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Abstract. In this paper a procedure for designing structures under uncertainty is presented. The uncertainty
model of fuzzy randomness is employed to take into account the uncertainty of structural parameters in a
realistic and comprehensive manner. This uncertainty model includes real valued random variables and fuzzy
variables as special cases. Objective uncertainty and subjective uncertainty are processed simultaneously.

Algorithms of fuzzy structural analysis (processing of fuzzy variables in structural analysis) and fuzzy
probabilistic safety assessment (processing of fuzzy random variables, real random variables, and fuzzy
variables in safety assessment) are used to compute fuzzy structural responses and fuzzy safety prognoses,
which are the backbone of the new design concept. Comparing fuzzy structural responses and the fuzzy safety
level with permissible values, discrete permissible and nonpermissible parameter vectors are identified. These
are introduced into a fuzzy cluster analysis to obtain permissible and nonpermissible clusters (continuous
sets of real parameter vectors with similar properties), which represent the basis for generating uncertain
structural design parameters.

This concept is referred to as fuzzy cluster design. It can be combined with arbitrary fundamental so-
lutions for deterministic and probabilistic structural safety analyses. For instance, well developed algorithms
of Monte Carlo simulation and codes of nonlinear structural analysis can be incorporated in the procedure.

The algorithm of fuzzy cluster design is presented in detail and demonstrated by way of a numerical
example.

Keywords: Fuzzy variables; Fuzzy random variables; Fuzzy structural analysis; Fuzzy probabilistic safety
assessment; Fuzzy clustering; Uncertain structural design; Nonlinear structural design.

1. Introduction

Structural engineering focuses on computing structural responses, assessing structural safety,
and determining parameters for structural design that meet all relevant requirements.
For these purposes, the structural engineer has to apply appropriate structural models,
suitably-matched computational models and reliable structural parameters close to reality.
Computational models must be capable of numerically simulating the system behavior of the
chosen structural model. Such models have already been developed up to a high quality level
and are available as nonlinear numerical procedures for solving many problems. Structural
models and structural parameters, however, have to be established in the particular case on
the basis of plans, drawings, measurements, observations, experiences, expert knowledge,
codes, and standards. As a rule certain information regarding structural models and precise
values of structural parameters do not exist. Structural models and structural parameters
are characterized by uncertainty. Human errors in the manufacture, the use and maintenance
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of constructions, expert evaluations, and insufficient information sources represent only some
examples of uncertain influences. In order to perform realistic structural analysis and safety
assessment this uncertainty must be appropriately taken into consideration.

Various concepts are available for mathematically describing and quantifying uncer-
tainty such as, e.g., probability theory [17], including subjective probability approach [31]
and Bayes methods [6], interval mathematics [1], convex modeling [5], theory of rough
sets [23], fuzzy set theory [2], theory of fuzzy random variables [15] and chaos theory
[13]. In the scientific literature the new uncertainty models are not only controversially
discussed [9] but also increasingly implemented for the solution of practice-relevant problems
[4, 8, 12, 16, 22, 24, 29] These different developments of uncertainty models do not directly
contradict each other but rather constitute an entirety.

The procedure presented in this paper takes account of uncertainty that may be
quantified using the concept of fuzzy randomness. Structural parameters are modeled as
fuzzy random variables, real random variables, or fuzzy variables. These are simultaneously
processed in special procedures of fuzzy structural analysis and fuzzy probabilistic safety
assessment to yield the associated uncertain structural responses and uncertain safety levels.
The uncertainty of the structural parameters is apparent in the results. Generally, arbitrary
computational models may be employed as deterministic and probabilistic fundamental so-
lutions in these special procedures. If necessary, sophisticated nonlinear codes for structural
analysis such as described in [26] and well developed algorithms of computational stochastics
such as Monte Carlo simulation [27] may be applied to obtain results close to reality.

The uncertain results from fuzzy structural analysis and fuzzy probabilistic safety
assessment provide a suitable basis for deriving an uncertain structural design. With the aid
of a fuzzy cluster analysis algorithm permissible and nonpermissible clusters are detected
in the space of the design parameters. These are taken as the basis to generate modified
uncertain structural parameters, which represent alternative design variants. By comparing
requirements regarding structural responses and safety levels with the fuzzy results associ-
ated with these design variants, their permissibility and quality is finally assessed to find
the optimum uncertain structural design.

This fuzzy cluster design concept does not make any demands on the underlying de-
terministic and probabilistic fundamental solutions for fuzzy structural analysis and fuzzy
probabilistic safety assessment. As it solves the inverse problem of structural analysis and
safety assessment numerically, it is generally applicable and may also be employed to solve
deterministic design problems in arbitrary nonlinear cases.

