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Abstract. In this paper sensitivity analysis method [4] and first order Taylor expansion method will be
applied to solution of finite element equations of truss structures and non-stationary diffusion equation with
interval parameters. Only linear-elastic model of truss structures is considered.

In order to calculate the interval solution (i.e. displacement vector u ) it is necessary to calculate derivative
∂u
∂h

. According to many numerical experiments and some theoretical results it is convenient to assume that
in some engineering applications the function u=u(h) is monotone. Under such assumption it is possible
to predict how to calculate the extreme solutions. Presented method gives quite accurate, however only
approximate results.

Monotonicity assumption is not always true. Because of that the results are not always exact. The
function u=u(h) is highly nonlinear, because of that presented algorithm is better than first order Taylor
expansion. On the following web page [1] it is possible to compare presented algorithm, the exact results
and the first order Taylor expansion using appropriate web applications.
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1. Introduction to interval FEM

Many engineering problems can be described by parameter dependent system of equations
in the following form [5]:

K (h)u = Q(h) (1)

where K ∈ Rn×n, Q ∈ Rn, u ∈ Rn, h ∈ Rm. h is a vector of parameters of the
structures (i.e. material characteristics, geometric characteristics, loads and other externals
fields such as temperature. Very often we do not know the exact values of the parameters of
the structure. Usually, if we do not know the exact values of the parameter hi it is possible
to estimate an upper and lower bound such that:

h−i ≤ hi ≤ h+
i for i = 1, . . . ,m (2)

in general we can write:

h ∈ ĥ ⊂ Rm (3)

where ĥ =
[
h−1 , h+

1

]
×

[
h−2 , h+

2

]
× ...× [h−m, h+

m]. Presented method can be applied, when
it is not possible to obtain probabilistic characteristic of the structure.
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Exact solution set of the equation (1) is very complicated and can be defined in the
following way:

u
(
ĥ

)
= {h : K (h)u = Q(h),h ∈ ĥ} (4)

Due to high complexity of the set u
(
ĥ

)
in applications we can only find the smallest

interval û
(
ĥ

)
which contains the set u

(
ĥ

)
i.e.

û
(
ĥ

)
= hull u

(
ĥ

)
(5)

One can call the set û
(
ĥ

)
the interval solution.

Now some selected methods of finding the interval solution will be presented.

2. Endpoints combinations method

According to many numerical examples [4, 2] very the endpoint combination method

u−i = min { ui (hα1
1 , hα2

2 , ..., hαm
m ) : α1, ..., αm ∈ {−, +}} (6)

u+
i = max { ui (hα1

1 , hα2
2 , ..., hαm

m ) : α1, ..., αm ∈ {−,+}} (7)

give very good approximation of the solution, particularly when the intervals are relatively
narrow. In some cases the results are exact (for example in the case of system of linear
interval equations).

3. First order Taylor expansion method

We can approximate the value of the nonlinear function u = u (h) by using first order
Taylor expansion method:

u (h) ≈ uL (h) = u (h0) +
∂u (h0)

∂h
(h− h0) (8)

h0is a mid point of the interval vector ĥ (i.e. h0 = mid
(
ĥ

)
).

The vector u (h0) is a solution of the following system of linear equations:

K (h0)u (h0) = Q (h0) (9)

If one calculate derivative of the equation (9) it is possible to get the matrix ∂u(h0)
∂h

K (h0)
∂u (h0)

∂hi
=

∂Q (h0)
∂hi

− ∂K (h0)
∂hi

u (h0) , i = 1, . . . , m, (10)
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when parameters h belong to the interval vectorĥ, then the extreme values of the function
uL(h) can be calculated by using natural interval extension [3]

ûL

(
ĥ

)
= u (h0) +

∂u (h0)
∂h

(
ĥ− h0

)
. (11)

In calculation we can calculate upper and lower bounds in the following way:

u−i,L
(
ĥ

)
= ui (h0)−

m∑

α=1

∣∣∣∣
∂ui (h0)

∂hα

∣∣∣∣
(
h+

α − hα,0
)
, (12)

u+
i,L

(
ĥ

)
= ui (h0) +

m∑

α=1

∣∣∣∣
∂ui (h0)

∂hα

∣∣∣∣
(
h+

α − hα,0
)
. (13)

4. High order Taylor expansion method

In order to find better approximation of the exact solution one can apply the following
algorithm.

Algorithm 1
1) Approximate the value of the function u=u(h) by high order Taylor expansion u =

uap (h).
2) Find the points h∗1,h∗2, ...,h∗p where the approximate function uap (h) has extreme

values.
3) Calculate the values of the function uap (h) in the points h∗1,h∗2, ...,h∗p.
4) Calculate the interval solution.

u−i = min
{

uap,i (h∗1) , uap,i (h∗2) , ..., uap,i

(
h∗p

)}
, i = 1, . . . , n, (14)

u+
i = max

{
uap,i (h∗1) , uap,i (h∗2) , ..., uap,i

(
h∗p

)}
, i = 1, . . . , n. (15)

In general, instead of Taylor expansion it is possible to apply any approximation method.

