid, we can use rational points on a
unit sphere. There exists efficient algorithms for generating such points, and the set of
all such points is almost rotation-invariant: it is invariant with respect to all rotations for
which all the entries in the corresponding rotation matrix are rational numbers (Oliverio,
1996; Trautman, 1998).

Beyond p-boxes? A p-box does not fully describe all kinds of possible partial information
about the probability distribution. For example, the same p-box corresponds to the class of
all distributions located on an interval [0, 1] and to the class of all distributions located at
two points 0 and 1.

Similarly, in the multi-D case, if we only use the above-defined multi-D cdfs, we will not
be able to distinguish between a set S (= the class of all probability distributions localized
on the set S with probability 1) and its convex hull. To provide such a distinction, we may
want, in addition to the bounds on the probabilities Prob(f(x) ≤ t) for all linear functions
f(x), to also keep the bounds on the similar probabilities corresponding to all quadratic
functions f(x).

Let us show that this addition indeed enables us to distinguish between different sets S.
Indeed, for every point x, to check whether x ∈ S, we ask, for different values ε > 0, for the
upper bound for the probability Prob(d2(x, x0) ≤ ε2), where d(x, x0) denotes the distance
between the two points. If x 6∈ S, then for sufficiently small ε, this probability will be 0; on
the other hand, if x ∈ S, then it is possible that we have a distribution located at this point
x with probability 1, so the upper bound is 1 for all ε (Nguyen et al., 2000).

In 1-D case, the condition f(x) ≤ t for a non-linear quadratic function f(x) is satisfied
either inside an interval, or outside an interval. Thus, in 1-D case, our idea means that in
addition to cdf, we also store the bounds on the probabilities of x being within different
intervals. Such bounds are analyzed, e.g., in (Berleant, 1993; Berleant, 1996; Berleant and
Goodman-Strauss, 1998; Berleant et al., 2003).
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Martinez, M., L. Longpré, V. Kreinovich, S. A. Starks, and H. T. Nguyen, Fast Quantum Algorithms for
Handling Probabilistic, Interval, and Fuzzy Uncertainty, Proceedings of the 22nd International Conference
of the North American Fuzzy Information Processing Society NAFIPS’2003, Chicago, Illinois, July 24–26,
2003, pp. 395–400.

Moore, R. E., and W. A. Lodwick, Interval Analysis and Fuzzy Set Theory, Fuzzy Sets and Systems, 2003,
135(1):5–9.

Morgenstein, D., and V. Kreinovich, Which algorithms are feasible and which are not depends on the
geometry of space-time, Geombinatorics, 1995, 4(3):80–97.

Nguyen, H. T., and V. Kreinovich, Nested Intervals and Sets: Concepts, Relations to Fuzzy Sets, and
Applications, In: R. B. Kearfott and V. Kreinovich, editors, Applications of Interval Computations,
Kluwer, Dordrecht, 1996, pp. 245–290

Nguyen, H. T., and E. A. Walker, First Course in Fuzzy Logic, CRC Press, Boca Raton, Florida, 1999.
Nguyen, H. T., T. Wang, and V. Kreinovich, Towards Foundations of Processing Imprecise Data: From

Traditional Statistical Techniques of Processing Crisp Data to Statistical Processing of Fuzzy Data, In:
Y. Liu, G. Chen, M. Ying, and K.-Y. Cai, editors, Proceedings of the International Conference on Fuzzy
Information Processing: Theories and Applications FIP’2003, Beijing, China, March 1–4, 2003, Vol. II,
pp. 895–900.

Nguyen, H. T., B. Wu, and V. Kreinovich, Shadows of Fuzzy Sets – A Natural Approach Towards Describing
2-D and Multi-D Fuzzy Uncertainty in Linguistic Terms, Proc. 9th IEEE Int’l Conference on Fuzzy
Systems FUZZ-IEEE’2000, San Antonio, Texas, May 7–10, 2000, Vol. 1, pp. 340–345.

Nivlet, P., F. Fournier, and J. Royer, A new methodology to account for uncertainties in 4-D seismic
interpretation, Proc. 71st Annual Int’l Meeting of Soc. of Exploratory Geophysics SEG’2001, San Antonio,
TX, September 9–14, 2001, 1644–1647.

Nivlet, P., F. Fournier, and J. Royer, Propagating interval uncertainties in supervised pattern recognition
for reservoir characterization, Proc. 2001 Society of Petroleum Engineers Annual Conf. SPE’2001, New
Orleans, LA, September 30–October 3, 2001, paper SPE-71327.

Oliverio, P., Self-generating Pythagorean quadruples and n-tuples, Fibonacci Quarterly, May 1996, pp. 98–
101.
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