The basis and algorithmic development of fuzzy cluster design are discussed in detail
in the sequel.

2. Processing Uncertainty in Structural Safety Assessment

For introducing uncertain structural parameters into structural analysis and safety as-
sessment these must be quantified. Depending on the characteristic of the uncertainty
appropriate mathematical models are applied. The uncertain parameters are classified ac-
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cording to the cause of their uncertainty. If exclusively informal or lexical uncertainty
appears, the uncertainty characteristic fuzziness may be stated. If the uncertain parameter
considered is partly influenced by stochastic uncertainty, but cannot be described clearly
using random variables, then the characteristic fuzzy randomness may be assigned. Thereby,
real valued random variables may be treated as a special case of fuzzy random variables.
These represent uncertain variables whose uncertainty exclusively arises from stochastic
causes.

Uncertain parameters whose uncertainty characteristic has been identified as fuzzi-
ness are treated on the basis of fuzzy set theory. They are described as fuzzy variables
x̃ quantified by membership functions µ(x) [2, 32], see Figure 1. The specification of the
membership function is referred to as fuzzification. General algorithms for fuzzification
cannot be provided as it basically represents a subjective assessment [20, 30].

Uncertainty with the characteristic fuzzy randomness is described, quantified, and pro-
cessed on the basis of the theory of fuzzy random variables. For quantifying fuzzy random
variables X̃ fuzzy probability distributions F̃(x) are introduced [18, 30], see Figure 1. These
may be understood as being a bunch of real valued probability distributions assessed by
membership values µ indicating their degree of plausibility. The fuzzy probability distribu-
tion functions are analytically described by introducing fuzzy functional parameters p̃ into
the common equations for distribution functions. Additionally, fuzzy functional types of
distributions may be defined. The fuzzy parameters p̃ of the fuzzy probability distributions
represent fuzzy variables characterized by membership functions µ(p). These fuzzy param-
eters may be determined on the basis of common statistical methods in combination with
procedures from fuzzy set theory[18, 20, 30].
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Figure 1. Fuzzy variable x̃ and fuzzy random variable X̃
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For the purpose of fuzzy cluster design, the uncertain structural parameters are mapped
to fuzzy structural responses and fuzzy safety levels, which are compared with required or
permissible values as design constraints.

Fuzzy structural responses are obtained from fuzzy structural analysis [18, 20]. Fuzzy
structural analysis implies the analysis of a structure with the aid of a crisp (or uncertain)
algorithm applied to fuzzy variables for structural parameters. It may formally be described
as the mapping of the fuzzy input vector x̃ consisting of the fuzzy structural parameters x̃k

to the vector z̃ containing the fuzzy structural responses z̃j,

x̃ → z̃ , (1)

see Figure 2. The mapping 1 is realized with the aid of the mapping model f,

z = (z1, ..., zj, ..., zm) = f(x1, ..., xk, ..., xr) , (2)

which is represented here by a deterministic algorithm for statical or dynamic structural
analysis as a deterministic fundamental solution.

Figure 2. Mapping of fuzzy input variables to a fuzzy result variable

Fuzzy safety levels are computed by applying the concept of fuzzy probabilistic safety
assessment. The developed Fuzzy First Order Reliability Method (FFORM) [18, 21] is
selected here. Fuzzy random variables together with fuzzy structural parameters are intro-
duced into the algorithms of FFORM to compute a fuzzy reliability index β̃. In terms of
fuzzy analysis this may be formulated as the mapping

x̃e = (x̃1, ..., x̃k, ..., x̃r, p̃1, ..., p̃t, ..., p̃q) → β̃ , (3)

of an extended fuzzy input vector x̃e to the fuzzy reliability index β̃ representing a special
fuzzy result variable. The extended fuzzy input vector x̃e not only contains fuzzy structural
parameters x̃k but also comprises the fuzzy parameters p̃t of the fuzzy random variables X̃s.
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For purposes of notation convenience, all fuzzy input variables are subsequently denoted by
x̃k, whereas all fuzzy result variables are designated as z̃j.

For processing the fuzziness of the fuzzy input vector a generally applicable as well as
efficient numerical algorithm has been developed and formulated in terms of α-level opti-
mization [18, 20]. This concept permits to implement an arbitrary nonlinear deterministic
fundamental solution without any special properties. The membership scale of the fuzzy
input vector is discretized (α-discretization), which leads to a certain number of α-level sets

Xα = {x ∈ x̃ | µ(x) ≥ α} . (4)

The mapping 1 may then be described by

Xα → Zα ∀ α ∈ (0, 1] . (5)

The α-level sets Xα are mapped to the associated α-level sets Zα of the fuzzy results. For α

= 0 (as an abbreviation for the limit α → +0) this mapping concerns the support subspaces
Xα=0 and Zα=0, which contain all elements of the fuzzy input vector and the fuzzy result,
respectively, see Figure 2. The resulting α-level sets Zα are described with the aid of their
boundings. For their determination a modified evolution strategy has been developed and
combined with a repeated solution of the associated optimization problem.

