
1

Methods For Interval Linear Equations

Eldon Hansen

Abstract. We discuss one known and five new interrelated methods for bounding the hull of the solution
set of a system of interval linear equations. Each method involves a polynomial amount of computing; but
requires considerably more effort than Gaussian elimination. However, each method can yield sharper results
for appropriate problems. For certain problems, our methods can obtain sharp bounds for one or more (and
perhaps all) components of the hull of the solution set.

1. Introduction

Consider a set of linear equations

Ax = b (1.1)

where A = [A, A] is an interval matrix of order n and b = [b, b] is an interval vector of n
components. The problem of determining the interval hull h of the solution set is NP-hard.
(See [5].)

In practice, one can accept non-sharp bounds on h obtained by applying an interval
version of Gaussian elimination. Only a polynomial amount of computing of order O(n3)
is needed. Unfortunately, bounds obtained in this way can be far from sharp because of
growth of interval widths caused by dependence. (See [2] or [4].). In fact, the method can
fail even when A is regular. See [6].

The author introduced preconditioning (see [1]) to reduce the effect of dependence in
Gaussian elimination. In this procedure, the equation Ax = b is multiplied by an approx-
imate inverse B of the center of A. Unfortunately, preconditioning generally enlarges the
solution set. Thus, the hull hP of the preconditioned system BAx = Bb contains h; but is
generally larger than h.

Later, the author found that the hull of the preconditioned system could be determined
exactly (except for roundoff). In [4], the procedure to do so is called the “hull method”. The
hull method requires somewhat more computing then applying Gaussian elimination to the
preconditioned system. Nevertheless, it is the recommended method. The hull method fails
only if the preconditioned matrix BA is irregular.

Another way to get bounds on h is to use a version of Gaussian elimination which
involves use of what the author called “parameter dependent monotonicity”. A procedure
of this kind has been described by the author [3]. It requires more computing that ordinary
Gaussian elimination; but yields sharper results. It does not involve preconditioning which
enlarges the solution set.

In this paper, when we refer to “crude bounds” on the hull h, we mean bounds obtained
by a method such as described above. The term is meant to imply that the bounds are

REC2004

2

obtained by a relatively efficient method; and the bounds include the exact result, but are
not sharp.

In subsequent sections, we introduce six interrelated methods for bounding h. They
require a polynomial amount of computing; but considerably more computing than is needed
to get crude bounds. Each requires solving linear programming problems. A weakness of
our methods is that they are not applicable if the crude methods fail to produce bounds.

For a small fraction of possible linear systems, the methods in Sections 3 and 4 provide
the exact (except for roundoff) hull of the solution set. For a slightly larger fraction of
systems, the method of Section 4 provides exact bounds on one or more components of h.

We define and discuss sign-definiteness in the next section. All our methods use this
property. In Section 5, we describe ways to precondition a system of equations to produce a
desired kind of sign-definiteness. The methods are described in Sections 3, 4, and 6 through
9. In Section 10, we note that our methods can be used to bound the inverse of an interval
matrix. Section 11 provides a suggested procedure for deciding how to use our methods.
Section 12 discusses some special problems for which our methods are especially suited.

2. Sign-definiteness

We shall need a concept defined as follows:

Ax̃ = [Ax̃,Ax̃] (2.1)

That is, we are able to express Ax̃ in terms of endpoints of elements of A because we know
the signs of the components of x. Equation (1.1) can therefore be written [Ax̃,Ax̃] = [b, b].
Since x̃ must be such that these intervals intersect. it follows that

Ax̃ ≤ b and Ax̃ ≥ b. (2.2)

To find a component hi (and hi) for a given i = 1, ..., n, we can minimize (and maximize)
x̃i subject to the constraints (2.2). This linear programming problem can be solved by a
polynomial amount of computing.

We were able to formulate this problem because, in (2.1), we could express Ax̃ as [Ax̃,Ax̃].
In the general case in which x is SD and x̃ ∈ x, we have

aij x̃j =
{

[aij x̃j , aij x̃j] if xj ≥ 0,
[aij x̃j , aij x̃j] if xj < 0.

. (2.3)

Therefore,

Ax̃ = [Ã1x̃, Ã2x̃] (2.4)

where the real (i.e., non-interval) matrices Ã1 and Ã2 are formed from appropriate endpoints
of elements of the interval matrix A.

