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These proceedings embody the papers presented at the first workshop hosted by The Center for Reliable 
Engineering Computing at the Georgia Institute of Technology. Both this workshop and the activities of the 
Center focus on emerging technologies for reliable engineering analysis and design. Reliable engineer-
ing computing, as we understand it, requires that computing systems accommodate several sources of 
uncertainty and errors with a focus on self-validating methods.  In the case of a mechanical system model, 
uncertainties can originate from:

1) The appropriateness of the mathematical model to describe the physical system;
2) The discretization of mathematical model into a computational framework;
3)  The inexact knowledge of input parameters of a problem; and
4)  Errors introduced by the nature of computer finite arithmetic.

A reliable engineering analysis must include all of the above in providing both solutions and measures of 
the reliability of the results provided. To date, no all-encompassing framework exists for reliable engineering 
computing. This field will only progress through meetings such as this; a meeting that addresses different 
aspects of reliable engineering computing in both analysis and design. The participants represent a truly 
interdisciplinary group including mathematicians, computer scientists and engineers from a wide distribu-
tion of engineering disciplines. The participants are from academia, research institutions and industry and 
include both national and international experts.

The sponsors of this workshop are:
■ National Science Foundation
■ CAST Division of AIChE
■ Society for Risk Analysis
■ Sun Microsystems
■ Georgia Institute of Technology

The organizers appreciate the support of the sponsors: this workshop would not have occurred without their 
contributions and commitment.

Rafi L. Muhanna  
Robert L. Mullen
Editors
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INTRODUCTION

Introductory Remarks on Reliable Engineering Computing

Ramon E. Moore (rmoore17@columbus.rr.com)
Worthington, Ohio, USA

“In a physical system model, uncertainties can originate from several sources”(Rafi
Muhanna and Robert Mullen):

1. “The appropriateness of the mathematical model
to describe the physical system”

Examples of the use of interval methods in this connection:
1)A physics problem at Lockheed (ca. 1960): Q: Is the strange behavior of the computer

model due to round-off errors? A: After converting the program to run in interval arithmetic
with outward rounding, it was determined that round-off error was very small in the original
program. Result: the physicist took another look at the model equations and found that
there was a missing term.

2)A long controversy between research groups at MIT and Cal Tech concerned whether
the observed behavior of computer simulations was due to roundoff error or defects in the
mathematical model, in the case of computer solutions of the Birkhoff-Rota complex partial
differential/integral equations modeling the onset of turbulence in wind-shears. My graduate
student Jeffrey Ely wrote a program for variable-precision interval arithmetic with outward
rounding, and finally by using about 300 decimal place (nearly 1000 bits) in outwardly
rounded interval arithmetic, was able to settle the controversy. It was NOT roundoff error,
but the model itself. The model realistically determined the onset of turbulence at a repro-
duceable, finite time after the initial appearance of the wind-shear. I have always found it
odd to suppose that anything we want to compute can be done carrying only some fixed
number of digits or bits. Is 40 bits enough? 80 ? A thousand? It depends on what we are
trying to compute. [J. Ely and G. R. Baker. High precision calculations of vortex sheet
motion. J. Comp. Phys., 111:275-282, 1994].

The point of these examples is that outwardly rounded interval arithmetic automatically
bounds roundoff error in any computation. As a consequence, if the interval results are
adequately narrow, then no repetition is needed using higher precision arithmetic, carrying
more digits. If the results are not narrow enough, then the computations can be repeated
carrying more digits. If roundoff is the only source of error, we may eventually obtain
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II-2

satisfactorily narrow interval results containing the corresponding infinite precision results
that would come from using exact real arithmetic. Floating-point arithmetic by itself cannot
provide such answers.

More important is the fact that interval computational methods can answer questions
about the ”appropriateness of the mathematical model” even when roundoff is not the
only nor the main source of computational error in simulating the behavior of a proposed
mathematical model on a computer. I will expand upon this in the following discussions
of items 2,3, and 4 listed by the organizer of this workshop as origins of uncertainties in
physical system models:

2. “The discretization of the mathematical model
into a computational framework”

If there is an analytic expression for the discretization error, for example the mean value
form of the remainder in a truncated Taylor series approximation, that too can be bounded
by interval computation. In addition to that, a finite element method or a finite difference
method may be looked at as a computational model of a physical process or structure, and
interval methods can provide intervals containing the exact behavior of the computational
model. In this way we test for suitable computational parameters (such as mesh size or the
number of nodes) for which the model produces results in agreement with observed behavior
of the real process or characteristics of the the real physical structure.

3. “The inexact knowledge of input parameters of a problem”

Suppose we have measured that input parameters fall within certain upper and lower limits,
then we can use interval inputs for them, and interval computation is designed for just that
sort of thing.

For example, if we measure a width as w = 7.2±0.1, length as l = 14.9±0.1, and height
as h = 405.6± 0.2, then the volume V = w × l × h is within in the interval

([7.1, 7.3] × [14.8, 15.0]) × [405.4, 405.8] = [42599.432, 44435.1] = 43517.266 ± 917.834 If
desired, we could use outward rounding to retain containment with numbers having only
one digit after the decimal point, and find that the volume is contained in the interval of
numbers [42599.4, 44435.1] = 43517.25 ± 917.85. This in turn is contained in the interval
[42599.4, 44435.2] = 43517.3± 917.9.

All I am saying in the above example is that IF all we know about w, l and h is that their
values lie in the intervals given, THEN all we can say about V is that it is in the interval
obtained by the appropriate multiplications of the given endpoints of the input variables w,
l and h. If we need V more accurately, then we have to measure w, l and h more accurately.

There are successful interval algorithms for doing this sort of thing for real engineering
computations involving uncertain values of parameters, if those uncertain values are at least
known to lie in certain intervals. See for example papers of Muhanna and Mullen; Stadtherr
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et al; G. Fichtner, H. J. Reinhart, and D. W. T. Rippin;R. P. Broadwater, H. E. Shaalan and
W. J. Fabrycky; C. H. Dou, W. Woldt, I. Bogardi, and M. Dahab; M. Hurme, M. Dohnal, and
M. Jaervalaeinen; X. Lin, O. T. Melo, D. R. Hastie, et al; H. U. Koyluoglu, A. S. Cakmak,
and S. R. K. Neilson; H. E. Shaalan and R. P. Broadwater; and many others, see e.g.
http://www.cs.utep.edu/interval-comp/abstracts/list.html A recent noteworthy book on
interval methods for global optimization is: Global Optimization Using Interval Analysis, E.
Hansen and G. William Walster, published by Marcel Dekker, 2004. More generally, interval
arithmetic, which is very simple, is incorporated as a tool in more sophisticated methods
for analyzing uncertainty in engineering design, in which more information is available than
simple upper and lower bounds on uncertainties of inputs. For example some recent works of
Erik Antonsson and others use the ”level interval algorithm”, which is itself used internally
by their ”Method of Imprecision”. There are frequent uses of interval arithmetic as a tool in
such fuzzy systems analyses, see for example the special issue on Interfaces between Fuzzy
Set Theory and Interval Analysis, of the journal Fuzzy Sets and Systems, Vol 135, No 1,
April 2003. See also two special issues on Interval Analysis and Fuzzy Sets of the journal
Reliable Computing, Vol 10, No. 4, 2004 and Vol. 10, No. 5 (to appear).

Interval arithmetic is also coming into use in probabilistic handling of uncertainty, see for
example the two special issues of the journal Reliable Computing devoted to Dependable
Reasoning about Uncertainty, guest-edited by D. Berleant, Vol 9, No.6, (Dec. 2003) and Vol
10, No. 2 (April 2004); and D. Berleant and J. Zhang, Representation and problem solving
with the distribution envelope determination (DEnv) method, Reliability Engineering and
System Safety, in press. By using step-function interval envelopes around probability density
functions, we can sometimes compute useful envelopes for cumulative distributions without
using costly Monte Carlo methods.

4. “Errors introduced by the nature of computer finite arithmetic”

Interval arithmetic with outward rounding (lower bounds rounded to the left on the num-
ber line and upper bounds rounded to the right) yields computer results which contain
both the unknown infinite-precision real arithmetic results as well as the results which
would be obtained by ordinary floating-point arithmetic for the same sequence of computer
operations.
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A method for outer interval solution of parametrized systems of linear

equations

I. Skalna (skalna@galaxy.uci.agh.edu.pl)
Department of Applied Informatics, University of Science and Technology, ul. Gramatyka 10, 30-067
Krakow,POLAND

Abstract. Consider the systems of linear interval equations whose coefficients are affine-linear functions of
interval parameters. Such systems, called parametrized systems of linear interval equations, are encountered
in many practical problems, e.g in structure mechanics. A direct method for computing a tight enclosure
for the solution set is proposed in this paper. It is proved that for systems with real matrix and interval
right-hand vector the method generates the hull of the solution set. For such systems an explicit formula for
the hull is also given. Finally some numerical examples are provided to demonstrate the usefulness of the
method in structure mechanics.

Keywords: parametrization, intervals, linear equations, truss structures

1. Introduction

A system of linear interval equations

[A]x = [b] (1)

with coefficient matrix [A] ∈ IRn×n and right-hand vector [b] ∈ IRn is defined as a family
of linear equations

Ax = b, (A ∈ [A], b ∈ [b]). (2)

The solution set of (1) is given by
∑ (

[A], [b]
)

= {x |Ax = b, A ∈ [A], b ∈ [b]}. (3)

When computing inner and outer bounds for the solution set (3) it is implicitly assumed
A and b to vary independently within [A] and [b]. In practice there might be further con-
straints on matrices within [A] and [b]. Taking into account these contraints leads to the
parametrized systems of linear interval equations. Consider the family of linear algebraic
systems of the following type

A(p)x = b(p), (4)

with

Aij(p) = ω(i, j)Tp (5a)

bj(p) = ω(0, j)Tp (5b)

and p ∈ [p] ∈ IRk [6]. Such systems are encountered in many practical applications, e.g. in
structure mechanics [3], [7].
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The family of systems (4) is usually written in the form

A([p])x = b([p]) (6)

and is called parametrized system of linear interval equations.
The (united) solution set of the system (6) is defined as

∑ (
A([p]), b([p])

)
= {x |A(p)x = b(p), p ∈ [p]} (7)

If the solution set is bounded then the interval hull for it exists. In order to guarantee that
the solution set is bounded matrix A([p]) must be regular (for all p ∈ [p] A(p) is regular).
In practice it is usually required that the matrix A([p]) is an H-matrix.

In this paper a direct method for computing a tight enclosure for (7) is proposed. The
method is based on the following inclusion

♦
( ∑

(A([p]), b([p]))
)
⊆ x̃ + 〈[D]〉|Z|[−1, 1] (8)

where

[Z]i =
n∑

j=1

Rij

(
ω(0, j)−

n∑

k=1

x̃kω(j, k)
)T

[p], (9)

[D]ij =
( n∑

k=1

Rikω(k, j)
)T

[p], (10)

R = mid
(
A([p])

)−1
and x̃ = Rb̌.

It is proved that for systems with rad
(
A([p])

)
= 0 the inclusion in (8) is an equality. For

such systems an explicit formula for the hull of the solution set (7) is also given.
Finally some numerical examples of truss structures are provided to demonstrate the

usefulness of the method in structure mechanics.

2. Basic notion

By IR, IRn, IRn×n denote the set of real compact intervals, respectively interval vectors
with n components and the set of interval n× n matrices.

For interval [a] = [a, a] = {x | a ≤ x ≤ a} define the midpoint

ǎ = mid([a]) = (a + a)/2

the radius
rad([a]) = (a− a)/2

and minimal absolute value (mignitude)

〈[x]〉 = mig([x]) = min{|x| | x ∈ [x]}.
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An interval matrix [A] ∈ IRn×n is interpreted as a set of real n× n matrices

[A] = {A ∈ Rn×n |Aij ∈ [A]ij , i, j = 1, . . . , n }
An n× 1 matrix is just an interval vector. In analogy to one-dimensional case certain real
matrices are related to each interval matrix. Middle matrix mid([A]) and the radius rad([A])
are computed componentwise. For square interval matrices an Ostrowsky matrix 〈[A]〉 is
defined with entries

〈[A]〉ij = mig([A]ij), i 6= j

〈[A]〉ij = −|[A]ij |, i = j.

A square matrix [A] ∈ IRn×n is called regular if all A ∈ [A] are nonsingular. If Ǎ[A] is
regular then [A] is strongly regular.

An interval matrix [A] is an H-matrix iff there exist a vector u > 0 such that

〈[A]〉u > 0.

If S is a bounded set of real matrices then infS and supS exist, and the hull of S,

♦S = [infS, supS] = ♦S =
⋂
{[Y ] | [Y ] ∈ IR, [Y ] ⊇ S}

is the tightest interval matrix enclosing S.

3. Minimal enclosure

In case of parametrized systems with real matrices, rad
(
A([p])

)
= 0, the hull of the solution

set (7) is given by an explicit formula.

THEOREM 1. Let A([p])x = b([p]), [p] ∈ IRk R = mid
(
A([p])

)
and x̃ = R ·mid

(
b([p])

)
.

If rad
(
A([p])

)
= 0 then

♦
( ∑

(A([p]), b([p]))
)

= x̃ + [Z]′,

where

[Z]′i =
n∑

j=1

(
Rij · ω(0, j)

)T
[−rad([p]), rad([p])]. (11)

Proof. Since rad([A]) = 0, hence A([p]) = A, Ǎ = A, R = A−1 (RA = I) and x̃ = A−1b̌
(Ax̃ = b̌). Then one has

♦
( ∑

(A([p]), b([p]))
)

= ♦
( ∑

(A, b([p]))
)

=

= x̃ +♦
( ∑

(A, b([p])−Ax̃)
)

=

= x̃ +♦
( ∑

(A, b([p])− b̌)
)

=

= x̃ +♦
(
{R(b(p)− b̌), p ∈ [p]}

)
.
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♦
(
{R(b(p)− b̌), p ∈ [p]}

)
i
= ♦

{ n∑

j=1

Rij(b(p)− b̌)j , p ∈ [p]
}

=

= ♦
{ n∑

j=1

Rij(ω(0, j)T · p− ω(0, j)T · p̌), p ∈ [p]
}

=

= ♦
{ n∑

j=1

(Rij · ω(0, j))T(p− p̌), p ∈ [p]
}

=

=
( n∑

j=1

(Rij · ω(0, j))T
)
([p]− p̌) =

=
( n∑

j=1

(Rij · ω(0, j))T
)
[−rad([p]), rad([p])].

The equality before the last one holds since every component pi occurs at most once in the
preceding expression. ¤

4. Main result

Most of the methods for enclosing the solution set of parametized systems of equations
are iterative [1], [2], [5], [6]. However, each iteration enlarges the enclosure because of the
roundings has to be made in arithmetic operations. The method based on the formula (8)
has polynomial complexity and computes the enclosure of the solution set (7) in one step,
and hence has a great advantage over the iterative methods. In what follows the theoretical
background for the method is presented.

THEOREM 2 (Neumaier [4]). Let [A] ∈ IRn×n. If [A] is an H-matrix then for all [b] ∈ IRn

holds
♦

∑ (
[A], [b]

)
⊆ 〈[A]〉−1[b][−1, 1].

THEOREM 3. Let A([p])x = b([p]) with [p] ∈ IRk, R ∈ Rn×n, and x̃ ∈ Rn. If [D] given by
formula (10) is an H-matrix then

♦
( ∑ (

A([p]), b([p])
))
⊆ x̃ + 〈[D]〉−1|[Z]|[−1, 1], (12)

where [Z] is defined by formula (9).
Proof. Vector x ∈

∑
(A([p]), b([p])) iff there exists such p ∈ [p] that A(p)x = b(p). Since

[D] is an H-matrix then both sides of this equality can be multipled by A(p)−1. Hence

x = A(p)−1b(p) = x̃ + A(p)−1(b(p)−A(p)x̃) =

= x̃ + (R ·A(p))−1(R(b(p)−A(p)x̃)).
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Since R ·A(p) ∈ [D], R(b(p)−A(p)x̃) ∈ [Z] then the following relation holds

(R ·A(p))−1(R(b(p)−A(p)x̃)) ∈ ♦
( ∑

([D], [Z])
)
,

and hence
x ∈ x̃ +♦

( ∑
([D], [Z])

)
. (13)

Matrix [D] is an H-matrix then by theorem 2

♦
( ∑

([D], [Z])
)
⊆ 〈[D]〉−1|[Z]|[−1, 1]. (14)

Equations (13) and (14) gives the thesis of the theorem. ¤

It is recomended to choose
R = mid(A([p]))−1

and
x̃ = mid(A([p]))−1 ·mid(b([p]))

so that [D] and [Z] are of small norms (see theorem 4.1.10 [4]).

THEOREM 4. Let A([p])x = b([p]), [p] ∈ IRk and R = Ǎ−1, x̃ = Rb̌.i If rad(A([p])) = 0
then

♦
( ∑

(A([p]), b([p]))
)

= x̃ + 〈[D]〉−1|[Z]|[−1, 1].

where [D] and [Z] are given respectively by formula (10) and (9).
Proof. To prove the theorem it suffices to show that

x̃ + 〈[D]〉−1|[Z]|[−1, 1] = x̃ + [Z]′

where [Z]′ is given by (11).
Since rad(A([p])) = 0, hence R = Ǎ−1 = A−1 and then matrix [D] and vector [Z] takes

the simpler form. [D] = I and

[Z]i = ♦{R(b(p)−Ax̃), p ∈ [p]}i = ♦{R(b(p)− b̌), p ∈ [p]}i = [Z]′i.

Hence
x̃ + 〈[D]〉−1|[Z]|[−1, 1] = x̃ + |Z ′|[−1, 1]. (15)

Let now α =
n∑

j=1

(Rij ·ω(0, j)). Then by symmetry of the interval [−rad([p]), rad([p])] holds

{|Z|′[−1, 1]}i = |
n∑

k=1

αk[−rad([p]k), rad([p]k)]|[−1, 1] =

|[−
n∑

k=1

αkrad([p]k),
n∑

k=1

αkrad([p]k)]|[−1, 1] =
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|
n∑

k=1

αkrad([p]k)|[−1, 1] = [−
n∑

k=1

αkrad([p]k),
n∑

k=1

αkrad([p]k)] =

n∑

k=1

αk[−rad([p]k), rad([p]k)] = [Z]′i

This and equation (15) gives the thesis of the theorem. ¤

Table I. Algorithm

R := mid(A([p]))−1;

x̃ := R ·mid(b([p]));

[Z]i =

n∑
j=1

Rij

(
ω(0, j)−

n∑
k=1

x̃kω(j, k)
)T

[p]

[D]ij :=
( n∑

ν=1

Riνω(ν, j)
)T

[p];

outer := x̃ + [−1, 1]〈[D]〉−1|[Z]|

5. Examples

Example 1. Baltimore bridge (1870).
For the plane truss structure (all bars, loads and displacements are in the same x-y plane)
shown in Figure 1 subjected to downward forces of 80 [kN] at node No 11, 120 [kN] at node
No 12 and 80 [kN] at node No 15, the displacements of the nodes are computed. Young’s
modulus E= 2.1× 1011 [Pa] and cross-section area A= 0.004 [m2]. The lenghts of the bar
elements are shown in the figure (unity equals 1 [m]). Assume the stiffness of some of the
bar elements (denoted in the figure with thick lines) to be uncertain by ±5%. To compute
the displacement, the parametrized system of linear interval equations must be sovled. The
results are in table II and III.

Example 2. Plane truss with uncertain stiffness of 8 bar elements.

The plane truss shown in Figure 2 is subjected to downward forces of 30 [kN] at nodes No

2, 3 and 4. All bar elements have the same Young’s modulus E=7 · 1010 and cross-section
area A=0.003 [m2]. Assume the stiffness of 8 bar elements to be uncertain by ±5%. The
resultimg intevals vectors are presented is tables IV and V.
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Figure 1. Scheme of the Baltimore bridge

1 32 54

(0,9) (8,9) (12,9)(4,9) (16,9)

F
2

= 0, 30( )-

6 7 8
9

11 10

12

(4,6) (8,6) (12,6)
(16,6)

(16,3)
(12,3)

(16,0)

F
3

= 0, 30( )- F
4

= 0, 0( )-3

y

x

Figure 2. Truss structure with uncertain stiffnesses of 8 bar elements

Example 3. Plane truss with uncertain displacements of the supports.

The plane truss shown in Figure 3 has two supports: partial (sliding) support along y axis
at node No 1 and full support at node No 12. Allow the movements of the supports at node
1 by ∆1−2 = 0.2 [m] along y axis, at node 12 by 0.3 [m] along x axis and by 0.4 [m] along
y axis. Now assume all movements to be uncertain by ±5% Uncetrain displacements of the
support cause interval parameters appear only in the right-hand vector. In this case the
method should give the hull. The results in tables VI and VII prove this to be true.
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1 32 54(0, 9)

(8, 9) (12, 9)(4, 9)
(16, 9)

6 7 8
9

11 10

12

(4, 6) (8, 6) (12, 6)
(16, 6)

(16, 3)(12, 3)

(16, 0)

y

x

D1-2

D11-12

D10-12

Figure 3. Truss structure with uncertain displacements of the supports

6. Results

The results produced by the method described in section 4 are presented in tables below.
Column No 2 contains exact solution of non-interval system, comulmn No 3 contains the
inner estimation obtained using the method of random sampling of parameter intervals
(RSPI), column No 4 contains the results of the proposed method. Columns No 3 and 5
contain the relative error of the resulting intervals (in percent).
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Table II. Example 1 (x-coords.)

d0 RSPI r[∗]/d0 Method r[∗]/d0

[×10−5] [×10−5] [%] [×10−5] [%]

dx
2 16.67 16.67 0 16.67 0

dx
3 190.24 [189.72, 190.76] 0.3 [189.34, 191.13] 0.5

dx
4 33.33 33.33 0 33.33 0

dx
5 300 [298.96, 301.05] 0.3 [298.21, 301.79] 0.6

dx
6 190.24 [189.72, 190.76] 0.3 [189.34, 191.13] 0.5

dx
7 50 50 0 50 0

dx
8 66.67 66.67 0 66.67 0

dx
9 233.33 [232.29, 234.38] 0.4 [231.54, 235.12] 0.8

dx
10 172.01 [170.6, 173.38] 0.8 [169.84, 174.17] 1.3

dx
11 104.76 104.76 0 104.76 0

dx
12 142.86 142.86 0 142.86 0

dx
13 142.86 [141.81, 143.9] 0.7 [141.07, 144.65] 1.3

dx
14 113.71 [112.38, 114.93] 1.1 [111.54, 115.88] 1.9

dx
15 180.95 180.95 0 180.95 0

dx
16 219.05 219.05 0 219.05 0

dx
17 52.38 [51.34, 53.43] 2 [50.59, 54.17] 3.4

dx
18 235.71 235.71 0 235.71 0

dx
19 95.48 [94.96, 96] 0.5 [94.58, 96.37] 0.9

dx
20 252.38 252.38 0 252.38 0

dx
21 −14.29 [−15.33, −13.24] 7.3 [−16.08, −12.5] 12.5

dx
22 95.48 [94.96, 96] 0.5 [94.58, 96.37] 0.9

dx
23 269.05 269.05 0 269.05 0

dx
24 285.71 285.71 0 285.71 0
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Table III. Example 1 (y-coords.)

d0 RSPI r[∗]/d0 Method r[∗]/d0

[×10−5] [×10−5] [%] [×10−5] [%]

dy
2 −237.38 [−237.9, −236.86] 0.2 [−238.27, −236.48] 0.4

dy
3 −237.38 [−237.9, −236.86] 0.2 [−238.27, −236.48] 0.4

dy
4 −394.28 [−395.33, −393.24] 0.3 [−396.07, −392.49] 0.5

dy
5 −394.28 [−395.33, −393.24] 0.3 [−396.07, −392.49] 0.5

dy
6 −551.18 [−552.75, −549.62] 0.3 [−553.87, −548.5] 0.5

dy
7 −551.18 [−552.75, −549.62] 0.3 [−553.87, −548.5] 0.5

dy
8 −721.9 [−723.99, −719.81] 0.3 [−725.47, −718.32] 0.5

dy
9 −745.7 [−747.96, −743.69] 0.3 [−749.81, −741.6] 0.5

dy
10 −840.7 [−842.68, −838.87] 0.2 [−843.9, −837.5] 0.4

dy
11 −850.23 [−852.2, −848.39] 0.2 [−853.43, −847.03] 0.4

dy
12 −890.06 [−893.29, −887.27] 0.3 [−895.42, −884.69] 0.6

dy
13 −890.06 [−893.29, −887.27] 0.3 [−895.99, −884.12] 0.7

dy
14 −840.7 [−842.64, −838.75] 0.2 [−843.9, −837.5] 0.4

dy
15 −850.23 [−852.17, −848.27] 0.2 [−853.43, −847.03] 0.4

dy
16 −721.9 [−723.98, −719.8] 0.3 [−725.47, −718.32] 0.5

dy
17 −745.7 [−748.02, −743.3] 0.3 [−749.81, −741.6] 0.6

dy
18 −551.18 [−552.75, −549.61] 0.3 [−553.87, −548.5] 0.5

dy
19 −551.18 [−552.75, −549.61] 0.3 [−553.87, −548.5] 0.5

dy
20 −394.28 [−395.32, −393.23] 0.3 [−396.07, −392.49] 0.5

dy
21 −394.28 [−395.32, −393.23] 0.3 [−396.07, −392.49] 0.5

dy
22 −237.38 [−237.9, −236.85] 0.2 [−238.27, −236.48] 0.4

dy
23 −237.38 [−237.9, −236.85] 0.2 [−238.27, −236.48] 0.4
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Table IV. Example 2 (x-coords.)

d0 RSPI r[∗]/d0 Method r[∗]/d0

[×10−5] [×10−5] [%] [×10−5] [%]

dx
2 −152.38 [−160.4, −145.13] 5 [−160.4, −144.36] 5.3

dx
3 −228.57 [−236.59, −221.32] 3.3 [−236.59, −220.55] 3.5

dx
4 −152.38 [−163.76, −141.34] 7.4 [−165.26, −139.51] 8.5

dx
5 −76.19 [−87.56, −65.15] 14.7 [−89.06, −63.32] 16.9

dx
6 427.38 [419, 435.56] 1.9 [416.48, 438.28] 2.5

dx
7 427.38 [419, 435.56] 1.9 [417.52, 437.24] 2.3

dx
8 351.19 [342.81, 359.37] 2.4 [341.33, 361.05] 2.8

dx
9 351.19 [342.81, 359.37] 2.4 [341.33, 361.05] 2.8

dx
10 267.86 [262.19, 273.57] 2.1 [261, 274.7] 2.5

dx
11 115.48 [109.81, 121.19] 4.9 [108.63, 122.32] 5.9

Table V. Example 2 (y-coords.)

d0 RSPI r[∗]/d0 Method r[∗]/d0

[×10−4] [×10−4] [%] [×10−4] [%]

dy
1 −308.25 [−312.45, −304.18] 1.3 [−315.09, −301.41] 2.2

dy
2 −251.27 [−255.54, −247.22] 1.6 [−258.08, −244.46] 2.7

dy
3 −149.84 [−152.8, −147.16] 1.9 [−153.43, −146.25] 2.4

dy
4 −37.14 [−37.97, −36.34] 2.2 [−38.19, −36.1] 2.8

dy
5 4.29 4.29 0 4.29 0

dy
6 −251.27 [−255.53, −247.22] 1.7 [−258.08, −244.46] 2.7

dy
7 −154.13 [−157.19, −151.38] 1.9 [−158.32, −149.93] 2.7

dy
8 −32.86 [−33.48, −32.24] 1.9 [−33.6, −32.11] 2.3

dy
9 0 0 0 0 0

dy
10 −4.29 −4.29 0 −4.29 0

dy
11 24.29 [−25.04, −23.52] 3.1 [−25.2, −23.37] 3.8
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Table VI. Example 3 (x-coords.)

d0 Method (hull) r[*]/d0

[×10−3] [×10−3] [%]

dx
2 20 [19, 21] 5

dx
3 20 [19, 21] 5

dx
4 20 [19, 21] 5

dx
5 20 [19, 21] 5

dx
6 13.33 [11.67, 15] 12.5

dx
7 13.33 [11.67, 15] 12.5

dx
8 13.33 [11.67, 15] 12.5

dx
9 13.33 [11.67, 15] 12.5

dx
10 6.67 [4.33, 9] 35

dx
11 6.67 [4.33, 9] 35

Table VII. Example 3 (y-coords.)

d0 Method (hull) r[*]/d0

[×10−3] [×10−3] [%]

dy
1 35.56 [28.44, 42.67] 20

dy
2 26.67 [21.33, 32] 20

dy
3 17.78 [14.22, 21.33] 20

dy
4 8.89 [7.11, 10.67] 20

dy
5 0 0 –

dy
6 26.67 [21.33, 32] 20

dy
7 17.78 [14.22, 21.33] 20

dy
8 8.89 [7.11, 10.67] 20

dy
9 0 0 –

dy
10 0 0 –

dy
11 8.89 [7.11, 10.67] 20
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7. Conclusions

The problem of solving parametrized systems of linear interval equations is very important
in practical applications. Well known classical methods, such as interval version of Gauss
Elimination or Preconditioned Interval Gauss-Seidel iteration fail since they compute en-
closure for the solution set (3) which is generally much larger then solution set (7). A direct
method for solving paraterized systems of linear interval equations based on the inclusion (8)
was proposed and checked to be usefull in structure mechanics. The method produced tight
enclosure for the solutions set of parametrized systems for all exemplary truss structures.
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Abstract. The search algorithm presented allows the CDF of a dependent variable to be bounded with 
100% confidence, and allows for a guaranteed evaluation of the error involved. These reliability bounds are 
often enough to make decisions, and require a minimal number of function calls. The procedure is not 
intrusive, i.e. it can be equally applied when the function is a complex computer model (black box). The 
proposed procedure can handle input information consisting of probabilistic, interval-valued, set-valued, or 
random-set-valued information, as well as any combination thereof. The function as well as the joint pdf of 
the input variables can be of any type. 

 

1. Introduction 

Determining validated bounds for the Cumulative Distribution Function (CDF) of a function of 
random variables has attracted the attention of many scholars and a recent literature review may 
be found in [8]. Moore [24] and Moore [22] were probably the first ones to use interval analysis 
[23] to this end. 

For example, Berleant and co-workers developed Statool [4-8], a computer program for 
obtaining bounds on the distributions of sums, products, and various other functions of random 
variables where the dependency relationship of the random variables need not be specified. 
Ferson [13] developed RiskCalc with similar capabilities. Independently, Lodwick and Jamison 
[19] presented a method for estimating and validating the cumulative distribution of a function of 
random variables (independent or dependent).  

Dubois and Prade [12] firstly indicated how Random Set Theory might be used to bound the 
Cumulative Distribution Function (CDF) of a sum of two random variables. Tonon et al. [32] and 
Tonon [31] generalized this idea to a provide verified bounds to the CDF of a general function y 
= f(u) where u is a generic random vector. Random Set Theory allowed the abovementioned 
procedures developed by different authors to be put in a rigorous light. They also showed that 
their procedure can be used equally well when some components of u are described as random 
variables, some others as intervals or Cartesian products, and some others as random sets. 
Additionally, a procedure was introduced to calculate the CDF of a particular value, y*, of y; this 
procedure is meant to be used in reliability analyses and yields verified bounds on the reliability 
of a system. The motivation behind this procedure is that these bounds are often enough to make 
a decision, do not suffer from the shortcomings of Monte Carlo methods [14, 31], and often 
requires far less function calls than Monte Carlo methods. 

In this paper, the procedure to calculate the CDF of a particular value, y*, is advanced by 
introducing a searching algorithm with the aim of reducing the number of function calls. This is 
accomplished in Section 3. Before doing that and in order to establish common terminology and 
connect with [31] , Section 2 briefly restates the general procedure for calculating bounds on the  
entire CDF of y. 

Section 4 specializes the searching algorithm to reliability analyses and Section 5 presents an 
application to the reliability analysis of a beam. 

2. The entire CDF of y=f(u) must be calculated 

Let pro(u) be the joint probability mass function of a discrete vector of input parameters u = 
(u1,...,up).  Without loss of generality, it is assumed that the i-th parameter, ui, belongs to interval 
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Ii, which may be infinite or semi-infinite. Consequently, u is constrained within a p-dimensional 
box D = I1 ×,...,× Ip, where × indicates Cartesian product. The procedure proposed [31, 32] 
consists of the following three steps. 

2.1 Step 1 
Let {Aj, j = 1,...,N} be a partition of D and set  

( ) ( )
: j

j
u u A

m A pro u
∈

= ∑  (1) 

If u is not discrete but continuous, pro(u) is a joint probability density function (PDF) and 
Equation (1) becomes  

( ) ( )
j

j
A

m A pro u du= ∫  (2) 

Since this procedure is based on Random Set Theory, subsets Aj are called focal elements [31, 
32]). 

2.2 Step 2 
Calculate the image f(Aj) of each set Aj through function f. In general, this problem can be solved 
by applying twice the techniques of global optimization (e.g. [17, 28, 29, 33]). 

However, if one divides the i-th interval Ii into ni subintervals, then D is partitioned into 

1

p

i
i

N n
=

=∏  p-dimensional boxes Aj obtained as Cartesian products of p intervals (one per variable). 

As a consequence, Aj has 2p vertices, which we indicate as vk, k=1,..., 2p. In this case, each 
parameter ui varies in an interval Li=[LLi, RLi], and the methods of Interval Analysis can be used to 
efficiently calculate f(Aj). These methods are continuously improving, and the reader is referred to 
the web page (http://cs.utep.edu/interval-comp/main.html) as well as to the Journal of Reliable 
Computing for up-to-date information and references. 

If the function f is the response of a linearly elastic structure to static loads, then one can use 
the interval finite element formulation developed by Muhanna and Mullen [25, 26] to efficiently 
calculate f(Aj). Finally, if f is an eigenvalue of a linearly elastic structure one can use the 
procedure developed by Modares and Mullen [21] to efficiently calculate f(Aj). 

2.3 Step 3 
Calculate the upper, Fy,upp, and lower, Fy,low, bounds on the cumulative distribution function 
(CDF) of y, Fy, as follows:  

( ) ( ) ( ), ,y low y y uppF y F y F y≤ ≤  (3.a) 

where 

( ) ( )
( )( )

,
: infj j

y upp j
A y f A

F y m A
≥

= ∑  (3.b) 

( ) ( )
( )( )

,
: supj j

y low j
A y f A

F y m A
≥

= ∑  (3.c) 

The proposed procedure allows for an explicit evaluation of the error involved in the calculation 
of the whole cumulative distribution function, i.e.: 
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Errmax = ( ) ( )( )yFyF lowyuppyy ,,max −  (4) 

or the error at a particular value y*: 

Err(y*) = ( ) ( )** ,, yFyF lowyuppy −  (5) 

3. Only the CDF of a particular value y* must be calculated 

Consider the case in which the cumulative probability of only a particular element of Y, say y*, is 
of interest, as is the case in reliability analyses (see Section 4). In this case, it is advisable to start 
off with a coarse partition of D into subsets Ai. Let: 

( ){ }*sup:1 yAfAS ii <= , (6.a) 

( ){ }*inf:2 yAfAS ii >=  (6.b) 

( ) ( ){ }iii AfyAfAS sup*inf:3 <<=  (6.c) 

U
kii SAA
ik AC

∈

=
:

 (6.d) 

 

u1 u1,1 u1,2 u1,3 u1,4 u1,5

u2 

u2,1

u2,2

u2,3

u2,4

A1 A2 A3 A4

A5 A6 A7 A8

A9 A10 A11 A12

I1 

I2 

y=y* 

 
Figure 1. The image of focal elements A3, A6, A7, and A10 straddle y*. 