As a consequence, the fuzzy results are obtained with numerically determined mem-
bership functions. This means that fuzzy results are not available as connected sets but
represent discrete sets of randomly distributed points in the space of the fuzzy result
variables. Additionally, the parameter coordinates in the space of the fuzzy input variables
which belong to these result points are known.

3. Fuzzy Cluster Design

3.1. Concept

The basic idea of fuzzy cluster design is to derive an appropriate structural design ac-
counting for the uncertainty of design parameters. It is thus reasonable to make use of the
numerical results from fuzzy structural analysis and fuzzy probabilistic safety assessment.
In contrast to deterministic computations, these results not only provide a single input-
output dependency but offer some systematic insight into relationships between structural
parameters and structural responses and safety levels over a certain range of parameter
values. If the uncertain structural parameters are initially defined in such a way that they
cover a proper design domain, then the information gained from fuzzy structural analysis
and fuzzy probabilistic safety assessment may be used to find continuous sets of suitable
design parameter vectors within this defined domain.

As a result of the mapping 5, a set of input points xi from the support subspace Xα=0 of
x̃ and a set of result points zi from the support subspace Zα=0 of z̃ are obtained. The result
points zi are assigned to the input points xi by means of the mapping model according to
2 on a point-by-point basis,
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zi = f(xi) . (6)

From α-level optimization, the inverse assignment is also available point-by-point,

xi = f−1(zi) . (7)

The fact that these dependencies are only known in a discrete form excludes a closed solution
of the design problem; continuous sets of permissible design parameter vectors cannot be
determined by simply applying 7. The pointwise information from 6 and 7, however, permits
designing structures virtually directly with the aid of cluster analysis methods.

The points xi, i = 1, ..., n, are lumped together in the discrete point set Mx, whereas
the points zi, i = 1, ..., n, are combined to form the discrete point set Mz. According to
the design constraints CTh with h = 1, ..., q, the point set Mz is subdivided into two
disjoint subsets Mz+ and Mz− comprising exclusively permissible points z+

i = (z+
i,1, ..., z+

i,m)
or only nonpermissible points z−i = (z−i,1, ..., z−i,m), respectively. As a consequence the point
set Mx also becomes decomposed due to the dependencies in 6 and 7. The resulting disjoint
subsets Mx+ and Mx− of Mx contain only permissible points x+

i = (x+
i,1, ..., x+

i,r) or only
nonpermissible points x−i = (x−i,1, ..., x−i,r), respectively. A cluster analysis is then separately
applied to both the permissible points x+

i and the nonpermissible points x−i . The obtained
clusters comprised of permissible points represent alternative structural design variants
[3, 18, 19], see Figure 3.
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Figure 3. Clustering permissible and nonpermissible input points

The concept presented may be applied to designing structures based on fuzzy structural
analysis as well as on fuzzy probabilistic safety assessment. Depending on the particular
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design problem fuzzy structural parameters or fuzzy parameters of fuzzy probability dis-
tributions may be selected as design parameters. Design constraints may be formulated for
fuzzy structural responses or for the fuzzy safety level. Furthermore, the concept of fuzzy
structural design for the first time provides a tool for designing structures directly and
independently of the computational model. That is, every arbitrary nonlinear structural
analysis algorithm may be taken as a basis.

3.2. Fuzzy Cluster Analysis

For generating permissible and nonpermissible clusters arbitrary established cluster analysis
algorithms may be taken as a basis. The aim of these algorithms is to generate clusters from
a given set of data, which are referred to as objects. Objects that are similar to each other
are lumped together to form one cluster, whereas objects that are dissimilar are assigned
to different clusters. Each cluster should only contain objects of high similarity. That is,
the distances d(i, j) between its objects ¤i and ¤j should be as small as possible. Objects
from different clusters are characterized by dissimilarity, the distances between these objects
should be as large as possible. In structural design with clusters the input points x+

i and
x−i in the support subspace Xα=0 are the objects.

For determining clusters from point sets a variety of methods are available [10, 14,
28]. Fuzzy cluster methods are particularly suitable for designing structures. These are
characterized by the fact that the assignment of objects to clusters is fuzzy, which yields
fuzzy clusters. The degree with which an object ¤i belongs to a particular cluster Cv is
expressed by the membership value µiv ∈ [0, 1]. An object may simultaneously be assigned
to different clusters with different membership values.