It is this feature which enables us to formulate three of the methods in this paper. A
similar feature enables us to formulate the other three methods. See Section 4. In particular,

REC2004

3

see Equation (4.1). In all six of our methods, we determine or produce a vector or subvector
which is SD and use this fact to obtain an algorithm for bounding h. We rely on the crude
methods to provide essential information about SD.

Each algorithm involves solving a set of linear programming problems. Thus, they require
considerably more computing than the procedures in Section 1 for getting crude bounds.

3. First method

Assume we have computed crude bounds xB on h by a method such as those described in
Section 1. If xB is SD, then h is SD; and we can use the known method of Section 2 to
compute h sharply. If xB lies in just a few orthants, a reasonable procedure is to use the
method to obtain the part of h in each of these orthants. The narrowest interval vector
containing all such results is h.

If h extends into all 2n orthants, then this approach entails solving 2n separate problems
each involving 2n linear programming problems. This amount of effort is prohibitive even
for moderate values of n. This is an example of an exponential amount of computing used
to solve the NP-hard problem of determining h.

4. Second method

It is possible to define a linear programming problem in which the primal variables are
components of x and the dual variables are elements of the inverse of A. Since our second
method concentrates on the inverse, the method can be considered as a kind of dual of the
first method. In this sense, the third and fourth methods below are duals as are the fifth
and sixth, respectively.

Given an interval matrix A, let P denote the interval matrix which is the hull of the set
of inverses of real matrices in A. Then for any real Ã ∈ A, there exists P̃ ∈ P such that
P̃ Ã = I. Note that this does not imply that for any P̃ ∈ P, there exists Ã ∈ A such that
P̃ Ã = I.

Let pT
i denote the ith row of P . If pi is SD, then we know how to express both p̃T

i A and
p̃T

i b for any real p̃i ∈ pi. For example, if pi ≥ 0, then

p̃T
i A = [p̃T

i A, p̃T
i A] and p̃T

i b = [p̃T
i b, p̃T

i b]. (4.1)

Note that
xi = {p̃T

i b̃ : p̃T
i Ã = eT

i , Ã ∈ A, b̃ ∈ b}
where ei denotes the ith column of the identity matrix. Therefore, hi is the solution of the
linear programming problem

min pT
i b (4.2)

subject to pT
i A ≤ eT

i and pT
i A ≥ eT

i ; and hi is the maximum of pT
i b subject to the same

constraints.

REC2004

4

More generally, if pi is just SD rather than nonnegative, we know how to express pT
i A

and pT
i b in a way similar to (4.1). See (2.3). Therefore, we can compute sharp values of hi

and hi.
If all the elements of P are SD, we could compute all the components of h sharply

by solving 2n linear programming problems. However, we now show that the results can
sometimes be obtained more simply.

If we differentiate the equation AP = I with respect to an element ars of A, we find that

∂Pij

∂ars
= −PirPsj (i, j, r, s = 1, ..., n). (4.3)

When P is SD, we know the signs of these derivatives. Therefore, we can determine the real
matrix in A whose inverse is P and the real matrix in A whose inverse is P . For example, if
P ≥ 0, then the derivatives given by (4.3) are negative. In this case, P = A

−1 and P = A−1.
For certain conditions on b, the results of the optimization problem (4,2) (and the

corresponding max) can be expressed simply. For example, if P ≥ 0, we find

h =

[A−1
b, A−1b] if b ≥ 0

[A−1b, A−1b] if 0 ∈ b

[A−1b, A
−1

b] if b ≤ 0
.

This special case is known. See page 108 of [6].
For this example, we are able to compute h as the solution of two noninterval systems.

It requires that P be positive and that b be rather special. For our method P need only be
SD, and b is arbitrary. However, our method can require much more computing.

To formulate the linear programming problem (4.2) we must know the signs of all the
components of row pT

i of P. Using a method described in Section 1, we can compute crude
bounds on the ith row pT

i by solving AT p = ei. If the bounds are SD, then the exact row
pT

i is SD. In this case, we can obtain sharp bounds on xi using the above method.
If desired, we can compute bounds on all the rows of P by solving AT P T = I and then

compute bounds on all the columns of P by solving AP = I. The intersection of the two
results will generally be sharper than either result. This enhances the chance of proving
that pi is SD.

