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1. Introduction

Optimal design of complex engineering systems can be accomplished only by decomposition.
The system is partitioned into subsystems, the subsystems are partitioned into components,
the components into parts, and so on. This decomposition process results in a multilevel
hierarchy of elements that comprise the system.

Deterministic optimization approaches assume that complete information of the problem
is available, and that design decisions can be implemented. These assumptions imply that
optimization results are as good (and therefore useful) as the design and simulation/analysis
models used to obtain them, and that they are meaningful only if they can be realized
exactly.

In reality, these assumptions do not hold. We are rarely in a position to represent
a physical system without using approximations, have complete knowledge on all of its
parameters, or control the design variables with high accuracy. It is therefore necessary to
treat all quantities associated with uncertainty as stochastic.

In this paper, we consider hierarchically decomposed multilevel systems, and we extend
deterministic methodologies for optimal and consistent design of such systems to account
for the presence of uncertainties. Our objective is to introduce the concept of uncertainty,
model its propagation through the multilevel hierarchy, set the ground for the application of
“single-element” optimization under uncertainty methods in multilevel systems, and identify
needs for future research.

To the best of our knowledge, no research work on addressing the presence of uncertain-
ties in hierarchically decomposed multilevel systems has been reported in the literature.
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However, there is ongoing work to take uncertainties into consideration in the multidis-
ciplinary optimization (MDO) framework [1–10]. Most of these references utilize a simple
first-order Taylor expansion to calculate the mean and variance of the response in robust
multidisciplinary design or use “worst case” concepts based on first-order sensitivity to
evaluate the performance range of a multidisciplinary system.

Although the calculation of the response mean and variance using first-order sensitivity
may be adequate for robustness calculations, it does not provide enough statistical infor-
mation to consider design feasibility under uncertainty. As will be illustrated in this paper,
probabilistic representation of the constraints requires complete probabilistic distributions
of the system output.

Reliability analysis using probabilistic distributions has been used in MDO [11–13].
Reliability analysis introduces an additional iteration loop resulting in coupled optimiza-
tion problems that are computationally expensive. Response surfaces have been used to
reduce the computational effort [1]. Decoupled reliability and optimization procedures in
an MDO framework have been also proposed using approximate probabilistic constraint
representations [12]. In general, a double-loop optimization process exists in reliability-based
MDO analysis, which repeatedly calls expensive system-level multidisciplinary analyses. A
single-loop collaborative reliability analysis method has been recently proposed in [11]. A
Most Probable Point (MPP) reliability analysis method is combined with the collaborative
disciplinary analyses to automatically satisfy the interdisciplinary consistency in reliability
analyses. A single reliability optimization loop uses equality constraints to enforce disci-
plinary compatibility. Despite the use of a single optimization loop, it is a computationally
expensive, “all-at-once” procedure due to the presence of the equality discipline constraints.

It is important to differentiate our research work from that related to multidisciplinary
design optimization (MDO). MDO approaches are non-hierarchical in the sense that the
optimal design problems are not decomposed according to disciplines into multilevel hi-
erarchies. Discipline outputs are inputs to other disciplines and vice versa. This is the
significant difference between MDO and our work. In hierarchically decomposed multilevel
systems outputs of lower-level elements are inputs to higher-level elements, but not vice
versa.

The paper is organized as follows. In the next section we present a methodology for
optimal design of hierarchical multilevel systems, and extend its formulation to account
for uncertainties. In Section 3 we address the issue of modeling uncertainty propagation
in multilevel hierarchies and present some analytical examples. A simple yet illustrative
simulation-based example is used in Section 4 to demonstrate our methodology for hier-
archical multilevel system design. Finally, concluding remarks are summarized in Section
5.
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2. Optimal Design of Hierarchically Decomposed Multilevel Systems

Our framework for hierarchical multilevel system optimization under uncertainty is based
on analytical target cascading (ATC). In this section we first review the deterministic
formulation of ATC, and then we present its extension to account for uncertainties.

2.1. Deterministic Formulation

ATC is a mathematical methodology for translating (“cascading”) overall system design
targets to element specifications based on a hierarchical multilevel decomposition [14–16].
The objective is to assess relations and identify possible trade-offs among elements early
in the design development process, and to determine specifications that yield consistent
system design with minimized deviation from design targets.