5. Monotonicity assumption and first order sensitivity analysis method

In engineering applications the function u=u(h) is very often monotone (usually for narrow
intervals ĥ1, ĥ2, ..., ĥm). In that case it is possible to calculate the extreme values of the
displacements ui by using appropriate endpoints of the intervals ĥ1, ĥ2, ..., ĥm. The algorithm
of calculation is the following:

Algorithm 2
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1) Calculate the mid point solution of the equation (9).
2) Calculate the derivatives of the solution in the mid point from the equation (4).
3) Calculate the sign vectors S1, ...,Sn.

Si =
[

sign
(

∂ui(h0)
∂h1

)
sign

(
∂ui(h0)

∂h2

)
... sign

(
∂ui(h0)

∂hm

) ]
. (16)

4) Calculate the independent sign vectors.
Two sign vectors Si,Sj are independent if

Si 6= Sj , Si 6= (−1) · Sj , (17)

Independent sign vectors will be denoted as S∗1, ...,S∗n∗ , where n∗ is a number of inde-
pendent sign vectors.

5) Calculate the extreme values of the solution for all independent sign vectors.

u−,∗
i = u

(
H−

(
S∗i , ĥ

))
, u+,∗

i = u
(
H+

(
S∗i , ĥ

))
, (18)

where

H−
j

(
S∗i , ĥ

)
=

{
h−j , if S∗i,j ≥ 0
h+

j , if S∗i,j < 0
, i = 1, . . . , n, (19)

H+
j

(
S∗i , ĥ

)
=

{
h+

j , if S∗i,j ≥ 0
h−j , if S∗i,j < 0

, i = 1, . . . , n. (20)

6) Calculate the interval solution û.

u−i = min
{

ui

(
h−1

)
, ..., ui

(
h−n∗

)
, ui

(
h+

1

)
, ..., ui

(
h+

n∗
)}

, (21)

u+
i = max

{
ui

(
h−1

)
, ..., ui

(
h−n∗

)
, ui

(
h+

1

)
, ..., ui

(
h+

n∗
)}

, (22)

where

h−i = H−
(
S∗i , ĥ

)
, h+

i = H+
(
S∗i , ĥ

)
. (23)

6. High order sensitivity analysis method

The first order sensitivity analysis method is based on the following general algorithm.
Algorithm 3
1) Approximate the value of the function by first order Taylor expansion.
2) Find the points h∗1,h∗2, ...,h∗p where the Taylor expansion has extreme values.
3) Calculate the values of the exact solution in the points h∗1,h∗2, ...,h∗p.
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4) Calculate the interval solution.

u−i = min
{

ui (h∗1) , ui (h∗2) , ..., ui

(
h∗p

)}
, i = 1, . . . , n, (24)

u+
i = max

{
ui (h∗1) , ui (h∗2) , ..., ui

(
h∗p

)}
, i = 1, . . . , n. (25)

In order to get better approximation of the exact solution one can approximate the
function by high order Taylor expansion (or other approximation method).

Algorithm 4
1) Approximate the value of the function u=u(h) by high order Taylor expansion.
2) Find the points h∗1,h∗2, ...,h∗p where the approximate function (i.e. Taylor expansion)

has extreme values.
3) Calculate the values of the exact solution in the points h∗1,h∗2, ...,h∗p.
4) Calculate the interval solution.

u−i = min
{

ui (h∗1) , ui (h∗2) , ..., ui

(
h∗p

)}
, (26)

u+
i = max

{
ui (h∗1) , ui (h∗2) , ..., ui

(
h∗p

)}
. (27)

In general, instead of Taylor expansion it is possible to apply any approximation method.

7. Comparison of First order Taylor expansion method and second order
monotonicity test.

Let us consider a truss structure which is shown on Fig. 1.

In calculation the following numerical data was assumed P = 10 [kN], L = 1 [m], E = 210
[GPa] (Young modulus), A = 0.0025 [m2] (area of cross-section).

Accuracy of the first order sensitivity analysis method and first order Taylor expansion
method is expressed by using the following numbers:

du−i =

(
umid

i − u−i
)
−

(
umid

i − u−i,exact

)

umid
i − u−i,exact

· 100% (28)

du+
i =

(
u+

i − umid
i

)
−

(
u+

i,exact − umid
i

)

u+
i,exact − umid

i

· 100% (29)

where umid
i is a mid point solution, u+

i,exact is an exact value of upper bound, u−i,exact is
an exact value of upper bound.

Time of calculations is shown below. Calculation was done using computer with AMD
Athlon XP 2600 with 512 MB RAM under RedHat Linux 9.0.
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Figure 1. Truss structure

8. Interval solution of non-stationary diffusion equation

Let us consider non-stationary diffusion equation with interval parameters

∂

∂x

(
β

kxAx

µB

∂p

∂x

)
∆x +

∂

∂y

(
β

kyAy

µB

∂p

∂y

)
∆y =

Vb

αc

∂

∂t

(
φ

B

)
(30)

where kx, Ax, ky, Ay, β, µ, B, φ are some (interval) parameters, p is the pressure of oil, t
is the time.