Let PB denote a bound on P obtained by a method such as that just described. Note
that we can obtain crude bounds on h by computing PBb; but the bounds need not be
sharp even if PB is sharp. Suppose pi fails to be SD in only a few of its components. We
can divide each of these components into its negative and positive parts and solve for xi

for each combination of cases in which pi is SD. Then h is the hull of the union of results.
Compare the similar statement in Section 3.

Let (pB
i)T denote the ith row of PB. In problem (4.2), the unknown real row vector

pi must be bounded by the interval row vector pB
i . If the method used to solve the linear

programming problem (4.2) can benefit from additional constraints, we can use pij ∈ pB
ij

(j = 1, ..., n).

REC2004

5

5. Preconditioning

We now consider methods of preconditioning which allow a preconditioned equation to be
solved exactly in part or in whole. One type of method involves preconditioning a vector so
that it is SD. See the methods in Sections 6 and 7. Another type eliminates the variables
which are not SD so that the problem can be partially solved. The latter type can be
regarded as preconditioning so that certain quantities are zeroed. It involves operations by
an interval matrix; so it is perhaps misleading to call it preconditioning. See the methods
in Sections 8 and 9.

We now consider the first type of preconditioning. Assume an interval vector x = [x, x]
is not SD. Define a real vector q with components

qi =

−xi if xi < 0 < xi and |xi| ≤ xi

0 if xi ≥ 0 or xi ≤ 0
−xi if xi < 0 < xi and |xi| > xi

(i = 1, ..., n).

Then the interval vector y = x + q is the nearest SD interval vector to x in some sense.
Assume x is not SD. However, assume that at least one component of x is strictly SD. By

“strictly SD”, we mean that the the interval is SD and neither endpoint is zero. An interval
having an endpoint which is zero is SD, but not strictly SD. Let j be the index such that
xj is the component of largest mignitude. The mignitude of xj is

mig(xj)=

xj if xj > 0
−xj if xj < 0
0 otherwise

.

Define the vector v(j) with components

vi(j) =
{

qi/xj if xj > 0
qi/xj if xj < 0

and define the matrix

Vj = I + v(j)eT
j . (5.1)

Then Vjx is SD.
Note that

V −1
j = I − 1

2v(j)eT
j (5.2)

Therefore, V −1
j is known exactly when Vj has been determined.

In what follows, we do not actually use the interval vector (such as x) which we pre-
condition so as to be SD. Instead, we use an unspecified real vector x̃ ∈ x. However, if we
precondition so that the interval vector x is SD, then the sign of any component of x̃ ∈ x
has the sign we impose on the corresponding component of x.

Suppose we precondition a matrix A by multiplying by a real matrix B̃. The product
M = B̃A can be irregular even when A is regular and B̃ is nonsingular. The four methods
we describe below all use some kind of preconditioning and in two cases B̃ becomes an
interval matrix. In each method, we assume that B̃ is such that M is regular.

A virtue of the preconditioning method just described is that the preconditioning matrix
differs from the identity in only one row. Contrast this with preconditioning using the inverse
of the center of A. See Section 1.

REC2004

6

The matrix V −1
j in (5.2) will be used as a preconditioner. The smaller the norm of the

vector v(j) used to define V −1
j , the closer V −1

j is to the identity. The enlargement of the
solution set by preconditioning is less when V −1

j is nearer the identity.. If more than one
component of x is strictly SD, it is sometimes possible to define a matrix similar to V −1

j
which is nearer the identity. We omit the details.

6. Third method

Our third method is obtained by introducing preconditioning into our first method. Suppose
we have obtained crude bounds xB on the solution to Ax = b and find that at least one
component of xB is SD. Then the corresponding component of the hull h is SD. Therefore
we can determine a matrix V as in Section 5 such that V xB is SD. This assures that V h is
SD.

Define y = V x and M = AV −1. Then the solution y of My = b is SD and its hull can
be found using the first method (in Section 3). We then obtain x as x = V =1y.

Presumably any kind of preconditioning can enlarge the solution set. It is natural to
compare the method using this kind of preconditioning with a method in Section 1 used to
get the crude bounds xB. The latter method requires considerably less computing.

To get xB, we can precondition by multiplying by an approximate inverse of the center
Ac of A. The closer Ac is to the identity, the less the preconditioning step tends to enlarge
the solution set. The closer xB is to being SD, the less the method just described enlarges
the solution set. (A measure of how far xB is from SD is the norm of the vector v(j) in
Section 5.) The amount to which preconditioning enlarges the solution set depends on how
far the preconditioner is from the identity matrix. Therefore, the comparative sharpness
of results when preconditioning by A−1

c or by V −1 depends strongly on the nature of the
problem. A similar statement holds for the methods discussed below.