The ATC process is proven to be convergent when using a specific class of coordination
strategies [17], and has been successfully applied to a variety of optimal design problems,
e.g., [18–21].

We refer the reader to the above references for a detailed description of ATC. Here,
we will briefly present the concept and the general mathematical formulation. In ATC
a minimum deviation optimization problem is formulated and solved for each element in
the multilevel hierarchy that reflects the decomposed optimal system design problem, cf.
Figure 1. Therefore, responses of lower-level elements are inputs into higher-level elements.

system j=1

subsystem j=1 subsystem j=2

component j=1 component j=2 component j=m

subsystem j=n

level i=0

level i=1

level i=2

Figure 1. Example of hierarchically decomposed multilevel system

The ATC process aims at minimizing the gap between what higher-level elements “want”
and what lower-level elements “can”. If design variables are shared among some elements at
the same level, their consistency is coordinated by their parent element at the level above.

The mathematical formulation of problem pij , where i and j denote level and element,
respectively, is

min
x̃ij ,εr

ij ,εy
ij

‖rij − ru
ij‖22 + ‖yij − yu

ij‖22 + εr
ij + εy

ij (1)

subject to
∑nij

k=1 ‖r(i+1)k − rl
(i+1)k‖

2
2 ≤ εr

ij
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4 ∑nij

k=1 ‖y(i+1)k − yl
(i+1)k‖

2
2 ≤ εy

ij

gij(r(i+1)1, . . . , r(i+1)nij
,xij ,yij) ≤ 0

hij(r(i+1)1, . . . , r(i+1)nij
,xij ,yij) = 0

with rij = fij(r(i+1)1, . . . , r(i+1)nij
,xij ,yij),

where the vector of optimization variables x̃ij consists of (nij) children response design
variables r(i+1)1, . . . , r(i+1)nij

, local design variables xij , local shared design variables yij

(i.e., design variables that this element shares with other elements at the same level), and
coordinating variables for the shared design variables of the children y(i+1)1, . . . ,y(i+1)nij

,
and where gij and hij denote local design inequality and equality constraints, respectively.
Tolerance optimization variables εr and εy are introduced to coordinate responses and shared
variables, respectively. Superscripts u (l) are used to denote response and shared variable
values that have been obtained at the parent (children) problem(s), and have been cascaded
down (passed up) as design targets (consistency parameters), cf. Figure 2.

element optimization problem pij, 
where rij is provided by the 
analysis/simulation model

1( 1) ( 1)( ,..., , , )+ +=
cijij ij i k i k ij ijr f r r x y

1( 1) ( 1),...,+ + cij

l l
i k i ky y

( 1) 1 ( 1),...,+ + cij

l l
i k i kr r

u
ijr

l
ijr

u
ijy

l
ijy

( 1) 1 ( 1),...,+ + cij

u u
i k i kr r

1( 1) ( 1),...,+ + cij

u u
i k i ky y

response and shared
variable values cascaded 

down from the parent

response and shared 
variable values passed

up to the parent

response and shared 
variable values passed 

up from the children

response and shared
variable values cascaded 

down to the children

optimization inputs optimization outputs

Figure 2. ATC information flow at element j of level i

Assuming that all the parameters have been updated using the solutions obtained at
the parent- and children-problems, Problem (1) is solved to update the parameters of the
parent- and children-problems. This process is repeated until the tolerance optimization
variables in all problems cannot be reduced any further.

2.2. Non-deterministic Formulations

In this section, the ATC formulation is modified to account for uncertainties. Stochastic
quantities are represented by random variables and parameters (denoted by upper case
latin symbols). For the sake of simplicity, in the following formulations we will assume that
all design variables are random and that there exist no random parameters.
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2.2.1. Stochastic Formulation
In the stochastic formulation, each random variable is represented by a parameter that
describes its probabilistic characteristics. Typically, this parameter is the first moment,
or mean, of the random variable. Responses and other functions of random variables are
expressed as expected values. Thus, Problem (1) becomes

min
µX̃ij

,εR
ij ,εY

ij

‖E[Rij ]− µu
Rij
‖22 + ‖µYij − µu

Yij
‖22 + εR

ij + εY
ij (2)

subject to
∑nij

k=1 ‖µR(i+1)k
− E[Rij ]l‖22 ≤ εR

ij∑nij

k=1 ‖µY(i+1)k
− µl

Y(i+1)k
‖22 ≤ εY

ij

E[gij(R(i+1)1, . . . ,R(i+1)nij
,Xij ,Yij)] ≤ 0

E[hij(R(i+1)1, . . . ,R(i+1)nij
,Xij ,Yij)] = 0

with Rij = fij(R(i+1)1, . . . ,R(i+1)nij
,Xij ,Yij),

where E[·] denotes the expectation operator.
In words, this formulation attempts to

1. Match the expected values of the local responses with the targets cascaded from the
higher level; these targets are the optimal values of the random design variables, i.e.,
the means, of the higher-level problem.