 
 

Of course, U
3

1=

=
k

kCD . 

To illustrate the procedure, consider a two-dimensional case (p = 2), the extension to larger 
dimensions being straightforward. It is assumed that the curve f(u1, u2) = y* intersect the 
boundary of D at two points (as is the case in most reliability analyses). Figure 1 illustrates an 
example, in which: 

{ }95211 ,,, AAAAS =   

{ }1211842 ,,, AAAAS =   
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{ }107633 ,,, AAAAS =   

As can be seen in Figure 1, elements in S3 are those (and only those) focal elements 
intersected by the contour curve f(u1, u2) = y*.  

The procedure for bracketing Fy(y*) can be summarized as follows: 
1) Determine the focal elements in S3 as explained in Section 3.1 below. 
2) Determine C1 as explained in Section 3.2 below. 
3) Calculate the bounds on the CDF of y* as: 

( ) ( ) ( ) ( ) ( )∑∑
∈
∈∈

=≤≤=

3

11

'**'* ,,

SA
SA

juppyy
SA

jlowy

j

jj

AmyFyFAmyF  (7) 

where ( )jAm'  is given in Eqs. (1) or (2). It is to be noted that the weights ( )jAm'  do not 
have to be calculated for each focal element of partition D, but only for the focal 
elements in S1 and S3. Because the cumulative probability of y* is in most cases small, the 
focal elements in S1 and S3 are less numerous than the focal elements in S2. If the bounds 
in Eq. (7) are too large, the procedure in Section 3.3 below is followed. 

3.1 Determining C3 
The determination of C3 may be carried out in two parts: 

1) Find a focal element belonging to S3 along the boundary of D. 
2) Find the remaining focal elements belonging to S3. 
 
Since region C1 is in most cases smaller than region C2, it is more efficient to start searching 

from the corner(s) belonging to C1. Therefore, part one can be articulated into the following 
sequence: 
1.1) WHILE f(P) > y*, calculate function f(P) at the corners P of D. Let P* = P. 
1.2) Consider the local numbering of points along the boundary and of focal elements as in 

Figure 2. Let j* be the smallest j such that:  
f(u0, j) > y*.  

IF such j* does not exist, THEN GOTO point 1.3.  
Calculate the image of A1, j* to check if it belongs to S3. 
IF A1, j*  belongs to S3:  

THEN calculate the image of A1,j for j < j* until A1, j ∈ S1.  
ELSE A1, j*-1 belongs to S3, and calculate the image of A1, j for j < j*-1 until A1, j ∈ 
S1. 

GOTO point 2.1. 
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Figure 2. Local numbering of focal elements  

and points on the boundary of D. 
 

1.3) If such j* does not exist, then let i* be the smallest i such that: f(ui, 0) > y*.  
Calculate the image of Ai*,1 to check if it belongs to S3. 
IF Ai*,1 belongs to S3:  

THEN calculate the image of Ai,1 for i < i* until Ai,1 ∈ S1.  
ELSE Ai*-1,1 belongs to S3, and calculate the image of Ai,1 for i < i*-1 until Ai,1 ∈ 
S1. 

GOTO point 2.1. 
 
 
If the focal element(s) determined in step 1 was (were) along a boundary edge parallel to the 

x-axis, then let i =1, and the other focal elements in S3 are found using the following procedure: 
2.1) For the current i, let Ai, j* be the focal element in S3 with the largest j. Set i = i +1. Calculate 

the image of Ai, j*. 
 IF Ai, j* ∈ S3,  

THEN, calculate the image of Ai, j for j > j* until Ai, j ∈ S2;  
calculate the image of Ai, j for j < j* until Ai, j ∈ S1. 

ELSE, calculate the image of Ai, j for j < j* until Ai, j ∈ S1. 
  IF i = n2,  

THEN STOP  
ELSE GOTO point 2.1. 

 
If the curve f(u1, u2) = y* is known to be concave (resp. convex) toward P*, then Point 2.1 

simplifies as follows: 
2.1) For the current i, let Ai, j* be the focal element in S3 with the largest j. Set i = i +1. Calculate 

the image of Ai, j for j ≤ j* (resp. j ≥ j*) until Ai, j ∈ S1.  
IF i = n2,  

THEN STOP  
ELSE GOTO point 2.1. 

 
If the focal element(s) determined in step 1 was (were) along a boundary edge parallel to the 

y-axis, then let j =1, and the other focal elements in S3 are found using the following procedure: 
2.2) For the current j, let Ai*, j be the focal element in S3 with the largest i. Set j = j +1. Calculate 

the image of Ai*, j. 
 IF Ai*, j ∈ S3, 

THEN, calculate the image of Ai, j for i > i* until Ai, j ∈ S2;  
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calculate the image of Ai, j for i < i* until Ai, j ∈ S1. 
ELSE, calculate the image of Ai, j for i < i* until Ai, j ∈ S1. 

IF j = n1,  
THEN STOP 
ELSE GOTO point 2.2. 

 
If the curve f(u1, u2) = y* is known to be concave (resp. convex) toward P*, then Point 2.2 

simplifies as follows: 
2.2) For the current j, let Ai*, j be the focal element in S3 with the largest i. Set j = j +1. Calculate 

the image of Ai*, j for i ≤ i* (resp. i ≥ i*) until Ai, j ∈ S1. 
IF j = n1,  

THEN STOP 
ELSE GOTO point 2.2. 

3.2 Determining C1 
C1 completely lies on one side of the curve f(u1, u2) = y*, and consequently, of set C3. C3 will be 
on the side containing corner P*, which was determined at Point 1.1. 

3.3 Discretization refinement 
If the bounds (7) on the CDF of y* are too large, the discretization refinement is restricted to the 
focal elements in S3. In fact, focal elements belonging to S1 map to the left of y* on the real line, 
and therefore do not need to be further discretized because their contribution to Fy(y*) is already 
known. Likewise, focal elements belonging to S2 map to the right of y* on the real line, and 
therefore do not need to be further discretized because they do not contribute to Fy(y*) altogether. 

Additionally, it is useless to further discretize those focal elements in S3 whose weight 
( )jAm'  is very small as compared to the required precision on the CDF of y* (e.g. ( )jAm'  = 10-

10 if the required precision is 10-4). Therefore, the number of focal elements that need to be further 
discretized is generally very small, which leads to drastic savings in the number of function calls. 

Once the focal elements in S3 have been further discretized into sub-elements, a procedure 
similar to that described in Section 3.1 can be used for determining the sub-elements belonging to 
S3. 

4. Reliability evaluation 

Let u=(u1,...,up) be a vector of uncertain parameters that control the behavior of a given system. 
The safety of a system is quantified by the safety margin z(u), such that [1, 2, 11, 16, 20]  
• If z<0 the system is unsafe. 
• If z>0 the system is safe. 
• If z=0 the system is at a limit state condition. 

 
The probability of failure of the system is defined as 

 )0(ProPro <= zfail  (8) 

In general, a system is accepted if the probability of failure is smaller than a limit value 

 limProPro <fail  (9) 

If the input u is known through its joint probability function, then the cumulative distribution 
function Fz(z) of z can be calculated and  
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  ( )0Pro zfail F=  (10) 

For complex systems, the calculation of Fz(z) may very cumbersome, and a bracketing of the 
failure probability can be obtained using the procedures presented in Section 3, leading to Eq. (7), 
i.e.  

( ) ( ) ( )000 ,, uppzzlowz FFF ≤≤  (11) 

where 
• lowzF ,  is the lower cumulative distribution function of z; 

• uppzF ,  is the upper cumulative distribution function of z. 
 

Three cases can be distinguished: 
1) If ( )lim ,Pro 0z lowF< , then the system is certainly unsafe, and it is not necessary to 

further increase the fineness of the discretization of the focal elements in S3. 
2) If ( )lim ,Pro 0z uppF> , then the system is certainly safe, and it is not necessary to further 

increase the fineness of the discretization of the focal elements in S3. 
3) If ( ) ( )0Pro0 ,lim, uppzlowz FF << , then it is necessary to further increase the fineness of 

the discretization. As discussed in Section 3.3, one only needs to further discretize focal 
elements in set S3. 

 
As an alternative to the procedure proposed here, once the joint pdf of the uncertain input u has 
been discretized as described in Section 2, one can use the efficient approximation technique 
developed by Bae et al. [3] to calculate approximate reliability bounds. However, these bounds 
do not offer a guaranteed envelope because Bae’s procedure uses the Multi-Point Approximation 
method to construct a surrogate for the original safety margin using the Two-Point Adaptive Non-
linear Approximation [34] as a local approximation. 

5. Numerical example 

Consider a beam of length l = 5 m, fixed at one end, and subjected to a random concentrated load 
u1 at the free end, and to a random distributed load u2 along all its length. Let us assume u1 ∼ 
N(10, 1) kN, and u2 ∼ N(1, 0.3) kN/m, with a correlation coefficient of 0.5; a similar example is 
proposed by Ang and Tang ([1], Problem 4.18). The resistant moment at the fixed end is equal to 
M = 90 kN⋅m. The safety margin of the bending resistance at the fixed end reads 

( )21 5.125 uuMz ⋅+⋅−=  (12) 

and it is a normal variate with mean equal to 27.5 kN⋅m, and standard deviation  
σ = 7.603 kN⋅m. This closed-form solution allows for a handy check of the results obtained with 
the proposed procedures because the exact probability of failure is 1.49⋅10-4. Let us assume that 
the limit probability of failure is 10-5, and that one wants to determine whether the beam is safe or 
not under the given random loads. 

Let us use the domain D and the discretization shown in Figure 3. Following the procedure 
outlined in Section 3.2 (Point 1.1), function z is evaluated at the corners of D in clockwise order 
starting from P = (-10, -1), until corner P = (30, 3) yields z(P) < 0. We set P* = (30, 3), and 
(Point 1.2) by marching along u2 = 3, we get j* = 4 (absolute coordinates: (10.5, 3)). By 
calculating the images of focal elements A1,j with j ≤ j* = 4, it is found that A1,4 and A1,3 (absolute 
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numbering A70 and A80 in Figure 3) belong to S3, whereas A1,2 (absolute numbering A90 in Figure 
3) does not, and the search for focal elements of S3 along the boundary is finished.    
 
 

 

 
 

Figure 3. First discretization of set D=I1× I2 into focal elements for the calculation of the system reliability. 
A dot marks the points at which function f must be evaluated. A light gray hatch identifies focal elements 

belonging to set S3, whereas a dark gray hatch identifies focal elements belonging to set S1. 
 
Following Point 2.1, one gets i = 1, and (i, j*) = (1, 4). Let us set i = 1+1 =2, and calculate 

the image of A2,4; since A2,4 belongs to S2, the procedure does not calculate the images of A2,j for j 
> j* because all of these focal elements belong to S2. The procedure calculates the images of A2, j 
for j < j* until A2, j ∈ S1, which occurs for j = 1, i.e. A2,4 ∈ S2, A2,3 ∈ S3, A2,2 ∈ S3, A2,1 ∈ S1. Since i 
= 2 ≠ n2 = 10, the procedure goes back to Point 2.1 with i = 2, and so on. 

The results of the procedure are illustrated in Figure 3, in which a light gray hatch is used for 
the focal elements belonging to S3, and a dark gray hatch is used for the focal elements belonging 
to S1. Table 1 gives the weights m’(A) for the elements of S3. A total of 48 function evaluations 
were necessary to determine sets C1, C2, and C3. 

The calculated probability of failure is in the range 

( ) ( ) ( ) 6
,

42
, 1057.201049.101001.10 −−− ⋅=<⋅=<⋅= uppzzlowz FFF   
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Table 1. Focal elements in set S3. 
Focal element  

(global numbering as in Figure 3) 
Weight m’(Ai) 

70 2.24 ⋅ 10-4 
79 9.66 ⋅ 10-3 
80 1.72 ⋅ 10-4 
81 6.29 ⋅ 10-15 
82 1.21 ⋅ 10-9 
83 2.14 ⋅ 10-8 
84 1.19 ⋅ 10-7 
85 1.02 ⋅ 10-7 
86 1.62 ⋅ 10-7 
87 1.13 ⋅ 10-6 
88 4.35 ⋅ 10-6 
89 2.32 ⋅ 10-5 
91 1.57 ⋅ 10-15 

 
Since ( ) ( )0Pro0 ,lim, uppzlowz FF << , it is necessary to increase the fineness of the 

discretization (Section 3.3). The weights of the focal elements in Table 1, are negligible except 
for A70, A79, A80, and A89; therefore, only the latter four focal elements are further discretized into 
5 × 5 = 25 sub-focal elements each as depicted in Figure 4. A light gray hatch is used for the focal 
elements belonging to S3, and a dark gray hatch is used for the focal elements belonging to S1.  
The calculated probability of failure is in the range 

( ) ( ) ( ) 4
,

45
, 1025.301049.101051.40 −−− ⋅=<⋅=<⋅= uppzzlowz FFF   

This range gives a guarantee that ( )lim ,Pro 0z lowF< , and therefore the beam is unsafe.  
Additional 58 function evaluations were used in the discretization refinement. It is remarkable 
that only 48 + 58 = 106 function evaluations were necessary to perform a reliability analysis with 
100% confidence, despite the very low value of the probability of failure. 
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Figure 4. Second discretization of focal elements A70,  A70,  A79,  and A89,  into sub-focal elements for the 
refinement of the calculation of the system reliability. A dot marks the points at which function f must be 
evaluated. A light gray hatch identifies sub-focal elements belonging to set S3, whereas a dark gray hatch 

identifies sub-focal elements belonging to set S1. 
 

On the other hand, the number of function evaluations necessary to achieve an error 
( ) ( ) 4

,, 108.200 −⋅=−= lowzuppz FFe  with confidence 1-δ with crude Monte Carlo is equal to [15] 

( ) 2
1,

4Cn e
e

δ
δ

=
⋅ ⋅

  

Table 2 presents the number of Monte Carlo simulations for several values of the confidence 
level. It is evident that the procedure proposed leads to substantial computational savings. For 
example, if one requires that the reliability of reliability calculations be at least equal to the 
reliability of the structure being analyzed, then one should require a confidence level of 99.999%, 
which yields some 90 million function calls.  

 
Table 2. Number of Monte Carlo simulations vs. confidence level. 

 
Confidence 
level (%) nc 

90 8,929 
95 17,857 
99 89,286 

99.9 892,857 
99.99 8,928,571

99.999 89,285,710
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6. Conclusions 

The searching procedure presented allows one to bound the CDF of a dependent variable with 
100% confidence, and allows for a guaranteed evaluation of the error involved in the calculations. 
These bounds are often enough to make decisions, and require a minimal number of function 
calls. The procedure is not intrusive, i.e. it can be equally applied when the function is a complex 
computer model (black box). The proposed procedure can handle input information consisting of 
probabilistic, interval-valued, set-valued, or random-set-valued information, as well as any 
combination thereof. The function as well as the joint pdf of the input variables can be of any 
type. 

The application to a beam subjected to two random loads showed that the number of 
function calls is drastically reduced as compared to Monte Carlo methods. For example, only 106 
function calls were necessary to conclude with 100% confidence that the CDF was greater than 
the specified limit value of the probability of failure, and that the beam was unsafe. 

The drawback of the procedure presented is that it suffers from a dimensionality effect. 
However, Monte Carlo methods are not free from  dimensionality  effects. For example, Davis’ 
and Rabinowitz’s comment as follows on multiple integration by sampling when more than 12 
variables are involved ([10], page 417): “Sophisticated methods of variance reduction appear to 
exhibit a dimensional effect and are probably ruled out in this range. Some authors feel that the 
dimensional effect may even play a role in crude [sampling] methods inasmuch as it may occur in 
the constant in the asymptotic error term.” Indeed, Sloan and Wozniakowski [30] have shown that 
Monte Carlo may depend polynomially or even exponentially on the number of variables. 

Current research is focusing on improving the efficiency of the procedures presented here by 
incorporating Bayesian philosophies and procedures [9, 18, 27] into the method’s algorithm, with 
the aim of reducing the random variables in the problem to those that appreciably influence the 
output. Furthermore, adaptive techniques are being investigated in order to locally refine the 
discretization of those focal elements whose image straddles y*.  

Current applications aim at integrating the procedure presented with interval finite element 
formulations [21, 25, 26] for the efficient reliability analysis of structures. 
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Requirements Analysis for Engineering Computation
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Abstract. This paper argues that the reliability of engineering computation can be significantly improved
by adopting software engineering methodologies for requirements analysis and specification. The argument
centers around the fact that the only way to judge the reliability of a system is by comparison to a
specification of the requirements. This paper also points to methods for documenting the requirements. In
particular, a requirements template is proposed for specifying engineering computation software. To make
the mathematical specification easily understandable by all stakeholders, the technique of using tabular
expressions is advocated. To clarify the presentation, a case study of the documentation for a system for
analyzing statically determinant beams is presented.

Keywords: requirements analysis, requirements template, engineering computation, reliable computation,
software quality

1. Introduction

Software engineers generally advocate that the first step in system development should be a
systematic elicitation, analysis and documentation of the requirements, because it is much
easier and cheaper to correct mistakes and misconceptions at the beginning of the process
than it is to try and fix problems during implementation and maintenance. There is wide
agreement in the software engineering community on the necessity of a complete and consis-
tent software requirements document for evaluating any software system quality, including
reliability [4]. Requirements documentation has been demonstrated to be effective in other
application areas, such as with business applications [29] and for real-time systems, such
as the U.S. Navy’s A-7E military aircraft [16] and the shutdown systems of the Darlington
nuclear generating station [26]. However the requirements stage of software development is
often neglected when solving engineering computation problems. This paper argues that the
reliability of engineering computation can be significantly improved by adopting software
engineering methodologies for requirements analysis and specification.

The importance of requirements analysis and documentation is not only widely rec-
ognized by software engineers. All engineering disciplines understand the importance of
documenting requirements for large and complex systems. For instance, an automobile
manufacturer will gather requirements from customers to determine whether fuel efficiency
is considered more important than luxury, or vise versa. Similarly, a structural engineer
would not start designing a building until she had determined the following: How many
floors will the building have? What are the expected loads? Will the building be used
as a hospital, or a school, or a shopping mall, or for some other purpose? To judge the
success of the design, it is necessary to take the requirements into account. For instance,
the required reliability for a hospital is higher than for other structures, so the probability
of a hospital collapsing due to an earthquake should be less than that for an office building
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in the same situation. Given that engineers recognize the importance of requirements for
large and complex systems, and that the size and complexity of software systems, including
engineering computation systems, seems to be continually growing, it is necessary to ensure
the quality of software systems via documenting their requirements.

The central argument of this paper is that a requirements specification document is
necessary to judge the reliability of engineering computation software. Reliability is a mea-
sure of the dependability of a system. One definition says that “reliability of software is
defined to be the ability of the software to behave consistently in a user-acceptable manner
when subjected to an environment in which it was intended to be used”[5, page 310].
Another definition say that “reliability requirements deal with failures to provide service.
They determine the maximum allowed software system failure rate, and can refer to the
entire system or to one or more of its separate functions” [10, page 39]. The definitions
of reliability depend on the existence of a specification of the requirements because one
cannot judge correctness, user acceptability, or failure rates, without knowing the standard
for comparison. In engineering computation, one needs to know exactly what problem the
system is required to solve and the values for the acceptable tolerances, or it is impossible
to judge whether the results are correct. Although the field of engineering computation
has developed many excellent methodologies for producing efficient and accurate numerical
results, the design decision for selecting the appropriate methodology are often made in
an ad hoc manner because there is a lack of appropriately documented requirements to
guide the decision. The existence of a complete and consistent requirements document can
lead to better decisions for improving reliability and it can also improve other software
qualities, such as usability, verifiability, maintainability, reusability and portability, which
are sometimes neglected in engineering software.

The first section below presents background information, including an overview of soft-
ware engineering methodologies for requirements elicitation, analysis and documentation.
The background section also contains a brief summary of the syntax and semantics of
tabular expressions, which are introduced in this document because they provide a relatively
easy way of documenting complex requirements. After the background section the value of
requirements documentation for engineering computation is explored in depth. Following
this, the methodology promoted in this paper is made more concrete by presenting some
excerpts from a requirements document for a software system to analyze statically determi-
nate beams. The discussion of this example highlights the requirements template that was
followed in constructing the requirements document. The final section consists of concluding
remarks.

2. Background

The idea of this paper is to borrow guidelines from software engineering to improve en-
gineering computation. To do this, it is first necessary to understand some aspects of
software engineering. This section provides necessary information on some current software
engineering methodologies. In particular, an overview of requirements elicitation, analysis
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and documentation is given and a particular approach for documenting formal requirements
is described: the technique of tabular notation. More detail on the software engineering
methodologies discussed here can be found in [21].

2.1. Overview of Requirements Elicitation, Analysis and Documentation

This section highlights how requirements fit into the software development process by
first providing a description of the waterfall model of software development. Following
this, the software requirements activities are described for elicitation, analysis, documen-
tation, validation and verification of requirements. A section is also provided to describe
the end-product of the requirements phase, the document called the Software Require-
ments Specification (SRS). The final section describes a requirements template, which is a
documentation approach used by software engineers to improve the quality of the SRS.

2.1.1. Waterfall Model
In a common model of the software development lifecycle the first phase involves gather-
ing requirements, analyzing them and documenting them. This lifecycle model, which is
graphically depicted in Figure 1, is termed the waterfall model because each stage flows
into the next as the process moves downstream. The stages of the waterfall model consist
of requirements, design and coding. The back and forth arrows represent the iterative
process of validation and derivation at each phase before proceeding to the next. After
the code is developed and validated against the design, it also has to be validated against
the requirements. This is represented by the dashed arrow from “Code” to “Requirements”.
The acceptance testing, in which the system is used in the real world, is performed before
the software is finally accepted. This is indicated by the dashed arrow from “Code” to “Real
World”. If the requirements are modified, the whole procedure has to be repeated.

Code

Software
Design

ments
Require

Validation

Derivation

Legend:

Real
World

Acceptance Testing

 −

Figure 1. Waterfall model of the software development lifecycle
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The waterfall model is not the only model of the software development process [12,
pages 385-456], but it is the model that is cited here because it closely parallels how engineers
typically think about their work flow. Moreover, as Section 3 will show, the software lifecycle
model and the scientific method essentially follow the same waterfall process. The waterfall
model is also well-suited for engineering computation problems because the waterfall model
works well when the requirements are stable [12, page 409], which is certainly the case
in engineering computation where the scientific theories of the laws of physics are slow to
change. Another argument in favor of presenting the waterfall model is that even though
the process of software development is never as rational as that presented in Figure 1, the
advantages of a rational process can still be obtained by documenting the work products as
if they were developed and written following the waterfall model [27].

2.1.2. Software Requirements Activities
To develop engineering computation software in a rational way, it is necessary to document
the software requirements. A software requirement is a description of how the system should
behave, or of a system property or attribute [33]. In [34], a software requirement is defined
as a software capability that must be met or possessed by a system or system component
to satisfy a contract, standard, specification, or other formally imposed document.

Software requirements activities cover all of the activities involved in discovering, ana-
lyzing, documenting, and maintaining a set of requirements for a computer-based system,
with an emphasis on using systematic and repeatable techniques [31, 33]. The software
requirements activities begin with the software requirements elicitation. At this stage an
attempt is made to work with the stakeholders to gather all of the information necessary
for understanding the problem. After all of the requirements have been gathered they are
analyzed, which involves refining and modeling the requirements. The goal of analysis
is to discover problems, incompleteness and inconsistencies in the elicited requirements.
The analysis is interleaved with the requirements elicitation phase. Some methodologies for
requirements analysis include structured analysis, object-oriented analysis [22], goal based
methods [22, 36], viewpoint methods [6] and component requirements analysis [13].

For the results of the requirements analysis to be useful for the subsequent development
of the software, the requirements need to be documented in the software requirements
specification document, which is discussed in the next section. To ensure quality, the software
requirements must undergo a process of validation and verification to check the adequacy
of the documented requirements. In the validation, the requirements model is examined
to make sure that stakeholders’ expectations are correctly captured. Verification involves
checking the software requirements for certain properties, such as consistency, completeness,
and modifiability.

In this paper, the term requirements analysis does double duty. It refers to the stage of
requirements refinement and modeling described above, but it is also used as a shorthand
to describe all of the requirements steps, from elicitation to verification and validation. In
the literature, the term requirements engineering is sometimes used for this purpose. The
meaning of the term requirements analysis should be clear from the context where the term
is used.
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In terms of quality, requirements should be reviewed to ensure that they are correct,
unambiguous, complete, consistent, modifiable, verifiable, and traceable [17]. A good re-
quirement should express “What” functionalities and qualities the system should have,
but it should not mention “How” these requirements are to be accomplished. That is, the
requirements should not impose design decisions. For instance, a requirement may specify
an ordinary differential equation that must be solved, but it should not mention that a
fourth order Runge-Kutta method should be employed. The requirements document should
not tie the hands of the designer; she should be free to select any algorithm that will satisfy
the requirements.

Besides the “What” versus “How” test, there are other tests that can be used to review
requirements. One such test is the “what is ruled out” test. This test determines if a
requirement actually makes a decision because if no alternatives are ruled out then no
decision has really been made. Another test is the “negation” test. If the negation of a
requirement represents a position that someone might argue for, then the original decision
is likely to be meaningful. For instance, the statement that “the software should be reliable”
has a negation that no one would argue for and thus the statement does not represent a
good characterization of a requirement for the system.

2.1.3. Software Requirements Specification (SRS)
During the process of requirement gathering, the requirements need to be documented in
a software requirement specification (SRS), which includes the external behavior of the
system, the constraints placed on the implementation, the forethought about the lifecycle
of the system, and the acceptable response to the undesired events [16]. The SRS is a
document that clearly and precisely describes each of the essential requirements (functions,
performance, constraints, and quality attributes) of the software and external interfaces [34].

Requirements documentation methods can be categorized according to their degree of
formality, where formality is defined as the degree to which use is made of mathematical
techniques and notations. The first group of methods are informal methods, which describe
the requirements document in natural language. In principle, the requirements in natural
language are universally understandable but, in practice, the meaning of requirements
is not always obvious, because natural language is inherently ambiguous and analyzing
such descriptions can be very difficult [19]. The second documentation methods are formal
methods, which use mathematically formal syntax and semantics to specify system function
and behavior. Example languages currently used in formal specifications are Z, VDM, CSP,
etc. Formal methods do not have the ambiguity of natural language, but they can be time
consuming to produce and as indicated in [2], formal methods do not help us “solve the
difficulties caused by lack of understanding of the real world situation”. The last group
of methods are semi-formal methods that use diagrammatic modeling or object-oriented
techniques. These methods are generally easier to develop and understand than formal
methods. However, semi-formal methods are facing criticism for paying less attention to
verification and validation of requirements [31]. At this time, requirements documentation
methods are not well-developed and there is no universally accepted way of documenting
requirements.
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As the official statement of the system requirements for customers, end-users and soft-
ware developers, the SRS provides many advantages during the lifecycle of the software
project [17, 31, 33]. For instance, the SRS reflects the mutual understanding of the problem
to be solved between the requirements analyst and the client and the SRS serves as a starting
point for the software design phase because decisions are made explicitly before designing
and coding. Other benefits of the SRS include the fact that it provides a basis for estimating
costs and schedules and it allows validation and verification because it provides a baseline
against which compliance can be measured. The SRS aids the software lifecyle because it
facilitates incremental development. In many businesses, systems are built in increments;
that is, the next generation inherits the features from the previous version, only enhancing
the system with additional or improved features. The final benefit of an SRS is the financial
benefit of finding problems early. If mistakes are found in the requirements stage, then
they are much cheaper to fix than when they are found in a later stage of the software
development. Empirical studies show that if one arbitrarily assigns unit cost to the effort
required to detect and repair an error during the coding stage, then the cost to detect and
repair an error during the requirements stage is between a fifth and tenth as much and the
cost to detect and repair an error during maintenance is twenty times as much [5, page 25].

2.1.4. Requirements Template
A requirements template provides a frame of reference, identifies needed information, and
suggests an order of presentation so that the requirements can be best expressed [31]. The
use of a template encourages a systematic procedure of requirements documentation. Since
no single template can meet the needs of every requirements document, it is vital that the
template be tailored to the needs of a particular audience [31].

The advantages of using requirements templates are discussed in [31, 33]. One advantage
is that templates can increase the productivity of SRSs. Software can be developed to
support the process of producing requirements documents conforming to the template.
Furthermore, templates can increase the adequacy of SRSs because a well-organized format
for the document acts as a checklist for writers of the SRS and reduces the chances of
omitting information. Another benefit of a template is that it facilitates the communications
among various SRS users, such as customers, developers, experts, etc., which in the context
of engineering computation, will be researchers, software developers, physical modelers,
computational scientist etc. Templates also provide the advantage of easing information
handling by defining the content of each specific section. The readers can find information
more easily and understand the relationships between different parts of the document.
Finally, a template helps the process of software development by making it easier to compare
two SRSs when they both conform to the same template.

There are several requirements specification frameworks that are designed for general
purposes and contain good advice on how to write requirements and how to avoid prob-
lems [9, 23, 24, 7, 30, 34]. These templates are the result of many years of practice, consulting
and research in requirement activities and thus provide a good foundation for software
requirements documentation. They are subject to change and are usually not used without
modification. The templates that have been developed to date focus on business applications
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and real-time systems and do not address some of the issues of importance for engineering
computation problems, which motivates the development of the new template discussed in
Section 4.

2.2. Tabular Expressions

Tables are used for documenting the requirements in this paper because they improve
readability so that formal documentation can be advocated to replace conventional docu-
mentation. Tabular expressions (or tabular notations) for computer programs and modules
made their appearance in the late 1950s [18]. Multi-dimensional tabular expressions make
it easier to consider every case separately while writing or reading a document, as op-
posed to the standard linear mathematical notation. The key ideas of tabular expressions,
one of the cornerstones of the relational model for documenting the intended behavior of
programs [6, 18, 25], were first developed in work for the US Navy and applied to the
A-7E aircraft [15]. In the current case study, tabular expressions are used in the SRS
for the beam analysis problem to formalize the specification of the system behavior. The
advantages of tabular expressions are that they are well-structured, they can simplify the
task of composition of table specifications to have a global or a dynamic view of the system’s
behavior, and they allow the achievement of SRS qualities attributes such as completeness
and consistency.

A full review of tabular expressions is beyond the scope of this paper; details on the
mathematics of tables can be found in [21]. An intuitive understanding of tables can be
obtained by considering an illustrative example. The example is taken from the SRS for
beam analysis. The SRS uses a table to specify the system response to input data for
describing the beam problem and the constraints on this data. The example in Table I
is for input of the distance from the left end of a beam to the point of application of a
load (x1). In this table mind and maxd are the bounds on the admissible range of values
for x1, @x1 is the symbol that represents x1, SGET is the set of symbols of user interface
variables that are accepted by the system, ErrorMsg is a system output indicating the error
mode, ChangeOnly(var1, var2, ...) indicates that only the output variables var1, var2, ...
may change value, i, j are the indexes of the table cells, H1 and H2 are headers that consist
of an indexed set of cells, G is a grid, and the composition rule is a relation expression that
determines the relation represented by the table.
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Table I. System Response to Constraints on Input Variable x1

Composition rule ∪4
i=1H2[i] ∩ (∩2

j=1H1[j] ; G[i, j])

H1

S′GET∪ = ErrorMsg′+ =

x1 < 0 ∅ InvalidInput x1

0 ≤ x1 < mind ∅ x1 TooSmall

x1 > maxd ∅ x1 TooLarge

mind ≤ x1 ≤ maxd {@x1} NULL

∧ChangeOnly(SGET , ErrorMsg)

H2 G

Although the mathematics of tabular expressions can be complex, the interpretation is
natural and intuitive. In this example the value of x1 determines the new values (indicated
by a prime (′) symbol on a variables name) of SGET and ErrorMsg. For a given value of
x1 one should search for the matching predicate in H2 and read the row in G to determine
what happens to the other variables. For instance, if mind ≤ x1 ≤ maxd then, S′GET =
SGET ∪ {@x1} and ErrorMsg′ = ErrorMsg.

3. Why Requirements Analysis for Engineering Computation?

Attempts to apply software engineering methodologies to engineering computation have
usually payed little attention to the appropriate and rigorous documentation of require-
ments. Some ideas from software engineering have been applied to engineering computation,
such as algebraic abstractions [1], object-oriented design [14], software components [8], and
software patterns [3]. Although these approaches have advantages, the research usually
focuses on the design and implementation and does not address how to improve the qual-
ity of engineering software from the requirements level. One exception to neglecting the
requirements phase is a requirements analysis of data parallel applications [11]. Another
exception documents the requirements of models of physical phenomena [20] using tabular
expressions. However, this model of physical phenomena does not necessarily solve all of
the problems for documenting the requirements of engineering software because the original
idea of this model was developed for an embedded system, which has different needs than
an engineering computation system. Moreover, this model allows the numerical methods,
which are essentially implementation decisions, to be encompassed into the requirements
documentation. This contradicts with the principle that requirements should not address
“How”, but only “What”.
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Figure 2. The Scientific Method

The apparent absence of studies on the requirements for engineering computation is not
an indication that this is an unimportant topic. All of the benefits listed in Section 2.1.3
apply to engineering software, just as they do to other types of applications. Besides these
arguments, there are also arguments that can be made that are specific to engineering
software.

The argument that requirements analysis can improve the reliability of engineering com-
putation is first made by observing the strong similarity between the waterfall model of
the software lifecycle and the standard model of the scientific method. The strong sim-
ilarity implies that engineering computation can benefit from methods that have proved
to be successful in software engineering. Like the waterfall model, the typical work flow
for the development of engineering modeling and simulation software can also be divided
into several stages [32], as illustrated in Figure 2. First, physical modelers do the basic
theoretical research, using assumptions to simplify the real world so that they can build
mathematical models. The correctness of these models is validated against the original
problem. Then computational scientists work on numerical algorithms, which are further
developed by computer scientists. Again, the algorithms are tested against the mathematical
models and the code is validated against the algorithms. There are two stages for correctness
confirmation. First, the code should be validated against the mathematical model, which
makes sure the implementation is a correct reflection of the model. Second, experiments are
used to validate that the model embodied in the requirements is adequate for the intended
use. If problems appear during the experimental validation this work flow recycles to the
physical modelers and the same cycle is applied for the changes in the mathematical models.

In the above discussion, the terms validation and verification are used in the same sense
that they are used in software engineering literature, which is different than the defini-
tions sometimes used in the engineering computation literature. For instance, Roache [28,
pages 19-36] reserves the word validation for experimental validation, but in the current
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paper validation refers to the external validation of any phase in the software development
process, which would be called verification by Roache. In the current paper the term ver-
ification refers to checking the internal properties, such as consistency and completeness,
at each stage of the software development process and the “validation” of Roache’s type is
identified by the compound term “experimental validation”.

There exists intrinsic similarity between the processes in Figure 1 and Figure 2; that is,
each box and arrow in Figure 2 has a counterpart in Figure 1. This similarity motivates
applying the innovative ideas from the discipline of software engineering to the field of
engineering computation.