7. Fourth method

In the third method, we introduced a preconditioning procedure which produced an equation
whose solution was SD. Therefore, we could apply the first method. In the same way, we
can precondition so that the new equation can be solved by the second method (in Section
4). That is, the preconditioning is such that a row of the inverse of the generated matrix is
SD.

The exact inverse P of A will usually be regular when A is regular. Assume it is. Also
assume that the bound PB (obtained as in Section 4) on P is regular. Then for any i =
1, ..., n, at least one component of the ith row (pB

i)T of PB must be SD. From Section 5,
we can determine a matrix V such that (pB

i)T V is SD. This implies that pT
i V is SD.

Assume that we have determined V such that row i of PV is SD. To precondition
Ax = b, we multiply by the matrix V −1. (Note that V −1 is exactly known from (5.2) when
V is known.) The new coefficient matrix is M = V −1A. Row i of the inverse of M is SD.

REC2004

7

We can compute the ith component of the hull of V −1Ax = V −1b using the second method
(see Section 4).

It is not necessary to verify that row i of the inverse of M is SD. If it were computed to
not be SD, it would still be correct to proceed as if it were.

Note that the result xi will generally not be a sharp bound on the corresponding
component hi of the hull since preconditioning by V −1 tends to enlarge the solution set.

There are two other reasons why a solution obtained by this method can fail to be sharp.
First, the computed bounds on the inverse will generally not be sharp. The preconditioning
matrix V is determined so that a row of the bound PB is SD. Since PB is not a sharp bound
on P, the matrix V generally causes an “overshoot” when changing a non-SD element to
SD. Therefore, preconditioning A by V =1 causes too large a change in A.

The other cause of loss of sharpness is more subtle. It occurs because P contains matrices
which are not inverses of matrices in A. The loss of sharpness is similar in nature to that
just described.

8. Fifth method

Assume that one or more component of the crude bound xB is SD. Then the corresponding
component(s) of the hull h are SD. For simplicity, assume that for some integer k, we have
hi < 0 < hi for i = 1, ..., k and hi is SD for i = k+1, ..., n. Partition A, x, and b conformally
so that the equation Ax = b takes the form

[
A1 A2

A3 A4

] [
y
z

]
=

[
c
d

]
. (8.1)

Here xT = (yT , zT) where y has k components and z has n − k components. The hull of
the solution set of this system is such that the interval solution z is SD.

Perform interval Gaussian elimination; but stop when A3 is zeroed The result is an
equation of the form

[
A′1 A′2
0 A′4

] [
y
z

]
=

[
c′
d′

]
(8.2)

This equation can be written as the system
A′1y + A′2z = c′,
A′4z = d′.
Since z is SD, we can compute z sharply from the equation A′4z = d′ using the first

method (in Section 3). We can then compute bounds on y by backsolving A′1y + A′2z = c′.
When we perform the interval Gaussian elimination to obtain (8.2) from (8.1), interval

widths will tend to grow; and we should precondition. Suppose we precondition by mul-
tiplying Ax = b by an approximate inverse of the center of A. Then there is no point in
using the method just described because we can determine the hull of such a preconditioned
system sharply using the hull method. See [4].

Instead, we should precondition by an approximate inverse of the center of

REC2004

8
[

A1 0
A3 I

]

where I denotes an identity matrix of order n− k. This tends to enlarge the solution set by
less than preconditioning by an approximate inverse of the center of the entire matrix A.

9. Sixth method

We now consider a method which can be regarded as a kind of dual of the fifth method.
Suppose we compute crude bounds on the inverse P of A as described in Sections 1 and

4. To simplify discussion we fix our attention on the first row of P . We also simplify by
assuming that P1j is SD for j = 1, ..., k and that P 1j < 0 < P 1j for j = k + 1, ..., n.

Partition A as

A =
[

A1 A2

A3 A4

]

where A1 is k by k and A4 is n− k by n− k. We can perform Gaussian elimination on A in
such a way that A2 becomes zero. This is achieved by multiplying by a matrix of the form

B =
[

I B2

0 B4

]
.