2. Match the optimal values of the random response design variables, i.e., the means, with
the expected values of the children responses.

3. Match the optimal values of the local and children random shared variables, i.e., the
means, with the target values cascaded from the higher and lower levels, respectively.

The challenge in solving stochastic optimization problems such as Problem (2) is that
evaluating expectations requires knowledge of the probability density functions of the ran-
dom variables and evaluation of multidimensional integrals.

The solution of Problem (2) satisfies the design inequality and equality constraints in
an average sense, but does not provide any information on the percentage of constraint
violations due to uncertainty. In practical applications, however, there is a need to satisfy
the constraints at a specified target reliability level.

2.2.2. Probabilistic Formulation
The constraints are thus reformulated. We now require that the probability of satisfying
a constraint under the presence of uncertainties greater than some appropriately selected
threshold, or, alternatively, that the probability of violating a constraint is less than some
pre-specified probability of failure. The formulation of Problem (2) becomes

min
µX̃ij

,εR
ij ,εY

ij

‖E[Rij ]− µu
Rij
‖22 + ‖µYij − µu

Yij
‖22 + εR

ij + εY
ij (3)

subject to
∑nij

k=1 ‖µR(i+1)k
− E[Rij ]l‖22 ≤ εR

ij
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6 ∑nij

k=1 ‖µY(i+1)k
− µl

Y(i+1)k
‖22 ≤ εY

ij

P [g̃ij(R(i+1)1, . . . ,R(i+1)nij
,Xij ,Yij) > 0] ≤ Pf ,

with Rij = fij(R(i+1)1, . . . ,R(i+1)nij
,Xij ,Yij),

where P [·] denotes probability measure and Pf is a vector of prespecified probability of
failure thresholds.

Note that the mathematical formulation of Problem (3) does not contain equality con-
straints. Equality constraints do not make sense in a probabilistic framework (it is meaning-
less to require that a function takes exactly a specific value under the presence of uncertainty,
since the probability of a continuous random variable taking an exact value is zero), one
has to introduce some slack and treat equality constraints as inequality constraints. For
example, if in a deterministic framework it is required that h(x) = 0, in a probabilistic
framework it is required that | h(X) |≤ δ, where δ is a small positive constant, so that
the constraint is formulated as P [| h(X) | −δ > 0] ≤ Pf . Therefore, we rewrite equality
constraints as inequality constraints and unite the two constraint function vectors into one,
denoted by g̃.

Problem (3) can be solved with any of the available commercial software packages or the
methods reported recently in the literatures, e.g., the hybrid mean value (HMV) method or
the sequential optimization and reliability assessment (SORA) method [22, 23]. We adopt
a recently developed single-loop method that is as accurate as the HMV and the SORA
methods, but much more efficient [24].

3. Propagation of Uncertainties

The responses of the elements in the multilevel hierarchy are typically nonlinear functions of
the elements’ inputs, which include random variables and parameters. Thus, responses are
themselves random variables, whose expected value must be computed to evaluate objec-
tive and constraints when solving probabilistic optimization problems. Moreover, estimated
variance of responses is required if robustness considerations are included.

In a multilevel hierarchy, responses of lower-level subsystems are inputs to higher-level
subsystems. Therefore, it is necessary to obtain probability distribution information required
for the solution of the higher-level problems. This is an issue of outmost importance in design
optimization of hierarchically decomposed multilevel systems. An efficient and accurate
mechanism is required for propagating probabilistic information in the form of cumulative
distribution and probability density functions throughout the hierarchy.