Herein, the fuzzy cluster method presented in [14] is selected as a basis for fuzzy cluster
design. In this method the determination of the cluster configuration is formulated as the
nonlinear optimization problem

k∑

v=1

∑n
i=1

∑n
j=1 µr

iv · µr
jv · d (¤i, ¤j)

2 ·∑n
j=1 µr

jv

⇒ Min (8)

with the equality and inequality constraints

µiv ≥ 0; i = 1, ..., n; v = 1, ..., k (9)

and
k∑

v=1

µiv = 1; i = 1, ..., n . (10)

The number k of clusters must be predefined. Then, the objective function is minimized
by iteratively improving the membership values µiv and µjv. The exponent r ∈ [1, ∞)
controls the influence of the membership values sought. For large values r the result of
the cluster analysis exhibits a strong fuzziness characterized by equal membership values
µiv = k−1 for all objects. In contrast to this, a value r close to unity results in an almost
crisp clustering. For applications the exponent r = 2 is frequently chosen.
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In order to determine a suitable number k of clusters the cluster analysis is usually
repeated with a varying number of clusters. The results are then compared based on quality
measures to find the optimum solution. The absolute value of the quality measure, however,
should not be taken into consideration as the sole criterion. Additionally, the relative
improvement in the quality measure when sucessively increasing the number of clusters
should be accounted for. In the present study the partition coefficient and the separation
degree are applied as major quality measures [10].

The partition coefficient evaluates the ”clearness” with which the objects are assigned to
clusters. The more uncertain an assignment is obtained, the worse the cluster configuration
is assessed to be. It is defined as

PC =
1
n

k∑

v=1

n∑

i=1

µ2
iv . (11)

As an enhancement, the normalized partition coefficient

PCN = 1− k
k− 1

· (1− PC) (12)

is defined [28], which takes values from the interval [0, 1]. An appropriate clustering is
characterized by a PCN close to unity.

The separation degree measures the separation of the clusters. That is, the average
distance between the clusters and their assigned objects is evaluated with respect to the
squared minimum distance between different clusters,

SD =
∑n

i=1

∑k
v=1 µ2

iv · d (¤i, ¤pv)
n ·min [d2 (¤pv , ¤pw) | ¤pv , ¤pw ∈ C1, ..., Ck; ¤pv 6= ¤pw ]

. (13)

The objects ¤pv and ¤pw denote the prototypes of the clusters Cv and Cw, respectively,
which may be interpreted as ”artificial, representative objects” of the clusters. In the desired
case of a high similarity between the objects of the particular clusters and, simultaneously,
of a distinctive dissimilarity between objects from different clusters, the separation degree
13 takes on small values.

3.3. Algorithmic Procedure

The concept from Section 3.1 together with the method of fuzzy cluster analysis from
Section 3.2 is now taken as the basis to formulate an algorithm for fuzzy cluster design.
This is comprised of the following six steps:

Step I. Fuzzy structural parameters and fuzzy parameters of fuzzy probability distribu-
tions that are chosen as fuzzy design parameters are initially defined in such a way that
they cover a proper design domain. The parameter values taken into account by this means
must be technically reasonable and practically realizable. Design constraints CTh, h = 1,
..., q, are formulated according to the particular problem. Fuzzy structural analysis and
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fuzzy probabilistic safety assessment are performed on the basis of α-level optimization.
The final results as well as the intermediate results, which are accumulated during the in-
cluded repeated optimization, are summarized in the point sets Mx = {xi; i = 1, ..., n} and
Mz = {zi; i = 1, ..., n} and plotted in the support subspaces Xα=0 and Zα=0, respectively.

Step II. The result points ziin Zα=0 are evaluated by checking the design constraints CTh.
This permits the separation of the point set Mz into the subset Mz+ comprising all points
z+
i proven to be permissible and the subset Mz− containing all nonpermissible points z−i ,

Mz = {Mz+ , Mz−} . (14)

With the aid of the inverse assignment 7, which is known from α-level optimization,
the assigned permissible points x+

i and nonpermissible points x−i in Xα=0 are determined.
Accordingly, the point set Mx is subdivided into Mx+ =

{
x+

i

}
and Mx− =

{
x−i

}
,

Mx = {Mx+ , Mx−} . (15)

Step III. Fuzzy cluster analysis is applied separately to the point sets Mx+ and Mx− . The
set Mx+ is decomposed into k1 permissible clusters. From the set Mx− k2 nonpermissible
clusters are determined. The search for an appropriate cluster configuration is performed
in two stages. First, clustering is carried out for a varying number of clusters k1 and k2.
Second, the obtained cluster configurations are assessed based on the numerical quality
measures 12 and 13 to select the most suitable clustering. In addition to the values of these
quality measures, their relative variation when changing the number of clusters is taken into
consideration. Demanding a minimum cluster membership µiv of all points x+

i and x−i the size
of the clusters and hence the intersections between permissible and nonpermissible clusters
may be reduced. Permissible clusters may be merged to obtain superclusters covering a
bigger domain of permissible points x+

i , which may be advantageous when finally defining
the structural design.