This matrix need not be explicitly generated. However, the operations to obtain BA must
also be perfomed on b so that the new equation is BAx = Bb.

The first row of the inverse PB−1 of BA is such that its first k components are the
same as those of P and, by assumption, are SD. The last n − k components of the first
row of PB−1 are zero (and hence SD). Since the first row of the inverse of BA is SD, we
can determine the first component of the solution of BAx = Bb by the second method (in
Section 4).

Other components of x can be bounded in a similar way.

10. Using the inverse

Suppose we have a matrix P ′ which bounds the exact inverse P of A. In Section 4, we
discussed how to obtain P ′. Note that P ′b bounds the hull h of the solution set. The bound
on h would generally not be sharp even if P ′ were the exact inverse P. This is because P can
contain matrices which are not inverses of any matrix in A. However, this provides another
bound on h which can be intersected with bounds obtained by methods such as those we
have described.

We can bound P more sharply than by the way described in Section 4 by using methods
such as ours to solve the equations which P must satisfy. Thus, we can solve for the ith
column of P by solving Ax = ei. We can solve for the ith row of P by solving AT x = ei. If
we solve for both the rows and the columns, we can intersect the two results.

The wider the vector b in Ax = b the wider the solution set. From this point of view,
the equation Ax = ei is ideal in that the right hand vector ei is real and all components

REC2004

9

are zero except one. This suggests that there can be advantages in using a method which
computes the inverse of A.

11. Choosing a method

In practice, we must decide whether to use any of the methods we have described; and,
if so,which one(s). We first note that if the center Ac of A is “near” the identity matrix,
then its inverse B = A−1

c is near the identity. In this case, there is little need to use any
of our methods. We can use B to precondition the system without unduly enlarging the
solution set. We can then use the hull method to determine the hull of the preconditioned
system. The question of what is meant by “near the identity matrix” will be left to a user.
Alternatively, the center of A might be near a matrix which is the identity with rows and
columns permuted.

Suppose the center Ac of A is near the identity matrix. Then the center of A−1 is near
the identity. That is, its off-diagonal elements are likely to contain zero. Therefore, a row of
A−1 is unlikely to be SD. In this case, it is unlikely that our second method is applicable;
and there is probably little point in using the fourth or sixth method.

For any problem, a reaonable first step is to obtain bounds xB on the hull h using the
hull method. One can also use the method from [3] and find the intersection of the two
methods Thereafter, we might use the following procedural steps. They involve a great deal
of computing; but the work is polynomially bounded.
(1) If Ac is near the (perhaps permuted) identity matrix, accept the results of the hull
method as a sufficiently sharp solution. Thus, go to step (10).
(2) If xB is SD in all but a few components, solve for h using the first method (in Section
3). Then go to step (10).
(3) Use the hull method to obtain bounds on A−1 by solving Ax = ei for i = 1, ..., n. (The
method in [3] can also be used.) Also solve AT x = ei for i = 1, ..., n to bound AT−1. Then
intersect the two bounds on A−1. Denote the resulting bound on A−1 by PB.
(4) For i = 1, ..., n, if all but a few components of row i of PB are SD, solve for hi using the
second method (in Section 4). If all components of h are obtained in this way, go to step
(10).
(5) Compute the bound PBb on h. Intersect it with xB and the result from step (4).
(6) If at least one component of h has been shown to be SD, the third method (in Section
6) is applicable. Use it to bound h. Intersect the solution with the result of step (5).
(7) Use the fourth method (in Section 7) to bound hi for i = 1, ..., n. Skip any value of i for
which hi was obtained sharply in step (4). Intersect the result with the result from step (6).
(8) If at least one component of h has been found to be SD, use the fifth method (in Section
8) to bound h. Intersect the result with the result from previous steps.
(9) Use the sixth method (in Section 9) to bound h. Intersect the result with the result from
previous steps.
(10) Stop.

REC2004

10

The amount of work to apply this procedure is not particularly excessive if the crude
bounds reveal that h or A−1 is SD. If this is not the case, our procedure is useful only if
sharpness is so important that a considerable amount of computing is warranted.

There are cases in which there is no need to use our methods. If A is an M-matrix, then
interval Gaussian elimination will obtain the hull h sharply. See [5].