3.1. Estimating Moments Using the Mean-Value First-Order
Second-Moment Method

In an initial effort, a mean-value first-order second-moment (MVFOSM) approach was
adopted to estimate the mean and standard deviation of a nonlinear function of random
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variables [25]. Specifically, a first-order Taylor expansion about the current design, repre-
sented by the mean vector µX of the random variables X, was used to linearize a nonlinear
random response R:

R = f(X) ≈ f(µX) +
n∑

i=1

∂f(µX)
∂Xi

(Xi − µXi), (4)

where n is the dimension of the vector X. Assuming that all the random variables are
statistically independent (uncorrelated), the first-order approximations of the mean and
the variance of R were given by

E[R] = µR ≈ f(µX) (5)

and

V ar[R] = σ2
R ≈

n∑
i=1

(
∂f(µX)

∂Xi

)2

σ2
Xi

, (6)

respectively.
The advantage of this approach, besides efficiency, is that it allowed us to assume that

the responses are normally distributed if all input random variables and parameters were
normal. Therefore, propagation of uncertainty in ATC was modeled as a linear process.
With the distribution information known, all that was necessary was the estimation of the
first two moments, which characterize a normal distribution completely. The validity of
the successive linearizations during the ATC process was ensured by virtue of the ATC
consistency constraints that do not allow large deviations from current designs.

To our knowledge, this linearization approach is currently embedded in all state-of-the-art
software packages for optimization under uncertainty. As will be demonstrated shortly, the
linearization approach does a fairly good job in estimating the expected value of nonlinear
functions of random variables. However, it can be quite inaccurate in estimating higher
moments, e.g., the standard deviation. Moreover, it is limiting in that it does not provide
us with the correct probability distribution information of the random nonlinear responses.

It is also important to note that if the linearization approach is used to compute expecta-
tions in the stochastic formulation, Problems (1) and (2) generate identical solutions. There
is no value in solving the stochastic ATC formulation if expectations are not computed
exactly, which requires accurate probability distribution information and multidimensional
integrations. This is an additional reason that may explain why the probabilistic constraint
formulation is used universally today to solve non-deterministic problems.

3.2. Generating Distributions Using the Advanced Mean Value Method

In this paper, we utilize the advanced mean value (AMV) method to generate the cumulative
distribution function (CDF) of a nonlinear response. The AMV method [26] is a computa-
tionally efficient method for generating the CDF of nonlinear functions of random variables.
It improves the Mean Value (MV) prediction (Section 3.1) by using a simple correction to
compensate for errors introduced from the Taylor series truncation. A response performance
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function R = f(X) is linearized as shown in Eq. (4) and its first and second order moments
µR and σR are calculated using Eqs. (5) and (6), respectively.

A limit state function is then defined as

g(X) = f(X)− f0, (7)

where f0 is a particular value of the performance function. The reliability index β is then
given by

β =
µg

σg
, (8)

where µg = µR−f0 and σg = σR. The CDF value of f at f0 is calculated from the first-order
relation

P [f ≤ f0] = P [g ≤ 0] = Φ(−β), (9)

where Φ is the standard normal cumulative distribution function. It is emphasized that
Eq. (8) is equivalent to calculating the most probable point (MPP) using the linear approx-
imation of Eq. (4). The MPP in the standard normal space is given by

U∗ = −β
∇g(X)
|∇g(X)|

. (10)

In the original X space, the MPP coordinates vector is

X∗ = U∗σx + µx, (11)

where µx and σx are the mean and standard deviation vectors, respectively, of the vector
of random variables X.

In the AMV method, the following relation is used instead of Eq. (9):

P [f ≤ f(X∗)] = Φ(−β), (12)

i.e., the f0 value at which the reliability index β is calculated is replaced by f(X∗).
To generate the CDF of R = f(X), the Most Probable Point is first approximated using

the simple MV method, which has minimal computational requirements relative to existing
MPP-based reliability analysis methods. Once all MPP’s X∗

i for an appropriately discretized
range of the performance function at points fi are obtained, the so-called MPP locus
(MPPL) is identified, and is equivalent with the CDF of R = f(X). Subsequently, a single
function evaluation f(X∗

i ) is used at each CDF level i to correct the CDF value obtained
with the MV method. This so-called AMV-based method is computationally efficient since
it requires only a single linearization of the performance function at the mean value and
an additional function evaluation at each CDF level (discretized f range at values fi). It
is also very accurate as repeatedly demonstrated in the literature [27–29]. Note that the
MPPL-based CFD generation concept has been reported before, but is was based on a less
efficient MPP determining procedure [30].