Step IV. The k1 permissible clusters Cv are taken as the basis for constructing modified
uncertain structural parameters of the first generation. Intersections with nonpermissible
clusters are removed from the permissible ones. The remaining reduced clusters Cv,red then
comprise exclusively permissible parameter combinations to a high probability. The bound-
aries of the reduced permissible clusters are used to form the α-level sets X

[v]
1, α=0, ..., X

[v]
r, α=0

for constructing the modified fuzzy design parameters x̃[v]
1 , ..., x̃[v]

r with v = 1 , . . . , k1. Each
reduced permissible cluster yields one sequence of α-level sets X

[v]
1, α=0, ..., X

[v]
r, α=0. That

is, a total of k1 sequences are generated. The associated support subspaces X[v]
α=0 may

intersect each other. With the sets X
[v]
1, α=0, ..., X

[v]
r, α=0 the supports of the modified fuzzy

design parameters are already determined. The membership functions of the x̃[v]
1 , ..., x̃[v]

r

may generally be constructed with arbitrary shapes. As simple shapes are usually preferred,
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e.g., fuzzy triangular numbers may be used. Their mean values may be determined, e.g.,
by considering the cluster centers, the prototypes, or other specifically selected points.
Moreover, the curves of the membership functions may be oriented to, e.g., the membership
values of the points resulting from fuzzy cluster analysis, the local density of points in the
cluster, or other characteristics and properties of the cluster. Design parameter values that
are preferred due to constructional convenience may be furnished with higher membership
values. Generally speaking, all concepts of fuzzification may be applied [18]. The obtained
sequences of modified fuzzy design parameters x̃[v]

1 , ..., x̃[v]
r represent alternative structural

design variants [v] of the first generation. These design variants may be partly included in
each other.

Step V. Clustering permissible points and generating reduced permissible clusters do not
guaranty that all design variants include exclusively permissible design parameter values. For
the purpose of verification fuzzy structural analysis and fuzzy probabilistic safety assessment
are carried out for each design variant. That is, the sequences of modified fuzzy design
parameters x̃[v]

1 , ..., x̃[v]
r , v = 1, ..., k1, are introduced into α-level optimization one after

the other. This leads to k1 sequences of modified fuzzy results z̃[v]
1 , ..., z̃[v]

m , v = 1, ..., k1,
of the first generation with associated point sets M[v]

x =
{
x[v]

i ; i = 1, ..., n[v]
}

and M[v]
z ={

z[v]
i ; i = 1, ..., n[v]

}
.

Step VI. For each of the k1 structural design variants of the first generation all points
z[v]
i ; i = 1, ..., n[v] obtained from α-level optimization are evaluated by means of the design

constraints CTh. A design variant is considered permissible only if all points z[v]
i ; i = 1, ..., n[v]

comply with the requirements according to the CTh. As soon as one point z[v]
i does not meet

all CTh, the associated design variant [v] is considered as not permissible. If the remaining
k+

1 permissible design variants do not represent satisfying results for some reason or if
no permissible design variants have been found, k+

1 = 0, fuzzy cluster analysis according
to Step III may be repeated to obtain modified design variants of the second generation.
Taking account of the additional points x[v]

i and z[v]
i from the verification analyses and

selecting an other cluster configuration may so lead to more satisfying results. The k+
1

alternative permissible design variants are compared to find out the most suitable one.
For this comparison the numerical assessment criteria considered in the subsequent section
may be used. Finally, the selected design variant is taken as the basis for defining the
structural design. The final structural design parameters must lie within the uncertainty
of the permissible design parameters. They may be crisp or uncertain depending on the
conditions for their specification.

3.4. Assessment of Alternative Design Variants

For assessing the alternative permissible structural design variants obtained in Step VI of
the design procedure (Section 3.3) arbitrary criteria may be formulated and combined with
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each other. The following two criteria, however, may represent the most important ones
being of major interest in almost all design problems.