As stated in the introduction, another argument in favor of requirements documentation
for engineering computation problems is that reliability can only be judged by comparison to
explicitly stated requirements. Verification and validation (V&V) are difficult if it is unclear
what standards the system is being verified and validated against. Clear requirements are
necessary to know what the system should be inspected and tested for. Moreover, current
V&V efforts focus on functional requirements, but the nonfunctional requirements, like
accuracy, efficiency, portability etc. are as important and should also be tested.

4. SRS for Beam Analysis Software

The methodology for documenting the requirements for engineering computing problems
is illustrated by the example of a system for analyzing beams. The central object in the
beam analysis problem is a beam with two external forces and supports at ends a and b,
as presented in Figure 3. The beam, of length L, is in static equilibrium. The following
information about the beam is given: the beam properties and the external loading (F1

and F2 located at positions and angles x1, x2, θ3 and θ4, respectively). The purpose of the
system is to calculate the unknown applied forces or support reactions (Fax, Fay, Fbx and
Fby), the internal shear forces and bending moments, and the deflection of the beam. This
software will be used as an educational tool for teaching statics and strength of material.
Although the example is relatively simple there is enough complexity to illustrate the value
of requirements documentation. The advantages discussed here should become even more
pronounced as the complexity and size of the engineering computation problem grows.

The SRS template was constructed by borrowing ideas from the templates presented in
Section 2.1.4, but it was also necessary to add original ideas to the new template. In some
ways the new template is simpler than its predecessors. For instance, only one viewpoint
needs to be considered for engineering software, but many different viewpoints need to be
considered for business applications (e.g. the accounting viewpoint, the marketing viewpoint,
etc.). Although different in the specific details, all engineering software can be abstracted
as: input information then perform calculations and finally output the results. In business
applications, on the other hand, the interaction of the system with the environment is
typically more complex. Although the engineering computation SRS template is simpler in
terms of the number of viewpoints than some templates, in other ways it is more complex.
Certain issues are more important for an engineering computation domain, such as the
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Figure 3. Free body diagram for beam with pin-pin supports

physics of the natural world, the sensitivity to the system of equations, the accuracy of the
calculations, etc. How these issues are handled, along with other benefits of the proposed
template, are examined in the subsections that follow. Each subsection discusses a different
benefit of requirements documentation and then presents excerpts from the full SRS [21] to
illustrate how the benefit is achieved.

4.1. The Template Provides Guidelines

The proposed requirements template supports and encourages a systematic process because
it breaks the problem down into smaller steps and thus provides guidelines and a checklist
for the issues that need to be addressed and the questions that need to be asked. The
sections of the proposed template are shown in Figure 4. The sections encourage a systematic
process by forcing the authors to consider each heading, even if the eventual decision is that
the heading is inappropriate for a given problem. The division into sections, which is an
example of applying the principle of separation of concerns, is an engineering approach to
handling large and complex problems and for facilitating multidisciplinary collaboration.
One example of separation of concerns is that the organization and purpose of the document
(Sections 2.a and 2.c of the SRS template) are discussed separately from one another and
from the rest of the document so that the discussion about the documentation itself will
not complicate the discussion of the requirements.

Another example of separation of concerns is that the presentation of the functional
requirements (Sections 4.a and 4.b of the SRS template) is separated from the presenta-
tion of the nun-functional requirements (Section 4.c of the SRS template). By separating
functional (system behaviors) and non-functional requirements (overall system qualities)
the analysis can focus on what the system is intended to do separately from thinking about
what qualities the system should have. As an example, in the case study SRS, the decision
that the system solves for unknown forces is separated from the requirement that, “The
maximum response time of any interaction between the user and the system should be less
than 1 second.” The requirement to solve for unknown forces may exist in another systems,
but in that other system the response time may be required to be faster than 1 second. Due
to the separation of the two requirements, it would be straightforward to adapt the current
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1. Reference Material: a) Table of Symbols b) Abbreviations and Acronyms

2. Introduction: a) Purpose of the Document b) Scope of the Software Product c) Organization of the Document

3. General System Description: a) System Context b) User Characteristics c) System Constraints

4. Specific System Description:

a) Problem Description: i) Background Overview, ii) Terminology Definition, iii) Physical System Description,
iv) Goal Statements

b) Solution specification: i) Assumptions, ii) Theoretical Models, iii) Data Definitions, iv) Instanced Models,
v) Data Constraints, vi) System Behavior

c) Non-functional Requirements: i) Accuracy of Input Data ii) Sensitivity of Model iii) Tolerance of So-
lution iv) Solution Validation Strategies v) Look and Feel Requirements vi) Usability Requirements
vii) Performance Requirements viii) Maintainability Requirements ix) Portability Requirements x) Security
Requirements

5. Traceability Matrix

6. List of Possible Changes in the Requirements

7. Values of Auxiliary Constants

Figure 4. Table of Contents for the Beam Analysis SRS

documentation to reflect the needs of the new system. The clear separation of these two
requirements improves the potential reusability of the documentation.

Another feature that improve reusability and make the document easier to maintain is
the use of labels for cross-referencing. Whenever necessary the different parts of the SRS
have their own label. The items that have labels include the following: the different sections
of the SRS, the physical system descriptions (in SRS Section 4.a.iii), the goal statements (in
SRS Section 4.a.iv), the assumptions (in SRS Section 4.b.i), the theoretical models (in SRS
Section 4.b.ii), the instanced models of the system (in SRS Section 4.b.iv), and all of the
tables and figures used in the SRS. As an example, physical system description PS1.a. says,
“the shape of the beam is long and thin” and PS1.d says, “The transverse cross-section
of the beam is rectangular”. The use of labels allows the interrelationships between items
in the SRS to be explicitly documented. Moreover, if there is a change in one portion of
the document, it should be possible to determine what other portions of the document are
affected, which improves reusability.

An additional feature of the proposed template that encourages a systematic approach
and results in reusable documentation is the use of parameters instead of explicit values.
Rather than say that the allowed range for x1 is 0 ≤ x1 ≤ 999999, the range is written as
mind ≤ x1 ≤ maxd. The actual values for these parameters are supplied in SRS Section 7,
“Values of Auxiliary Constants”. By not explicitly giving the values of the parameters in
the body of the SRS, it is simple to change all occurrences of the values by changing the
respective entry in SRS Section 7. This approach has the same advantages of using symbolic
constants in a computer program: the value is easy to change and the symbolic name for the
constant improves the documentation by being more meaningful than a number. Moreover,
the use of parameters in this way encourages a systematic procedure. The discussion of
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what value is appropriate for a constant can be separated from the decision that a variable
should have some, as yet undetermined, limits on its value.

4.2. A Transition from General to Specific

The requirements template supports a systematic process by gradually taking the authors
from general (abstract) to specific (concrete) concepts. For instance, as Figure 4 shows,
the structure of the document proceeds from a general introduction to a specific system
description. The “Introduction” section provides an overview of the entire SRS. After this
the “General System Description” provides general information about the system, identifies
the interfaces between the system and its environment, describes the user characteristics
and system constraints. The next section, “Specific System Description”, increases the level
of detail and presents more concrete information. This section provides the physical system
description, defines the system goals, presents a mathematical model of the system and
documents the non-functional requirements. The structure of the template helps the SRS
authors by allowing them to document the “big-picture” before thinking about the details.

The transition from general to specific also occurs with the refinement of the abstract
system goals to a theoretical model and finally to a concrete instanced model of the system.
The system goals state that given the beam properties and some of the external forces, the
system should solve for:

G1. The unknown external forces applied to the beam;

G2. The functions of shear force and bending moment in the beam;

G3. The function of deflection along the beam.

These goals are refined further via a theoretical model that helps the reader to develop
an understanding of the solution by introducing the theory and principles relevant to the
problem. For instance, the goal G1 is refined by the theoretical model for equilibrium, T1:

(T1)





∑
Fxi = 0,∑
Fyi = 0,∑
Mi = 0,

where the forces and moments are all represented by their signed magnitude symbols: Fxi

represents the ith force component in the x direction, Fyi represents the ith force component
in the y direction, Mi represents the ith moment component in the z direction. Similarly
there are theoretical models T2 and T3, which are detailed in [21], to refine the other two
system goals.

To reinforce the fact that G1 is more abstract than T1, it is worth mentioning that
T1 is not the only option for solving for the unknown forces. A theoretical model could
be constructed that used the principle of virtual work, instead of using the equations of
equilibrium.

The theoretical model alone does not provide enough information to solve for the un-
known forces. It is necessary to introduce and define a more detailed model of the beam
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Table II. Excerpt from Table for Solution of Unknown External Forces

H1

SGET = Ssym − SunkF SGET 6=
(Ssym−
SunkF )

SunkF /∈ P3 - (ErrorMsg′ = InvalidUnknown)
∧ChangeOnly(ErrorMsg)

FALSE

SunkF =
{@Fax, @Fbx, @Fay}

- ErrorMsg′ = NoSolution
∧ChangeOnly(ErrorMsg)

SunkF =
{@Fax, @Fbx, @Fby}

- ErrorMsg′ = NoSolution
∧ChangeOnly(ErrorMsg)

SunkF =
{@Fax, @Fbx, @F1}

- ErrorMsg′ = NoSolution
∧ChangeOnly(ErrorMsg)

SunkF =
{@Fax, @Fbx, @F2}

- ErrorMsg′ = NoSolution
∧ChangeOnly(ErrorMsg)

SunkF =
{@Fax, @Fay, @F1}

x1 6= 0
∧ θ3 6= 0
∧ θ3 6= 180

F ′ax =
− cos θ3F2x2 sin θ4+cos θ3FbyL+F2 cos θ4x1 sin θ3+Fbxx1 sin θ3

x1 sin θ3∧
F ′ay = −F2x2 sin θ4−FbyL−F2 sin θ4x1+Fbyx1

x1

∧ F ′1 =
−F2x2 sin θ4+FbyL

x1 sin θ3
∧ ChangeOnly(SunkF )

otherwise (ErrorMsg′ = Indeterminant)
∧ChangeOnly(ErrorMsg)

SunkF =
{@Fax, @Fay, @Fby}

L 6= 0 F ′ax = F1 cos θ3 + F2 cos θ4 + Fbx

∧ F ′ay = −(−F1 sin θ3L−F2 sin θ4L+F1x1 sin θ3+F2x2 sin θ4)
L

∧ F ′by = F1x1 sin θ3+F2x2 sin θ4
L

∧ ChangeOnly(SunkF )

otherwise (ErrorMsg′ = Indeterminant)
∧ChangeOnly(ErrorMsg)

H2 G

and the forces. In this case study the forces are represented as in Figure 3 and defined
in SRS subsection “Data Definitions”, with some of the forces decomposed into x and y
components and others given as a magnitude and a direction. Another SRS subsection
“Instanced Models” applies the theoretical models to the physical system. For instance,
when moments are taken about point a, one instance of the model M1 is:

(M1)





Fax − F1 · cos θ3 − F2 · cos θ4 − Fbx = 0
Fay − F1 · sin θ3 − F2 · sin θ4 + Fby = 0
−F1 · x1 sin θ3 − F2 · x2 sin θ4 + Fby · L = 0

As was the case for the transition from G1 to T1, there are other concrete options
available for specifying M1. One of the advantages of the proposed template is that it
supports reuse by allowing a new theoretical or instanced model to be introduced. Any of
the documentation associated with the more abstract model or goal can remain unchanged
in the new version of the SRS.
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4.2.1. Special Cases are Considered
The proposed requirements template provides a systematic approach for eliciting and docu-
menting requirements, which improves the user’s confidence that all special cases have been
considered, where special cases are defined as those exceptional cases that differ from the
normally expected behaviour. In particular, the use of tabular expressions aids in detecting
special cases, as shown by Table II. This table shows how the exceptions of divide by zero
errors can be avoided by carefully documenting what input values cause problems for which
cases. Tables have the advantageous property that they can be mathematically verified to
ensure that the space that they cover is complete.

Table II is an extract from the full table, given in [21], that shows the system behaviour
for solving for unknown forces, given the correct number of known forces. Only the statically
determinant beam is considered by the system, thus the number of unknowns should be the
same as the number of equilibrium equations; that is, there should be exactly 3 unknowns.
The valid unknown force space can be defined by P3, where P3 , {S|S ⊆ SF ∧ ]S = 3}
with SF being a set of symbols of force variables: {@Fax, @Fay, @Fbx, @Fby, @F1, @F2}.
The @ symbol is used to distinguish between the symbol for a variable and the actual value
of the variable. The ] symbol is a unary operator that is applied to a set and returns the
set’s cardinality. The user of the system should specify 3 known forces from the set SF

and the system will solve for the remaining 3. The solutions for each element in the set
P3 (C3

6 = 20 situations) are specified in [21]. (An advantage for this problem is that the
closed-form solution is available to be analyzed before design.) Some of the cases may lead
to an infinite number of solutions, which come from statically indeterminant beams. Since
the system is only interested in the cases that have a unique solution, the indeterminant
situations should be avoided. Table II, which shows a portion of the full table, documents
how the forces are solved for some of the cases. Table II uses SunkF to represent a set of
symbols of the unknown force variables: SunkF ∈ {S|S ⊆ SF }. In Table II, Ssym is the set
of symbols of all user interface variables that are either inputs or outputs of the system.
The table specifies that all symbols, except those in SunkF , must be in set SGET before the
calculations proceeds. As Table II shows, divide by zero errors can be avoided, by checking
the predicates in the second column of H2.

4.3. Catalyzes Consideration of Issues Before Design

The requirements template not only encourages a systematic process for collecting, ana-
lyzing and documenting the requirements, it also improves the systematic application of
the scientific method shown in Figure 2. There are sections in the requirements template
that encourage the analysts to answer questions that will pay significant dividends during
the design stage. For instance, the requirements template has a section (SRS Section 4.c.ii)
where the sensitivity of the model is considered. The SRS template encourages the analyst
to consider the sensitivity of the numerical model in advance of coding. If the model is very
sensitive to input data errors, then it may not be worth constructing, or it may be necessary
to approach the problem in a different manner. For instance, if the bean considered in this
case study experiences a high axial load, then buckling may occur. In the current case study
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an assumption is made that buckling failure will not occur, but if this is an important issue,
according to the range of parameters permitted by the model, then a buckling analysis
may be appropriate. The systematic presentation that tables provide is also helpful for
considering the sensitivity of individual calculations. For instance, in Table II, the condition
number of each explicit equation in the grid could be calculated to provide an estimate of
the sensitivity of the calculations.

Besides the section on sensitivity, there are other sections of the SRS template (Figure 4)
that encourage the analyst to think about important issues in advance of the design. These
sections are all in the “Non-functional Requirements” section of the template. The achieve-
ment of non-functional requirements often involve trade-offs between system qualities, such
as speed efficiency and accuracy, so it is valuable to start the discussion on these trade-offs
early in the process. If adequate effort is placed into documenting what behaviour is expected
of the system, then it should be easier to judge if the results produced by the system are
reasonable. One particular requirement that the analyst should think about in advance of
solving the problem is the tolerance allowed in the solution (Section 4.c.iii in the proposed
SRS template). For the case study SRS the tolerance is specified by equations of the form

|∑ Fxi|/
√∑

Fxi
2 ≤ ε, where Fxi is the ith force component in the x direction and ε is the

allowed tolerance. Another valuable set of pre-design non-functional requirements involves
the SRS section “Solution Validation Strategies”. Some possible validation strategies for
numerical solutions,which are given in the case study SRS, include: solving the problem by
different techniques (such as electronic spreadsheet or a graphical solution), and substituting
the results back into the model to see if the formula is still satisfied.

A good design should take into account the likely changes that the system may undergo
in the future. This is accommodated in the proposed template by Section 6 of the SRS, “List
of Possible Changes in the Requirements”. Some potential changes to the case study SRS
include incorporating more than two applied forces, considering beams with other types of
supports and considering the self-weight of the beam. The system designer will be able to
use this information to produce a system that can potentially have a long life because it
will be able to evolve to accommodate the likely future changes.

4.4. Reduces Ambiguity

One significant benefit of an SRS for an engineering computation problem, such as the beam
analysis problem, is that it can reduce the ambiguity of the requirements. By explicitly
documenting the requirements and by formalizing some of them, it becomes much easier for
different experts to communicate, a review of the requirements is possible, and the eventual
designer will not have to make arbitrary judgments about the system’s required behaviour.
One approach to making the SRS unambiguous is to use tabular expressions. As Table II
shows, tabular expressions clearly specify the required behaviour for all cases when they are
complete, which is a property that can be automatically verified. The SRS also has sections
that are devoted to providing the necessary details to make the problem unambiguous. For
instance, important reference material is given in the SRS sections “Table of Symbols” and
“Abbreviations and Acronyms”.
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Two other sections that reduce ambiguity are the SRS sections “Scope of the Software
Product” and “System Context”. These sections are important because they respectively
delineate what the system does and how the system fits into its external environment. For the
case study, the scope is solving for unknown forces, shear, bending moment and deflection
of a beam, but the documentation specifies that the system does not solve for internal axial
forces. The scope also makes it clear that the system will be used for educational purposes.
The system context section, on the other hand, documents the user responsibilities, such as
preparing input information and using consistent units, versus the system responsibilities,
such as detecting data type mismatch and determining if the inputs satisfy the required
constraints.

When developing a new system, it is important to have the characteristics of the future
users in mind. A beam analysis program will likely be designed differently by a practicing
engineer versus a high school student. In the current case study, the decision was made,
as documented in the SRS section “User Characteristics”, to assume that the users of the
system are first or second year university students in science or engineering.

An SRS is not meant to be read sequentially, instead it is a reference document that
will be searched for specific pieces of information. For instance, a reader or reviewer may
search for the definition of a particular term. Without the definition of the term, the reader
will not know how to interpret the documentation. For this reason there are two sections
in the SRS devoted to definitions: “Terminology Definition” and “Data Definitions”. The
terms defined include applied force, bending moment, deflection, equilibrium, free-body
diagram, longitudinal centroid plane, magnitude of a vector and Young’s modulus. The data
definitions are used to define the mathematical variables that model objects in the physical
system. For instance, there are definitions for the coordinate system, the dimension system,
the beam, the reactive forces, the moments and the shear forces. These definitions remove
ambiguity by giving a meaning to the symbols and by defining potentially confusing details,
such as the sign conventions.

The advantage of unambiguous requirements is that they can end arguments about
different designs. Practitioners argue over the relative merits of different designs based
on their own implicit requirements. A developer may criticize a design because it is not
efficient, but this criticism would not be justified if the designer clearly started out with
requirements that clearly stated that precision, maintainability and portability are more
important than efficiency. The specific trade-offs depend on the scope of the system. For
instance, in the beam analysis case study the requirements for speed and accuracy do not
need to be that strict because the system is not intended for a safety critical setting, but
rather an educational one.

4.5. Range of Model Applicability is Identified

A significant benefit of appropriate and rigorous requirements documentation is that the
range of the physical model’s applicability can be clearly identified. One way that this is
done is by documenting the assumptions that the model is based on, as discussed in the next
section. Another way that the range of applicability is identified is by explicitly constraining
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the input data. The input data should be constrained so that it is physically meaningful.
In the SRS section “Data Constraints”, physical constraints are applied to all variables, as
appropriate. For instance, the location x1 of the applied load F1 is required to be in the
range 0 ≤ x1 ≤ L because any other value is physically meaningless. Another constraint,
which is added to maintain the physical system description that the beam is long and thin
(PS1.a), is that 0 < h ≤ 0.1L.

Other constraints are added to the input data as system constraints, which are constraints
that are not motivated by physics, but rather by the range of values it is reasonable to expect
in practice. Table I gives an example of system constraints on the variable x1. The system
also constrains the angle θ3 so that 0 ≤ θ3 ≤ 180. This is not necessary for the physics
of the problem, but allowing this range of angles, and a signed magnitude for the force,
allows one to enter any possible loading, so the system restriction simplifies the user input,
without putting any constraints on the range of problems the system can solve. In [21] the
specification of the system behaviour for each input variable is given, along with a new
tabular composition operation that allows the specifications to be combined, while still
maintaining the property of domain coverage.

Restricting the input to the system to reasonable values can potentially avoid error
cases and it can streamline the subsequent design stage. One of the hardest challenges in
engineering computation is to devise algorithms for a general case. Why should a designer
have to face this challenge, if information is known about the problem that will mean that
only specific cases will ever occur? For instance, numerical problems could occur in the beam
problem if the external forces have significantly different magnitudes, but this is not likely to
occur in an engineering problem because the effect of the smallest magnitude forces would be
negligible and typically not even modeled by an engineer. For this reason, the case study SRS
has constraints on all of the forces of a form like the following constraint on Fax: (minf ≤
|Fax| ≤ maxf ) ∧ (|Fax| 6= 0) ∧ ∀(FF |@FF ∈ SF · FF 6= 0 ∧ max{|Fax|,|FF |}

min{|Fax|,|FF |} ≤ 10rf ), where
minf and maxf are the system constraints for the minimum and maximum magnitude
forces and rf is a positive integer that is the maximum exponent of base 10 for the ratio
between the magnitudes of the largest and smallest forces.

Documenting the range of applicability of the model is also important for engineering
computation problems other than the beam analysis problem. For instance, it is difficult
to write code to solve any system of equations Ax = b, but this job becomes easier if A is
known to have special characteristics, such as being symmetric positive definite. Therefore,
the requirements documentation should clearly show the restrictions on the data and the
theory that will lead to the simplifications.

4.6. Clear Documentation of Assumptions

In engineering computation it is often the differing assumptions that distinguish one piece of
work from another. Assumptions are necessary to build a physical model of the real world.
Often the quality of the model depends on how reasonable the simplifying assumptions are.
Given the importance of assumptions, an SRS for engineering computation problems should
clearly label and document all assumptions, as in Section 4.b.i of the proposed template.
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The assumptions defined in this subsection simplify the original problem and fill in missing
information for the physical system so that a theoretical models can be developed and be
properly applied. Some sample assumptions for the beam analysis SRS, using the numbering
given in [21], include the following:

A1. The physics for this problem are in the field of Newton’s classical mechanics.

A2. Thermal effects are neglected.

A4. The weight of the beam is neglected.

A8. Only the statically determinant cases for the beam are considered.

A9. Beam deformations are small compared to the original dimensions. Thus the slope of
the beam’s deflected shape is small compared to the unity, and the length variation of
the beam in the longitudinal direction is neglected.

A10. The deflection of the beam is caused by bending moment only, the shear does not
contribute.

A14. The second moment of area along the length of the beam is constant.

Since different models are distinguished by their differing assumptions, a clear indication
of the dependence of the model on its assumptions will greatly facilitate reuse and future
evolution of a given SRS. When the assumptions change the model generally changes, but,
very often, some parts will stay the same and by identifying those parts one can easily reuse
them. In the proposed SRS template the interdependence of the different components of the
specification is documented by a traceability matrix, which is in the SRS Section 5. For the
traceability matrix to be meaningful it is important that the assumptions be independent
of one another.

The traceability matrix gives a “big picture” view of the relationships between sections
“Physical System Descriptions”, “Goal Statements”, “Data Definitions”, “Assumptions”,
“Theoretical Models” and “Instanced Models” in the case study SRS. These sections of the
SRSs are shown because they contain the most essential information of the system func-
tionalities. As an example, the relationship between “Goal Statements” and “Theoretical
Models” can be refined by a specific relationship between one concrete goal statement and
one concrete theoretical model, for instance G1 and T1. These relationships are represented
by ticks “

√
” in the cells of the matrix, as in Table III, which is a portion of the table

presented in [21]. The physical system descriptions and the goals in the first column of the
matrix are used by the data definitions or the theoretical models in the second column; the
assumptions in the first row are used by the theoretical models, the instanced models and
the data definitions in the second column; the theoretical models and the data definitions
in the second column are used by the instanced models in the first row.

The traceability matrix of the “deflected beam problem” presented in this paper can
be compared with the simpler case of a “rigid beam problem” to illustrate how require-
ment reuse can be implemented with the help of a traceability matrix. Compared with the
deflected beam, the rigid beam has a new assumption:
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Table III. Traceability Matrix for Deformed Beam

Phy. Sys.
/Goal

Data
/Model

Assumption Model

A1 A2 ... A4 ... A8 A9 A10 ... A14 M1 ...

G1 T1
√

... ...
√ √

...
√

...

G2 T2
√

... ...
√ √

... ...

G3 T3
√

... ...
√ √

... ...

M1
√

... ... ...
√

...

PS1.a L ... ...
√

...
√

...

... ... ... ... ... ... ... ... ... ... ... ... ... ...

A15. The beam behaves as a rigid body.

This new assumption will require several changes to the SRS for the deflected beam. The
modifications can be guided by the traceability matrix. To see this, one can consider how
the flexible beam traceability matrix can be modified to obtain a traceability matrix for the
rigid beam problem. The addition of the rigid body assumption means that the previous
assumptions A9 - A14 are no longer necessary. The new system does not require system
goals G2 and G3; therefore, theoretical models T2, and T3 will be removed from the
row headers of Table III. Removing the columns representing the unnecessary assumptions
and the rows of the unnecessary models and symbols results in a traceability matrix that
reflects the requirements specification of the “rigid beam problem” exactly. The details of
this transition can be found in [21].

Besides supporting a transition to a simpler model, the traceability matrix also supports
a move to a more complex model. For instance, assumption A10 could be removed, which
would mean that shear would also contribute to deflections and a more complex theory,
such as Timoshenko beam theory [35, pages 224-230] would be required. In the transition
to the more complex system the traceability matrix would guide the analyst as to what
sections of the documentation need to be added and/or modified. For instance, Table III
shows that the theoretical model T3, which is the model for simulating the deflection, will
need to be changed. Also, PS1.a, which says that the “beam is long and thin” is no longer
necessarily true as Timoshenko beam theory also applies to short and thick beams.

5. Concluding Remarks

This paper motivates, justifies and illustrates a method of writing requirements spec-
ifications for engineering computation problems that will improve their reliability. The
motivation comes first from the fact that reliability of a system can only be accurately
judged if there is an unambiguous statement of the behaviors and qualities that the system
is required to have. Although there are many excellent numerical libraries and packages
that implement accurate and efficient algorithms, the selection of an appropriate algorithm
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is often based on implicit requirements. If explicit, appropriate and rigorous requirements
documentation is available, then the overall quality of the design can be improved, not just
with respect to reliability, but also with respect to usability, verifiability, maintainability,
reusability and portability, which are sometimes neglected qualities in engineering software.
Further motivation for the appropriateness of software engineering methodologies, such as
requirements analysis, for engineering computation, comes from the fact that the waterfall
model of software development closely parallels the usual model of the scientific method.

The justification for using the proposed template for engineering computation comes from
observing how it supports and encourages a systematic process by providing guidelines, by
providing a smooth transition from general to specific details, by increasing confidence that
all special cases have been considered, and by encouraging the analyst to scrutinize their
problem in advance of designing the computational system. Further justification for using
an SRS for engineering computation comes from the benefit of reducing ambiguity, clearly
identifying and documenting the range of model applicability and rigorously documenting
the assumptions that simplify the real world to the point where theoretical and instanced
models can be constructed. To improve the systematic process and to reduce ambiguity,
this paper advocates the use of tabular expressions, which provide mathematical rigor, but
at the same time have the benefit that they can be easily and intuitively understood.

To illustrate the proposed method of documenting requirements for engineering computa-
tion problems, this paper presents a case study for the analysis of a statically determinant
beam. Although this problem is relatively simple, the findings of this study can be gen-
eralized because many engineering computation problems follow the same pattern. For
instance, the scientific method is appropriate for most engineering problems and engineering
software can often be abstracted by the following simple model: input information then
perform calculations and finally output results. Moreover, the calculation step is similar
between many engineering computation problems because it involves solving some given
set of governing equations together with appropriate boundary and/or initial conditions.
Given the similar pattern between the beam problem and other engineering problems, the
method presented in this paper can be applied to larger and more complex problems. The
advantages of the current method will greatly increase as the size and complexity of the
problem grows because the value of a systematic approach increases with the number of
details and the number of people involved.
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Abstract. Activity networks model the time to project completion based on the times to complete 
various subtasks, some of which can proceed concurrently and others of which are prerequisite to 
others. Uncertainty in the times to complete subtasks implies uncertainty in the overall time to 
complete the project. When the information about the times to complete subtasks is insufficient to 
fully specify a probability distribution but sufficient to bound the distribution, the problem of 
making conclusions about time to complete the entire project requires use of second-order 
probabilistic techniques. An interval-based technique for this is described, and applied to the 
problem of evaluating activity networks. 
 

1. Introduction 
 
The Problem. Determining the completion time of activity networks is of importance to 
engineering project management, and is the subject of an extensive and expanding body of works. 
Forecasts for activity durations must often be estimates, since the execution of an activity 
typically depends on various factors whose details are not knowable in advance. This leads 
naturally to modeling durations of activities with, for example, probability distributions. 
However, determining the distribution of the completion time of the entire network can then be 
non-trivial. Addition and maximization are typical algebraic operations on random variables 
occurring during evaluation of activity networks (Agrawal and Elmaghraby 2001). Distributions 
must be found for the sums of random variables whose distributions describe the durations of 
activities on a given path. Also, various paths may each have some chance of being the critical 
one, depending on the summed times of the activities comprising each path. This requires 
calculating distributions of the maximums of random variables, because when computing the time 
to complete concurrent tasks, the joint completion time is the maximum of the completion times 
of the concurrent tasks. 

A further challenge is posed by the need to model the dependency relationships among the 
duration distributions of the various activities. A complete solution to the distribution of the 
network completion time would, in general, require specification of a multivariate joint 
distribution with one marginal for each activity duration distribution.  
 
Modeling activity networks. In order to solve networks a variety of simplifying assumptions 
have been proposed. The most drastic of these is to model activity duration as numbers. The 
network completion time is then the completion time of the critical (longest duration) path 
through the network. However, this removes uncertainties that are essential to account for in 
understanding important properties of the network, such as risk of project delay and the 
consequent financial and other consequences. Hence it is better to retain distributions as 
representations of individual task durations. This suggests a less drastic simplification, namely 
statistical independence. 

One type of independence assumption applies to understanding the completion time of a 
single task. A factor is something that contributes to the uncertainty in an activity duration such 
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as weather conditions (for construction projects), labor variabilities, etc. It is typically considered 
reasonable to assume that the factors contributing to completion time of a particular task act 
independently. Summing them thus involves determining the sum of independent random 
variables. Agrawal and Elmaghraby (2001) propose an algorithm and review another early 
algorithm proposed by Martin (1965).  

The assumption that completion time distributions of different activities are independent has 
been the basis of considerable work. Robillard and Trahan (1977) show how activity network 
completion time distributions can be approximated efficiently under this assumption. They derive 
lower and upper bounds for the mean and variance of the completion time distributions. 
Kleindorfer (1971) bounds the time to complete the activity network with lower and upper 
bounding distributions under the same independence assumption. Kamburowski (1985) provides 
an upper bound on the expected project completion time for independent activity duration 
distributions, each a member of a large class of distributions. A more recent algorithm was 
proposed by Schmidt and Grossmann (2000) to obtain the distribution of the project duration 
under the independence assumption. A general-purpose algorithm for arithmetic operations on 
independent random variables is described and some previous algorithms are noted in Berleant 
(1993). The maximization operation is a particularly simple case since the cumulative probability 
that two tasks will be completed by any given time is the product of the probabilities of 
completion by that time for each task.  

The problem with independence assumptions is that the completion times for different tasks 
are often not independent. For example, frequently tasks share factors that tend to affect the tasks’ 
completion times similarly. Shipbuilding is an example of a domain where correlations are 
important (van Dorp and Duffey 1999). Thus it is important to consider how activity networks 
can be analyzed when the individual task completion time distributions are not independent. 

Ahuja and Nadakumar (1985) and Padilla and Carr (1991) capture information about 
correlations among different activity completion times by identifying individual factors that  
affect the rate of progress across multiple activities. Examples of factors include weather, legal 
issues, environmental issues in construction projects, variability due to labor, etc. Each sample 
drawn from the distribution of such a factor affects the simulated duration of a number of 
activities. Woolery and Crandall (1983) allow effects of factors to vary over time. For example, 
weather may impose more uncertainty during some times of the year than others. Levitt and Kunz 
(1985) examine whether the actual completion times of tasks were lower or higher than expected, 
and adjust the projected completion times of future tasks that share factors with completed tasks 
whose completion times deviated from expectations. Wang and Demsetz (2000) propose an 
elicitation method for using expert judgements to estimate distribution functions for factors 
affecting task completion time. Tasks that share factors therefore have correlated durations. In the 
solution offered in this paper, each individual task completion time may be described with a 
number, an interval, or a distribution function.  

In the case of distribution functions, two task completion times might be independent random 
variables, as when the tasks are performed in different environments and proceed independently. 
Alternatively, completion times might be positively correlated, as when both depend on the 
quality of management and proceed within the same managerial environment. Or, they could be 
negatively correlated, as when resource sharing means that faster completion of one implies 
slower completion of the other. Finally, various factors might interact to make completion times 
dependent in ways the details of which are lost by merely stating the amount of correlation. The 
solution offered in this paper avoids requiring the assumption that individual task completion 
times are independent or have any other dependency relationship. Project management is just one 
application of activity networks and, hence, of the technique described. 
 
Solving activity networks. Diaz and Hadipriono (1993) compare five methods of activity 
network evaluation, finding significant differences among the results. For example, PERT tended 
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to give more optimistic estimates of project time overrun than the other four methods, and 
differences between Monte Carlo simulation methods and the other methods tended to be 
exacerbated by use of asymmetric distributions for activity durations because the details of the 
asymmetries were not captured by the other methods. The Narrow Reliability Bounds (NRB) 
method (Ditlevsen 1979) frequently does not contain the results of the other methods between its 
bounds.  

The time to complete the job (TCJ) can be addressed analytically, numerically, or by 
simulation. Analytical approaches generally rely on approximations and/or simplifying 
assumptions, such as that distributions of individual task completion times are normal, or that 
moments of distributions characterize all that is necessary to know about them (e.g. Mehrotra et 
al. 1996).  

Simulation and numerical methods pose fewer needs for such simplifications, but present 
other tradeoffs. Thus, it can be harder to accomodate potentially important aspects of a model 
within a numerical method than with simulation. An example is that combinatorial explosion 
favors simulation over numerical methods for certain problems involving multiple marginals. On 
the other hand, simulation has disadvantages relative to numerical methods as well. The best 
known is perhaps the risk of unreliable results due to insufficient iterations. Monte Carlo 
simulation in particular has several other problems as well (Ferson 1996). One potentially 
significant problem with simulation is the difficulty it can have in handling models where the 
distributions of random variables are incompletely known or are partially dependent on one 
another. For example, correlation values do not fully define a dependency since, in general, many 
different joint distributions may have the same value for correlation (Berleant and Zhang 
2004(a)). Given a correlation value as an input, it is difficult in a simulation to avoid assuming 
just one dependency that satisfies the given correlation. Analysts may make such an assumption 
without noting this or even realizing it (Ferson et al. 2004).  

The proper outcome of such a model specification that accounts for unknown dependencies is 
that distributions resulting from an analysis, such as sums or maximums of other distributions, 
cannot be fully specified. They can however be bounded with envelopes around the space within 
which the distribution curves must be. With simulation it is difficult to deal with envelopes 
because, since the distribution is not fully specified, it is not clear how to generate samples of the 
random variable in question. This issue can be circumvented by using appropriate numerical 
methods. One such method, the DEnv algorithm (Berleant and Zhang 2004(b)), is the basis of this 
paper.  
 