With the CDF available, one can differentiate numerically to obtain the probability
density function (PDF). We use central differences to obtain second-order accurate approx-
imations. Finally, to compute moments, we integrate numerically, using spline interpolation
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to estimate response values that lie between the available PDF values. As will be shown by
means of several analytical examples, this method is quite accurate.

3.3. Examples

The MVFOSM-based and AMV-based methods were used to estimate the first two moments
of several nonlinear analytical expressions. All random variables were assumed to be normal.
Test functions and input statistics are presented in Table I and results are summarized in
Table II. One million samples were used for the Monte Carlo simulations.

Table I. Test functions and input statistics

# Expression Input Statistics

1 X2
1 + X2

2 X1 ∼ N(10, 2), X2 ∼ N(10, 1)

2 − exp(X1 − 7)−X2 + 10 X1,2 ∼ N(6, 0.8)

3 1− X2
1X2
20

X1,2 ∼ N(5, 0.3)

4 1− (X1+X2−5)2

30
− (X1−X2−12)2

30
X1,2 ∼ N(5, 0.3)

5 1− 80
X2

1+8X2+5
X1,2 ∼ N(5, 0.3)

Table II. Estimated moments and errors relative to Monte Carlo
simulation (MCS) results

# 1 2 3 4 5

µlin 200.0 3.6321 −5.25 −1.0333 −0.1428

µAMV 203.4 3.6029 −5.3495 −1.0380 −0.1454

µMCS 205.0 3.4921 −5.3114 −1.0404 −0.1448

εlin [%] −2.44 4.00 −1.15 −0.68 −1.30

εAMV [%] −0.78 3.17 0.71 −0.23 0.41

σlin 44.72 1.9386 0.8385 0.1166 0.00627

σAMV 45.20 0.9013 0.8423 0.1653 0.00631

σMCS 45.10 0.9327 0.8407 0.1653 0.00630

εlin [%] −0.84 107.85 −0.26 29.46 −0.47

εAMV [%] 0.22 −3.36 0.19 0 0.15

By inspecting Table II, it can be seen that while the mean-related errors of the lin-
earization approach are within acceptable limits, standard deviation errors can be quite
large. The AMV-based moment estimation method performs always better, and never
exhibits unacceptable errors. Moreover, the AMV-method provides accurate probability
distribution information of nonlinear responses. For example, Figure 3 depicts the CDF
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and PDF, respectively, of function # 1, obtained using both the MVFOSM-based and the
AMV-based method. It can be seen that, using the linearization approach, the nonlinear
response would be incorrectly assumed as normally distributed.

Figure 3. Cumulative distribution and probability density functions for analytical example #1

3.4. Propagating Uncertainty in ATC

Our methodology for propagating uncertainty information during the ATC process can be
summarized in the following steps:

1. Start at the bottom level of the hierarchy, where probability distribution on the input
random variables and parameters is assumed as known. If such information is not
available at the bottom level, start at the lowest level possible where such information
is available.

2. Solve the probabilistic design optimization problems for the level specified in step 1.

3. Use the approach described in Section 3.2 to obtain distribution information for the
response variables that are inputs to higher-level (“parent”) problems.

4. Using the information obtained at step 3, solve the parent problems. Note that the CDFs
and PDFs of lower-level (“children”) responses that constitute optimization variables in
the parent problems are required for solving these problems correctly. Second moment
(variance) information alone is inadequate to guarantee proper solution process and
uncertainty propagation throughout the hierarchy (as opposed, e.g., to “single”-element
robust design optimization).

5. Move your way to the top of the hierarchy.

6. Once you have reached the top-level problem start moving towards the bottom using
previous solutions to update parameters as shown in Figure 2.

7. Keep iterating until all ε values in all problems in the hierarchy have been reduced as
much as possible, i.e., have converged to a steady state value. Note that the ε variables
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are deterministic, as are the constraints they appear in. While uncertainties are taken
into account in the probabilistic design constraints, the non-deterministic ATC process
aims at coordinating values of shared variables and responses in an average sense.

Since the linearization approach is sufficiently accurate for estimating expected values, it
can be used to reduce computational cost. However, the AMV-based method is so efficient,
that it is suggested for use in estimating expected values to improve accuracy and thus,
possibly, the convergence rate of the ATC process.