Criterion I - Constraint Distance. This criterion assesses the degree of exploitation of the
design constraints for a design variant. The fuzzy result variables z̃[v]

1 , ..., z̃[v]
m are defuzzified

with the aid of suitably selected methods, see [18, 25]. For example, the centroid method and
the defuzzification algorithms after Chen [7] and Jain [11] may be applied. The Chen/Jain
algorithms permit a ”biased” defuzzification. That is, the defuzzification can be focused on
small values (e.g., when defuzzifying a fuzzy reliability index) or on large values (e.g., when
evaluating an internal force). Defuzzification leads to the crisp values z[v]

1 0, ..., z[v]
j 0 , ..., z[v]

m 0

for the results. Assessment Criterion I is then defined as the sum of the weighted distances
d[v] (.) between the crisp values z[v]

j 0 and the design constraints CTh,

A[v] =
q∑

h=1

wh · d
(
CTh,

{
z[v]
j 0

})
(16)

with wh representing real weighting factors. In the simple but common case that a particular
design constraint CTh is given for each fuzzy result z̃[v]

j alone (that is, q = m and h = j) as
a permissible value perm zj, the sum 16 may be rewritten as

A[v] =
m∑

j=1

wj ·
∣∣∣ perm zj − z[v]

j 0

∣∣∣ . (17)

The weighting factors wh are introduced for taking account of the importance of the
particular constraints. A small value A[v] characterizes a structural design that exploits
the constraints to a high degree. On the other hand, a large A[v] indicates a structural
design providing some reserves, e.g., in load-bearing capacity, which may be considered as
advantageous.

Criterion II - Robustness. The designed structure is considered as being robust if the
sensitivity of the result variables (structural responses or safety measures) is low with regard
to fluctuations of the design parameters. That is, a robust structure is characterized by a
low uncertainty of the fuzzy results z̃[v]

j in relation to the uncertainty of the fuzzy design

parameters x̃[v]
k . The uncertainty of fuzzy values is computed on the basis of an analog to

Shannon’s entropy [2, 32]. This yields the absolute uncertainty of z̃[v]
j as [18]

H(z̃[v]
j ) = −k ·

∫

z
[v]
j ∈ z̃

[v]
j

g
(
µ(z[v]

j )
)

dz[v]
j ; k > 0 (18)

with
g

(
µ(z[v]

j )
)

= µ(z[v]
j ) · ln

(
µ(z[v]

j )
)

+
(
1−µ(z[v]

j )
)
· ln

(
1−µ(z[v]

j )
)

. (19)
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The sensitivity of a structure is then defined as

B[v] =
m∑

j=1

um

r∑

k=1

H(z̃[v]
j )

H(x̃[v]
k )

(20)

with the weighting factors um for emphasizing particular result variables z̃[v]
j depending

on their importance. A low value B[v] indicates a low sensitivity (high robustness) of the
structure according to design variant [v].

4. Examples

4.1. Problem Definition

The presented concept of fuzzy structural design is demonstrated for the plane reinforced
concrete frame shown in Figure 4. The geometrical and physical nonlinear behavior of the
structure is numerically simulated on the basis of the analysis algorithms in [26]. Physical
nonlinearities are accounted for by using material laws for reinforcement steel and con-
crete after OETES, which are also provided in [26]. Tension stiffening and the effects of
stirrup reinforcement are accounted for in the concrete material law. As for geometrical
nonlinearities, the quadratic terms in the deformation-displacement dependencies are taken
into account in addition to considering equilibrium for the deformed system. This enables
the algorithm to simulate large displacements and moderate rotations. The stiffness of the
system is determined by numerical integration incorporated into an incremental iterative
approach. The selected computational model is thus capable of considering all essential
nonlinearities. The load bearing behavior of the structure is numerically simulated in a
sufficiently realistic manner.

The system is modeled using three bars. Fifty integration increments are chosen for
each bar and each cross section is subdivided into 60 layers. The loading process is comprised
of dead weight, horizontal load PH, vertical nodal loads ν · PV0, and the line load ν · p0.
After applying dead weight the horizontal load PH is introduced. Finally, PV0 and p0 are
increased incrementally using the load factor ν.

Uncertainty is present in the load factor ν and in the rotational spring stiffness kϕ. For
different uncertainty models applied to these structural parameters an appropriate struc-
tural design is determined with the aid of fuzzy structural analysis and fuzzy probabilistic
safety assessment.
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k � k �

PH

� � PV0
� � PV0

� � p0
cross-sections: 50 / 35 cm (all bars)

stirrups: �  8 mm
s = 200 mm

4 �  16 mm

4 �  16 mm

2 �  16 mm

concrete cover:
c = 50 mm

6.00 m 6.00

1 2

3 4

(1) (3)

(2)