Summary. Assumptions help in simplifying problems, but can be risky when not properly 
supported as results can be significantly affected. Validity of assumptions is therefore an 
important issue and one that has motivated considerable concern. Therefore it is important to 
consider how the computation of a distribution for activity network completion time can be 
affected by these assumptions. This report addresses that issue by accounting for such 2nd-order 
uncertainties by avoiding the requirement that dependencies among activity durations be 
specified. Results show that networks can exhibit a range of completion time distributions 
consistent with the input data. This illustrates the importance of assumptions in two ways: (1) that 
they often must be made in order to get results of acceptable specificity, and (2) that they must be 
made reliably to get reliable results.  
 

2. Approach 
 
Determining the time to complete all tasks in a network of tasks is easy when the time to 
complete each individual task in the network has a numerical value, harder when individual 
completion times are described using probability distributions, and still more challenging when 
these distributions are neither assumed independent nor assumed to have any other dependency 
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relationship. A method is described here for determining completion times of task networks in the 
last case. We begin by describing each task completion time with a probability distribution 
function, noting that this includes as a special case a completion time described with a precise 
number since a number may be represented as a step distribution function (Figure 1, left). We 
later generalize to the case of left and right envelopes enclosing a family of cumulative 
distribution functions (CDFs) which, as a special case, allows a completion time to be represented 
as an interval describing a range of plausible values with high and low bounds but no information 
about the probability distribution within those bounds (Figure 1, right).  

 
Figure 1. (Left) the numerical value of time t1 is a special case of a cumulative distribution 
function (CDF) which is 0 below t1, and 1 at t1 or above. (Right) an interval [tlo, thi] is a 
special case of a family of distributions containing any CDF which is 0 below tlo and 1 (at or) 
above thi. 
 

In real situations, two task completion times might be independent random variables, as when 
each is done in a different environment and they proceed independently. Alternatively, 
completion times might be highly positively correlated, as could occur if the tasks depend on the 
quality of management and proceed within the same managerial environment. As a third 
possibility, completion times might be quite negatively correlated, as could occur if the tasks 
proceed concurrently with shared personnel or other resources and faster completion of one 
entails slower completion of the other. A final and quite likely possibility is that various factors 
interact to make completion times dependent in a way that is difficult to characterize accurately. 
Therefore in the general case we wish to avoid assuming that individual task completion times are 
independent or have any other particular dependency relationship. A solution to this general case 
is offered. 

The results have application to project management, where task completion time analyses can 
be useful as illustrated by the well-known PERT (Program Evaluation and Review Technique) 
method. 
 

3. Solution for the case of two concurrent tasks 
 
This section discusses the case of two concurrent tasks. Generalization to larger networks of tasks 
is discussed in Section 3.  

Consider concurrent tasks X and Y, each beginning when the task environment is in a start 
state S and whose joint completion brings about desired finish state F (Figure 2). Let Fx be the 
CDF of random variable tx, the completion time of task X, and let Fy be the CDF of random 
variable ty, the completion time of task Y. We begin by reviewing solution strategies when tx and 
ty are independent, and then generalize by removing the independence assumption. 

One solution strategy is the analytical one. The analytical approach to arithmetic on random 
variables is limited in the forms of the distributions it can handle and usually relies on the 
assumption of independence (e.g. Springer 1979). The Monte Carlo approach is a numerical 
strategy that does not produce definite bounds, does not handle cases where one operand is a CDF 
and the other an interval except under severe restrictions, does not handle the case of unknown 
dependency between random variables, and has other limitations (Ferson 1996). Numerical 
convolution (Ingram et. al 1968; Colombo and Jaarsma 1980) is an alternative numerical strategy 
that allows arithmetic operations to be applied to random variables with a wide variety of CDFs, 
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and has been extended to capture discretization error via error bounds that propagate through the 
calculations and lead to left and right envelopes around the true solution (Williamson and Downs 
1990; Berleant 1993; Cooper et al. 1996). See Figure 3.  
 

 
 
Figure 2. PERT diagram showing a starting state S, a finish state F, and two tasks X and Y 
that must be completed to reach state F. Two different distribution functions Fx and Fy 
describe random variables tx and ty, which represent the completion times of tasks X and Y.   
 

Envelopes consist of non-crossing CDFs that enclose the paths of all CDFs consistent with 
the problem. These envelopes are often called probability bounds (Ferson et al. 2002) and, 
because they do not cross, the right envelope has first order stochastic dominance over the left 
(Levy 1992). Coarse discretizations for random variables tx and ty (e.g. Figure 3) lead to 
correspondingly large discretization error and therefore more widely spaced left and right 
envelopes. Finer discretizations would result in left and right envelopes that have more and 
smaller steps and are closer together. The CDF for result t, the time to complete both tasks, must 
be some CDF enclosed by the left and right envelopes. 

Left and right envelopes are each derived from a joint distribution table such as that shown in 
Figure 3. The probability mass shown associated with each interior cell of a joint distribution 
table is the product of the probability masses in its corresponding marginal cells if the operands 
are independent, but relaxing the assumption of independence leaves them undetermined. 
Therefore when the dependency relationship between the operands is unknown, the process 
illustrated in Figure 3 requires significant modification (Berleant and Goodman-Strauss 1998). 
Regardless of the dependency relationship between the marginals, the masses of the interior cells 
are constrained to some extent by the marginals, which require the masses of all the interior cells 
in a row to sum to the mass of the marginal cell at the right of that row, and the masses of the 
interior cells in a column to sum to the mass of the corresponding marginal cell at the bottom of 
that column. Consequently the summed mass of any particular subset of interior cells will 
typically have a range of possible values, and for a properly chosen subset the maximum or 
minimum of this range yields a point on the left or right envelope. More specifically, obtaining 
the height of the left envelope at time t requires maximizing the collective probability mass of the 
interior cells whose intervals have low bounds below (or equal to) t subject to the row and 
column constraints, because the mass of each of those cells either may (if the interval’s high 
bound is above t) or must (if the interval’s high bound is not above t ) be in the cumulation at t. 
The process is analogous for finding the height of the right envelope: minimize the sum of the 
probability masses of the interior cells whose intervals have high bounds below or equal to t 
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(Berleant and Goodman-Strauss 1998). Figure 4 explains the process, which can be done by hand 
for a very small table although in the general case linear programming (LP) is more practical. The 
left and right envelopes have staircase-like forms. In Figure 4, for example, the heights of the left 
and right envelopes at t=3.5 hold for all other values of t between 3 and 4. Because for staircase-
shaped curves the heights for only a limited number of values of t need to be found to fully 
characterize the envelopes, the number of LP problems is correspondingly limited. Figure 4 also 
shows the full envelopes.  

 
t = max(tx,ty),  tx and ty independent 

 
[ ]3,2∈t  

p = 1/8 
[ ]4,2∈t  

p = 1/8 
[ ]3,2∈yt

 
 p = ¼ 

[ ]4,3∈t  
p = 1/4 

[ ]4,3∈t  
p = 1/4  

[ ]4,3∈yt  
 p = ½ 

[ ]5,4∈t  
p = 1/8 

[ ]5,4∈t  
p = 1/8 

[ ]5,4∈yt  
 p = ¼ 

[ ]2,1∈xt
 
 p = ½ 

[ ]4,2∈xt
 
 p = ½ 

←        ↑ 
tx        ty 

 
Figure 3. Random variable tx is coarsely discretized (bottom row), and similarly for ty (right 
hand column). The binary operation appropriate to the task completion problem is 
max(tx,ty) because, for any samples of tx and ty, both tasks are complete when the one that 
finishes last is complete. The distribution of joint completion times is implicit in the set of 
interior cells (unshaded) of the joint distribution table, each of which is calculated from its 
corresponding marginal cells. For example, the upper left cell contains probability mass 1/8, 
which is the product of the probabilities of its marginal cells in the right hand column and 
bottom row, 1/4 and 1/2 respectively. The product is used because tx and ty are assumed 
independent (this assumption will be relaxed later). The upper left cell contains the interval 
[2,3] because its marginal cells have task X complete in time [1,2] and Y in time [2,3], so the 
time to complete both could potentially be anywhere within that interval. The cumulation 
over t of the interior cells is bounded by the left and right envelopes shown, with the 
separation between the envelopes due to the undetermined distribution of each cell’s mass 
across its interval which could, in extreme cases, be concentrated at the interval low or high 
bound (Berleant 1993).  
  

When linear programming is applied to minimization and maximization problems of this type 
the objective function is the sum of the probabilities of the subset of interior cells to be 
maximized or minimized, and the constraint set consists of one for each row and one for each 
column. A general-purpose linear programming algorithm such as the simplex method can be 
used, but a faster choice is the transportation simplex method, which applies to certain problems 
such as these containing only row and column constraints. 

To apply the transportation simplex method to optimize the distribution of probability masses 
across interior cells, the cost coefficients of the cells in the subset whose probability mass is to be 
maximized or minimized are set to one, the cost coefficients of the remaining cells are set to zero, 
and the allocations of the cells are their probability masses. In our software implementation, 
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problems involving generating envelopes from a 16x16 joint distribution table require 
approximately 14 seconds using the simplex algorithm but only 1 second using the transportation 
simplex algorithm, on a Pentium III PC running Windows NT. 

 

Figure 4. An example. 

Each interior cell interval in the following joint distribution table has bounds defined by 
max(tx,ty) for its associated (shaded) marginal cell intervals. While interior cell probabilities 
are constrained by the marginal cell probabilities, they are not fully determined because no 
assumptions are made about the dependency relationship between tx and ty. 
 

[ ]3,2∈t  
p11 

[ ]4,2∈t  
p12 

[ ]3,2∈yt  

P = ¼ 
[ ]4,3∈t  

p21 
[ ]4,3∈t  

p22 
[ ]4,3∈yt  

P = ½ 
[ ]5,4∈t  

p31 
[ ]5,4∈t  

p32 
[ ]5,4∈yt  

P = ¼ 

[ ]2,1∈xt  
p = ½ 

[ ]4,2∈xt  
p = ½ 

  ←     ↑ 
  tx     ty 

Consider for example the cumulative probability of t at 3.5. Bolded probabilities masses p11, 
p12, p21, and p22 can contribute to the left envelope of t at 3.5, because the low bounds of the 
intervals in those cells are ≤3.5. Therefore those probabilities could all be in the cumulation 
at t=3.5, and in the extreme case that p12, p21, & p22 happen to be concentrated at the low 
bounds of their intervals, will be (and to find points on the envelopes, we are interested in 
extreme cases). To maximize this cumulation of p11, p12, p21, and p22, their sum must be 
maximized (at the expense of non-bolded probabilities p31 and p32), yielding  
p11+p12,+p21+p22=3/4  as shown in the following solution: 

 
[ ]3,2∈t  

p11=¼ 
[ ]4,2∈t  

p12=0 
[ ]3,2∈yt  

P = ¼ 
[ ]4,3∈t  

p21=0 
[ ]4,3∈t  

p22=½ 
[ ]4,3∈yt  

P = ½ 
[ ]5,4∈t  

p31=¼ 
[ ]5,4∈t  

p32=0 
[ ]5,4∈yt  

P = ¼ 

[ ]2,1∈xt  
p = ½ 

[ ]4,2∈xt  
p = ½ 

←      ↑ 
tx      ty  

For the other envelope, the (unary “sum” of) italicized probability mass p11 is minimized, 
yielding 0 as shown in the following solution: 
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[ ]3,2∈t  

p11=0 
[ ]4,2∈t  

p12=¼ 
[ ]3,2∈yt  

P = ¼ 
[ ]4,3∈t  

p21=½ 
[ ]4,3∈t  

p22=0 
[ ]4,3∈yt  

P = ½ 
[ ]5,4∈t  

p31=0 
[ ]5,4∈t  

p32=¼ 
[ ]5,4∈yt  

P = ¼ 

[ ]2,1∈xt  
p = ½ 

[ ]4,2∈xt  
p = ½ 

←      ↑ 
tx      ty  

These maximum and minimum cumulations of  3/4 and 0 hold not only for t=3.5 but also for 
all other t from 3 to 4, because no interior cell has an interval with an endpoint in that 
range, as graphed next. 

 
  
Repeating this process for appropriate values of t yields the following full envelopes around 
t=max(tx,ty). 
 

     
 
Although the marginals used here are the same as in Figure 3, the envelopes are farther 
apart because the dependency between the random variables is unspecified, so the 
inferential power of the independence assumption is absent. The discretization,   coarse  in  
this  example, also affects the degree of separation of the envelopes. Finer discretization 
would yield smaller steps in the envelopes and hence envelopes that are, on average, closer 
together. 
 

Figure 4 (end). 
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4. Generalizing the solution to networks of concurrent and sequential tasks 

Extending the approach from two concurrent tasks to larger networks of tasks requires solving 
three problems: (1) determining the completion time of two tasks that run not concurrently but 
sequentially, (2) determining the completion time of three or more concurrent tasks, and (3) using 
results as inputs to obtain further downstream results. These problems may be solved as follows.  

(1) To determine the completion time of two sequential tasks, their individual completion 
times are added, because one completes and then the next begins. To add them, the same 
procedure that was described earlier for concurrent tasks is applied except that the 
intervals in the interior cells of the joint distribution table are obtained by performing 
tx+ty instead of max(tx,ty). Thus for each joint distribution tables in Figure 4, the top left 
cell would contain the interval [3,5]=[1,2]+[2,3] instead of [2,3]=max([1,2],[2,3]). 

(2) To handle three concurrent tasks, the result for two of them is calculated, and that result 
used as the completion time for a composite task that proceeds concurrently with the third 
task. In other words, for concurrent tasks X, Y, & Z, we wish to calculate 
max(max(xt,yt), zt). This is a case of using intermediate results as inputs, discussed next. 

(3) To use a result as an input to another calculation, we must convert a pair of left and right 
envelopes, which is what a result looks like, into a set of intervals and associated 
probability masses, which is what a marginal in a joint distribution table looks like. To 
convert, first note that the envelopes consist of horizontal and vertical line segments. This 
allows the space they enclose to be partitioned into a stack of rectangles (Figure 5, top). 
Each rectangle defines an interval whose low bound is a value on the horizontal axis at 
which there is a vertical segment of the left envelope (forming the left side of the 
rectangle), and whose high bound is a value on the horizontal axis at which there is a 
vertical segment of the right envelope (forming the right side of the rectangle). The mass 
of the interval is the increment in the cumulative probability represented by the (bottom-
to-top) height of the rectangle. The result of this partition process is a set of intervals and 
their associated probabilities, usable as a marginal in a joint distribution table for another 
arithmetic operation (Figure 5, bottom). 

 
5. Using inferences from result envelopes 

Consider three types of inference that may be drawn from a pair of left and right envelopes. 

1) The probability of finishing all the tasks by some time T0 is at least P0 in Figure 6. 
Similarly, the probability of not finishing by time T0 is at least (1-P1). 

2) Suppose that p(some outcome)∈[P,1]. For example in Figure 6, p(task completion by 
time T1)∈ [P2,1]. The interval [P2,1] is qualitatively different from a point estimate 
somewhere between P2 and 1 that would derive from an analysis that produced a single 
distribution function instead of left and right envelopes. This is because, unlike a point 
estimate, p∈ [P2,1] indicates the plausibility of two distinct scenarios with different  
implications, (1) certain completion (within the model limits), and (2) uncertain 
completion. Decisions about resource allocation on the overall project or about deadlines 
to contract for could depend on which scenario is correct, yet the implied opportunity to 
seek further information to enable discriminating, or at least to reduce the second order 
uncertainty in completion time would not be available from an analysis that produced a 
point probability estimate. 

3) Consider the problem of determining the probability that one task will finish later than 
another, p(ty>tx). The probability of one task or path taking longer than another is relevant 
in such applications as project management where task networks represent PERT 
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diagrams describing the prerequisite structure of tasks in a project. A simple example is 
two tasks that begin at the same time, as in Figure 1. A generalization is two tasks 
embedded in a network of tasks, such as in Figure 7 for final tasks CF and EF. In the 
generalization the tasks need not start at the same time, and the times at which they 
complete depend on both the task itself and any prerequisite tasks in the network. These 
prerequisite tasks may form a simple sequence as in the case of task EF with prerequisite 
partial path SDE, or contain concurrency as in the case of task CF with prerequisite, 
concurrent, partial paths SAC and SBC.  

 

    t=max(tz,tw)  
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Figure 5. Staircase shaped envelopes partitioned into a set of intervals and masses 
(top). These might represent a random variable tz=max(tx,ty), used as a marginal in 
the last row of a joint distribution table (bottom), and combined with the concurrent 
completion time tw of some other task W. The interior cell probabilities of the table 
are undetermined since no dependency relationship was defined between the 
marginals, and so cannot be given values. 
 

Solving this type of problem requires determining p(ty>tx), where tx and ty are sample 
values of random variables for the time points at which two tasks X and Y, or CF and EF, 
etc., complete. To do this, and relate it to standard techniques, we first provide a 
continuous solution for the case of independent distributions, then give the discrete form 
of the solution, then an intervalized discrete form, and finally remove the independence 
assumption.  

 

Figure 6.  Left and right envelopes associate probability intervals with time points. 
If the envelopes describe cumulative probability of task completion over time, then 
the probability of completion by time T0 is within the interval [P0 ,P1], and by time 
T1, [P2,1].   
 

In the case of a continuous solution for independent distributions, if the density 
functions of the task completion times are )(tfx and )(tf y  and sample completion times 
are tx and ty, then 

(1) ∫ ∫
∞

−∞= <<∞−













=>

t tt
xyxy dttfdttfttp

0

)()()( 0 . 

Figure 7. A network of tasks. The times to complete tasks SB and SD are shown as 
cumulative distributions. The time to reach state E is the sum of the times to 
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complete SD and DE, and if the dependency relationship between the completion 
times for SD and DE are unknown the sum is a pair of envelopes rather than a 
single cumulative distribution. 

 
Intuitively, ∫

<<∞− tt
x dttf

0

)( 0  is the area under xf over all times earlier than some given 

time t, which is p(t>tx), or the probability that t is later than the completion time tx of task 
X. The probability that the completion time of task Y is within a time period centered at t 
with width dt is p( dttt y 2

1±∈ )= .)( dttf y  The probability of both (t>tx) and 

)( 2
1 dttt y ±∈  is therefore the product of their individual probabilities, 

∫
<<∞− tt

xy dttfdttf
0

)()( 0 , and integrating this expression over all possibilities for t gives 

equation (1). 

Discretizing (1) gives ∑ ∑
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t0 spaced ∆t apart. This can be intervalized, bounding the discretization error and giving  
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where the Tx and Ty are intervals over tx and ty such as might appear in the marginals of a 
joint distribution table, p(Tx) and p(Ty) are their associated probability masses, and 

xyx TTT ,, and yT are their low and high bounds.  

As an example of equation (2) consider the joint distribution table in Figure 8. The 
low bound of p(ty>tx) is the sum of the probability masses of cells labeled True, which is 
0.789. The high bound is the sum of the masses of cells labeled True or Uncertain, which is 
0.939, yielding ]939.0,789.0[)( ∈> xy ttp . 

To remove the independence assumption, the masses of the interior cells are 
reapportioned among the interior cells within the limits imposed by the row and column 
constraints using linear programming to minimize the summed masses of the cells labeled 
True, giving a low bound of 0.61, and then reapportioned again to maximize the summed 
masses of the cells labeled True or Uncertain, giving a high bound of 1. The new result, 

]1,61.0[)( ∈> xy ttp , as expected is wider than the earlier result of 
]939.0,789.0[)( ∈> xy ttp , which benefited from assuming independence. 
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ty>tx, tx and ty independent 
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tx      ty 

 
Figure 8. Joint distribution table representing ty>tx, for independent tx and ty. Each 
interior cell is labeled True if ty>tx for ty and tx in the intervals of the marginal cells of 
that interior cell,, False if instead ty<tx, and Uncertain if the marginal cell intervals 
overlap (indicating that the unspecified details of the distributions of the marginal 
cell masses over their intervals determine whether ty>tx for all, some, or none of the 
interior cell mass). 

 
To restate an example, this process could be used to bound the probability that the 
completion time of task X will be later than that of task Y in a PERT diagram conforming 
to Figure 1. The process could also be used in a more complex example such as bounding 
the probability that task CF will complete later than task EF in Figure 7. The completion 
time of each of these tasks will be in the form of envelopes, which when converted to 
marginals will have overlapping intervals as in Figure 5. However any overlap is 
irrelevant to equation (2), which justifies Figure 8. Ultimately such results could support 
management decisions about resource allocation intended to optimize the overall 
completion time of the entire project.  

 
6. Software 

 
Crystal Ball (www.decisioneering.com) and @risk (www.palisade.com) are well-known 
commercial products that rely on Monte Carlo simulation, thereby inheriting the shortcomings of 
Monte Carlo simulation noted earlier in Section 2. RiskCalc (Ferson 2002) is a commercially 
available package that can do the operations on random variables used here, although its 
algorithm (Williamson and Downs, 1990) is different and more complicated than the one used 
here, some further details of which have been described by Berleant and Zhang (2004(a)). Our 
software, Statool, is downloadable from http://www.public.iastate.edu/~berleant/statool.html.  
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7. Conclusion 

We have shown how to solve a simply stated problem with significant implications: determining 
completion times of networks of tasks in the absence of assumptions about both the forms of 
distribution functions and their independence or other dependency relationships. Results are left 
and right envelopes bounding the space of plausible CDFs. Completion times of individual tasks 
may be expressed as numbers, intervals, distribution functions, or left and right envelopes.  

Real problems frequently pose a variety of uncertainties. Therefore methods for obtaining 
results with minimal assumptions and while accounting for uncertainty remain an important area 
of investigation. 
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Methods For Interval Linear Equations

Eldon Hansen

Abstract. We discuss one known and five new interrelated methods for bounding the hull of the solution
set of a system of interval linear equations. Each method involves a polynomial amount of computing; but
requires considerably more effort than Gaussian elimination. However, each method can yield sharper results
for appropriate problems. For certain problems, our methods can obtain sharp bounds for one or more (and
perhaps all) components of the hull of the solution set.

1. Introduction

Consider a set of linear equations

Ax = b (1.1)

where A = [A, A] is an interval matrix of order n and b = [b, b] is an interval vector of n
components. The problem of determining the interval hull h of the solution set is NP-hard.
(See [5].)

In practice, one can accept non-sharp bounds on h obtained by applying an interval
version of Gaussian elimination. Only a polynomial amount of computing of order O(n3)
is needed. Unfortunately, bounds obtained in this way can be far from sharp because of
growth of interval widths caused by dependence. (See [2] or [4].). In fact, the method can
fail even when A is regular. See [6].

The author introduced preconditioning (see [1]) to reduce the effect of dependence in
Gaussian elimination. In this procedure, the equation Ax = b is multiplied by an approx-
imate inverse B of the center of A. Unfortunately, preconditioning generally enlarges the
solution set. Thus, the hull hP of the preconditioned system BAx = Bb contains h; but is
generally larger than h.

Later, the author found that the hull of the preconditioned system could be determined
exactly (except for roundoff). In [4], the procedure to do so is called the “hull method”. The
hull method requires somewhat more computing then applying Gaussian elimination to the
preconditioned system. Nevertheless, it is the recommended method. The hull method fails
only if the preconditioned matrix BA is irregular.

Another way to get bounds on h is to use a version of Gaussian elimination which
involves use of what the author called “parameter dependent monotonicity”. A procedure
of this kind has been described by the author [3]. It requires more computing that ordinary
Gaussian elimination; but yields sharper results. It does not involve preconditioning which
enlarges the solution set.

In this paper, when we refer to “crude bounds” on the hull h, we mean bounds obtained
by a method such as described above. The term is meant to imply that the bounds are
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obtained by a relatively efficient method; and the bounds include the exact result, but are
not sharp.

In subsequent sections, we introduce six interrelated methods for bounding h. They
require a polynomial amount of computing; but considerably more computing than is needed
to get crude bounds. Each requires solving linear programming problems. A weakness of
our methods is that they are not applicable if the crude methods fail to produce bounds.

For a small fraction of possible linear systems, the methods in Sections 3 and 4 provide
the exact (except for roundoff) hull of the solution set. For a slightly larger fraction of
systems, the method of Section 4 provides exact bounds on one or more components of h.

We define and discuss sign-definiteness in the next section. All our methods use this
property. In Section 5, we describe ways to precondition a system of equations to produce a
desired kind of sign-definiteness. The methods are described in Sections 3, 4, and 6 through
9. In Section 10, we note that our methods can be used to bound the inverse of an interval
matrix. Section 11 provides a suggested procedure for deciding how to use our methods.
Section 12 discusses some special problems for which our methods are especially suited.

2. Sign-definiteness

We shall need a concept defined as follows:

Ax̃ = [Ax̃,Ax̃] (2.1)

That is, we are able to express Ax̃ in terms of endpoints of elements of A because we know
the signs of the components of x. Equation (1.1) can therefore be written [Ax̃,Ax̃] = [b, b].
Since x̃ must be such that these intervals intersect. it follows that

Ax̃ ≤ b and Ax̃ ≥ b. (2.2)

To find a component hi (and hi) for a given i = 1, ..., n, we can minimize (and maximize)
x̃i subject to the constraints (2.2). This linear programming problem can be solved by a
polynomial amount of computing.

We were able to formulate this problem because, in (2.1), we could express Ax̃ as [Ax̃,Ax̃].
In the general case in which x is SD and x̃ ∈ x, we have

aij x̃j =
{

[aij x̃j , aij x̃j ] if xj ≥ 0,
[aij x̃j , aij x̃j ] if xj < 0.

. (2.3)

Therefore,

Ax̃ = [Ã1x̃, Ã2x̃] (2.4)

where the real (i.e., non-interval) matrices Ã1 and Ã2 are formed from appropriate endpoints
of elements of the interval matrix A.

It is this feature which enables us to formulate three of the methods in this paper. A
similar feature enables us to formulate the other three methods. See Section 4. In particular,
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see Equation (4.1). In all six of our methods, we determine or produce a vector or subvector
which is SD and use this fact to obtain an algorithm for bounding h. We rely on the crude
methods to provide essential information about SD.

Each algorithm involves solving a set of linear programming problems. Thus, they require
considerably more computing than the procedures in Section 1 for getting crude bounds.

3. First method

Assume we have computed crude bounds xB on h by a method such as those described in
Section 1. If xB is SD, then h is SD; and we can use the known method of Section 2 to
compute h sharply. If xB lies in just a few orthants, a reasonable procedure is to use the
method to obtain the part of h in each of these orthants. The narrowest interval vector
containing all such results is h.

If h extends into all 2n orthants, then this approach entails solving 2n separate problems
each involving 2n linear programming problems. This amount of effort is prohibitive even
for moderate values of n. This is an example of an exponential amount of computing used
to solve the NP-hard problem of determining h.

4. Second method

It is possible to define a linear programming problem in which the primal variables are
components of x and the dual variables are elements of the inverse of A. Since our second
method concentrates on the inverse, the method can be considered as a kind of dual of the
first method. In this sense, the third and fourth methods below are duals as are the fifth
and sixth, respectively.

Given an interval matrix A, let P denote the interval matrix which is the hull of the set
of inverses of real matrices in A. Then for any real Ã ∈ A, there exists P̃ ∈ P such that
P̃ Ã = I. Note that this does not imply that for any P̃ ∈ P, there exists Ã ∈ A such that
P̃ Ã = I.

Let pT
i denote the ith row of P . If pi is SD, then we know how to express both p̃T

i A and
p̃T

i b for any real p̃i ∈ pi. For example, if pi ≥ 0, then

p̃T
i A = [p̃T

i A, p̃T
i A] and p̃T

i b = [p̃T
i b, p̃T

i b]. (4.1)

Note that
xi = {p̃T

i b̃ : p̃T
i Ã = eT

i , Ã ∈ A, b̃ ∈ b}
where ei denotes the ith column of the identity matrix. Therefore, hi is the solution of the
linear programming problem

min pT
i b (4.2)

subject to pT
i A ≤ eT

i and pT
i A ≥ eT

i ; and hi is the maximum of pT
i b subject to the same

constraints.
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More generally, if pi is just SD rather than nonnegative, we know how to express pT
i A

and pT
i b in a way similar to (4.1). See (2.3). Therefore, we can compute sharp values of hi

and hi.
If all the elements of P are SD, we could compute all the components of h sharply

by solving 2n linear programming problems. However, we now show that the results can
sometimes be obtained more simply.

If we differentiate the equation AP = I with respect to an element ars of A, we find that

∂Pij

∂ars
= −PirPsj (i, j, r, s = 1, ..., n). (4.3)

When P is SD, we know the signs of these derivatives. Therefore, we can determine the real
matrix in A whose inverse is P and the real matrix in A whose inverse is P . For example, if
P ≥ 0, then the derivatives given by (4.3) are negative. In this case, P = A

−1 and P = A−1.
For certain conditions on b, the results of the optimization problem (4,2) (and the

corresponding max) can be expressed simply. For example, if P ≥ 0, we find

h =





[A−1
b, A−1b] if b ≥ 0

[A−1b, A−1b] if 0 ∈ b

[A−1b, A
−1

b] if b ≤ 0
.

This special case is known. See page 108 of [6].
For this example, we are able to compute h as the solution of two noninterval systems.

It requires that P be positive and that b be rather special. For our method P need only be
SD, and b is arbitrary. However, our method can require much more computing.

To formulate the linear programming problem (4.2) we must know the signs of all the
components of row pT

i of P. Using a method described in Section 1, we can compute crude
bounds on the ith row pT

i by solving AT p = ei. If the bounds are SD, then the exact row
pT

i is SD. In this case, we can obtain sharp bounds on xi using the above method.
If desired, we can compute bounds on all the rows of P by solving AT P T = I and then

compute bounds on all the columns of P by solving AP = I. The intersection of the two
results will generally be sharper than either result. This enhances the chance of proving
that pi is SD.

Let PB denote a bound on P obtained by a method such as that just described. Note
that we can obtain crude bounds on h by computing PBb; but the bounds need not be
sharp even if PB is sharp. Suppose pi fails to be SD in only a few of its components. We
can divide each of these components into its negative and positive parts and solve for xi

for each combination of cases in which pi is SD. Then h is the hull of the union of results.
Compare the similar statement in Section 3.

Let (pB
i )T denote the ith row of PB. In problem (4.2), the unknown real row vector

pi must be bounded by the interval row vector pB
i . If the method used to solve the linear

programming problem (4.2) can benefit from additional constraints, we can use pij ∈ pB
ij

(j = 1, ..., n).
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5. Preconditioning

We now consider methods of preconditioning which allow a preconditioned equation to be
solved exactly in part or in whole. One type of method involves preconditioning a vector so
that it is SD. See the methods in Sections 6 and 7. Another type eliminates the variables
which are not SD so that the problem can be partially solved. The latter type can be
regarded as preconditioning so that certain quantities are zeroed. It involves operations by
an interval matrix; so it is perhaps misleading to call it preconditioning. See the methods
in Sections 8 and 9.

We now consider the first type of preconditioning. Assume an interval vector x = [x, x]
is not SD. Define a real vector q with components

qi =




−xi if xi < 0 < xi and |xi| ≤ xi

0 if xi ≥ 0 or xi ≤ 0
−xi if xi < 0 < xi and |xi| > xi

(i = 1, ..., n).

Then the interval vector y = x + q is the nearest SD interval vector to x in some sense.
Assume x is not SD. However, assume that at least one component of x is strictly SD. By

“strictly SD”, we mean that the the interval is SD and neither endpoint is zero. An interval
having an endpoint which is zero is SD, but not strictly SD. Let j be the index such that
xj is the component of largest mignitude. The mignitude of xj is

mig(xj)=





xj if xj > 0
−xj if xj < 0
0 otherwise

.

Define the vector v(j) with components

vi(j) =
{

qi/xj if xj > 0
qi/xj if xj < 0

and define the matrix

Vj = I + v(j)eT
j . (5.1)

Then Vjx is SD.
Note that

V −1
j = I − 1

2v(j)eT
j (5.2)

Therefore, V −1
j is known exactly when Vj has been determined.

In what follows, we do not actually use the interval vector (such as x) which we pre-
condition so as to be SD. Instead, we use an unspecified real vector x̃ ∈ x. However, if we
precondition so that the interval vector x is SD, then the sign of any component of x̃ ∈ x
has the sign we impose on the corresponding component of x.

Suppose we precondition a matrix A by multiplying by a real matrix B̃. The product
M = B̃A can be irregular even when A is regular and B̃ is nonsingular. The four methods
we describe below all use some kind of preconditioning and in two cases B̃ becomes an
interval matrix. In each method, we assume that B̃ is such that M is regular.

A virtue of the preconditioning method just described is that the preconditioning matrix
differs from the identity in only one row. Contrast this with preconditioning using the inverse
of the center of A. See Section 1.
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The matrix V −1
j in (5.2) will be used as a preconditioner. The smaller the norm of the

vector v(j) used to define V −1
j , the closer V −1

j is to the identity. The enlargement of the
solution set by preconditioning is less when V −1

j is nearer the identity.. If more than one
component of x is strictly SD, it is sometimes possible to define a matrix similar to V −1

j
which is nearer the identity. We omit the details.

6. Third method

Our third method is obtained by introducing preconditioning into our first method. Suppose
we have obtained crude bounds xB on the solution to Ax = b and find that at least one
component of xB is SD. Then the corresponding component of the hull h is SD. Therefore
we can determine a matrix V as in Section 5 such that V xB is SD. This assures that V h is
SD.

Define y = V x and M = AV −1. Then the solution y of My = b is SD and its hull can
be found using the first method (in Section 3). We then obtain x as x = V =1y.

Presumably any kind of preconditioning can enlarge the solution set. It is natural to
compare the method using this kind of preconditioning with a method in Section 1 used to
get the crude bounds xB. The latter method requires considerably less computing.

To get xB, we can precondition by multiplying by an approximate inverse of the center
Ac of A. The closer Ac is to the identity, the less the preconditioning step tends to enlarge
the solution set. The closer xB is to being SD, the less the method just described enlarges
the solution set. (A measure of how far xB is from SD is the norm of the vector v(j) in
Section 5.) The amount to which preconditioning enlarges the solution set depends on how
far the preconditioner is from the identity matrix. Therefore, the comparative sharpness
of results when preconditioning by A−1

c or by V −1 depends strongly on the nature of the
problem. A similar statement holds for the methods discussed below.

7. Fourth method

In the third method, we introduced a preconditioning procedure which produced an equation
whose solution was SD. Therefore, we could apply the first method. In the same way, we
can precondition so that the new equation can be solved by the second method (in Section
4). That is, the preconditioning is such that a row of the inverse of the generated matrix is
SD.

The exact inverse P of A will usually be regular when A is regular. Assume it is. Also
assume that the bound PB (obtained as in Section 4) on P is regular. Then for any i =
1, ..., n, at least one component of the ith row (pB

i )T of PB must be SD. From Section 5,
we can determine a matrix V such that (pB

i )T V is SD. This implies that pT
i V is SD.

Assume that we have determined V such that row i of PV is SD. To precondition
Ax = b, we multiply by the matrix V −1. (Note that V −1 is exactly known from (5.2) when
V is known.) The new coefficient matrix is M = V −1A. Row i of the inverse of M is SD.
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We can compute the ith component of the hull of V −1Ax = V −1b using the second method
(see Section 4).