In order to get interval valued pressure of oil first order sensitivity analysis method was
applied. The algorithm was implemented in C++ language using Borland C++ Builder
compiler.

The program is able to take into account dependency of the parameters in different
regions. The examples of the regions with different independent parameters are shown on
Fig. (2).

Graphical representation of the interval solution (interval peruse of oil) for 7-th time step
is shown in the Fig. (3).
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Table I. Uncertainty of E and A 5%

Sensitivity Taylor

du−i du+
i du−i du+

i

0.00 -0.50 5.34 -5.50

0.28 -0.37 5.03 -5.14

-1.31 -0.07 2.64 -4.36

-2.72 -2.82 -6.49 0.76

1.45 0.67 6.36 -4.31

1.11 -1.43 -3.42 3.10

-1.12 -0.34 3.15 -4.72

-0.19 0.00 -0.60 -0.47

-0.43 0.00 3.41 -4.52

0.21 0.00 -3.95 3.95

1.36 0.00 5.78 -4.61

-1.12 0.00 -5.74 4.57

Figure 2. Graphical representation of dependences
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Table II. Uncertainty of E and A 20%

Sensitivity Taylor

du−i du+
i du−i du+

i

0.00 -1.37 18.67 -20.32

0.00 0.00 18.35 -19.30

-0.39 -0.08 14.88 -17.56

0.00 -0.03 -16.16 13.61

-0.18 -0.18 18.84 -19.80

0.00 0.00 -18.48 17.32

0.00 -0.76 16.06 -18.63

-0.34 -5.24 -4.57 -7.82

-1.66 -1.13 14.22 -19.03

-0.06 -1.94 -17.27 12.69

-0.31 -0.93 16.35 -19.22

-0.48 0.00 -19.07 17.91

In presented numerical example there were 10 interval parameters and 10 time steps.
In presented example the system of parameter dependent equations (1) was generated by
using finite difference method.

9. Conclusions

For truss structure:
1) Endpoint combination method gives exact results.
2) Endpoint combination method is very inefficient.
3) First order sensitivity analysis method is much more accurate than first order Taylor

expansion method, particularly for large intervals.
4) Taylor expansion method is much more efficient than sensitivity analysis method.
5) The results of Taylor expansion method are acceptable for small intervals.
For diffusion equation example:
1) Sensitivity analysis method can be applied to solution of complex engineering problem.
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Table III. Uncertainty of E and A 50%

Sensitivity Taylor

du−i du+
i du−i du+

i

-0.03 -1.19 43.01 -48.34

-37.10 -0.39 -11.27 -46.95

-1.53 -0.24 28.41 -44.04

-0.25 -4.30 -41.91 21.75

-0.29 -0.28 43.11 -47.35

-0.33 -0.04 -45.43 38.26

0.00 -1.97 31.88 -45.78

-13.59 -15.68 -32.33 -30.86

0.00 -1.21 25.84 -46.34

-0.34 -7.88 -43.72 19.25

-1.68 -2.03 29.28 -46.56

-1.70 0.00 -46.31 40.78

Table IV. Endpoint combination method

Number of interval parameters Time of calculations in seconds

10 0.02

15 1.86

18 17.18

20 124.69

2) It is using first order sensitivity analysis method possible to take into account different
dependency of the parameters.

3) Parameter dependent system of equations (1) can be created using finite difference
method.
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Table V. First order sensitivity analysis

Number of interval parameters Time of calculations in seconds

105 2

410 452

915 15208

1620 149554

2525 833782

Table VI. First order Taylor expansion

Number of interval parameters Time of calculations in seconds

68 0.01

105 0.02

410 1.22

915 16.64

1314 50.04

Figure 3. Interval pressure

REC2004



11

References

1. http://zeus.polsl.gliwice.pl/∼pownuk/interval truss.htm.
2. McWilliam, S.: Anti-optimisation of uncertain structures using interval analysis, Computers and

Structures, 79 (2001) pp. 421-430.
3. Neumaier, A.: Interval methods for systems of equations, Cambridge University Press, New York, 1990.
4. Pownuk, A.: Numerical solutions of fuzzy partial differential equation and its application in com-

putational mechanics, in Fuzzy Partial Differential Equations and Relational Equations: Reservoir
Characterization and Modeling (M. Nikravesh, L. Zadeh and V. Korotkikh, eds.), Studies in Fuzziness
and Soft Computing, Physica-Verlag, 2004, pp. 308-347.

5. Zienkiewicz, O.C. and Taylor, R.L.: The Finite Element Method Fifth edition, Volume 1: The Basis,
Butterworth-Heinemann, Oxford 2000.

REC2004