PH  =   10 kN
PV0 = 100 kN
p0   =   10 kN/m

�  load factor

  fy,m   =  420 N/mm2

  fu,m   =  620 N/mm2

  �y,m  =    2.0 ‰
  �u,m  =   7.5 %
  �

Pois. =     0.3

fc0,m =   20 N/mm2,   �c0,m = 1.97 ‰
fct,m =  2.3 N/mm2,   �

Pois. = 0.2
fc,rest =  4.0 N/mm2,   �c,rest = 5.00 ‰
Em = 20,328 N/mm2

concrete:reinforcement steel:

Figure 4. Reinforced concrete frame

4.2. Design with the Aid of Fuzzy Structural Analysis

The uncertainty of the structural parameters ν and kϕ is modeled as fuzziness. Load factor
and rotational spring stiffness represent fuzzy design parameters. These are described with
the aid of fuzzy triangular numbers,

ν̃ = < 5.5, 5.9, 6.7 > , (21)

k̃ϕ = < 5.0, 9.0, 13.0 >

[
MNm
rad

]
. (22)

Design constraint CT1 is a serviceability requirement for the maximum horizontal dis-
placement vH(3) of node 3. The permissible displacement is defined as perm vH(3) =
4.0 cm.

Fuzzy structural analysis [18, 20] yields a nonlinear fuzzy load-displacement dependency
and, finally, the fuzzy result variable ṽH(3) for the horizontal displacement of node 3, see
Figure 5.
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µ(vH(3))
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0.75

0.50

0.25
0.144

0.00
vH(3) [cm]

~

Design constraint CT1

perm_vH(3) = 4.0 cm

Not permissible

Figure 5. Fuzzy load-displacement dependency and fuzzy result ṽH(3)

Moreover, from fuzzy structural analysis 75 points (ν, kϕ)i from the space of the fuzzy
design parameters and the associated result values vH,i(3) are known. The fuzzy result
ṽH(3) contains both permissible and nonpermissible points, see Figure 5. Accordingly, 62
permissible and 13 non-permissible points are identified in the space of the fuzzy design
parameters.

Fuzzy cluster analysis is separately applied to these permissible and nonpermissible
points. A suitable cluster configuration is obtained with three permissible clusters and one
nonpermissible cluster, see Figure 6.

Figure 6. Cluster configuration

A minimum cluster membership of µiv = 0.30 is hereby prescribed for the assignment
of objects to the clusters. Cluster C1 possesses some intersection with the nonpermissible
cluster and is thus excluded from the further design procedure. Clusters C2 and C3 cover
only permissible points (ν, kϕ)+i and are considered as capable for generating modified fuzzy
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design parameters. This yields two resulting alternative design variants,

ν̃[2] = < 5.56, 5.74, 5.92 > , (23)

k̃[2]
ϕ = < 5.60, 8.00, 10.40 >

[
MNm
rad

]
, (24)

and

ν̃[3] = < 5.50, 5.94, 6.38 > , (25)

k̃[3]
ϕ = < 8.00, 10.50, 13.00 >

[
MNm
rad

]
. (26)

For verifying the permissibility of the design variants fuzzy structural analysis is car-
ried out for both pairs of modified design parameters. The associated fuzzy results meet
the design constraint regarding the permissible displacement in either case, see Figure 7.
Defuzzifying the fuzzy displacements ṽ[2]

H (3) and ṽ[3]
H (3) after JAIN and computing the

sensitivity of the structure lead to

− cluster C2: v[2]
H 0(3) = 2.49 cm, B[2] = 3.81

− cluster C3: v[3]
H 0(3) = 2.54 cm, B[3] = 2.03

The results show no significant difference in the constraint distance, whereas the sensitivity
of design variant [2] is almost twice as high as the sensitivity of design variant [3]. The fuzzy
design parameters according to 25 and 26 corresponding to cluster C3 are thus selected as
being the most suitable ones. These fuzzy structural design parameters have to be ensured
by an appropriate construction of the system, whereby the remaining uncertainty initialized
by noncontrollable parameters, such as soil stiffness, must lie within the design uncertainty.
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Figure 7. Fuzzy results according to the alternative design variants

4.3. Design with the Aid of Fuzzy Probabilistic Safety Assessment

The reinforced concrete frame shown in Figure 4 is designed with an alternative modeling
of the structural parameters. Both the load factor ν and the rotational spring stiffness kϕ

are described with fuzzy random variables,

ν → X̃1 , (27)

kϕ → X̃2 . (28)

The load factor is assumed to follow an extreme value distribution of Ex-Max Type I. The
spring stiffness is described by a logarithmic normal distribution. The expected values m
and standard deviations σ of both distributions are modeled as fuzzy triangular numbers,

m̃X1 = < 5.70, 5.90, 6.30 > , (29)
σ̃X1 = < 0.08, 0.11, 0.15 > , (30)

and

m̃X2 = < 8.50, 9.00, 10.00 >

[
MNm
rad

]
, (31)

σ̃X2 = < 1.00, 1.35, 1.50 >

[
MNm
rad

]
. (32)

The minimum value of the logarithmic normal distribution of kϕ is assumed to be crisp
with x0,2 = 0MNm/rad. The fuzzy parameters m̃X1 , σ̃X1 , m̃X2 , and σ̃X2 are chosen as fuzzy
design parameters. Design constraint CT1 is the required reliability index req β = 3.8 for
global system failure.