It is not necessary to verify that row i of the inverse of M is SD. If it were computed to
not be SD, it would still be correct to proceed as if it were.

Note that the result xi will generally not be a sharp bound on the corresponding
component hi of the hull since preconditioning by V −1 tends to enlarge the solution set.

There are two other reasons why a solution obtained by this method can fail to be sharp.
First, the computed bounds on the inverse will generally not be sharp. The preconditioning
matrix V is determined so that a row of the bound PB is SD. Since PB is not a sharp bound
on P, the matrix V generally causes an “overshoot” when changing a non-SD element to
SD. Therefore, preconditioning A by V =1 causes too large a change in A.

The other cause of loss of sharpness is more subtle. It occurs because P contains matrices
which are not inverses of matrices in A. The loss of sharpness is similar in nature to that
just described.

8. Fifth method

Assume that one or more component of the crude bound xB is SD. Then the corresponding
component(s) of the hull h are SD. For simplicity, assume that for some integer k, we have
hi < 0 < hi for i = 1, ..., k and hi is SD for i = k+1, ..., n. Partition A, x, and b conformally
so that the equation Ax = b takes the form

[
A1 A2

A3 A4

] [
y
z

]
=

[
c
d

]
. (8.1)

Here xT = (yT , zT ) where y has k components and z has n − k components. The hull of
the solution set of this system is such that the interval solution z is SD.

Perform interval Gaussian elimination; but stop when A3 is zeroed The result is an
equation of the form

[
A′1 A′2
0 A′4

] [
y
z

]
=

[
c′
d′

]
(8.2)

This equation can be written as the system
A′1y + A′2z = c′,
A′4z = d′.
Since z is SD, we can compute z sharply from the equation A′4z = d′ using the first

method (in Section 3). We can then compute bounds on y by backsolving A′1y + A′2z = c′.
When we perform the interval Gaussian elimination to obtain (8.2) from (8.1), interval

widths will tend to grow; and we should precondition. Suppose we precondition by mul-
tiplying Ax = b by an approximate inverse of the center of A. Then there is no point in
using the method just described because we can determine the hull of such a preconditioned
system sharply using the hull method. See [4].

Instead, we should precondition by an approximate inverse of the center of
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[

A1 0
A3 I

]

where I denotes an identity matrix of order n− k. This tends to enlarge the solution set by
less than preconditioning by an approximate inverse of the center of the entire matrix A.

9. Sixth method

We now consider a method which can be regarded as a kind of dual of the fifth method.
Suppose we compute crude bounds on the inverse P of A as described in Sections 1 and

4. To simplify discussion we fix our attention on the first row of P . We also simplify by
assuming that P1j is SD for j = 1, ..., k and that P 1j < 0 < P 1j for j = k + 1, ..., n.

Partition A as

A =
[

A1 A2

A3 A4

]

where A1 is k by k and A4 is n− k by n− k. We can perform Gaussian elimination on A in
such a way that A2 becomes zero. This is achieved by multiplying by a matrix of the form

B =
[

I B2

0 B4

]
.

This matrix need not be explicitly generated. However, the operations to obtain BA must
also be perfomed on b so that the new equation is BAx = Bb.

The first row of the inverse PB−1 of BA is such that its first k components are the
same as those of P and, by assumption, are SD. The last n − k components of the first
row of PB−1 are zero (and hence SD). Since the first row of the inverse of BA is SD, we
can determine the first component of the solution of BAx = Bb by the second method (in
Section 4).

Other components of x can be bounded in a similar way.

10. Using the inverse

Suppose we have a matrix P ′ which bounds the exact inverse P of A. In Section 4, we
discussed how to obtain P ′. Note that P ′b bounds the hull h of the solution set. The bound
on h would generally not be sharp even if P ′ were the exact inverse P. This is because P can
contain matrices which are not inverses of any matrix in A. However, this provides another
bound on h which can be intersected with bounds obtained by methods such as those we
have described.

We can bound P more sharply than by the way described in Section 4 by using methods
such as ours to solve the equations which P must satisfy. Thus, we can solve for the ith
column of P by solving Ax = ei. We can solve for the ith row of P by solving AT x = ei. If
we solve for both the rows and the columns, we can intersect the two results.

The wider the vector b in Ax = b the wider the solution set. From this point of view,
the equation Ax = ei is ideal in that the right hand vector ei is real and all components
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are zero except one. This suggests that there can be advantages in using a method which
computes the inverse of A.

11. Choosing a method

In practice, we must decide whether to use any of the methods we have described; and,
if so,which one(s). We first note that if the center Ac of A is “near” the identity matrix,
then its inverse B = A−1

c is near the identity. In this case, there is little need to use any
of our methods. We can use B to precondition the system without unduly enlarging the
solution set. We can then use the hull method to determine the hull of the preconditioned
system. The question of what is meant by “near the identity matrix” will be left to a user.
Alternatively, the center of A might be near a matrix which is the identity with rows and
columns permuted.

Suppose the center Ac of A is near the identity matrix. Then the center of A−1 is near
the identity. That is, its off-diagonal elements are likely to contain zero. Therefore, a row of
A−1 is unlikely to be SD. In this case, it is unlikely that our second method is applicable;
and there is probably little point in using the fourth or sixth method.

For any problem, a reaonable first step is to obtain bounds xB on the hull h using the
hull method. One can also use the method from [3] and find the intersection of the two
methods Thereafter, we might use the following procedural steps. They involve a great deal
of computing; but the work is polynomially bounded.
(1) If Ac is near the (perhaps permuted) identity matrix, accept the results of the hull
method as a sufficiently sharp solution. Thus, go to step (10).
(2) If xB is SD in all but a few components, solve for h using the first method (in Section
3). Then go to step (10).
(3) Use the hull method to obtain bounds on A−1 by solving Ax = ei for i = 1, ..., n. (The
method in [3] can also be used.) Also solve AT x = ei for i = 1, ..., n to bound AT−1. Then
intersect the two bounds on A−1. Denote the resulting bound on A−1 by PB.
(4) For i = 1, ..., n, if all but a few components of row i of PB are SD, solve for hi using the
second method (in Section 4). If all components of h are obtained in this way, go to step
(10).
(5) Compute the bound PBb on h. Intersect it with xB and the result from step (4).
(6) If at least one component of h has been shown to be SD, the third method (in Section
6) is applicable. Use it to bound h. Intersect the solution with the result of step (5).
(7) Use the fourth method (in Section 7) to bound hi for i = 1, ..., n. Skip any value of i for
which hi was obtained sharply in step (4). Intersect the result with the result from step (6).
(8) If at least one component of h has been found to be SD, use the fifth method (in Section
8) to bound h. Intersect the result with the result from previous steps.
(9) Use the sixth method (in Section 9) to bound h. Intersect the result with the result from
previous steps.
(10) Stop.
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The amount of work to apply this procedure is not particularly excessive if the crude
bounds reveal that h or A−1 is SD. If this is not the case, our procedure is useful only if
sharpness is so important that a considerable amount of computing is warranted.

There are cases in which there is no need to use our methods. If A is an M-matrix, then
interval Gaussian elimination will obtain the hull h sharply. See [5].

12. Some special cases

The essential requirement in our methods is that we are able to express certain products in
which a factor is unknown except for its sign. For example, in the first method, we needed
to be able to express Ax when x is unknown. If xj is SD, we can use (2.3) to express aijxj

in terms of the endpoints of aij . But suppose that for a given value of j, the element aij is
real (i.e., a degenerate interval) for all i = 1, ..., n. Then the “endpoints” of aij are equal;
and aijxj is expressed in terms of their coincident value. Therefore, xj need not be SD.

If all but a few columns of A are real, the first method can be used to determine the hull
h with a reasonable amount of computing. If a given column of A is real, the corresponding
component of x does not have to be made SD in the third method, nor does it have to be
eliminated in the fifth method.

Similar statements can be made for the dual methods. Now, however, we must be able
to express both pT A and pT b for a row pT of P . Consider the matrix R = (P b) which
is the matrix P augmented with the vector b as an added column. If all but a few rows of
R are real, the second method can determine the hull. If a row (or rows) of R is real, the
corresponding component of a row of P need not be SD in the fourth and sixth methods.

Even if every element of A except one is real, then every element of P can be a nonde-
generate interval. It is unlikely that we shall know that a row of R is real. Therefore, the
dual methods generally do not “simplify” in this way.

13. A non-polynomial method

The methods we have described fail if the crude methods fail to obtain bounds on the
solution. In this section, we describe how the hull of the solution set of Ax = b can be
obtained as the solution of an optimization problem. The optimization problem is not
a linear programming problem; so the work to solve it is not polynomially bounded. We
include it as an alternative for two reasons. First, it does not require that some other method
provide crude bounds. Second, it is similar to the methods we have described. The difference
is that the formulation of the optimization problem includes nonlinear constraints.

Equation (2.3) can be written as

aijxj = [min{aijxj , aijxj},max{aijxj , aijxj}]. (14.1)

Since the maximum of two function can be exressed as their average plus half their difference,
we have
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max{aijxj , aijxj} = 1
2(aijxj + aijxj) + 1

2 |aijxj − aijxj | = mijxj + 1
2wij |xj | (14.2)

where mij = 1
2(aij + aij) and wij = aij − aij . Similarly,

min{aijxj , aijxj} = mijxj − 1
2wij |xj |. (14.3)

Row i of the equation Ax = b can be written
n∑

j=1
aijxj = bi (i = 1, ..., n).

From (14.1), (14.2), and (14.3), we therefore obtain
n∑

j=1
[mijxj − 1

2wij |xj |, mijxj + 1
2wij |xj |] = bi.

A point x is in the solution set of Ax = b only if the intervals in the left and right members
intersect. This imposes the constraints

n∑
j=1

(mijxj − 1
2wij |xj |) ≤ bi, (14.4a)

and
n∑

j=1
(mijxj + 1

2wij |xj |) ≥ bi. (14.4b)

for i = 1, ..., n.
We can obtain the kth component of the hull by minimizing and maximizing xk subject

to the constraints (14.4). The function |xj | is not differentiable at xj = 0. We can obtain
constraints which are differentiable if we replace |xj | by xj+n and add the constraints

x2
j+n − x2

j = 0 (j = 1, ..., n).
The problem now becomes: For k = 1, ..., n,
minimize and maximize xk

subject to
n∑

j=1
(mijxj − 1

2wijxj+n) ≤ bi (i = 1, ..., n)

n∑
j=1

(mijxj + 1
2wijxj+n) ≥ bi (i = 1, ..., n)

x2
j+n − x2

j = 0 (j = 1, ..., n).
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Abstract. Structural engineers use design codes formulated to consider uncertainty for both reinforced
concrete and structural steel design. For a simple one-bay structural steel frame, we survey typical un-
certainties and compute an interval solution for displacements and forces. The naive solutions have large
over-estimations, so we explore the Mullen-Muhanna element-by-element strategy, scaling, and constraint
propagation to achieve tight enclosures of the true ranges for displacements and forces in a fraction of
the CPU time typically used for simulations. That we compute tight enclosures, even for large parameter
uncertainties used in practice, suggests the promise of interval methods for much larger structures.

Keywords: structural steel frames, partially constrained connections, uncertain parameters, interval arith-
metic, element-by-element, constraint propagation.

1. Introduction

Structural engineers have used design codes formulated to consider uncertainty for both
reinforced concrete and structural steel design for several decades. The format for these
design codes has been termed Load and Resistance Factor Design (LRFD). The LRFD
format for structural steel design is founded upon first-order, second-moment reliability
theory applied to structural loads and resistances (Cornell, 1969). LRFD-based design rests
on the following definition for the probability of structural failure,

PF = P ((R−Q) < 0) , (1)

where

R = a structure’s resistance, which is considered a random variable, modeled using a known
probability density function (PDF);

Q = the load effect, which is also a random variable with known PDF.

The frequency distribution of the resulting random variable, R−Q, allows the definition of a
safety margin against structural failure. The probability of failure expressed in Equation (1)
is re-phrased as (Ravindra & Galambos, 1978),

PF = P (ln (R/Q) < 0) .

If one knew the probability distribution of ln (R/Q), determining the probability of failure
for the structure would be very easy. Unfortunately, there are several random variables that
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contribute to structural resistance as well as load effect. These contributors do not all follow
the same PDF’s, and the process of characterizing them also is uncertain. In this paper, we
use interval arithmetic to compute reliable bounds for structure responses in the presence of
uncertain parameters. In section 2, we discuss the nature of the uncertainties and realistic
bounds.

The first-order second-moment method approximates the failure of a structure by the
safety index (Ravindra & Galambos, 1978),

β =
mean (ln(R/Q))

σ (ln(R/Q))
,

where σ (ln(R/Q)) is the standard deviation of the natural logarithm of the ratio of resis-
tance to load. In a simplistic sense, the LRFD formulation seeks to define a probability of
a failure using an acceptable number of β’s away from mean (ln(R/Q))). The acceptable
value of β for various structural components is determined using calibration with existing
structural systems. In other words, the LRFD design procedures that were proposed, and
are currently in use, provide a level of reliability against structural failure that is near that
of structures designed using pre-LRFD criteria.

In the discipline of structural engineering, the engineer is often concerned with determin-
ing response quantities for which there is very small probability of exceedance. For example,
one may be interested in the lateral displacement at the top of the frame shown in Figure 1
for which the probability of exceedance is 0.1%. Since life-safety is involved in design of
structural systems, we may desire a very small coefficient of variation in this probabilistic
estimate.
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α
1
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2

Figure 1. Simple one bay portal frame with partially constrained connections.

Monte-Carlo simulation is a traditional approach for establishing safety indices or prob-
abilities of failure for structural systems. Unfortunately, simulation also includes a level
of uncertainty in the results. Better results require more simulations. Soong and Grigoriu
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(Soong & Grigoriu, 1993) have shown that the coefficient of variation in an estimated
probability P can be written as

VP =

√
1− Ptrue

N · Ptrue
, (2)

where Ptrue is the true probability, and N is the number of simulations. Equation (2) can
be solved for a required number of simulations using a desired probability and coefficient
of variation. If our structural analysis determining the unlikely structural response should
have a probability of failure of 0.001 and we need to have a small coefficient of variation in
that estimate (e.g., 0.05), then by Equation (2), 399,600 simulations are necessary. That is,
nearly 400,000 structural analyses are required to be able to determine structural response
for an event with very low probability with high confidence. Other simulation techniques
are available, e.g., importance sampling (Melchers, 2001). However, in general, simulation
can be a highly expensive tool for understanding uncertainty in structural engineering.

Recent work (Mullen & Muhanna, 1999; Muhanna & Mullen, 2001) introduced intervals
as a means for reliably accounting for uncertainty in structural engineering. The present
study considers load and resistance uncertainty using interval-based structural analysis.
The success of the present work foreshadows additional applications of interval methods in
structural engineering to quantify uncertainty in progressive collapse, ground motion analy-
sis, and other highly important endeavors. Furthermore, it is hoped that the interval-based
results can be used to quantify any error present in structural engineering design as a result
of first-order, second-moment reliability-based design methods for complex structures.

2. Development of Intervals for Load and Resistance

Structural loads and resistances frequently are defined using probability density function
models for the frequency of occurrence of properties or loading magnitudes characterizing
structural behavior. This section assigns intervals of known confidence for cross-sectional
properties, loading, material properties, and connection response.

2.1. Lateral Wind Loading

The frequency of occurrence of extreme wind speeds is modeled using Fisher-Tippett Type
1 Extreme Value probability distributions (Simiu et al., 1978). To demonstrate the process,
a hypothetical extreme wind record is used to generate wind speed intervals and then a
wind pressure interval suitable for structural analysis. The mean peak wind speed (assumed
here to be for 3-second gusts) and standard deviation for a 19-year record are

V 3-sec = 62.7 mph σ3-sec = 8.63 mph.

The PDF assumed allows one to compute peak wind speeds and confidence levels asso-
ciated with those speeds that include sampling error due to the limited number of years for
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which data is available. Buildings are often assumed to have service life spans of 50 years.
If one is willing to accept that the wind speed used for design has a 5% chance of being
exceeded in 50 years, one is establishing a 1,000 year mean recurrence interval wind. In
other words, there is a 0.1% chance that the wind speeds used for design will be exceeded
in any given year.

Given a number of data points in a peak wind speed record and a known probabil-
ity density function describing frequency of occurrence, an estimate of the N -year peak
wind speed and standard deviation in the estimate that includes sampling errors can be
determined using (Simiu et al., 1978)

V̂ N
3-sec = V 3-sec + σ3-sec(y − 0.5772)

√
6

π
, and (3)

SD
(
V̂ N

3-sec

)
= [1.645 + 1.462(y − 0.5772)

+1.1(y − 0.5772)2
]0.5 0.78 σ3-sec√

n
, (4)

where

y = − ln
[
− ln

(
1− 1

N

)]
;

N = mean recurrence interval (years) for peak wind in question;
V̂ N

3-sec estimated value of the N -year, peak 3-second wind;
SD

(
V̂ N

3-sec

)
= standard deviation in the estimate for the N -year 3-second wind;

V
N
3-sec = sample mean for 3-second peak winds measured;

σ3-sec = sample standard deviation for 3-second peak winds measured;
n = sample size in years.

We define an interval for peak wind speeds using Equations (3) and (4). Our target for
the design analysis is to set a 0.1% probability that the peak winds used to assign lateral
wind load magnitudes will be exceeded. As mentioned earlier, this equates to a 1,000 year
mean recurrence interval wind, or N = 1,000 years. The estimated value of the 1,000-year
wind and the standard deviation in the estimate based upon the 19-year sample size are
computed using equations (3) and (4):

V̂ N
3-sec = 105.29 mph, and SD

(
V̂ N

3-sec

)
= 11.450 mph. (5)

Using the values given in Equation (5), we can assign intervals for peak 3-second wind
speeds in a highly flexible manner. For example, assume that we wish to have two standard
deviations of confidence in the peak 3-second wind speed. The interval of wind speeds
corresponding to this is

82.39 ≤ V̂ N
3-sec ≤ 128.19 mph or V̂ N

3-sec = 105.29± 22.9 mph. (6)

This wind speed interval can be interpreted as follows. There is a 99.9% confidence that the
peak wind speed will be less than or equal to 105.29 mph. However, this estimate is based

REC2004



85

upon limited peak wind speed data. Therefore, the error in the estimate that bounds this
level of confidence in the expected peak wind has been defined as two standard deviations
above and below the estimate. Thus, one has two standard deviations of confidence that
the 1,000 year wind will not be exceeded. One can then say there is an acceptably low
probability of the wind speed exceeding 128.19 mph.

Building codes (ASCE, 2002) use peak wind speeds of known averaging time to convert
these speeds into design pressures for building structures. The expression to carry out this
conversion is based upon the classical work of Bernoulli (ASCE, 2002),

q = 0.00256 ·Kz ·Kzt ·Kd · V 2 · I . (7)

For the sake of simplicity, we assume
I = 1.0 (importance factor)
Kd = 0.85 (directionality factor)
Kzt = 1.0 (topographic effect factor)
Kz = 0.70 (height factor).

Using the peak wind speed interval of Equation (6), the corresponding interval for the peak
pressures computed using Equation (7) is

10.34 ≤ qpeak ≤ 25.03 psf or qpeak = 17.685± 7.345 psf.

If we assume a structural system layout that contains the portal frame shown in Figure 1,
we can compute an interval for the peak applied lateral loads at the top of the frame. If we
assume that the height of the frame is 12 feet and the lateral load resisting portal frames
are 50 feet apart, the peak lateral loads are expected to lie within

3,102 ≤ H ≤ 7,509 lbs or H = 5,305.5± 2,203.5 lbs.

2.2. Member Material and Cross-Sectional Properties

The loading is only one aspect to the uncertainty in structural engineering problems. Ma-
terial and cross-sectional properties for component members within the structure are also
subject to uncertainty. The portal frame shown in Figure 1 contains one beam member and
two column members.

The beam members are W18×35, with mean cross-sectional area and second moment of
area (AISC, 2001)

Ab = 10.3 in2 and Ib = 510 in4 .

(Cecen, 1974) and (Ravindra & Galambos, 1978) suggest statistical data for describing the
fabrication-related variation in Ab and Ib:

µF = 1.0 (mean)
VF = 0.05 (coefficient of variation),

which lead to
σF = 0.05 (standard deviation).
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Cross-sectional properties are assumed to follow a normal statistical distribution (Ravindra
& Galambos, 1978). Therefore, two standard deviations above and below the mean ensure
approximately 95% confidence that the parameters lie within the stated interval. Therefore,
mid-point and interval radii are

Ab = 10.3± 1.03 in2 and Ib = 510± 51 in4.

Columns are W10×49 members, with mean cross-section properties (AISC, 2001)

Ac = 14.4 in2 and Ic = 272 in4.

Using the same argument as that used for the beams above, intervals that consider uncer-
tainty in the cross-sectional properties of the column members are

Ac = 14.4± 1.44 in2 and Ic = 272± 27.2 in4.

Uncertainty in material properties (e.g., material modulus) are often described using a
normally distributed random variable (Ravindra & Galambos, 1978) with mean

E = 29,000,000 lb/in2.
(Cecen, 1974) and (Ravindra & Galambos, 1978) suggest the following statistical data for
describing the variation in E:

µF = 1.0 (mean), and
VF = 0.06 (coefficient of variation),

which lead to
σF = 0.06 (standard deviation).

Two standard deviations above and below the mean ensure approximately 95% confidence
that the true values of the parameters lie within the stated interval. Therefore, interval
mid-point and radius are

E = 29,000,000± 3,480,000 lb/in2.

2.3. Connections

The framework considered in Figure 1 also includes connections at the beam ends that are
assumed to be partially restrained. These connections will not force the 90 degree angle made
between beams and columns to remain 90 degrees after deformation of the frame laterally.
These are often modeled as nonlinear springs. However, for simplicity and demonstration
of concept, we assume the springs are linear.

Physical testing is used to determine the stiffness and strength characteristics of struc-
tural steel connections found in real structures. Unfortunately, there have been very few
studies undertaken to quantify the statistical variation in connection response. (Deierlein et
al., 1991) report examination of statistical parameters for a typical structural steel connec-
tion classified as partially-restrained. This connection is the top-and-seat angle connection
with web cleats (TSAW).
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Figure 2. Beam-line approach for linearizing connection stiffness.

Uncertainty in nonlinear response of the TSAW connections was found to be adequately
described using a normally distributed random variable (Deierlein et al., 1991). Linearization
of connection response for purposes of structural analysis is commonly accomplished using
the beam-line approach. The beam-line approach is schematically illustrated in Figure 2.
The approach is well documented, and details will not be presented here. We assume that
repeated loading and unloading of the connections results in shake-down to the linear
connection stiffness established using the beam-line.

The connection stiffness uncertainty used in the present study is generated using the
upper and lower-bound nonlinear connection curves for the TSAW connections discussed
in (Deierlein et al., 1991). These two curves (shown in Figure 2) constitute boundaries
for which there is 95% confidence that the expected connection behavior is captured. This
corresponds to plus or minus two standard deviations from the mean. The connection curves
are normalized with respect to the connection capacity, Mcn. For the present study, Mcn =
0.4Mpb, where Mpb is the plastic moment capacity of the connected beam.

Using the beam-line concept and the W18×35 beam member, the linear connection
stiffness magnitudes corresponding to the upper- and lower-bound connection curves are

αupper = 403,965 k · in/rad
αlower = 150,957 k · in/rad.
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The midpoint and radius for the connection stiffness 95% confidence interval are

α = 277,461± 126,504 k · in/rad .

For simplicity, we assume that the connection of the columns to the foundation is rigid,
although the present formulation can account for variability in connection response at the
foundation.

3. Frame Components

We model each component of the frame shown in Figure 1 in an object-oriented manner,
following the notation of (Hibbeler, 2002). We describe the structural components in an
object-oriented manner, foreshadowing both the mathematical analysis to follow and the
implementation in computer code.

3.1. Component: Member

Let ·N denote values at the near node and ·F denote values at the far node. We use rNẑ

instead of Hibbeler’s dNẑ to reserve dNẑ for 3-dimensional frames.

Near Farq
Nx

, d
Nx

q
Fx

, d
Fx

q
Ny

, d
Ny

q
Fy

, d
Fy

m
Ny

, r
Ny

m
Fy

, r
Fy

y

x

Figure 3. Member local forces, moments, displacements, and rotations (after Hibbeler 2002).

Attributes (in local (̂·) or global coordinates):

− Displacements: dNx̂, dNŷ, dF x̂, dF ŷ (local) or dNx, dNy, dFx, dFy (global)

− Rotations: rNẑ, dF ẑ (local) or rNz, dFz (global)

− Forces: qNx̂, qNŷ, qF x̂, qF ŷ (local) or qNx, qNy, qFx, qFy (global)

− Moments: mNẑ, mF ẑ (local) or mNz, mFz (global)
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Properties: Frame-member stiffness equation:



AE
L 0 0 −AE

L 0 0

0 12EI
L3

6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 −6EI

L2
2EI
L

−AE
L 0 0 AE

L 0 0

0 −12EI
L3

−6EI
L2 0 12EI

L3
−6EI

L2

0 6EI
L2

2EI
L 0 −6EI

L2
4EI
L







dNx̂

dNŷ

rNẑ

dF x̂

dF ŷ

rF ẑ




=




qNx̂

qNŷ

mNẑ

qF x̂

qF ŷ

mF ẑ




or κ(A,E, L,d−q) = k′d−q = 0. Typical values for frame parameters and applied loading
are (see §2):

Eb = Ec = 29,000,000± 3,480,000 lbs/in2 (12%)
Ib = 510± 51 in4; Ic = 272± 27.2 in4 (10%)
Ab = 10.3± 10.3 in2;Ac = 14.4± 1.44 in2 (10%) (8)
H = 5,305.5 ± 2,203.5 lbs (41.6%)
α = 277,461,000 ± 126,504,000 lb-in/rad (45.6%)
Lc = 144 in; Lb = 2Lc .

Local coordinates are transformed to global coordinates by transformation matrices. For
each member, let λx = cos θ and λy = cosφ, so that λ2

x + λ2
y = 1. Let

T =




λx λy 0 0 0 0
−λy λx 0 0 0 0
0 0 1 0 0 0
0 0 0 λx λy 0
0 0 0 −λy λx 0
0 0 0 0 0 1




.

Then TT T = T T T = Identity.

3.2. Component: End

An “End” is an end of a Member (or a Joint). The Ends define the topology of the struc-
ture. Our End corresponds somewhat to the usual notion of a Node, except that we use
“Connections” to join Members and Joints.

Attributes (in global coordinates):

− Displacements: dx, dy

− Rotations: rz

− Forces: qx, qy, qEx, qEy
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− Moments: mz, mEz,

where ·E denotes externally applied forces and moments.

Properties:

− Can be incident with two or more Members and Joints
− Displacements dx, dy, and rz are equal for all Members and Joints incident on an End
− Forces qEx + qx, qEy + qy, and moments mEz + mz each sum to zero for all Members

and Joints incident on an End

3.3. Component: Joint

Attributes (in local or global coordinates):

− Displacements: dNx̂, dNŷ, dF x̂, dF ŷ

− Rotations: rNẑ, dF ẑ

− Forces: qNx̂, qNŷ, qF x̂, qF ŷ

− Moments: mNẑ, mF ẑ

Properties:

− Length = 0
− Joins one Member to another
− Global displacements dx are equal for incident End and Member
− Global displacements dy are equal for incident End and Member
− Global forces qx are equal for incident End and Member
− Global forces qy are equal for incident End and Member
− Local rotations and moments satisfy

[
α −α

−α α

] [
rNẑ

rF ẑ

]
=

[
mNẑ

mF ẑ

]

4. Assembly

Following the usual practice (e.g., (Hibbeler, 2002)), we assemble a linear system correspond-
ing to the structure in Figure 4, identifying equal displacements and summing appropriate
forces, to ensure that both equilibrium and compatibility of displacements are satisfied.
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Columns 1 – 5:



12EcIc
L3

c
+ AbEb

Lb
0 6EcIc

L2
c

0 0

0 AcEc
Lc

+ 12EbIb

L3
b

0 6EbIb

L2
b

6EbIb

L2
b

6EcIc
L2

c
0 4EcIc

Lc
+ α −α 0

0 6EbIb

L2
b

−α 4EbIb
Lb

+ α 2EbIb
Lb

0 6EbIb

L2
b

0 2EbIb
Lb

4EcIc
Lc

+ α

−AbEb
Lb

0 0 0 0

0 −12EbIb

L3
b

0 −6EbIb

L2
b

−6EbIb

L2
b

0 0 0 0 −α

Columns 6 – 8:

−AbEb
Lb

0 0

0 −12EbIb

L3
b

0

0 0 0

0 −6EbIb

L2
b

0

0 −6EbIb

L2
b

−α

AbEb
Lb

+ 12EcIc
L3

c
0 6EcIc

L2
c

0 12EbIb

L3
b

+ AcEc
Lc

−6EbIb

L2
b

6EcIc
L2

c
−6EbIb

L2
b

4EcIc
Lc

+ α







d2x

d2y

r2z

r5z

r6z

d3x

d3y

r3z




=




H

0

0

0

0

0

0

0




(9)

The global stiffness matrix K given by Equation (9) has condition number cond(K) =
4.7e+04. Solving using mid-point values of parameters given in Equation (8) yields

Displacement dx Displacement dy Rotation rz

Connection 2 0.15356843 0.00033236 -0.00096285
Connection 3 0.15102784 -0.00033236 -0.00094313
Connection 5 -0.00045995
Connection 6 -0.00044556

Force qx Force qy Moment mz

Connection 1 -2670.516 -963.856 245019.992
Connection 4 -2634.984 963.856 241381.602

The ranges given in Equation (8) for the parameters in this system suggest using interval
arithmetic (Moore, 1966; Moore, 1979; Neumaier, 1990). Interval arithmetic computes with
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Figure 4. Element-by-element assembly.

guaranteed lower and upper bounds. It accounts for uncertain parameters and roundoff
errors in computation. Our problem has uncertain parameters, and the condition number of
4.7e+04 for even such a simple frame suggests that roundoff is a potential concern, especially
as we scale to larger structures.

In interval arithmetic, operations are defined set-wise. That is, if [a] = [a, a] and [b] = [b, b]
are intervals,

[a] + [b] = {a + b : a ∈ [a], b ∈ [b]} = [a + b, a + b].

In a practical implementation, the additions of the endpoints are done using IEEE outwardly
directed rounding. Other operations and elementary functions are defined similarly.

Initially, we use intervals of uncertainty 1% of those given in Equation (8). For example,
instead of using H = 5,305.5± 2,203.5 lbs, we use 5,305.5± 22.035 lbs. We form the global
stiffness matrix K given by Equation (9) using interval values of the parameters and solve.

Table I gives the naive interval solution of the one-bay frame problem. The column
“Float” contains the floating point solutions to the system whose coefficients are given by the
midpoints of the parameter intervals. The column “Interval” contains the solution computed
by an interval linear equation solver applied to Equation (9) with interval coefficients. The
column “Midpoint ± Radius” contains the same intervals as the column “Interval,” except
that they are expressed in a midpoint ± radius form, rather than an endpoint form.

The “Interval” solutions contain the true values, but narrower enclosures are better
than wide ones. Naive interval computations, as we have done here, are prone to over-
estimation. For the rows labeled “Tight:,” we solved the 210 extremal individual problems
formed by taking lower and upper bounds of the intervals for each of the 10 parameters
in this system. Since the system is linear, the solution to any combination of parameter
values taken from the respective intervals must lie in the convex hull of the solutions to the
extremal problems. This is not simulation since parameter values are chosen not at random
but as extremal values. The column “Relative overestimation” is the width of the “Interval”
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Table I. Naive interval solution of the one-bay frame problem.

Disp. Float Interval Midpoint ± Radius
True range Rel. overest.

d2x 0.153568 [ 0.09375783, 0.21337873 ] 0.1535683 ± 0.05981
Tight: [ 0.15237484, 0.15476814 ] 76.34%

d2ye+3 0.332364 [ 0.19060424, 0.47412283 ] 0.3323635 ± 0.1418
Tight: [ 0.32940418, 0.33533906 ] 83.52%

r2ze+3 -0.962852 [ -1.3531968, -0.57250484 ] -0.9628508 ± 0.3903
Tight: [ -0.97085151, -0.95490139 ] 79.42%

r5ze+3 -0.459955 [ -0.6557609, -0.26414725 ] -0.4599541 ± 0.1958
Tight: [ -0.4638112, -0.45611532 ] 83.47%

r6ze+3 -0.445563 [ -0.64100045, -0.2501251 ] -0.4455628 ± 0.1954
Tight: [ -0.44930811, -0.4418354 ] 86.05%

d3x 0.151028 [ 0.091230936, 0.21082444 ] 0.1510277 ± 0.0598
Tight: [ 0.14985048, 0.15221127 ] 77.62%

d3ye+3 -0.332364 [ -0.47412283, -0.19060424 ] -0.3323635 ± 0.1418
Tight: [ -0.33533906, -0.32940418 ] 83.52%

r3ze+3 -0.943133 [ -1.3330326, -0.55323186 ] -0.9431322 ± 0.3899
Tight: [ -0.95100335, -0.93531196 ] 81.02%

solution not contained in the “Tight” solution, scaled by the “Float” solution, and expressed
as a percentage. Given that intervals are guaranteed to enclose the true answers, the goal
is to compute enclosures with as little over-estimation as possible.

We observe

− “Interval” solutions contain the approximate “Float” solutions and the “Tight” solu-
tions, illustrating the claim of enclosure.

− “Interval” solutions are hopelessly pessimistic. The relative over-estimations are too
large to have practical utility.

− We used parameter uncertainties of 1% of the intervals given in Equation (8). If we use
4%, the interval linear solver fails because the global stiffness matrix includes matrices
that are singular since we have perturbed by 4% elements of a matrix with condition
4.7e+04.

− In the Matlab environment we used, the “Interval” solution takes 1,200 times the CPU
time for the approximate solution. That CPU cost should be compared with the CPU
cost of 400,000 simulation runs, which do not provide the reliability of the interval
results.

Rather than conclude interval arithmetic is not practical, we conclude that we must be more
clever in its application. The rest of this paper leads us through a sequence of increasingly
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sophisticated formulations until we are able to solve a system equivalent to Equation (9)
with parameter uncertainties 1.5 times the widths of the intervals given in Equation 8.

5. Element-by-Element

The excessive overestimation in Table I comes from the “dependency problem” common in
evaluation of expressions in interval arithmetic. For example, if we take [x] = [−1, 2], Table II
shows that even for some simple expressions, mathematically equivalent expressions do not
give the same interval results because the set-wise definition of interval operations does not
recognize that the same interval appearing in different contexts must be the same value. The
interval operator − cannot distinguish [x]− [x], which equals 0, from [x]− [y] with [x] = [y],
which does not. In general, expressions in which each variable appears only once (Single
Use Expression, SUE) are evaluated with no over-estimation. In naive Gaussian elimination
with back substitution applied to a system of order n, the coefficient K1,1 appears in the
symbolic expression for d1x a total of O(n2) times, hardly a Single Use Expression.