4. Example

The probabilistic formulation of the ATC process (Problem (3)) is used to solve a simple yet
illustrative simulation example. We consider a V6 gasoline engine as the system, which is
“decomposed” into a subsystem that represents the piston-ring/cylinder-liner subassembly
of a single cylinder. The system simulation predicts engine performance in terms of brake-
specific fuel consumption. Although the engine has six cylinders, they are all designed to
be identical. For this reason, we only consider one subsystem.

The associated bi-level hierarchy, shown in Figure 4, includes the engine as a system at
the top level and the piston-ring/cylinder-liner subbassembly as a subsystem at the bottom
level. The ring/line subassembly simulation takes as inputs the surface roughness of the

engine simulation

brake-specific fuel consumption

power loss due to friction

piston-ring/cylinder-liner
subassembly

ring and liner surface roughness liner material properties
(Young’s modulus and hardness)

oil consumption
blow-by
liner wear rate

Figure 4. Hierarchical bi-level system

ring and the liner and the Young’s modulus and hardness and computes power loss due
to friction, oil consumption, blow-by, and liner wear rate. The root mean square (RMS) of
asperity height is used to represent asperity roughness, which is assumed to be normally
distributed. The engine simulation takes then as input the power loss and computes brake-
specific fuel consumption of the engine. Commercial software packages were used to perform
the simulations. A detailed description of the problem can be found in [25].
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4.1. Problem Formulation

Due to the simplicity of the given problem structure, we will use here a modified version of
the notation introduced earlier. Since there are only two levels with only one element in each,
we skip element indices and denote the upper-level element with subscript 0 and the lower-
level element with subscript 1. We use second indices to denote entries in the design variable
vector of the lower-level element optimization problem. The design problem is to find optimal
mean values µX11 and µX12 for the piston-ring and cylinder-liner surface roughness random
variables X11 and X12, respectively, and optimal values for the deterministic design variables
representing the material properties (Young’s modulus x13 and hardness x14) of the liner
that yield minimized expected value of brake-specific fuel consumption R0. The optimal
design is subject to constraints on liner wear rate, oil consumption, and blow-by. The power
loss due to friction R1 links the two levels.

The top- and bottom-level ATC problems are formulated as

min
µR1

,εR
(E[R0]− T )2 + εR (13)

subject to (µR1 − E[R1]l)2 ≤ εR

with R0 = f0(R1)

and

min
µX11

,µX12
,x13,x14

(E[R1]− µu
R1

)2 (14)

subject to P [liner wear rate > 2.4× 10−12 m3/s] ≤ Pf

P [blow-by > 4.25× 10−5 kg/s] ≤ Pf

P [oil consumption > 15.3× 10−3 kg/hr] ≤ Pf

P [X11 < 1µm] ≤ Pf

P [X11 > 10µm] ≤ Pf

P [X12 < 1µm] ≤ Pf

P [X12 > 10µm] ≤ Pf

340 GPa ≥ x13 ≥ 80 GPa

240 BHV ≥ x14 ≥ 150 BHV

with R1 = f1(X11, X12, x13, x14),

respectively. The standard deviation of the surface roughnesses was assumed to be 1.0 µm,
and remained constant throughout the ATC process. The assigned probability of failure Pf

was 0.13%, which corresponds to the target reliability index β = 3. The fuel consumption
target T was simply set to zero to achieve the best fuel economy possible.

Note that since the random variables are normally distributed, the associated linear
probabilistic bound constraints can be reformulated as deterministic. For example,

P [X11 < 1µm] ≤ Pf ⇔ P [X11 − 1µm < 0] ≤ Pf ⇔
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Φ(0− µX11 − 1µm

σX11

) ≤ Φ(−β) ⇒ −µX11 − 1µm

σX11

≤ −β ⇔

µX11 − 1µm

σX11

≥ β ⇔ µX11 − 1µm ≥ βσX11 ⇔

µX11 ≥ 1µm + βσX11 ⇔ µX11 ≥ 4µm

Similarly, the other three probabilistic bound constraints in Problem (14) can be reformu-
lated as

µX11 ≤ 7µm; µX12 ≥ 4µm; µX12 ≤ 7µm.

4.2. Results

It is desired to minimize power loss due to friction in order to optimize engine operation
and thus maximize fuel economy. Therefore, it was anticipated that the bottom-level opti-
mization problem would yield a design with as smooth surfaces (low surface roughnesses)
as possible.