The actual safety level is computed on the basis of the Fuzzy First Order Reliability
Method (FFORM)[18, 21]. This yields the fuzzy reliability index β̃ shown in Figure 8. From
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α-level optimization a total of 609 result points are known in β̃, which are subdivided into
414 permissible points and 195 nonpermissible points by means of the design constraint
CT1. Also, the associated permissible and nonpermissible points in the four-dimensional
space of the fuzzy design parameters are known from α-level optimization.

Figure 8. Fuzzy result β̃ and design constraint CT1

The fuzzy cluster method is separately applied to permissible and nonpermissible points
in the space of the fuzzy design parameters. The number of clusters is varied within the
interval [1, 10]. The obtained cluster configurations are assessed on the basis of the numerical
quality measures from Section 3.2. As a compromise a clustering with k1 = 6 permissible
clusters is considered as being suitable, see Figure 9.
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Number of clusters k1

Separation degree SD

Normalized partition coefficient PCN

Figure 9. Assessing cluster configurations for permissible points

For the number of nonpermissible clusters k1 = 7 is selected. With a minimum cluster
membership of µiv = 0.25 a cluster configuration without intersections between permissible
and nonpermissible clusters is obtained. The permissible clusters C1, C2, C5, and C6 are very
small in size. They cover only a very limited value range of permissible design parameters
and are thus not taken as a basis for generating alternative design variants. Clusters C3 and
C4 are approximately congruent and are merged to constitute the supercluster C3,4. Hence,
only one set of modified fuzzy design parameters is obtained,

m̃[3,4]
X1

= < 5.85, 5.90, 6.00 > , (33)

σ̃
[3,4]
X1

= < 0.08, 0.10, 0.11 > , (34)

and

m̃[3,4]
X2

= < 8.50, 9.50, 10.00 > , (35)

σ̃
[3,4]
X2

= < 1.30, 1.40, 1.50 > . (36)

For verifying this design variant FFORM is applied again with the modified fuzzy
design parameters. This yields the modified fuzzy reliability index β̃[3,4], see Figure 10.
All elements of β̃[3,4] comply with the design constraint CT1. The modified fuzzy design
parameters define modified fuzzy probability distribution functions for the modified fuzzy
random variables X̃1 and X̃2.
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�
3.8 4.8 6

0.00

Design constraint CT1

1.00

Figure 10. Modified fuzzy result variable β̃[3,4]

To ensure the permissibility of the structural design, the final design parameters must
be elements of the modified fuzzy design parameters. This may be realized by acquiring more
information about ν and kϕ. For example, additional prior information or additional sample
elements drawn subsequently may be accounted for with the aid of a Bayesian approach.
Also, a larger sample may be taken as the basis for an interval estimation of the parameters.
The extent to which additional information is needed can be determined iteratively or
inferred by inverting the parameter estimation problem. As a result, a minimum sample
size may so be determined.

5. Conclusions

In this paper a concept for designing structures based on nonlinear fuzzy structural anal-
ysis (processing of fuzzy variables in nonlinear structural analysis) and fuzzy probabilistic
safety assessment (processing of fuzzy random variables, real random variables, and fuzzy
variables in safety assessment) has been provided. Thereby, uncertainty is accounted for as
fuzziness, randomness, and fuzzy randomness of structural parameters. This is exploited
to analyze an initially defined proper range of design parameter values with regard to the
associated structural responses and safety levels. With the aid of fuzzy cluster analysis (to
determine clusters of design parameter vectors as continuous sets of real vectors with similar
properties) alternative uncertain structural design variants are generated from the analysis
results. These are compared on the basis of numerical criteria to select the optimum design
variant. For instance, a robust structural design may be found in this manner. The final
design parameters may then be determined within the fuzziness of the optimum uncertain
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design variant. They are not necessarily crisp but may contain uncertainty that fits into
the uncertainty of the design variant. This is particularly suitable if the information about
these parameters is limited, e.g., due to a small sample size.

This concept permits designing structures directly in combination with arbitrary non-
linear computational models and under consideration of nonstochastic uncertainty.
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