Table II. Overestimation from dependencies in ex-
pressions with [x] = [−1, 2].

x− x [-3, 3] vs. 0 [0, 0]

x ∗ x [-2, 4] vs. x2 [0, 4]

(Mullen & Muhanna, 1999) suggested an element-by-element approach for structural
engineering trusses. Instead of a finite element formulation, they introduced extra variables
and added extra equations to the system to reduce the interval dependencies. We apply the
Mullen-Muhanna element-by-element approach to frames. The difference is in the way we
assemble the global stiffness matrix. From an object-oriented perspective, “End” becomes
an inherent attribute of the Member and Joint classes. Each Member and Joint in the
structure becomes its own block in the global stiffness matrix, with both displacements and
forces at each end as unknowns. “Node” becomes a new Connector class, adding rows to
the global stiffness matrix rows expressing that adjacent ends have identical displacements
and rotations and that forces and moments at each connection sum to zero.

Joint J1 global stiffness matrix:

d3x − d4x = 0; d3y − d4y = 0
αr3z − αr4z −m3z = 0
q3x + q4x = 0; q3y + q4y = 0
−αr3z + αr4z −m4z = 0 .
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Member M1 global stiffness matrix:



12EcIc

L3
c

0 − 6EcIc

L2
c

− 12EcIc

L3
c

0 − 6EcIc

L2
c

0 AcEc

Lc
0 0 −AcEc

Lc
0

− 6EcIc

L2
c

0 4EcIc

Lc

6EcIc

L2
c

0 2EcIc

Lc

− 12EcIc

L3
c

0 6EcIc

L2
c

12EcIc

L3
c

0 6EcIc

L2
c

0 −AcEc

Lc
0 0 AcEc

Lc
0

− 6EcIc

L2
c

0 2EcIc

Lc

6EcIc

L2
c

0 4EcIc

Lc







d1x

d1y

r1z

d2x

d2y

r2z




−




q1x

q1y

m1z

q2x

q2y

m2z




= 0 .

Members M2 and M3 and Joint J2 are handled similarly.
Connector C2 (we’ll see C1 later) connecting Member M1 with Joint J1 requires equality

of incident displacements:

[d2x, d2y, r2z]T − [d3x, d3y, r3z]T = 0 ,

and that incident forces sum to zero:

q2x + q3x = H; q2y + q3y = 0; m2z + m3y = 0 .

This is the first non-zero right hand side so far. Connector C3 connecting Joint J1 with
Member M2 requires equality of incident displacements and that incident forces sum to
zero:

[d4x, d4y, r4z]T − [d5x, d5y, r5z]T = 0

[q4x + q5x, q4y + q5y,m2z + m3y]T = 0 .

Connectors C4 and C5 are handled similarly. Connector C1 fixes Member M1 to the ground,
and connector C6 fixes Member M3:

[d1x, d1y, r1z]T = 0; [d10x, d10y, r10z]T = 0 .

For simplicity of exposition, we retain the last two sets of equations corresponding to
displacements and rotations known to be zero. The solution of the element-by-element global
stiffness system using intervals of uncertainty 1% of those given in Equation (8) in interval
arithmetic is shown in Table III. The condition number is 1.2e+17. This condition number
leads one to suspect that, in exact arithmetic, the matrix may be exactly singular.

With such a large condition number, it is surprising that we get essentially the same
answers as before, but it is disappointing that the interval radii are not significantly smaller
than for the naive interval solution shown in Table I. However, there are many common
terms in many of the matrix coefficients. For example, see the global stiffness matrix for
Member M1. We can factor them out and take advantage of subdistributivity.
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Table III. Interval solution the Mullen-Muhanna element-by-element approach.

Disp. Float Interval Midpoint ± Radius
True range Rel. overest.

d2x 0.153568 [ 0.09246203, 0.21467453 ] 0.1535683 ± 0.06111
Tight: [ 0.15237484, 0.15476814 ] 78.02%

d2ye+3 0.332364 [ 0.18751797, 0.4772091 ] 0.3323635 ± 0.1448
Tight: [ 0.32940418, 0.33533906 ] 85.38%

r2ze+3 -0.962852 [ -1.361667, -0.56403468 ] -0.9628508 ± 0.3988
Tight: [ -0.97085151, -0.95490139 ] 81.18%

r5ze+3 -0.459955 [ -0.66002154, -0.25988661 ] -0.4599541 ± 0.2001
Tight: [ -0.4638112, -0.45611532 ] 85.32%

6. Subdistributivity

In interval arithmetic, we have

a(b + c) ⊆ ab + ac (subdistributivity).

For example, [−1, 2]∗([4, 5]+[−3,−2]) = [−3, 6] ⊆ [−1, 2]∗[4, 5]+[−1, 2]∗[−3,−2]. Hence, to
get tighter enclosures, we want to extract common factors whenever possible, as suggested
by (Mullen & Muhanna, 1999) for trusses.

For example, consider equations 9 and 12 from the Joint J1 stiffness matrix and equations
21 and 24 from the Joint J2 stiffness matrix. Let d61 := r3z − r4z and d62 := r7z − r8z.
Then

Eq. 9 & 21: αd61 −m3z = 0; αd62 −m7z = 0
Eq. 12: αd61 + m4z = 0 or m3z + m4z = 0
Eq. 24: αd62 + m8z = 0 or m7z + m8z = 0
Eq. 61 & 62: r3z − r4z − d61 = 0; r7z − r8z − d62 = 0 .

Next, consider the Member M1 global stiffness matrix:



12EcIc
L3

c
0 −6EcIc

L2
c

−12EcIc
L3

c
0 −6EcIc

L2
c

0 AcEc
Lc

0 0 −AcEc
Lc

0

−6EcIc
L2

c
0 4EcIc

Lc

6EcIc
L2

c
0 2EcIc

Lc

−12EcIc
L3

c
0 6EcIc

L2
c

12EcIc
L3

c
0 6EcIc

L2
c

0 −AcEc
Lc

0 0 AcEc
Lc

0

−6EcIc
L2

c
0 2EcIc

Lc

6EcIc
L2

c
0 4EcIc

Lc







d1x

d1y

r1z

d2x

d2y

r2z




−




q1x

q1y

m1z

q2x

q2y

m2z




= 0 .
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Let
d63 := AcEc

Lc
(d1y − d2y) d65 := 2EcIc

Lc
(r1z + r2z)

d64 := 6EcIc
L2

c
(d1x − d2x) d66 := 2EcIc

Lc
r1z ,

which leads to a considerably simpler system

Eq. 1 :
2
Lc

d64 − 3
Lc

d65 − q1x = 0

Eq. 2 : d63 − q1y = 0
Eq. 3 : − d64 + d65 + d66 −m1z = 0
Eq. 4 & 5 : q1x + q2x = 0; q1y + q2y = 0
Eq. 6 : − d64 + 2d65 − d66 −m2z = 0

Eq. 63: d1y − d2y − Lc

AcEc
d63 = 0

Eq. 64: d1x − d2x − L2
c

6EcIc
d64 = 0

Eq. 65: r1z + r2z − Lc

2EcIc
d65 = 0

Eq. 66: r1z − Lc

2EcIc
d66 = 0 .

The global stiffness matrices for Members M2 and M3 are handled similarly. The solution
of the element-by-element global stiffness system using intervals of uncertainty 1% of those
given in Equation (8) in interval arithmetic is shown in Table IV. Cond(K) = 1.2e+17.

Table IV. Interval solution the Mullen-Muhanna element-by-element approach.

Disp. Float Interval Midpoint ± Radius
True range Rel. overest.

d2x 0.153568 [ 0.15206288, 0.15507492 ] 0.1535689 ± 0.001506
Tight: [ 0.15237484, 0.15476814 ] 0.40%

d2ye+3 0.332364 [ 0.32918317, 0.33554758 ] 0.3323654 ± 0.003182
Tight: [ 0.32940418, 0.33533906 ] 0.13%

r2ze+3 -0.962852 [ -0.97485786, -0.95084958 ] -0.9628537 ± 0.012
Tight: [ -0.97085151, -0.95490139 ] 0.84%

r5ze+3 -0.459955 [ -0.46757208, -0.45234116 ] -0.4599566 ± 0.007615
Tight: [ -0.4638112, -0.45611532 ] 1.63%

These results in Table IV are about two orders of magnitude tighter than the interval
element-by-element method shown in Table III. Further, we can solve the system with
relative uncertainty 1.5 times the intervals of uncertainty given in Equation (8), compared
with 0.01 before. That allows us to handle practical engineering tolerances.
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So far, we have replicated the work of Mullen and Muhanna, except applied to frames
instead of trusses. Their work speaks of factoring the stiffness equations, although they
might not have done so in exactly the same way we have done it. To further reduce interval
over-estimation, we try scaling the equations and applying constraint propagation.

7. Scaling

In traditional numerical analysis, seeing solution components varying over eight orders of
magnitude and a condition number of 1.2e+17 is a warning sign. Let’s try scaling variables
to have similar magnitudes.

It appears that scaling all forces by the input force H = 5305.5 would be good. We
cannot do that by simply replacing H = 5305.5 by H = 1 because H appears only on the
right hand side, so that replacement would have no effect on cond(K).

In the right hand side, we can replace the interval [H] by its midpoint H̃ and then
multiply the solution by [H]/H̃ = [1−δ, 1+δ]. That replaces one of the interval parameters
by a degenerate interval in the computation of the solution. The result is a very slight
further reduction in the uncertainties of the solution.

Next, in each equation, we replace each variable force (q1x, . . .) by force/H̃. Each of
the intermediate variables d61, . . ., d74 introduced in the Subdistributivity section are of
the same order as forces, so we scale them by H̃, too. Hence in the global stiffness matrix,
each coefficient of a force or a newly introduced intermediate variable is multiplied by H̃,
unless all of the terms of that equation are in the scaled set. That reduces cond(K) from
about 1.7e+17 to 2.8e+08 and yields a further reduction in the widths the Mullen-Muhanna
results of Table IV, as shown in Table V.

Table V. Interval solution using scaled element-by-element approach with
parameter uncertainties 1% of those in Equation (8).

Disp. Float Interval Midpoint ± Radius

True range Rel. overest.

d2x 0.153568 [ 0.15294597, 0.15419182 ] 0.1535689 ± 0.0006229

Tight: [ 0.1531698, 0.15396904 ] 0.29%

d2ye+3 0.332364 [ 0.33111682, 0.33361393 ] 0.3323654 ± 0.001249

Tight: [ 0.3311227, 0.33360764 ] 0.004%

r2ze+3 -0.962852 [ -0.96945816, -0.95624927 ] -0.9628537 ± 0.006604

Tight: [ -0.96583881, -0.95988319 ] 0.75%

r5ze+3 -0.459955 [ -0.46515166, -0.45476159 ] -0.4599566 ± 0.005195

Tight: [ -0.46141645, -0.45849491 ] 1.62%

Table VI shows the solution to the same system as Table V, except that we use the
practical parameter uncertainties given in Equation (8). If we multiply the uncertainties
given in Equation (8) by 1.7, we get solution enclosures shown in Table VII. In either case,

REC2004



99

we can compute bounds, but bounds are quite over-estimated, and they include values of
the wrong sign, an observation which leads us to consider constraint propagation.

Table VI. Interval solution using scaled element-by-element approach with
parameter uncertainties from Equation (8).

Disp. Float Interval Midpoint ± Radius

True range Rel. overest.

d2x 0.153568 [ 0.022924888, 0.29366922 ] 0.1582971 ± 0.1354

Tight: [ 0.12130751, 0.20804041 ] 119.8%

d2ye+3 0.332364 [ 0.11407836, 0.57891094 ] 0.3464947 ± 0.2324

Tight: [ 0.21526742, 0.47234932 ] 62.51%

r2ze+3 -0.962852 [ -2.5286276, 0.55857565 ] -0.985026 ± 1.544

Tight: [ -1.4124783, -0.73502904 ] 250.3%

r5ze+3 -0.459955 [ -1.7359689, 0.77691797 ] -0.4795255 ± 1.256

Tight: [ -0.6216869, -0.3157181 ] 479.8%

Table VII. Interval solution using scaled element-by-element approach with
parameter uncertainties 1.7 times of those in Equation (8).

Disp. Float Interval Midpoint ± Radius

True range Rel. overest.

d2x 0.153568 [ -2.4422952, 2.7778163 ] 0.1677605 ± 2.61

Tight: [ 0.10506254, 0.29253671 ] 3277%

d2ye+3 0.332364 [ -3.726848, 4.4766635 ] 0.3749077 ± 4.102

Tight: [ 0.12406102, 0.59793831 ] 2326%

r2ze+3 -0.962852 [ -33.038469, 30.980172 ] -1.029148 ± 32.01

Tight: [ -2.2934663, -0.62850325 ] 6476%

r5ze+3 -0.459955 [ -27.257812, 26.220056 ] -0.5188781 ± 26.74

Tight: [ -0.76558971, -0.18556419 ] 11500%

CPU times for the 58×58 interval solution shown in Tables V - VII are about 2,000 times
the CPU time required to solve the approximate 8×8 system of Equation (9) with midpoint
values of the parameters. The figure of 2,000 times can reasonably be compared with the
nearly 400,000 simulation runs to achieve even comparable confidence intervals. Nonetheless,
the cost of the interval computation is at least partially due to the Matlab programming
environment in which these experiments were performed. Direct coding with a language
with an interval datatype, even if that datatype is implemented with operator overloading,
probably would result in an order-of-magnitude speedup of the interval computations. These
results also point to a need for a quality suite of interval sparse matrix routines.
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8. Constraint Propagation

The solution enclosures in Tables VI and VII show large uncertainty, and they include
non-physical values, e.g., compression rather than tension. The stiffness matrix is close to
singular. Constraint propagation can help, because we can always intersect with physically
known constraints.

Constraint propagation originated in the field of logic programming. (Van Hentenryck et
al., 1997) is an excellent explanation of constraint propagation in an interval context. The
idea is best illustrated by an example. Suppose we seek roots in [−4, 4] of f(x) = x2+x−5 =
0. Solve for the linear occurrence of x, x = 5 − x2. On the right, substitute x = [−4, 4]:
x = 5 − [−4, 4]2 = 5 − [0, 16] = [−11, 5]. That is, if a root x∗ of x2 + x − 5 = 0 lies in the
interval [−4, 4], then it must also lie in the interval [−11, 5], not an especially helpful result.

Next, solve for the quadratic occurrence of x, x = ±√5− x. On the right, substitute
x = [−4, 4]: x = ±√

5− [−4, 4] = ±√
[1, 9] = [−3,−1] ∪ [1, 3]. That is, if a root x∗ of

x2 + x − 5 = 0 lies in the interval [−4, 4], then it must also lie in the interval [−3,−1] or
the interval [1, 3]. Further iteration of x =

√
5− x from x = [1, 3] yields

x = [1.41421356237309, 2.00000000000000]
[1.73205080756887, 1.89361728911280]
[1.76249332222485, 1.80774699347866]
[1.78668771936265, 1.79930727719730]
[1.78904799343189, 1.79257141577047]
[1.79092953078269, 1.79191294614669] ,

which is converging to the root x∗ = 1.79128784747792.
Constraint propagation can be viewed as discarding candidate solutions that are infea-

sible with respect to already known information. It is Gauss-Seidel iteration, except that
we solve each equation for each variable. Constraint propagation is especially attractive for
sparse systems, such as ours.

To describe a generic constraint propagation algorithm for a linear system Ax = b, we
denote the set of unknowns by x = (xi) and use Ajx = bj , for a single equation.

Loop until converged
Loop for each j

In principle, consider equation j: Ajx = bj

For each variable xi which appears in Ajx = bj , “solve” for xi

Let [xi] := [xi]
⋂

expression for xi evaluated with [x]
If the intersection is empty, there is no solution. STOP

If any intersection is smaller, the solution is converging

There are various strategies for choosing the order of iteration of equations and variables
and many implementation details, which we ignore here.

Using the the practical parameter uncertainties given in Equation (8) and starting with
the solution enclosures shown in Table VI, we get the results shown in Table VIII. Constraint
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propagation tightened the enclosure of d2y, but did not improve significantly on the quality
of the interval solution.

Table VIII. Constraint propagation starting with solutions from Table VI.

Disp. Float Interval Midpoint ± Radius

True range Rel. overest.

d2x 0.153568 [ 0.022924888, 0.29366922 ] 0.1582971 ± 0.1354

Tight: [ 0.12130751, 0.20804041 ] 119.8%

d2ye+3 0.332364 [ 0.17032525, 0.57868876 ] 0.374507 ± 0.2042

Tight: [ 0.21526742, 0.47234932 ] 45.52%

r2ze+3 -0.962852 [ -2.5286276, 0.55857565 ] -0.985026 ± 1.544

Tight: [ -1.4124783, -0.73502904 ] 250.3%

r5ze+3 -0.459955 [ -1.7359689, 0.77691797 ] -0.4795255 ± 1.256

Tight: [ -0.6216869, -0.3157181 ] 479.8%

Starting with [0.5, 1.5] times the approximate solution using midpoint values, using no
interval system solver, and five iterations of constraint propagation, we get the results
shown in Table IX. We achieve relative over-estimations that are comparable to the relative
uncertainties in the parameters, in spite of a condition number of 2.8e+08.

Table IX. Constraint propagation starting with [0.6, 1.4] times the approxi-
mate solution using midpoint values.

Disp. Float Interval Midpoint ± Radius

True range Rel. overest.

d2x 0.153568 [ 0.076784216, 0.23035265 ] 0.1535684 ± 0.07678

Tight: [ 0.12130751, 0.20804041 ] 43.52%

d2ye+3 0.332364 [ 0.166182, 0.49854599 ] 0.332364 ± 0.1662

Tight: [ 0.21526742, 0.47234932 ] 22.65%

r2ze+3 -0.962852 [ -1.4442773, -0.48142577 ] -0.9628515 ± 0.4814

Tight: [ -1.4124783, -0.73502904 ] 29.64%

r5ze+3 -0.459955 [ -0.68993206, -0.22997735 ] -0.4599547 ± 0.23

Tight: [ -0.6216869, -0.3157181 ] 33.48%

9. Conclusions and Future Directions

To the structural engineering community, along with the work of (Mullen & Muhanna,
1999) and (Muhanna & Mullen, 2001), we have demonstrated the feasibility of interval
techniques. One set of interval computations can guarantee to enclose the displacements,
rotations, forces, and moments that could be observed from any combination of values of

REC2004



102

cross-sectional properties, loading, material properties, and connections, even for quite large
uncertainties. In subsequent work, we will extend these techniques to non-linear behaviors
and to larger structures.

To the interval community, we have demonstrated a variety of techniques to achieve
relatively tight enclosures of the solution to a realistic (although small) problem, even in
the face of parameter uncertainties over 40%. We used an element-by-element approach,
which adds equations specifying that two variables are the same, rather than simplifying by
identifying them with the same variable. We used symbolic rearrangement, scaling of the
equations, and constraint propagation. In subsequent work, to handle larger systems, we will
explore sparsity-preserving preconditioning, more effective and efficient constraint propaga-
tion, and branch-and-bound-like strategies for subdividing the ranges of wide interval-valued
parameters.
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Abstract: In this paper we aim to clarify the interaction between error, variability, testing and 
safety factors on the safety of aircraft structures by using an error model that includes errors made 
in the calculation of loads and stresses, and also errors in material and geometric parameters.  The 
effect of various representative safety measures taken while designing aircraft structures follow-
ing the deterministic approach codes in the FAA regulations is investigated. Uncertainties include 
errors, such as in predicting the response (stress, deflection etc.) of the structure and variability in 
materials, loading and geometry. Two error models, one is simple and the other is more detailed, 
are used and the results of these two models are compared. We use a simple model of failure of a 
representative aircraft structure. In addition, we explore the effectiveness of certification tests for 
improving safety. It is found that certification tests reduce the calculated failure probabilities by 
updating the modeling error. We find that these tests are most effective when safety factors are 
low and when most of the uncertainty is due to systemic errors rather than variability.  

Nomenclature 

c.o.v. = Coefficient of variation 

em, eP, eσ, et and  ew = Error factor for material failure stress, load, stress, thickness 
and width 

etotal = Cumulative effect of various errors 

Pact, Pcalc and Pd = Actual, calculated and design load 

σf design, tdesign and wdesign = Design values of failure stress, thickness and width 

σf built, tbuilt and wbuilt = Average values of failure stress, thickness and width of the 
components built by an aircraft company 

σf actual, tactual and wactual = Actual values of failure stress, thickness and width 

SF avg = Fleet-average safety factor 

k = Error multiplier 

ntP  and tP  = Average value of probability of failure without and with certifi-
cation 

MEF and SEF Cases = Multiple Error Factor and Single Error Factor Cases 
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1. Introduction 

Aerospace structures have traditionally been designed using a deterministic approach based on 
FAA regulations. The safety of the structures has been achieved by combining safety factors with 
tests of material and structural components. There is a growing interest to replace safety factors 
by reliability-based design. However, there is no consensus on how to make transition from de-
terministic design to reliability-based design. An important step in this transition is to understand 
the way safety is built into aircraft structures now, via explicit safety factors, use of conservative 
material properties and by testing. Safety measures are intended to compensate for errors and 
variability. Errors reflect inaccurate modeling of physical phenomena, errors in structural analy-
sis, errors in load calculations, or use of materials and tooling in construction that are different 
from those specified by the designer. Thus, the errors affect all copies of structural components in 
the entire fleet of aircraft of the same model. On the other hand, variability reflects variation in 
material properties, geometry, or loading between different copies of the same structure on differ-
ent aircraft in the fleet. 

Our previous paper (Kale et al, 2004) sought to clarify the interaction between the error, vari-
ability and testing on the overall probability of failure. We started with a structural design em-
ploying all considered safety measures. The effect of variability in geometry, loads, and material 
properties was incorporated by the appropriate random variables. For errors we used a simplified 
model that represented the overall error by a single random variable used in the calculation of 
stress. In this paper, we use a more detailed model in which we consider individual error compo-
nents in load calculation, stress calculation, material properties and geometry parameters. The 
objective of the paper is to observe differences between the use of the simple model and the more 
detailed model. 

As in our previous paper, we transform the errors into random variables by considering the de-
sign of multiple aircraft models. As a consequence, for each model the structure is different. It is 
as if we pretend that there are hundreds of companies (Airbus, Boeing, Bombardier, Embraer etc.) 
each designing essentially the same airplane, but each having different errors in their structural 
analysis and manufacturing. For each model we simulate certification testing. If the airplane 
passes the test, then an entire fleet of airplanes with the same design is assumed to be built with 
different members of the fleet having different geometry, loads, and material properties based on 
assumed models for variability in these properties. That is, the uncertainty due to variability is 
simulated by considering multiple realizations of the same design, and the uncertainty due to er-
rors is simulated by designing different structures to carry the loads specified by the FAA. 

We consider only stress failure due to extreme loads, which can be simulated by an unstiff-
ened panel designed under uniaxial loads. No testing of components prior to certification is ana-
lyzed for this simple example.  

2. Structural uncertainties 

A good analysis of different sources of uncertainty is provided by Oberkampf et al. (2000). Here 
we simplify the classification with a view to the question of how to control uncertainty. We pro-
pose in Table 1 a classification that distinguishes between (1) uncertainties that apply equally to 
the entire fleet of an aircraft model and (2) uncertainties that vary for the individual aircraft. The 
distinction is important because safety measures usually target one or the other. 

Similarly, the uncertainty in the failure of a structural member can also be divided into two 
types: systemic errors and variability. Systemic errors reflect inaccurate modeling of physical 
phenomena, errors in structural analysis, errors in load calculations, or use of materials and tool-
ing in construction that are different from those specified by the designer. Systemic errors affect 
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all the copies of the structural components built using the same model and are therefore fleet-
level uncertainties. The other type of uncertainty reflects variability in material properties, ge-
ometry, or loading between different copies of the same structure and is called here individual 
uncertainty. 

Table 1. Uncertainty Classification 

Type of  
uncertainty 

Spread Cause Remedies 

Systemic error  
(modeling errors) 

Entire fleet of compo-
nents designed using 
the model 

Errors in predicting struc-
tural failure and differ-
ences between properties 
used in design and aver-
age fleet properties. 

Testing and simula-
tion to improve math 
model and the solu-
tion. 

Variability Individual component 
level 

Variability in tooling, 
manufacturing process, 
and flying environments.  

Improve tooling and 
construction.  
Quality control. 

3. Safety Measures 

Aircraft structural design is still done by and large using code-based design rather than probabilis-
tic approaches. Safety is improved through conservative design practices that include use of 
safety factors and conservative material properties. It is also improved by tests of components and 
certification tests that can reveal inadequacies in analysis or construction.  In the following we 
detail some of these safety measures. 

Safety Margin: Traditionally all aircraft structures are designed with a safety factor to withstand 
1.5 times the limit load without failure. 

A-Basis Properties: In order to account for uncertainty in material properties, the Federal Avia-
tion Administration (FAA) recommends the use of conservative material properties. This is de-
termined by testing a specified number of coupons selected at random from a batch of material. 
The A-basis property is determined by calculating the value of a material property exceeded by 
99% of the population with 95% confidence. 

Component and Certification tests: Component tests and certification tests of major structural 
components reduce stress and material uncertainties for given extreme loads due to inadequate 
structural models. These tests are conducted in a building block procedure. First, individual cou-
pons are tested, and then a sub assembly is tested followed by a full-scale test of the entire struc-
ture. Since these tests cannot apply every load condition to the structure, they leave uncertainties 
with respect to some loading conditions. It is possible to reduce the probability of failure by per-
forming more tests to reduce uncertainty or by extra structural weight to reduce stresses. If certi-
fication tests were designed together with the structure, it is possible that additional tests would 
become cost effective because they would allow reduced structural weight.  
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4. Errors in Stress, Load, Geometry and Material Allowable 

4.1. Errors in design 

We assume that different aircraft companies like Airbus, Boeing, Bombardier, Embraer, etc. es-
sentially design the same airplane. Before performing a stress analyses, we first assume that these 
companies perform aerodynamic analyses to determine the loads acting on aircraft. However, the 
loads calculated by an aircraft company, Pcalc, differ from the loads corresponding to FAA design 
specifications, Pd.  The error made in load calculation, ep, is different from one company to an-
other. Throughout all error factor definitions we consistently formulate the expressions such that 
positive error factor implies a conservative decision. Based on this, Pcalc is expressed in terms of 
Pd as: 

 dPcalc PeP )1( +=  (1) 

Besides the error in load calculation, an aircraft company has also errors in stress calculation.  
Considering a small part of the aircraft structure, we can represent it as an unstiffened panel such 
that the value of stress calculated by stress analysis team, σcalc, is expressed in terms of the load 
values calculated by the aerodynamics team, Pcalc, the design width, wdesign, and thickness, t. 
Hence, introducing the term eσ representing error in the stress analysis we can write 

 
tw

P
e

design

calc
calc )1( σσ +=  (2) 

Equation (2) is used by the designer to calculate the design thickness tdesign required to carry 
the calculated design load times the safety factor SF.  That is  

 ( )( )
adesign

dF
Pdesign w

PS
eet

σσ ++= 11  (3) 

where aσ  is the value of allowable stress used in the design.  This allowable stress is based on 
A-basis properties (see Appendix 1) for the design material. 

4.2. Errors in implementation (difference between design value and fleet average) 

The error factors eσ and eσ represent the errors made in the design stage.  In addition, there will be 
some implementation errors in the geometric and material parameters.  These implementation 
errors represent the difference between the values of these parameters in an average airplane 
(fleet-average) built an aircraft company and the design values of these parameters.  Since we 
represent a small part of the aircraft structure as an unstiffened panel, the geometry parameters 
are the width and the thickness of the panel. Errors in panel width, ew, represent the deviation of 
the values of panel width designed by an individual aircraft company, wdesign, from the average 
value of panel width and thickness of panels built by the company, wbuilt. Thus we have 

 designwbuilt wew )1( +=  (4) 
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Similarly the built thickness value will differ from the design value such that 

 designtbuilt tet )1( +=  (5) 

In addition average built material parameters and the design material parameters will be different 
from each other.  In particular, the failure stresses σf are related as 

 
designfmbuiltf e σσ )1( −=  (6) 

The relationship between the allowable and failure stresses is that the allowable stress is the A-
basis value of failure stress.  The detailed explanation on the computation of A-basis value is 
given in Appendix 1. The formulation of Eq.(6) is different from Eqs. (1, 2, 4 and 5) in that the 
sign in front of the error factor em is negative.  The reason is that we consistently formulate the 
expressions such that positive error factor implies a conservative decision. 

4.3. Fleet average safety factor 

The fleet average of stress experienced by a panel under the correct design loads is 

 
builtbuilt

d
avgd wt

P
=−σ  (7) 

Substituting from Eqs.(3-5) into Eq. (7) we have 

 
F

a

twP
avgd Seeee

σ
σ

σ )1()1()1()1(
1

++++
=−  (8) 

Then, we can define a fleet average safety factor  

 
avgd

builtf
avgFS

−
=
σ

σ
 (9) 

Combining Eqs. (6) and (9) yields 

 ( )total
a

designf
FavgF eSS += 1

σ

σ
 (10) 

where 

 [ ] 1)1()1()1()1()1( −−++++= mtwPtotal eeeeee σ  (11) 

Here etotal represents the cumulative effect of the various errors on the safety factor for the aver-
age airplane (fleet average) built by a company.  Equation (10) shows that when there are no er-
rors, the average safety factor is larger than SF due to conservative allowable stress (A-Basis 
properties). The error factors are random variables represented by distribution type, their average 
values and their bounds as given in Table 2.  In addition there is variability in the material and 
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geometric properties and the load experienced in actual flight between individual aircraft in the 
fleet.  This will be discussed next. 

Table 2. Distribution of error factors and their bounds 

Error factors Distribution 
Type Mean Bounds 

Error in stress calculation, eσ Uniform 0.0 ± 5% 
Error in load calculation, eP Uniform 0.0 ± 10% 

Error in width, ew Uniform 0.0 ± 1% 
Error in thickness, et Uniform 0.0 ± 2% 

Error in material allowable, em Uniform 0.0 ± 20% 

Table 2 presents nominal values for the error factors.  In the Results section of the paper we 
will vary these error bounds and investigate the effects of these changes on the probability of fail-
ure.  As seen in Table 2, the error having the largest bound in its distribution is the error in mate-
rial failure stress, because it includes also the likelihood of unexpected failure modes. 

4.4. Variability 

In the previous sections, we analyzed the different types of errors made in the design and imple-
mentation stages representing the differences between the fleet average values of geometry, mate-
rial and loading parameters and their corresponding design values.  These parameters, however, 
vary from one aircraft to another in the fleet.  For instance, we assume that the actual value of 
thickness of a panel in an aircraft is defined by the fleet average thickness value by 

 ( )boundstUt builtact %3;=  (12) 

Here ‘U’ indicates that the distribution is uniform, ‘tbuilt‘ is the average value of thickness 
(fleet average) and ‘3% bounds’ defines that the lower bound for thickness value is the average 
value minus 3% of the average and the upper bound for thickness value is the average value plus 
3% of the average.  Note that the thickness error in Table 2 is uniformly distributed with bounds 
of ± 2%.  Thus the difference between all thicknesses over the fleets of all companies is up to 
± 5%.  However, the combination of error and variability is not a uniform distribution.  Table 3 
presents the assumed distributions for variabilities. 
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Table 3. Distribution of random variables having variability 

Variables Distribution 
type Mean Scatter 

Actual service load, Pact Lognormal Pd = 100 (10%) c.o.v.* 
Actual panel width, wact Uniform wbuilt = 1 (1%) bounds 

Actual panel thickness, tact Uniform tbuilt (3%) bounds 
Actual failure stress, σf act Lognormal σf built = 150 (10%) c.o.v.* 

* c.o.v. = coefficient of variation 

5. Certification Tests 

We simulate the effect of safety measures mentioned in Section 3 by assuming the statistical dis-
tribution of the uncertainties and incorporating them in approximate probability calculations and a 
two-level Monte Carlo simulation (see Figure 1), with different aircraft models being considered 
at the upper level, and different instances of the same aircraft at the lower level. To simulate the 
epistemic uncertainty, we assume that we have a large number of nominally identical aircraft be-
ing designed (e.g. by Airbus, Boeing, Bombardier, Embraer etc.), with the errors being fixed for 
each aircraft. We consider a simple example of an unstiffened panel designed for strength under 
uniaxial tensile loads. The Monte Carlo simulation works as follows. 

After the structural component has been designed with random errors in stress, load, width, al-
lowable stress and thickness (step A in Fig. 1), we simulate certification testing for the aircraft 
(step B in Fig. 1). Here we assume that the component will not be built with complete fidelity to 
the design due to variability in geometric properties. That is, the actual values of these parameters 
wact and tact and will be different from the fleet-average values wbuilt and tbuilt due to variability. 
The panel is then loaded with the design axial force of SF times Pcalc, and the stress in the panel is 
recorded (step C in Fig. 1). If this stress exceeds the failure stress σf act (itself a random variable 
with an average value σf built, see Table 3.) then the design is rejected, otherwise it is certified for 
use. That is, the airplane is certified if the following inequality is satisfied and we can build mul-
tiple copies of the airplane. 

 0≤−=−
actf

actact

calcF
f tw

PS
σσσ  (13) 

or 

 ( )
actfactactactdPF twRPeS σ=≤+1  (14) 

where the left side denotes the applied load, and the right side the load bearing capacity or “resis-
tance” Ract. As noted earlier the terms wact, tact and σf act in Eq. (14) reflect the variability in geo-
metric and material properties (see Table 3). The distribution types and the distribution parame-
ters of the random variables used in design and certification are listed in Table 3.   
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Effect of Certification Tests on Distributions of etotal and SF avg 

The fleet-average safety factor (see Eq. (10)) is defined in terms of safety factor, failure stress 
ratio and total error property.  Amongst those terms only the error term is subject to change due to 
certification testing.  One can argue that the way certification tests reduce the probability of fail-
ure is by changing the distribution of the error factor etotal. Without certification testing, we as-
sume uniform distributions for the error factors in stress, load, width and thickness. However, 
designs based on unconservative models are more likely to fail certification, and so the distribu-
tion of etotal becomes conservative for structures that pass certification.  In order to quantify this 
effect, we calculated the updated distribution of the error factor etotal. The updated distribution is 
calculated by Monte Carlo simulations.   

 

 
As noted earlier, in our previous paper (Kale et al, 2004) we represented the overall error with  

a single parameter, hereinafter the “Single Error Factor Case (SEF case)”, and used uniform dis-
tribution for the initial distribution of this error.  However, in the present work we use a more 
complex representation of error with individual error factors, hereinafter the “Multiple Error Fac-
tor Case (MEF case)”, and we represent initial distribution of each error factor with uniform dis-
tribution. For the SEF Case we obtained updated the distribution of error term using Bayesian 
updating.  However, since we use a more complex model to represent error in this study, updating 
by analytical means is quite difficult. In addition, we prefer to update average-safety factor, SF avg. 
Revisiting the expression for average safety factor (see Eq. (10)), we see that only random vari-
ables are σa and etotal. Since the variability in σa is very small compared to etotal, the distribution of 

 
 

Figure 1.  Flowchart for Monte Carlo simulation 
of component design and failure 



 

REC2004 

111

SF avg and etotal are nearly the same. We calculated the updated distribution of average safety factor 
thru Monte Carlo simulations of sample size 10,000. Initial and updated distribution of SF avg are 
shown in Fig.2. 

Figure 2 shows us how certification tests update the distribution of average safety factor for 
SEF and MEF cases.  For SEF case the uniform initial distribution is updated such that the likeli-
hood of higher values of average safety factor is increased.  That is the components built with low 
safety factor are rejected in certification tests.  Similarly for the MEF case, the initial distribution 
of average safety factor is shifted to up and right indicating that the components with high safety 
factors are favored via certification testing. 