12. Some special cases

The essential requirement in our methods is that we are able to express certain products in
which a factor is unknown except for its sign. For example, in the first method, we needed
to be able to express Ax when x is unknown. If xj is SD, we can use (2.3) to express aijxj

in terms of the endpoints of aij . But suppose that for a given value of j, the element aij is
real (i.e., a degenerate interval) for all i = 1, ..., n. Then the “endpoints” of aij are equal;
and aijxj is expressed in terms of their coincident value. Therefore, xj need not be SD.

If all but a few columns of A are real, the first method can be used to determine the hull
h with a reasonable amount of computing. If a given column of A is real, the corresponding
component of x does not have to be made SD in the third method, nor does it have to be
eliminated in the fifth method.

Similar statements can be made for the dual methods. Now, however, we must be able
to express both pT A and pT b for a row pT of P . Consider the matrix R = (P b) which
is the matrix P augmented with the vector b as an added column. If all but a few rows of
R are real, the second method can determine the hull. If a row (or rows) of R is real, the
corresponding component of a row of P need not be SD in the fourth and sixth methods.

Even if every element of A except one is real, then every element of P can be a nonde-
generate interval. It is unlikely that we shall know that a row of R is real. Therefore, the
dual methods generally do not “simplify” in this way.

13. A non-polynomial method

The methods we have described fail if the crude methods fail to obtain bounds on the
solution. In this section, we describe how the hull of the solution set of Ax = b can be
obtained as the solution of an optimization problem. The optimization problem is not
a linear programming problem; so the work to solve it is not polynomially bounded. We
include it as an alternative for two reasons. First, it does not require that some other method
provide crude bounds. Second, it is similar to the methods we have described. The difference
is that the formulation of the optimization problem includes nonlinear constraints.

Equation (2.3) can be written as

aijxj = [min{aijxj , aijxj},max{aijxj , aijxj}]. (14.1)

Since the maximum of two function can be exressed as their average plus half their difference,
we have

REC2004

11

max{aijxj , aijxj} = 1
2(aijxj + aijxj) + 1

2 |aijxj − aijxj | = mijxj + 1
2wij |xj | (14.2)

where mij = 1
2(aij + aij) and wij = aij − aij . Similarly,

min{aijxj , aijxj} = mijxj − 1
2wij |xj |. (14.3)

Row i of the equation Ax = b can be written
n∑

j=1
aijxj = bi (i = 1, ..., n).

From (14.1), (14.2), and (14.3), we therefore obtain
n∑

j=1
[mijxj − 1

2wij |xj |, mijxj + 1
2wij |xj |] = bi.

A point x is in the solution set of Ax = b only if the intervals in the left and right members
intersect. This imposes the constraints

n∑
j=1

(mijxj − 1
2wij |xj |) ≤ bi, (14.4a)

and
n∑

j=1
(mijxj + 1

2wij |xj |) ≥ bi. (14.4b)

for i = 1, ..., n.
We can obtain the kth component of the hull by minimizing and maximizing xk subject

to the constraints (14.4). The function |xj | is not differentiable at xj = 0. We can obtain
constraints which are differentiable if we replace |xj | by xj+n and add the constraints

x2
j+n − x2

j = 0 (j = 1, ..., n).
The problem now becomes: For k = 1, ..., n,
minimize and maximize xk

subject to
n∑

j=1
(mijxj − 1

2wijxj+n) ≤ bi (i = 1, ..., n)

n∑
j=1

(mijxj + 1
2wijxj+n) ≥ bi (i = 1, ..., n)

x2
j+n − x2

j = 0 (j = 1, ..., n).

14. References

[1] Hansen, E. R., Interval arithmetic in matrix computations, part I, SIAM J. Numer. Anal.
2, 308-320, 1965.
[2] Hansen, E. R., Global Optimization Using Interval Analysis, Marcel Dekker, 1992.
[3] Hansen, E. R., Sharpening interval computations, paper presented at the First Scandi-
navian workshop on interval methods and their application, Copenhagen, 2003.

REC2004

12

[4] Hansen, E. R. and Walster, G. W. Global Optimization Using Interval Analysis, (second
ed.), Marcel Dekker, 2004.
[5] Heindl, G., Kreinovich, V., and Lakeyev, A. (1998), Solving linear interval systems is
NP-hard even if we exclude overflow and underflow, Reliable Computing, 4, 383-388.
[6] Neumaier, A., Interval Methods for Systems of Equations, Cambridge University Press,
London, 1990.

REC2004