The probabilistic ATC process of solving Problems (14) and (13) iteratively converged
after two iterations. The obtained optimal ring/liner subassembly design is shown in Ta-
ble III. The ring surface roughness optimal value is at its probabilistic lower minimum,

Table III. Optimal ring/liner subassembly design

Variable Description Value

X11 Ring surface roughness, [µm] 4.00

X12 Liner surface roughness, [µm] 6.15

x13 Liner Young’s modulus, [GPa] 80

x14 Liner hardness, [BHV ] 240

while the liner’s Young’s modulus and hardness optimal values are at their deterministic
lower and upper bounds, respectively.

The liner surface roughness is not, however, at its lower bound because the problem is
bounded by the oil consumption constraint. A certain degree of surface roughness is required
to maintain an optimal oil film thickness in order to avoid excessive oil consumption. For
this reason, the associated constraint is active, and the surface roughness of the liner is an
interior optimizing argument.

An interesting theoretical issue arises. How do we define activity for probabilistic con-
straints? The definition of constraint activity in deterministic optimization is the following:
A constraint is active if removing it or moving its boundary affects the location of the
optimum. In probabilistic design, a constraint is active if the reliability index associated
with the constraint’s MPP is equal to the target reliability index. In other words, the
constraint’s MPP lies on the target reliability circle.
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A Monte Carlo simulation was performed to assess the accuracy of the reliability analyses
of the probabilistic constraints. One million samples were generated using the mean and
standard deviation values of the design variables, and the constraints were evaluated using
these samples to calculate the probability of failure. Results are summarized in Table IV.

Table IV. Reliability analysis results

Constraint Active Pf MCS Pf

Liner wear rate No ≤ 0.13 % 0 %

Blow-by No ≤ 0.13 % 0 %

Oil consumption Yes 0.13 % 0.16 %

The obtained design is actually 0.03% less reliable than found. This error is due to the
first-order reliability approximation used in the probabilistic optimization problem.

Propagation of uncertainty was modeled using the approach described in Section 3.2.
Table V summarizes the estimated moments for the two responses of the bi-level hierarchy.

Table V. Estimated moments and errors rela-
tive to Monte Carlo simulation (MCS) results
for the simulation example

Response Power loss Fuel consumption

µlin 0.3950 0.5341

µAMV 0.3922 0.5431

µMCS 0.3932 0.5432

εlin [%] 0.45 −0.01

εAMV [%] −0.25 −0.01

σlin 0.0481 0.00757

σAMV 0.0309 0.00760

σMCS 0.0311 0.00759

εlin [%] 54.6 −0.25

εAMV [%] −0.64 0.13

The linearization approach results are included to illustrate the large error that this ap-
proach introduces to the top-level problem. This happens because the power loss function
is highly nonlinear. In fact, its PDF is multi-modal, as illustrated in Figure 5. Figure 5
also depicts the histogram obtained by Monte Carlo simulation using one million samples;
note that the perpendicular axis of the histogram must be divided by 1,000,000 to obtain
the probability density relative to the sample size. The agreement is quite satisfactory and
illustrates the usefulness of the AMV-based approach to propagate uncertainty for highly
nonlinear functions. The fuel consumption is almost a linear function of the power loss.
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Figure 5. Power loss PDF (left) and histogram obtained using Monte Carlo simulation (right)

5. Summary and Conclusions

We have presented a methodology for design optimization of hierarchically decomposed
multilevel systems under uncertainty. We extended the deterministic formulation of ana-
lytical target cascading (ATC) to account for uncertainties. We modeled the propagation
of uncertainty in the ATC process by using the advanced mean value (AMV) method
to generate accurate probability distributions of nonlinear responses. We demonstrated
the presented methodology by means of a simple yet illustrative engine design example.
The proposed methodology for simulation-based optimal system design by decomposition
is not related to multidisciplinary design optimization (MDO) methods in either its de-
terministic or its probabilistic formulation. Stochastic formulations are meaningful only
if expectations of nonlinear responses are computed exactly, which requires probability
distribution information of the input random variables and parameters and accurate multi-
dimensional integrations. Probabilistic formulations are suggested for practical applications.
The linearization approach for propagating uncertainties yields inaccurate second moment
estimations and is inadequate for multilevel optimization under uncertainty since it does
not provide probability distribution information that is necessary for solving higher-level
problems.
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