6. Probability of Failure Calculation  

After the component passes the certification test, we subject the component in each airplane to 
actual random maximum (over a lifetime) service loads (step D in Fig. 1) and decide whether it 
fails using Eq. (15). 

 actfactactact wtRP σ=≥  (15) 

Here, Pact is the actual load acting under service, and R is the resistance or load capacity of the 
structure in terms of the random width wact, thickness tact and failure stress, fσ act.  

This procedure of design and testing is repeated (steps A-B in Fig.1) for N different aircraft 
models. Here N different design is the representative of different designs of different aircraft 
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Figure 2. Comparing initial and updated distribution of SFavg between SEF and MEF cases.
The single error is chosen as to match the standard deviation of the safety factor MEF. 
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companies (outer loop of Monte Carlo simulation).  For each new model, different random error 
factors eσ, eP, ew et and em are picked for the design representing the different error factors for the 
different aircraft companies. 

The inner loop in Figure 1 (steps C-E in Fig.1) represents the simulation of a population of M 
airplanes (hence structural components) that all have the same design. However, each component 
is different due to variability in geometry, failure stress, and loading (step D). We subject the 
component in each airplane to actual random maximum (over a lifetime) service loads (step E) 
and calculate whether it fails using Eq. (15). 

We count the number of panels failed for each airplane, and add up all the failures. The failure 
probability is calculated by dividing the number of failures by the number of airplane models that 
passed certification, times the number of copies of each model. 

7. Results 

We first investigate the effect of error bounds on the probability of failure of panels. Since we 
have 5 different contribution to total error in the analysis, we scale all error components with a 
single multiplier, k, 

 [ ] 1)1()1()1()1()1( −−++++= mtwPtotal kekekekekee σ  (16) 

and explore the effect of k on failure probability. We calculated the average value and coefficient 
of variation of probability of failure values for the panels designed with A-basis properties and 
safety factor of 1.5. 

Table 4.  Average and coefficient of variation (over N=500 companies) of probability of failure 
for the components designed with A-basis properties and SF=1.5. Monte Carlo simulations with 

N=500, M=20,000. 

k ntP  and c.o.v.(Pnt
*) tP  and c.o.v.(Pt

*) tnt PP −  ntt PP /  
0.5 1.510 x10-5   (330 %) 1.483 x10-5   (336 %) 2.740 x10-7 0.982 

0.75 9.000 x10-5   (289 %) 8.053 x10-5   (313 %) 9.474 x10-6 0.895 
1 3.626 x10-4   (448 %) 2.464 x10-4   (596 %) 1.163 x10-4 0.679 

1.5 5.275 x10-3   (366 %) 1.294 x10-3   (496 %) 3.981 x10-3 0.245 
2 3.106 x10-2   (318 %) 1.905 x10-3   (694 %) 2.916 x10-2 0.061 

*
 Pnt and Pt are the probability of failure without and with certification testing, respectively. 

Table 4 shows that as the error in analyses increases, i.e. k increases, the average values prob-
ability of failures (both with and without certification) of the components are also increases. The 
coefficient of variation of failure probability is very large. With N=500, the coefficient of varia-
tion of the average between repeated Monte Carlo simulations should be reduced by 500 =22. 
This would still indicates variations of up to 30% in the values in Table 4. 

The last two columns of Table 4 present the effect of certification tests on failure probabilities. 
For this purpose we used two measures; the difference of failure probabilities and the ratio of 
failure probabilities. In our previous work, we have shown that the difference may be more mean-
ingful when the probability of failure is high since it indicates the amount of aircraft that is saved 
by the use of certification tests. As we can see from the 4th column when the error increases, the 
difference between the two failure probabilities also increases pointing out that the certification 
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tests become more effective.  The results given in the last column demonstrate that the trend in 
the probability ratio is also similar to the previous trend; when the error increases the ratio of the 
two probabilities decreases showing the increase in the effectiveness of the certification tests. 

As noted earlier, in our previous paper (Kale et al, 2004) we represented the overall error with 
a single error factor (SEF), and used uniform distribution for the initial distribution of this error.  
However, in this work we use a more complex representation of error with multiple error factors 
(MEF), we represent initial distribution of each error factor with uniform distribution. In this 
case, the distribution of total error is no more uniform (see Figure 2). In order to compare the two 
approaches, we first calculate the mean and standard deviation of the initial total error factor, 

ini
totale . The mean value of the total error factor is close to zero so that we use zero mean value and 

equal standard deviation value for a uniform distribution of total error.  The equivalent error 
bound s for uniform distribution corresponding to different error multiplier k is listed of Table 5. 

Table 5.  Equivalent error bounds for the SEF case corresponding to the same standard deviation 
in the MEF case 

k 
Average 

ini
totale  

Standard 
Deviation of 

ini
totale  

Average 
ini
totale  

Bound of 
error for 

ini
totale  

0.5 1.00 x10-3 0.064 0 11.1 
0.75 1.42 x10-3 0.100 0 17.3 

1 1.12 x10-3 0.132 0 22.9 
1.5 2.97 x10-3 0.200 0 34.6 
2 1.07 x10-2 0.271 

from the 
SEF Case 

→ 
to the 

MEF Case 

0 46.9 

Using the equivalent error bounds of SEF Case given in the right portion of Table 5 we calcu-
late the average values of probabilities of failure without and after certification test for SEF case 
and we compare them in Table 6 with corresponding failure probabilities of MEF case from Ta-
ble 4.  In addition, the comparison of the probability of failures for the two cases is presented in 
Fig. 3. 

Table 6.  Comparison of failure probabilities for SEF and MEF case 

k 
MEF

ntP  
( x10-4) 

MEF
tP  

( x10-4) 
Pf  

Ratio* 
SEF

ntP  
( x10-4) 

SEF
tP  

( x10-4) 
Pf  

Ratio* 
0.5 0.151 0.148 0.982 0.147 0.139 0.948 

0.75 0.900 0.805 0.895 0.620 0.525 0.848 
1 3.626 2.464 0.679 2.579 1.592 0.617 

1.5 52.57 12.94 0.245 37.06 5.671 0.153 
2 310.6 19.05 0.061 314.6 5.733 0.018 

* Pf Ratio is the ratio of failure probabilities; ntt PP /  
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When we compare the probability of failure without certification the results are similar for 
both the MEF Case and SEF Case (see columns 2 and 5, Table 6). Note that the differences be-
tween the corresponding columns are of the same order as the scatter in the Monte Carlo simula-
tions. Comparing the failure probabilities after certification, we notice that the MEF Case leads to 
higher probability of failure values hence ntt PP / ratios. That is the additional detail of the MEF 
reduces the effectiveness of the certification testing. This is due to the fact that in the SEF case 
(Kale et al, 2004) the certification testing is performed with the average value of actual load, Pd 
(see Table 3 for the definition of Pd).  However, in the MEF case certification testing is per-
formed with the calculated load, Pcalc (see Eq. (1) for the expression for Pcalc). Therefore, one 
component of the error can not be exposed by certification testing. This effect is also apparent 
when we compare the average safety factor values for these two cases in Table 7 and in Fig. 4. 

Table 7.  Comparison of Average Safety Factor for two cases 

k ( )MEF

ntavgFS  ( )MEF

tavgFS SF 
Ratio* 

( )SEF

ntavgFS  ( )SEF

tavgFS  SF 
Ratio* 

0.5 1.909 1.911 1.001 1.907 1.910 1.002 
0.75 1.910 1.920 1.005 1.907 1.920 1.007 

1 1.909 1.938 1.015 1.907 1.942 1.018 
1.5 1.912 2.015 1.054 1.907 2.031 1.065 
2 1.907 2.093 1.097 1.907 2.149 1.127 

* SF Ratio is the ratio of average safety factors without and with certification  

Comparing the average safety factors, SF avg, after certification corresponding to the MEF and 
SEF Cases (columns 3 and 6, Table 7), we see that average safety factor values corresponding to 
SEF Case is larger which will in turn lead to smaller probability of failure (see Table 6).   
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Figure 3. After certification failure probabilities for SEF and MEF case 
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Looking at the columns 4 and 7 we see and expected trend in the values of SF Ratios.  Both the 
ratios corresponding to the MEF Case and SEF Case increases with the increase of error bounds, 
rendering certification tests more effective. 

The main reason for lower safety in the MEF case is the reduced effect of certification on de-
sign thickness as seen in Table 8. 

Table 8.  Comparison of design thicknesses for two cases 

k ( )MEF
tdesignt  ( )SEF

tdesignt  tdesign 
Ratio* 

0.5 1.273 1.274 1.001 
0.75 1.274 1.280 1.005 

1 1.276 1.295 1.015 
1.5 1.282 1.354 1.056 
2 1.282 1.434 1.118 

* tdesign Ratio is the ratio of average design thickness for the MEF and SEF Cases 

Table 8 illustrates the effect of error multiplier k on the average design thicknesses after certi-
fication of the components corresponding to the MEF and SEF Cases. When we compare average 
design thicknesses, we see that components corresponding to SEF Case are designed thicker 
compared to MEF Case leading to low probability of failure values. 

Finally, we change the variability in failure stress and investigate the effect of this change in 
probability of failure.  The results are presented in Table 9. 
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Figure 4. After certification failure probabilities for SEF and MEF case 
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Table 9.  Comparison of Failure Probabilities for the MEF Case corresponding to 
different variability in failure stress σf 

c.o.v. 
(σf) 

( )
ntavgFS  ( )

tavgFS  
Average 
( )

ntdesignt  
Average 
( )

tdesignt  
ntP  

( x10-4) 
tP  

( x10-4) 
Pf  

Ratio 

0 % 1.503 1.650 1.001 1.007 79.19 0.306 0.004 
5 % 1.691 1.761 1.127 1.131 10.50 1.297 0.124 

10 % 1.909 1.938 1.275 1.276 3.626  2.464 0.679 
15 % 2.152 2.166 1.434 1.435 3.624 3.231 0.892 
20 % 2.450 2.458 1.628 1.628 3.576 3.370 0.943 

Table 9 displays the effect of variability in failure stress, σf, on the average safety factor and 
probability of failure for the MEF Case.  We observe that the average safety factor and design 
thickness increases with the increase of variability in failure stress.  On the other hand, probabil-
ity of failure increases with the increase of variability.  Comparing the design thicknesses with 
and without certification cases and also from Pf ratio given in the last column of Table 10 we ob-
serve that certification tests become less effective as variability increases.  Figure 5 also shows 
the diminishing of the efficiency of testing as variability grows. 

Effect of Variability on the Efficiency of Certification
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Figure 5. Effect of variability in failure stress on MEF case 
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8. Concluding Remarks 

The interaction between error, variability and testing on the probability of failure of aircraft struc-
tures was analyzed.  We used stress failure due to extreme loads, which can be simulated by an 
unstiffened panel designed under uniaxial loads. Monte Carlo simulations were performed to ac-
count for both fleet-level uncertainties (such as errors in analytical models) and individual uncer-
tainties (such as variability in material properties). 

In our previous paper (Kale et al, 2004) we sought to clarify the interaction between error, 
variability and testing by the use of a simple model of error, lumping it into a single error compo-
nent in the calculation of stresses.. In this paper we used a more realistic error model such that 
errors in load and stress calculation, and also errors in material and geometric properties were 
modeled using uniform distributions for their initial distributions and compared the results with 
our previous paper’s results.  The same as in our previous paper, the variability in the material 
and geometric properties and in the loading was included in the analysis by modeling the vari-
abilities with random numbers and their distributions.   

In our previous paper, we had found that the effect of tests is most important when errors in 
analytical models are high and when the variability between airplanes is low. These observations 
also apply to the results obtained in this paper. We expressed the effectiveness of the certification 
tests is expressed by the ratio of the probability of failure with the test, Pt, to the probability of 
failure without tests, Pnt. Using this ratio we have shown that the effectiveness of certification 
tests increases when the error in the analysis is large.  We changed the bound of error in material 
properties, em, in which we included the likelihood of occurrence of unexpected failure modes 
and the difference in the behavior of material in coupon tests and in the actual service, and have 
shown that the reduction in bounds in em is also an indication of safer designs.  It was an expected 
result since the safer the design, the lesser the need for testing.  In addition, we played with the 
variability of failure stress and have shown that the increase of variability increased the probabil-
ity of failure and made certification tests less effective.   

Another observation from study is that this new more realistic error model led to an increase 
in average safety factor (fleet-average) thereby an increase in the probability of failure.  In addi-
tion, the certification testing for this new case, we called as MEF Case, found to be less effective 
since we used the calculated load values in testing of components instead of using actual loads as 
we did in our previous paper. 

The effect of building-block type tests that are conducted before certification was not assessed 
here. However, these tests reduce the errors in the analytical models, and on that basis we deter-
mined that they can reduce the probability of failure by one or two orders of magnitude. 
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Appendix 1 

A-Basis property – A-basis value is the value exceeded by 99% of the population with 95% con-
fidence. This is given by  

 A-basis = µ - σ × k1  (A1) 

where µ is the mean, σ is the standard deviation and k1 is the tolerance coefficient for normal dis-
tribution given by Equation A2 
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where N is the sample size and z1-p is the critical value of normal distribution that is exceeded 
with a probability of 1- p. The tolerance coefficient k1 for a lognormal distribution is obtained by 
first transforming the lognormally distributed variable to a normally distributed variable. Equa-
tion A1 and A2 can be used to obtain an intermediate value. This value is then converted back to 
the lognormally distributed variable using inverse transformation. 

In order to obtain the A-basis values, 15 panels are randomly selected from a batch. Here, the 
uncertainty in material property is due to allowable stress. The mean and standard deviation of 15 
random values of allowable stress is calculated and used in determining the A-basis value of al-
lowable stress.  
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Abstract.  Mathematical optimization plays an important role in engineering design, leading to 

greatly improved performance. Deterministic optimization however, can lead to undesired 

choices because it neglects input and model uncertainty. Reliability-based design optimization 

(RBDO) and robust design improve optimization by considering uncertainty. A design is called 

reliable if it meets all performance targets in the presence of variation/uncertainty and robust if it 

is insensitive to variation/uncertainty. Ultimately, a design should be optimal, reliable, and robust. 

Usually, some of the deterministic optimality is traded-off in order for the design to be reliable 

and/or robust. This paper describes the state-of-the-art in assessing reliability and robustness in 

engineering design and proposes a new unifying formulation. The principles of deterministic 

optimality, reliability and robustness are first defined. Subsequently, the design compromises for 

simultaneously achieving optimality, reliability and robustness are illustrated. Emphasis is given 

to a unifying probabilistic optimization formulation for both reliability-based and robust design, 

including variation of all performance measures. The robust engineering problem is investigated 

as a part of a “generalized” RBDO problem. Because conventional RBDO optimizes the mean 

performance, its objective is only a function of deterministic design variables and the means of 

the random design variables. The conventional RBDO formulation is expanded to include 

performance variation as a design criterion. This results in a multi-objective optimization problem 

even with a single performance criterion. A preference aggregation method is used to compute 

the entire Pareto frontier efficiently. Examples illustrate the concepts and demonstrate their 

applicability. 

1. Introduction 

Deterministic mathematical optimization has led to greatly improved performance in all areas of 

engineering design.  It can however, lead to undesired choices, if uncertainty/variation is ignored. 

In deterministic design we assume that there is no uncertainty in the design variables and/or 

modeling parameters. Therefore, there is no variability in the simulation outputs. However, there 

exists inherent input and parameter variation that results in output variation. Deterministic 

optimization typically yields optimal designs that are pushed to the limits of design constraint 

boundaries, leaving little or no room for tolerances (uncertainty) in manufacturing imperfections, 

modeling and design variables. Therefore, deterministic optimal designs that are obtained without 

taking into account uncertainty are usually unreliable. Input variation is fully accounted for in 

Reliability-Based Design Optimization (RBDO) and robust design.  

In RBDO, probability distributions describe the stochastic nature of the design variables and 

model parameters. Variations are represented by standard deviations (typically assumed to be 

constant) and a mean performance measure is optimized subject to probabilistic constraints. 

RBDO can be a powerful tool which can assist in design under uncertainty, since it provides 
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optimum designs in the presence of uncertainty in design variables/parameters and simulation 

models. For this reason, it has been extensively studied [1-8]. 

Robust designs methods are also widely used because they can improve the quality of 

products and processes [9]. Robust design minimizes performance variation without eliminating 

the sources of variation [10]. The product quality is commonly defined using a quality loss 

function [10,11]. Various methods have been proposed for estimating the product quality loss 

[12-16] using the mean and standard deviation of the response (performance measure). A review 

of existing robust optimization methods can be found in [17,18].  

It is common in product design to have multiple performance measures. A robust design 

therefore, must simultaneously minimize the variation of all performance measures using a multi-

objective optimization approach. It is however, common to use a single-objective robust design 

formulation by either minimizing a heuristic quality loss function [18,19] or form a single 

objective utilizing weighting factors in a weighted-sum approach [20]. We will show in this work 

that the weighted-sum approach may lead to inaccurate results. A detailed examination of the 

weighted-sum approach drawbacks is provided in [21]. There are only a few multi-objective 

approaches to robust design [17,22-24]. 

Reliability and robustness are attributes of design under uncertainty. It makes sense therefore, 

to combine them in a unified, multi-objective approach where the mean and variation of multiple 

performance measures are simultaneously minimized, subject to probabilistic constraints for 

design feasibility. Such an approach is proposed in this paper. The concept of a unified 

methodology for reliability and robustness is not new, as references [17,18,25] for example, 

indicate. However, major simplifications are usually made. In general, researchers use one or 

both of 1) the weighted-sum simplification for the general multi-objective problem and 2) a 

simplified representation of the probabilistic design feasibility using the worst-case scenario 

[23,17] or the moment matching formulation [26,16]. Furthermore, a first-order Taylor expansion 

is usually performed for estimating the performance variance. This linearization approach does a 

fairly good job in estimating the expected value of the nonlinear objective function. However, it 

can be quite inaccurate in estimating its higher moments as is the standard deviation [27]. 

Moreover, it is limiting in that it does not provide us with the correct probability distribution 

information of the objective function.  

In this paper, a computationally efficient unified approach to reliability and robustness is 

proposed which alleviates the described shortcomings of the available methods. A preference 

aggregation method [28-30] is used to choose the “best” solution of a multi-objective 

optimization problem based on designer preferences. The performance variation is assessed by a 

percentile difference method originally proposed in [25]. The percentiles are efficiently calculated 

using a variation of the Advanced Mean Value method [31]. The “best” design is calculated using 

an efficient single-loop probabilistic optimization method [32]. Examples illustrate the 

methodology.  

2. Definition of Optimality, Reliability and Robustness 

In deterministic design optimization an objective function is usually minimized subject to certain 

constraints which define a feasible region. A conventional deterministic optimization problem 

with inequality constraints only, is stated as  

                   d
d

fmin                  (1) 

          s.t.   0diG ,   ni ,...,1                                                        

                   
UL ddd

where 
kRd is the vector of deterministic design variables. A bold letter indicates a vector. 
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In optimization under uncertainty the task is to minimize (or maximize) an objective while 1) 

all constraints are satisfied and 2) the performance of the design is insensitive to the existing 

variation or uncertainty. Variation or stochastic uncertainty is defined as that “irreducible” 

uncertainty which, being inherent in the physical system, ought not to depend on the amount of 

available statistical data. It is usually modeled probabilistically. In this work, a design is called 

reliable if it meets all performance targets in the presence of variation/uncertainty and robust if it 

is insensitive to variation/uncertainty. Ultimately, a design should be optimal, reliable, and 

robust. Usually, some of the deterministic optimality is traded-off in order for the design to be 

reliable and/or robust. 

 A typical RBDO problem is formulated as 

                   PX
µd,

µ,µd,
X

fmin                 (2) 

          s.t.   
ifii pRGP 10,, PXd , ni ,...,1                                              

                   
UL

ddd

                  
UL

XXX µµµ     

where 
mRX is the vector of random design variables and 

qRP is the vector of random 

design parameters. According to the used notation, an upper case letter indicates a random 

variable or a random parameter and a lower case letter indicates a realization of a random variable 

or parameter. If the target probability of failure fp is approximated using the target reliability 

index t  and the standard normal cumulative distribution function , the actual reliability level 

for the ith deterministic constraint 0PX,d,iG  is 
ifi pR 1  where  

)()0()0)((
iii tGif FGPp PX,d,                                  (3)    

and
iGF  is the cumulative distribution function  of iG .

The principles of deterministic optimality and reliability are demonstrated graphically in Fig. 

1 using a hypothetical design. The design compromises for achieving optimality and reliability 

are illustrated. For a hypothetical design with two constraints in two dimensions, the deterministic 

optimum is denoted by point A in Fig. 1. It is the constrained optimum, where the objective is 

minimized and both constraints are active. If the two design variables are random with their 

means specified by the deterministic optimum, all possible design realizations fall within a closed 

domain (indicated for simplicity by a circle centered at point A) due to the variation of the two 

design variables. In this case, a large percentage of design realizations violate at least one 

constraint or performance target, rendering design A unreliable. To achieve reliability, the circle 

around point A must be moved inside the feasible domain with its center at point B. As the circle 

moves within the feasible domain, the design simultaneously becomes more reliable and less 

optimal. The circle must be moved to accommodate the uncertainty indicated by its radius. At the 

reliable design B, the circle may be tangent to a number of performance targets which become 

“probabilistically” active. The process of moving the circle from the deterministic optimum to the 

reliability optimum is known as Reliability-Based Design Optimization. It can be implemented 

mathematically by solving Problem (2). 
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Figure 1. Geometric interpretation of deterministic and reliable designs 

At point B of Fig. 1, the design is at its reliability optimum where the objective function is 

optimized given that the circle around B is within the bounds of the constraints. However, it may 

not be robust. It is robust if the performance of each design realization within the circle is as close 

to constant as possible, indicating insensitivity to variation. Robustness can therefore, be achieved 

by placing the final optimum at a region, where the response is “flat” or insensitive to the design 

variables. This is illustrated in Fig. 2 for a hypothetical one-dimensional design. Assuming the 

variation/uncertainty of the design variable x is constant, the variation of the response is much 

smaller if 2xx . It should be noted that the reliable and robust design is usually (although not 

necessarily), suboptimal to the reliable design B which is in turn suboptimal to the deterministic 

design A. This is the design trade-off among optimality, reliability and robustness. 
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Figure 2. Geometric interpretation of robust design 

The robust design problem is in general, expressed as 

                   ],...,,[min
21 m

fff VVVf
µd,

V
X

              (4) 

s.t.
ifii pRGP 10,, PXd ,   ni ,...,1                                              
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UL ddd

                   
UL

XXX µµµ     

where V indicates a variation measure. For example, 
1fV is a variation measure of the first 

objective f 1 of the multi-objective Problem (4). Section 4 discusses the commonly used variation 

measures and explains what we propose in this work. 

A unifying formulation for reliability and robustness is described in Section 4. The solution 

methodology is based on a “generalized” RBDO formulation which includes robustness 

considerations. For this reason, an overview of the existing RBDO methods is given next.

3. Overview of Reliability-Based Design Optimization 

Optimization is concerned with achieving the best outcome of a given objective while satisfying 

certain restrictions. It has been observed that the deterministic optimum design does not 

necessarily have high reliability. To ensure that the optimum design is also reliable, the 

optimization formulation must include reliability constraints. Such a formulation is commonly 

referred as Reliability-Based Design Optimization (RBDO). Problem (2) is a typical RBDO 

formulation.  

The classical RBDO method is the so-called double-loop approach. It employs two nested 

optimization loops; the design optimization loop (outer) and the reliability assessment loop 

(inner). The latter is needed for the evaluation of each probabilistic constraint. There are two 

different methods for the reliability assessment; the Reliability Index Approach (RIA) [2] and the 

Performance Measure Approach (PMA) [6,7]. Although either approach can be used, PMA is in 

general more efficient, especially for high reliability problems [7]. Every time the design 

optimization loop calls for a constraint evaluation, a reliability assessment loop is executed which 

searches for the Most Probable Point (MPP) in the standard normal space, based on First-Order 

Reliability Methods (FORM).  

The PMA-based RBDO problem, which is practically the inverse of the RIA-based RBDO 

problem, is stated as [7] 

                   PX
µd,

µ,µd,
X

fmin                (5) 

          s.t.  0))(((
1

iii tGp FG , ni ,...,1

                  
UL

ddd

                  
UL

XXX µµµ        

where Eq. (3) has been used to transform each probabilistic constraint to an equivalent non-

negative constraint for a performance measure pG . pG  is a function of the target reliability 

index t . It is calculated from the following reliability minimization problem 

                  )(min U
U

GGp                           (6) 

            s.t  tU

where the vector U represents the random variables in the standard normal space. 

Using a percentile formulation, the general RBDO formulation of Eq. (2), can be equivalently 

stated as [6,7]  

PX
µd,

µ,µd,
X

fmin                                  (7) 

   s.t.     niG
R

i ,,1,0)( PX,d,                             

                        
UL

ddd  ,   
UL

XXX µµµ



REC2004 

124 

where 
RG is the R-percentile of the constraint )( PX,d,G . It is defined as  

RGGP R ))(( PX,d,                                                                   (8) 

where R is the target reliability for the constraint. Note that RGP )0)(( PX,d,  if 0RG .

Therefore, 0RG provides an equivalent expression of the probabilistic constraints in Eq. (2). 

After the MPP is calculated, the R-percentile is given by  

                       MPPMPP

R GG PXd ,, .                        (9) 

The RBDO Problems (5) or (7) involve nested optimization loops which may hinder on their 

computational efficiency. For this reason, two new classes of RBDO formulations have been 

recently proposed. The first class decouples the RBDO process into a sequence of a deterministic 

design optimization followed by a set of reliability assessment loops [33,34]. The series of 

deterministic and reliability loops is repeated until convergence. The second class of RBDO 

methods converts the problem into an equivalent, single-loop deterministic optimization [35,32], 

leading therefore, to significant efficiency improvements. 

3.1. Decoupled RBDO

Among the decoupled RBDO methods, the Sequential Optimization and Reliability Assessment 

(SORA) [33] method is the most promising. It uses the reliability information from the previous 

cycle to shift the violated deterministic constraints in the feasible domain. This is done 

sequentially until convergence is achieved. SORA employs a sequence of decoupled deterministic 

optimization and reliability assessment loops which are performed in series. At the end of a 

deterministic design optimization, the reliability of each constraint is assessed. If the reliability of 

a particular constraint is less than the specified target, a “shifting” vector is calculated which is 

used to push the constraint boundary in the feasible domain. The “shifted” constraints are then 

used to perform a new deterministic design optimization. The series of deterministic and 

reliability assessment loops continues until convergence is achieved; i.e. the objective function is 

minimized and the target reliability of each constraint is met. At convergence the shifting distance 

is zero.  For the reliability assessment in SORA, either of the RIA or PMA approaches can be 

used. Detailed information is provided in [33]. 

3.2. Single-Loop RBDO

Based on the percentile formulation of Eq. (7), a computationally efficient single-loop RBDO 

method has been recently developed [32]. The method relates the PX µµ ,  and X, P vectors using 

the KKT optimality conditions of the inner reliability loops. In that case, the constraint gradient 

and the  hyper-sphere gradient must be collinear and pointing in opposite directions at the MPP 

point [32]. This is expressed as µX X t  and µP P t . Problem (7) can be 

therefore, expressed as 

                       ),,(min
,

PX
µd

µµd
X

f           (10) 

                                       s.t. niG iii ,......,10),,( PXd                                            

                     
itiiti ii

µPµX pX ,           

                     ||)(||/)( iiiiiii GG P,Xd,P,Xd,
PX,PX,

                     ULUL

XXX µµµddd ,

where PX
µµ , are the mean values of vectors X and P, 

it
is the target reliability index for the ith 

constraint, i is the normalized gradient of the ith constraint and is the standard deviation 

vector of random variables X and parameters P.

It should be noted that the single-loop RBDO method does not search for the MPP of each 
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constraint. Instead, the MPP of each active constraint is correctly identified at the optimum. This 

dramatically improves the efficiency without compromising the accuracy. The main advantage of 

the method is the elimination of the repeated reliability loops and its excellent convergence 

properties since it is based on an equivalent deterministic optimization. Detail information on the 

single-loop method is provided in [32]. 

A modified version of the single-loop probabilistic optimization of Problem (10) is used in 

this work for the proposed unified reliability and robust design formulation.  

4. A Unified Formulation for reliability and Robustness 

A computationally efficient unified method to reliability and robustness, based on a multi-

objective optimization problem, is presented in this section. The method addresses all 

shortcomings of the existing methods as described in the introduction section. The preference 

aggregation method of Section 4.1 is used to choose the “best” solution of the multi-objective 

optimization problem based on designer preferences. The performance variation is assessed by a 

percentile difference method originally proposed in [25]. The percentiles are efficiently calculated 

using a variation of the Advanced Mean Value method as described in Section 4.2. The “best” 

design is calculated using the single-loop probabilistic optimization method of Section 3.2. 

A multi-objective formulation for reliability and robustness is proposed by combining the 

RBDO and robust design formulations of Problems (2) and (4), respectively. The variation 

measure 
ifV  of objective (performance) if  is expressed by the spread of its PDF, which is simply 

the percentile difference 12 R

i

R

if ffR
i

 where 1R

if  and 2R

if are a low and high percentile 

of if , respectively. For example, the 5th and 95th percentiles can be used. There are several 

advantages of using the percentile difference instead of the standard deviation in assessing 

variability in robust design. The percentile is related to the probability at the tail areas of the 

distribution and therefore, it provides more information than the standard deviation. It considers 

for example, the skewness of the distribution while the standard deviation only captures the 

dispersion around the mean value. Also, with the percentile formulation, we can easily know the 

confidence level of the design robustness, which is simply equal to 12 RR .

Using the percentile difference as a variation measure, the unified reliability and robustness 

formulation is stated by the following multi-objective optimization problem  

                   PX
µd,

µ,µd,
X

fmin              (11) 

                   ],...,,[min
21 mfff RRRf

µd,
R

X

  s.t.  
ifi pGP 10,, PXd ,   ni ,...,1                                                        

                   
UL ddd

                   
UL

XXX µµµ     

where 12 RR

f ffR . The first objective minimizes a mean performance and the remaining 

objectives minimize the distribution spread of all performance measures. The trade-off between 

all objectives can play an important role in the selection of the best design. It is common to 

perform this trade-off using a weighted-sum approach which usually leads to undesired results.

A multi-objective design problem generally has a set of possible “best” solutions, known as 

the Pareto set or Pareto frontier. The Pareto set contains all feasible points for which there is no 

other point which performs better on all objectives. To decide which of all the Pareto points is the 

best design, the objectives must be traded off against each other. 
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Some researchers have proposed to use compromise programming (CP) [17,22,23] to address 

the trade-off mentioned above. The basic idea in CP is to identify the entire Pareto frontier, and 

allow the user to choose among the Pareto points. CP commences with the identification of an 

ideal solution (utopia point), where each attribute under consideration simultaneously achieves its 

optimum value. As the ideal point is unachievable in general, the designer seeks a solution which 

is as close as possible to the ideal point. The closest feasible point to the utopia point for a given 

weight set is guaranteed to belong to the set of Pareto points. By varying the weighting factors, 

the full set of Pareto points can be obtained [17]. In contrast, a weighted-sum (WS) method used 

for the same purpose may fail to locate all Pareto points. It has been shown [36] that for every 

Pareto point of a convex multi-objective optimization problem there exists a (nonzero) weight 

vector w > 0 such that this Pareto point is an optimal solution of the Weighted-sum Problem 

(WSP). However, not every Pareto solution of a general (nonconvex) problem can be found by 

solving the corresponding WSP. Also, it has been concluded from numerical experiments [17] 

that even for convex multi-objective optimization problems, an evenly distributed set of weights 

fails to produce an even distribution of points from all parts of the Pareto set if a weighted-sum 

aggregation is used. Details on compromise programming in engineering design can be found in 

[17]. 

4.1. Preference Aggregation Method 

An alternative to compromise programming is preference aggregation. A family of 

aggregation functions for modeling all possible trade-offs in engineering design has been 

presented in [28-30]. Methods using these aggregation functions to aggregate preferences of 

designers on performance measures are called preference aggregation methods. In this work, a 

preference aggregation method is used to address the robust design of Problem (11). It has been 

mentioned that the weighted-sum methods have serious drawbacks for optimization [17,21] 

because they are usually unable to reach some Pareto solutions. The recovery of the entire Pareto 

frontier may be computationally intractable and even if it is available, it may be beyond the 

capacity of the human designer to choose the best point from the Pareto set.  The preference 

aggregation method surmounts these difficulties. This is the main reason we use preference 

aggregation methods instead of compromise programming in this work. 

Preference aggregation is a formal approach for reconciling multiple conflicting criteria in 

design [28,29].  Preference functions or preferences are defined for each criterion and the various 

functions are aggregated into a single overall preference function by means of aggregation 

operators.  Preference functions take values on [0,1], where a preference of 0 indicates a criterion 

is unacceptable, while a preference of 1 denotes complete satisfaction. A set of properties was 

offered in [28] that seem intuitively reasonable for combining preferences in engineering design, 

indicating that decisions can have different trade-offs.  The set includes the annihilation, 

idempotency, monotonicity, commutativity and continuity properties which are mathematically 

described as 

               0,0,,,,,0 211221 wwhhwhwh                            (annihilation)   (12) 

               12111 ,,, hwhwhh                                                        (idempotency) (13) 

               2

*

2112211 ,,,,,, whwhhwhwhh   if  
*

22 hh             (monotonicity) (14) 

               11222211 ,,,,,, whwhhwhwhh                               (commutativity) (15) 

               221

*

12211 ,,,lim,,,
1

*
1

whwhhwhwhh
hh

.                       (continuity)      (16) 

where 11,wh  and 22 ,wh  are the individual preference functions to be aggregated and their 

corresponding importance weights and h is the aggregate preference function.  

The aggregation properties distinguish between compensating trade-offs, where high 

performance on one criterion can make up for lower performance on another, and non-
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compensating trade-offs, in which the lowest performances should be raised first.  It was shown 

[29] that the level of compensation can vary continuously, and that there is a family of 

aggregation operators 
sh  that satisfies the original set of properties for design (Eqs 12-16) and 

can capture all possible trade-offs. For a two-attribute design problem, 
sh  is given by 

            

sss
s

ww

hwhw
whwhh

1

21

2211
2211 ,,, .  (17) 

The parameter s  can be interpreted as a measure of the level of compensation, or trade-off. 

Higher values of s  indicate a greater willingness to allow high preference for one criterion to 

compensate for lower values of another. It is shown [29] that if 0s , the aggregation of the 

two preferences provides maximum compensation. In this case, Eq. (17) reduces to the following 

geometric product of the two preferences 1h , 2h

             2121

1

21
wwwws

prod

s hhhh . (18) 

To the contrary, if  s  the aggregation of the two preferences provides no compensation at 

all and Eq. (17) reduces to   

            21,min hhhs
. (19) 

When the parameters s  and w  (or equivalently, weight ratio 12 / ww ) are correctly chosen, the 

“best” design can be located by maximizing 
sh .

The weighted sum is a special case with s =1. It has been shown [29] that for any Pareto 

optimal point in a given set, there is always a choice of a weight ratio and a level of compensation 

s that selects that point as the most preferred. It has been also shown that for any fixed s, there are 

Pareto sets in which some Pareto points can never be selected by any choice of weights. In 

particular, the weighted-sum approach (s =1) may not be able to select all Pareto points. In order 

to avoid this arbitrary and meaningless use of weights, a rigorous, provable procedure of 

“indifference points” has been developed for calculating the proper trade-off parameters [30]. 

4.2. Percentile Calculation using the Advanced Mean Value Method

The percentiles 1R
f  and 2R

f of a performance measure f (see Eq. 11) can be in general 

calculated using two reliability calculations for estimating the two Most Probable Points 

corresponding to 1R  and 2R . In this work, a computationally more efficient method is used based 

on the Advanced Mean Value (AMV) method [31]. 

The AMV method has been originally proposed as a computationally efficient method for 

generating the cumulative distribution function (CDF) of performance f. It uses a simple 

correction to compensate for errors introduced from a Taylor series truncation. The performance 

Xf  is first linearized around the mean design point. A limit state function is then defined as 

                                0ffg XX  (20) 

where 0f  is a particular value of the performance function. Based on the CDF definition, we 

have the following first-order relation 

                                 00 gPffP , (21) 

where  is the standard normal cumulative distribution function and  is the reliability index. 

 For the calculation of the R-percentile
Rf , the reliability index  is calculated from 

R  if %50R  and R1  if %50R .   

Using the linear approximation of Xg  at the mean value point Xµ , the MPP is given by 
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XX

X
X

XX

X
X

µ

µ

µ

µ
U

f

f

g

g*
. (22) 

in the standard normal space, if the random variables X are normally distributed with 

XXµX ,~ N . In the original X space, the MPP coordinates are 

                                  XX µUX
**

. (23) 

For non-normal random variables, a non-linear transformation is needed. 

The AMV method “corrects” the relation of Eq. (21) as 

                                  
*

XffP  (24) 

by replacing the 0f  value at which the reliability index  is calculated by
*

Xf . Based on Eq. 

(24), the R-percentile is equal to
*

Xf .

The described R-percentile calculation using the AMV method requires only one extra 

function evaluation (i.e. 
*

Xf ). The gradient of Xf  at the mean design point Xµ  (see Eq. 

22) is usually known, if a gradient-based optimization method is used for solving the robust 

optimization problem. 

5. Examples 

5.1. A Mathematical Example 

A simple mathematical example is first used to demonstrate the proposed methodology for 

reliability and robustness, using preference aggregation methods to handle the trade-off between 

reliability and robustness. The following mathematical problem, first appeared in [17], is used  

      10534min
2

2

4

1

3

1 xxxf x
x

      s.t. 045.621 xxG x

                  2,1,101 ixi .

Assuming that only the variation of the objective is important, the reliable/robust problem 

is formulated as,  

      f
xµ

min

      X
xµ

fRmin

s.t. RGP )0)(( X

                 RP 101 X .                                     

The two design variables are assumed normally distributed with 2,1,4.0,~ iNX
ixi . The 

percentile difference is calculated as 12 RR

f ffR  with %952R  and %51R . Two 

separate single-objective optimization problems are first solved in order to establish the utopia

point. Each problem is composed of one of the two objectives and all constraints. The first 

problem is the conventional RBDO problem. It minimizes f subject to the probabilistic 

constraints. Its solution yields an optimum objective of 4745.5*

f  at the design vector 

9471.5,2.2*

xµ . The superscript * indicates optimal value. The second problem 

minimizes fR . It is a single-objective, purely robust optimization problem. Its solution yields an 
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optimum objective value and design vector of 8982.2*

fR  and 5332.5,4668.3*

xµ ,

respectively. 

Because we have two objectives, all optimal solutions belong to a Pareto set. For the 

calculation of the Pareto set, the two objectives are aggregated using the preference aggregation 

method of Section 4.1. Two preference functions 1h  and 2h  are first defined for f and fR ,

respectively. Fig. 3 shows 1h , which has the following linear form 

                   

ff

ff

ff

ff

f

if

if
h

*

*

**

*

1

30

3
3

3

.

Note that for all feasible designs, the mean objective value f  is always greater or equal to
*

f .

A “cut-off” value of 
*3 ff  is used, assuming that if 

*3 ff  the design is unacceptable. 

Therefore, 11h  if 
*

ff  and 01h if
*3 ff . The preference function 2h  for the second 

objective fR is defined in a similar manner. The assumed “cut-off” value is equal to 

*8 ff RR .

Figure 3. Preference function 1h  for the mathematical example 

The two objectives are aggregated using 

           

sss

ww

hwhw
h

1

21

2211 ; 121 ww , 10 1w .

The overall preference h is maximized by solving the following probabilistic optimization 

problem  

      h
xµ

max               (25) 

s.t. RGP )0)(( x

                 2,1,101 iRxP i ,

using the single-loop RBDO algorithm of Section 3.2.                                    

0

1

*

f

*3 f f

1h

0

1

*

f

*3 f f

1h
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The results are summarized in Fig. 4 and Table 1. For illustration purposes, we have assumed 

1s . Fig. 4 shows the trade-off between 
*/ ff and 

*/ ff RR . Note that the Pareto set 

does not cover the entire range between the reliable and robust optima. For 48.01w  (see Table 

1), the overall design is dominated by the reliable design. Note that all designs are well spaced 

along the Pareto set.  

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Rf/ Rf*

µf/µf*

Reliable 

Optimum

Robust

Optimum

Figure 4. Pareto set for the mathematical example, using the preference aggregation method 

Table 1 shows the exact values for some points on the Pareto set and the corresponding values of 

the optimal point
21 xxx , overall preference function h and the value of constraint G for 

10 1w . As indicated by its zero value, constraint G  is always active. 
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Table 1. Pareto set details for the mathematical example, using the preference aggregation 

method 

a: Robust design; b: Reliable design

For comparison purposes, the same problem is solved using the weighted-sum approach. The 

following probabilistic optimization problem is solved instead of Problem (25) 

      
*2*1min
f

f

f

f

R

R
wwf

xµ
       

 s.t. RGP )0)(( x

                 2,1,101 iRxP i .

The results are summarized in Fig. 5 and Table 2. As shown in Fig. 5, the weighted-sum approach 

fails to identify a large portion of the Pareto set. It only identifies a small region around the robust 

optimum extreme. 

1w 2w
*/ ff

*/ ff RR
1x 2x h G

0.00
a
 1.00 1.8300 1.0399 3.4775 4.6695 0.9943 0.0000 

0.10 0.90 1.7833 1.1190 3.3635 4.9443 0.9260 -0.1608 

0.20 0.80 1.7673 1.1447 3.3036 4.9353 0.8761 -0.0918 

0.30 0.70 1.7233 1.2747 3.1721 4.9785 0.8343 -0.0036 

0.40 0.60 1.6199 1.6758 2.9455 5.2015 0.8040 0.0000 

0.41 0.59 1.6006 1.7530 2.9104 5.2367 0.8019 0.0000 

0.42 0.58 1.4993 2.1312 2.7498 5.3973 0.7990 0.0000 

0.43 0.57 1.4907 2.1606 2.7377 5.4094 0.7980 0.0000 

0.44 0.56 1.4819 2.1903 2.7254 5.4216 0.7972 0.0000 

0.45 0.55 1.4730 2.2201 2.7131 5.4340 0.7965 0.0000 

0.46 0.54 1.4638 2.2501 2.7007 5.4463 0.7960 0.0000 

0.47 0.53 1.4545 2.2802 2.6882 5.4588 0.7956 0.0000 

0.48 0.52 1.0000 3.1923 2.2000 5.9471 0.8083 0.0000 

0.49 0.51 1.0000 3.1923 2.2000 5.9471 0.8113 0.0000 

0.50 0.50 1.0000 3.1923 2.2000 5.9471 0.8143 0.0000 

0.60 0.40 1.0000 3.1923 2.2000 5.9471 0.8457 0.0000 

0.70 0.30 1.0000 3.1923 2.2000 5.9471 0.8797 0.0000 

0.80 0.20 1.0000 3.1923 2.2000 5.9471 0.9164 0.0000 

0.90 0.10 1.0000 3.1923 2.2000 5.9471 0.9564 0.0000 

1.00
b
 0.00 1.0000 3.1923 2.2000 5.9471 1.0000 0.0000 
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Figure 5. Pareto set for the mathematical example, using the weighted-sum method 

Table 2. Pareto set details for the mathematical example, using the weighted-sum method 

a: Robust design; b: Reliable design

5.2. A Cantilever Beam Example 

In this example, a cantilever beam in vertical and lateral bending [37] is used (see Fig. 6). The 

beam is loaded at its tip by the vertical and lateral loads Y and Z, respectively. Its length L is 

equal to 100 in. The width w and thickness t of the cross-section are random design variables. The 

1w 2w
*/ ff

*/ ff RR
1x 2x f G

0.00
a
 1.00 1.8600 1.0000 3.4666 5.5359 1.0000 0.8554 

0.10 0.90 1.8566 1.0002 3.4637 5.5213 1.0858 0.8379 

0.20 0.80 1.8284 1.0403 3.4727 4.6744 1.1979 0.0000 

0.30 0.70 1.8263 1.0410 3.4669 4.6802 1.2766 0.0000 

0.40 0.60 1.8224 1.0433 3.4555 4.6916 1.3549 0.0000 

0.41 0.59 1.8226 1.0431 3.4561 4.6909 1.3627 0.0000 

0.42 0.58 1.8215 1.0440 3.4528 4.6943 1.3705 0.0000 

0.43 0.57 1.8218 1.0437 3.4538 4.6933 1.3783 0.0000 

0.44 0.56 1.8211 1.0442 3.4517 4.6954 1.3861 0.0000 

0.45 0.55 1.8212 1.0441 3.4521 4.6950 1.3938 0.0000 

0.46 0.54 1.0026 3.1901 2.2025 5.9446 2.1838 0.0000 

0.47 0.53 1.0000 3.1923 2.2000 5.9471 2.1619 0.0000 

0.48 0.52 1.0000 3.1923 2.2000 5.9471 2.1400 0.0000 

0.49 0.51 1.0000 3.1923 2.2000 5.9471 2.1181 0.0000 

0.50 0.50 1.0000 3.1923 2.2000 5.9471 2.0962 0.0000 

0.60 0.40 1.0000 3.1923 2.2000 5.9471 1.8769 0.0000 

0.70 0.30 1.0000 3.1923 2.2000 5.9471 1.6577 0.0000 

0.80 0.20 1.0000 3.1923 2.2000 5.9471 1.4385 0.0000 

0.90 0.10 1.0000 3.1923 2.2000 5.9471 1.2192 0.0000 

1.00
b
 0.00 1.0000 3.1923 2.2000 5.9471 1.0000 0.0000 
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objective is to minimize the weight of the beam. This is equivalent to minimizing tw , assuming 

that the material density and the beam length are constant. 

Figure 6. Cantilever beam under vertical and lateral bending. 

One non-linear failure mode is used representing yielding at the fixed end of the cantilever. 

The RBDO problem is formulated as,  

tw
µ

f
tw ,

min

 s.t. RGP )0)(( 1 X

                   5,0 tw                                      

where the limit state )*
600

*
600

(),,,,(
221 Z
tw

Y
wt

ytwYZyG   represents the failure mode. 

The random design variables w and t are normally distributed with 225.0tw  . Y, Z, y 

and E are normally distributed random parameters with Y~ N (1000, 100) lb, Z~ N (500,100) lb, 

y~ N (40000, 2000) psi and E~ N )10*45.1,10*29( 66
psi; y is the random yield strength, Z and 

Y are mutually independent random loads in the vertical and lateral directions respectively, and E 

is the Young modulus. A reliability index 3 is used. 

For the reliable/robust problem one more objective is added representing the variation of the 

beam tip displacement. The formulation is as follows,  

      tw
µ

f
tw ,

min

      ZYEtwR
tw

,,,,min
,

s.t. RGP )0)(( 1 X

                   5,0 tw                                      

where the tip displacement  is given by
2

2

2

2

3

)()(
4

),,,,(
w

Z

t

Y

Ewt

L
ZYEtw .

Two objectives are simultaneously minimized subject to one probabilistic constraint. If the beam 

cross-sectional area is minimized, the beam stiffness is also minimized which usually leads to a 

large variation of the tip displacement. It is expected therefore, to have a trade-off between the 

two objectives. The percentile difference for the tip displacement is calculated as 

12 RR
R  with %952R  and %51R . Similarly to the previous example, two 

separate single-objective optimization problems are first solved in order to establish the utopia

point. The first problem (conventional RBDO) yields an optimum objective of 2884.11*
f

for the design vector 8369.3,9421.2, ** tw . The second single-objective, purely robust 

optimization problem yields a solution of 1440.0*R  for 5,5, ** tw .

For the calculation of the Pareto set, two linear preference functions 1h  and 2h   are used, 

corresponding to the two objectives f and R . They are all defined similarly to the previous 

L=100 in 
w

Y

Z
t
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example. Their “cut-off” values are
*3 ff ,

*15 RR  for 1h  and 2h , respectively. The 

two objectives are aggregated using  

sss

ww

hwhw
h

1

21

2211 ; 121 ww , 10 1w

which is maximized by solving the following probabilistic optimization problem  

       h
tw ,

max

 s.t. RGP )0)(( 1 X

                   5,0 tw ,

using the single-loop RBDO method of Section 3.2. 

The results for this example are summarized in Figure 7 and Tables 3 and 4. A 

compensation level of 1s  is assumed. The Pareto frontier of Fig. 7 shows the trade-

off between */ ff and */ RR . The designs are almost equally spaced between the 

two extremes of reliable and robust designs.

0

1

2

3

4

5

6

7

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

R / R *

µf/µf*

Reliable Optimum

Robust Optimum

Figure 7. Pareto set for the beam example; trade-off between 
*/ RR and 

*/ ff

Table 3 shows the exact values of the Pareto points and the corresponding values of constraint 1G

for ten equally spaced segments of the 10 1w  domain. As indicated by their positive values, 

constraint 1G  is inactive for 8.00 1w  and active for 19.0 w  . 
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Table 3. Pareto set details for the beam example 

1w 2w
*/ ff

*/ RR 1G

0.0
a
 1.0 2.2147 0.9999 26054.0 

0.1 0.9 1.7930 1.4881 22672.9 

0.2 0.8 1.5860 1.9506 19922.2 

0.3 0.7 1.4403 2.4413 17111.9 

0.4 0.6 1.3385 2.8985 14574.7 

0.5 0.5 1.2541 3.3780 12053.2 

0.6 0.4 1.1696 3.9830 8837.4 

0.7 0.3 1.0994 4.6126 5635.8 

0.8 0.2 1.0182 5.5360 1121.7 

0.9 0.1 1.0002 5.7771 0.0 

1.0
b
 0.0 0.9993 5.8376 0.0 

                     a: Robust design; b: Reliable design 

Table 4. Pareto set details for the beam example (Cont.) 

1w 2w 1h 2h h w t

0.0
a
 1.0 0.3927 1.0000 1.0000 5.0000 5.0000 

0.1 0.9 0.6035 0.9651 0.9106 4.1995 4.8198 

0.2 0.8 0.7070 0.9321 0.8763 3.7938 4.7189 

0.3 0.7 0.7798 0.8970 0.8583 3.6199 4.4914 

0.4 0.6 0.8307 0.8644 0.8506 3.4970 4.3207 

0.5 0.5 0.8729 0.8301 0.8510 3.3765 4.1928 

0.6 0.4 0.9152 0.7869 0.8592 3.2651 4.0437 

0.7 0.3 0.9503 0.7420 0.8765 3.1734 3.9109 

0.8 0.2 0.9909 0.6760 0.9065 3.0397 3.7810 

0.9 0.1 0.9999 0.6588 0.9507 2.9978 3.7665 

1.0
b
 0.0 1.0000 0.6545 1.0000 2.9319 3.8477 

            a: Robust design; b: Reliable design

The constraint 1G  is always inactive except for designs close to the reliable design where it 

becomes active. Table 4 shows the values of the optimal design vector tw,  and the 

corresponding preference functions 1h and 2h and the overall aggregate preference function h for 

the points on the Pareto set. 

6. Summary and Conclusions 

A computationally efficient unified method for reliability and robustness, based on a multi-

objective optimization formulation, has been presented. The preference aggregation method is 

used to choose the “best” solution of the multi-objective optimization problem based on designer 

preferences. The proposed methodology addresses the shortcomings of the commonly used 

weighted-sum method which may fail to identify regions of the Pareto set of optimal solutions. 

Furthermore, it does not require the calculation of the entire Pareto set. It can identify the “best” 

design on the Pareto set, based on designer preferences and a rigorous, provable procedure of 

“indifference points.”  
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The performance variation is assessed by a percentile difference method. The percentiles are 

efficiently calculated using a variation of the Advanced Mean Value method which provides 

much more accurate results compared with the commonly used Taylor series expansion for 

calculating the variance of a performance measure. The “best” design (optimal, reliable and 

robust) is calculated using an efficient single-loop probabilistic optimization method. Two 

examples illustrated the benefits of the proposed method and demonstrated its applicability. 
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Abstract. In engineering applications, we need to make decisions under uncertainty. Traditionally, in
engineering, statistical methods are used, methods assuming that we know the probability distribution of
different uncertain parameters. Usually, we can safely linearize the dependence of the desired quantities y
(e.g., stress at different structural points) on the uncertain parameters xi – thus enabling sensitivity analysis.
Often, the number n of uncertain parameters is huge, so sensitivity analysis leads to a lot of computation
time. To speed up the processing, we propose to use special Monte-Carlo-type simulations.

Keywords: interval uncertainty, Monte-Carlo techniques, engineering applications

1. Introduction

Typically, in engineering applications, we need to make decisions under uncertainty. In
addition to measurement errors, some uncertainty comes from the fact that we do not know
how exactly the engineering devices that we produced will be used: e.g., we have limits Li

on the loads li in different rooms i, but we do not know how exactly these loads will be
distributed – and we want to make sure that our design is safe for all possible li ≤ Li.

Traditionally, in engineering, statistical methods are used, methods assuming that we
know the probability distribution of different uncertain parameters. Usually, we can safely
linearize the dependence of the desired quantities y (e.g., stress at different structural points)
on the uncertain parameters xi – thus enabling sensitivity analysis.

Often, the number n of uncertain parameters is huge – e.g., in ultrasonic testing, we
record (= measure) signal values at thousands moments of time. To use sensitivity analysis,
we must call the model n times – and if the model is complex, this leads to a lot of
computation time. To speed up the processing, we can use Monte-Carlo simulations. Their
main advantage is that for Monte-Carlo techniques, the required number of calls to a model
depends only on the desired accuracy ε and not on n – so for large n, these methods are
much faster.

In real life, we often do not know the exact probability distribution of measurement
errors; we also do not know the distribution of user loads – and if we knew, it would be a
disaster to, e.g., design a building that is stable against random loads, but could fall down
with a rare (but allowable) combination of loads. In such cases, usually, all we know is the
intervals of possible values of the corresponding parameters: e.g., we know that the load li
is in [0, Li].

In such situations, we can use sensitivity analysis, we can use interval techniques – but for
large n, this takes too long. To speed up, we developed a new Monte-Carlo-type technique
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for processing interval uncertainty (Trejo and Kreinovich, 2001; Kreinovich and Ferson,
2004).

In this paper, we will describe this new technique, discuss its applications to engineering
problems, describe its limitations, and explain how these limitations can be overcome.

2. Formulation of the Problem

In many real-life situations, we are interested in the value of a quantity y that is difficult (or
even impossible) to measure directly. In this cases, a natural idea is to measure easier-to-
measure quantities x1, . . . , xn that are related to the desired quantity y, and try to estimate
y based on the results x̃1, . . . , x̃n of these measurements. To be able to produce such an
estimate, we need to have an algorithm f(x1, . . . , xn) that, based on the values x1, . . . , xn

of the directly measured quantities, reconstructs the value y of the desired quantity as
y = f(x1, . . . , xn). Once we have such an algorithm, we plug in the measured values of xi

into this algorithm f , and get the following estimate for y: ỹ = f(x̃1, . . . , x̃n).
Measurements are never 100% accurate; as a result, the actual values xi of the measured

quantities may somewhat differ from the measured values. In other words, we know the
inputs to the algorithm f only with some (measurement-related) uncertainty. Because of
this input uncertainty x̃i 6= xi, our estimate ỹ = f(x̃1, . . . , x̃n) is, in general, different from
the actual value y = f(x1, . . . , xn) of the desired quantity. In other words, uncertainty in
the inputs leads to the uncertainty in the output as well. It is therefore desirable to estimate
this output uncertainty. So, we arrive at the following problem:

− We know:

• the algorithm f(x1, . . . , xn);
• the measured values x̃1, . . . , x̃n; and

• the information about the uncertainty ∆xi
def= x̃i−xi of each direct measurement.

− We must estimate: uncertainty ∆y = ỹ − y of the algorithm’s output.

In order to solve this problem, we must know what are the possible types of information
that we can have about the uncertainty of each measurement error ∆xi.

We do not know the exact values of the measurement errors ∆xi; as a result, in real
life, we may have (and often we do have) several situations in which we get exactly exactly
the same measurement results x̃1, . . . , x̃n, but the actual values x1, . . . , xn of the measured
quantity are different. Thus, to describe the uncertainty, we need to know:

− what are the possible values of ∆xi, and

− how often can different possible values occur.

In the ideal case, when we have a complete description of uncertainty, we know the exact
frequency (probability) of all possible error combinations (∆x1, . . . ,∆xn). In other words,
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we know the exact probability distribution of the set of all n-dimensional vectors ∆x =
(∆x1, . . . ,∆xn). Often, the measurement errors corresponding to different measurements are
independent, so it is sufficient to know the distribution of each variable xi. This distribution
can be described, e.g., by a cumulative density function (cdf) Fi(t)

def= Prob(xi ≤ t).
Most traditional methods of processing uncertainty in science and engineering (see, e.g.,

(Wadsworth, 1990)) are based on the assumption that we have a probabilistic uncertainty,
i.e., that the error distributions are independent, and that we know the probability distri-
bution Fi(t) for each of the variables xi. However, in real life, we often do not have all this
information.

In some real-life situations, we do not have any information about the frequency of
different measurement error ∆xi; all we know is the range [∆−

i , ∆+
i ] of possible values

of this error. In this case, the only information that we have about the actual measured
value xi = x̃i − ∆xi of i-th quantity is that xi must be in the interval [xi, xi], where we
denoted xi

def= x̃i −∆+
i and xi

def= x̃i −∆−
i . The corresponding uncertainty is called interval

uncertainty; see, e.g., (Moore, 1979; Kearfott, 1996; Kearfott and Kreinovich, 1996; Jaulin
et al., 2001).

So far, we have describe two extreme situations:

− in the case of probabilistic uncertainty, we have a complete information on which values
∆xi are possible, and what are the frequencies of different possible values;

− in the case of interval uncertainty, we only know the range of possible values of ∆xi,
we do not have any information about the frequencies at all.

In many real-life cases, we have an intermediate situation: we have some (partial) informa-
tion about the frequencies (probabilities) of different values of ∆xi, but we do not have the
complete information about these frequencies.

How can we describe such situations? To describe the complete information about the
probabilities of different values of ∆xi, we must describe, for every real number t, the
value Fi(t) of the corresponding cdf. Thus, when we have a partial information about
these probabilities, it means that, instead of the exact value Fi(t), we only have the range
[F i(t), F i(t)] of possible values of Fi(t). Thus, to describe such an intermediate situation,
we must describe the bounds F i(t) and F i(t) for the cdf. These bounds are called probability
boxes (or p-boxes, for short) (Ferson, 2002).

Both probability distributions and intervals can be described as a particular case of
p-boxes:

− a probability distribution Fi(t) can be described as a degenerate p-box [Fi(t), Fi(t)];
and

− an interval [a−, a+] can be described as a p-box [F i(t), F i(t)] in which:

• F i(t) = 0 for t < a+ and F i(t) = 1 for t ≥ a+;

• F i(t) = 0 for t < a− and F i(t) = 1 for t ≥ a−.
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So, p-boxes are the most general way of representing these types of uncertainty.
Another way to describe partial information about the uncertainty is by using the

Dempster-Shafer approach. In this approach, for each variable xi, instead of a single interval
[xi, xi], we have several intervals [x(k)

i , x
(k)
i ] with probabilities p

(k)
i attached to each such

interval (so that for every i, p
(k)
1 +p

(k)
2 + . . . = 1). For example, we may have several experts

who provide us with different intervals [x(k)
i , x

(k)
i ], and p

(k)
i is the probability that k-th

expert is right. The collection of intervals with probabilities attached to different intervals
constitutes a DS knowledge base.

Thus, depending on the information that we have about the uncertainty in xi, we can
have five different formulations of the above problem:

− we know the probability distribution Fi(t) for each variable xi, we know that these
distributions are independent, and we must find the distribution F (t) for y =
f(x1, . . . , xn);

− we know the interval [xi, xi] of possible values of each variable xi, and we must find the
interval [y, y] of possible values of y;

− we know the p-boxes [F i(t), F i(t)] that characterize the distribution of each variable
xi, we know that the corresponding distributions are independent, and we must find
the p-box [F (t), F (t)] that describe the variable y;

− we know the DS knowledge bases

〈[x(1)
i (t), x(1)

i (t)], p(1)
i 〉, 〈[x(2)

i (t), x(2)
i (t)], p(2)

i 〉, . . .

that characterize the distribution of each variable xi, we know that the corresponding
distributions are independent, and we must find the DS knowledge base that describe
the variable y;

− we may also have different types of uncertainty for different variables xi: e.g., we may
have probabilistic uncertainty or x1 and interval uncertainty for x2.

It is also reasonable to consider the formulations in which the corresponding distributions
may be dependent.

There exist efficient methods for solving these problems; see, e.g., (Ferson, 2002) and
references therein (in particular, for interval uncertainty, see (Moore, 1979; Kearfott, 1996;
Kearfott and Kreinovich, 1996; Jaulin et al., 2001)). Many of these methods are based on the
fact that we know the algorithm f ; so, instead of applying this algorithm step-by-step to the
measured values x̃1, . . . , x̃n, we apply this same algorithm step-by-step to the corresponding
“uncertain numbers”: probability distributions, intervals, and/or p-boxes.

In several practical situations, however, the algorithm is given as a black box: we do not
know the sequence of steps forming this algorithm; we can only plug in different values into
this algorithm and see the results. This situation is reasonably frequent:
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− with commercial software, where the software’s owners try to prevent competitors from
using their algorithms, and

− with classified security-related software, where efficient security-related algorithms are
kept classified to prevent the adversary from using them.

In some practical cases, the situation is made even more difficult by the fact that the
software f(x1, . . . , xn) is so complex and requires so much time to run that it is only possible
to run it a few times. This complex black-box situation is what we will analyze in this text.

Comment. It is worth mentioning that even for a black-box function, it may be possible
to run more simulations if we do the following:

− first, we use the actual black-box function f(x1, . . . , xn) to provide an approximating
easier-to-compute model fapprox(x1, . . . , xn) ≈ f(x1, . . . , xn), and

− then, we use this approximate model to estimate the uncertainty of the results.

So, if our preliminary computations show that we need more simulations that the black-
box function can give us, it does not necessarily mean that the corresponding uncertainty
estimation method cannot be applied to our case: we may still be able to apply it to the
approximate function fapprox.

3. From Traditional Monte-Carlo Techniques
for Probabilistic Uncertainty

to Monte-Carlo-Type Techniques
for Interval Uncertainty:

What Was Previously Known

Probabilistic uncertainty: Monte-Carlo techniques. Let us first consider the case of the
probabilistic uncertainty, when we know that the values ∆xi are distributed according to
the cdf Fi(t), and that the corresponding random variables ∆xi are independent. In this
case, we are interested to know the distribution F (t) of ∆y.

In the probabilistic case, a natural idea is to use Monte-Carlo simulations. Specifically,
on each iteration k:

− for each input variable xi, we simulate the values x
(k)
i distributed according to the

known distribution Fi(t);

− then, we plug the simulated values x
(k)
i the algorithm f , and thus get the value y(k) =

f(x(1)
1 , . . . , x

(k)
n ).
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After N iterations, we get N values y(k).
Since the inputs x

(k)
i are independently distributed according to the corresponding input

distributions Fi(t), the outputs y(k) are distributed according to the desired distribution
F (t). Thus, the N values y(k) are a sample from the unknown distribution F (t). It is
therefore necessary to extract information about F (t) from this sample.

Interval uncertainty: case of linearization. Let us now consider the case of interval
uncertainty.

In the interval case, we have intervals [xi, xi] of possible values of each input xi, and we
are interested in finding the corresponding interval [y, y] of possible values of y.

It is convenient to represent each interval [xi, xi] by its midpoint xmid
i

def=
xi + xi

2
and by

its half-width ∆i
def=

xi − xi

2
, so that each such interval takes the form [xmid

i −∆i, x
mid
i +∆i].

In this representation, instead of the original variables xi that take values from xi to xi, it
is often convenient to consider auxiliary variables δxi

def= xi − xmid
i that take values from

−∆i to ∆i.
When the function f(x1, . . . , xn) is reasonable smooth and the box [x1, x1]× . . .× [xn, xn]

is reasonably small, then on this box, we can reasonably approximate the function f by its
linear terms:

f(xmid
1 + δx1, . . . , x

mid
n + δxn) ≈ ymid + δy,

where δy
def= c1 · δx1 + . . .+ cn · δxn, ymid def= f(xmid

1 , . . . , xmid
n ), and ci

def=
∂f

∂xi
. One can easily

show that when each of the variables δxi takes possible values from the interval [−∆i, ∆i],
then the largest possible value of the linear combination δy is

∆ = |c1| ·∆1 + . . . + |cn| ·∆n, (1)

and the smallest possible value of δy is −∆. Thus, in this approximation, the interval of
possible values of δy is [−∆, ∆], and the desired interval of possible values of y is [ymid −
∆, ymid + ∆].

Interval uncertainty: sensitivity analysis. For small n, we can use the following sensitivity
analysis method – a method that is applicable not only for approximately linear functions
f(x1, . . . , xn), but also for all functions that are monotonic (increasing or decreasing) with
respect of each of its variables. Specifically, in the sensitivity analysis method:

− First, we apply f to the results x̃1, . . . , x̃n of direct measurements, resulting in the value
ỹ = f(x̃1, . . . , x̃n).

− Then, for each of n inputs xi, we modify this input to x′i 6= x̃i and, leaving other
inputs, apply f again. By comparing the values f(x̃1, . . . , x̃i, x

′
i, x̃i+1, . . . , x̃n) and ỹ =

f(x̃1, . . . , x̃n), we decide whether f in increasing or decreasing in xi.
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− Finally, we apply f two more times to get the desired bounds for y as follows: y =
f(x−1 , . . . , x−n ) and y = f(x+

1 , . . . , x+
n ), where:

• for the variables xi for which f increases with xi, we take x−i = xi and x+
i = xi,

and

• for the variables xi for which f decreases with xi, we take x−i = xi and x+
i = xi.

The main disadvantage of this method is that it requires n calls to the program f . Often,
the number n of uncertain parameters is huge – e.g., in ultrasonic testing, we record (=
measure) signal values at thousands moments of time. To use sensitivity analysis, we must
call the model n times – and if the model is complex, this leads to a lot of computation
time.

Interval case: Cauchy deviates method. One way to speed up computations is to use the
following Cauchy deviate method. This method works when the function f(x1, . . . , xn) is
reasonable smooth and the box [x1, x1]× . . .× [xn, xn] is reasonably small, so that on this
box, we can reasonably approximate the function f by its linear terms.

This method uses Cauchy distribution with a parameter ∆, i.e., a distribution described

by the following density function: ρ(x) =
∆

π · (x2 + ∆2)
. It is known that if ξ1, . . . , ξn are

independent variables distributed according to Cauchy distributions with parameters ∆i,
then, for every n real numbers c1, . . . , cn, the corresponding linear combination c1 ·ξ1 + . . .+
cn · ξn is also Cauchy distributed, with the parameter ∆ described by the formula (1).

Thus, if we for some number of iterations N , we simulate δx
(k)
i (1 ≤ k ≤ N) as

Cauchy distributed with parameter ∆i, then, in the linear approximation, the corresponding
differences

δy(k) def= f(xmid
1 + δx

(k)
1 , . . . , xmid

n + δx(k)
n )− ymid

are distributed according to the Cauchy distribution with the parameter ∆. The result-
ing values δy(1), . . . , δy(N) are therefore a sample from the Cauchy distribution with the
unknown parameter ∆. Based on this sample, we can estimate the value ∆.

Simulation can be based on the functional transformation of uniformly distributed sample
values: δx

(k)
i = ∆i · tan(π · (ri−0.5)), where ri is uniformly distributed on the interval [0, 1].

In order to estimate ∆, we can apply the Maximum Likelihood Method which leads to
the following equation:

1

1 +
(

δy(1)

∆

)2 + . . . +
1

1 +
(

δy(N)

∆

)2 =
N

2
.

The left-hand side of this equation is an increasing function that is equal to 0(< N/2) for
∆ = 0 and > N/2 for ∆ = max

∣∣∣δy(k)
∣∣∣; therefore the solution to this equation can be found

by applying a bisection method to the interval
[
0, max

∣∣∣δy(k)
∣∣∣
]
.
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How many iterations do we need for the ideal estimate. In (Trejo and Kreinovich, 2001;
Kreinovich and Ferson, 2004), we found the number of iterations N that would provide the
desired accuracy (usually, 20% accuracy in estimating ∆). The difference between the actual
value ∆ and its estimate ∆̃ is distributed, for large N , according to normal distribution,
with 0 mean and standard deviation σe = ∆ · √

2/N . Thus, e.g., to get a 20% accuracy
0.2 ·∆ with 95% certainty (corresponding to 2σe), we need N = 200 runs.

After 200 runs, we can conclude that ∆ ≤ 1.2 · ∆̃ with certainty 95%.
Thus, the required number of calls to a model depends only on the desired accuracy ε

and not on n – so for large n, these methods are much faster.

4. Applications: Brief Overview

We have applied the Cauchy deviate techniques to the following engineering examples:

− Environmental and power engineering: safety analysis of complex systems (Kreinovich
and Ferson, 2004). In this example, x1, . . . , xn are the parameters of the system that
are only known with interval uncertainty such as the thickness of the wall of the drum
that contains radioactive waste. The program f(x1, . . . , xn) (usually given as a black
box) describes how the desired parameters such as the radioactivity level at different
places depend on xi.

− Civil engineering: building safety. This example is similar to the models considered in
(Muhanna and Mullen, 2001; Muhanna and Mullen, 2001a) and references therein. In
this example, x1, . . . , xn are the loads on a structure for each of which we only know
the tolerance intervals, and the elastic parameters of this structure which are only
known with interval uncertainty. The program f(x1, . . . , xn) (often commercial and
thus, given as a black box) is a finite-element model that describes how the stresses in
the corresponding structure (e.g., building) depend on xi.

− Petroleum and geotechnical engineering: estimating the uncertainty of the solution to
the inverse problem caused by the measurement errors (Doser et al., 1998). In this
example, x1, . . . , xn are the traveltimes of the seismic signals between the source and
the sensor (and possibly other measurement results). The program f(x1, . . . , xn) solves
the inverse problem, i.e., uses the traveltimes xi to estimate the density y at different
locations and at different depths. To be more accurate, the program reconstructs the
speed of sound at different locations and at different depths, and then uses the known
(approximate) relationship between the speed of sound and the density to reconstruct
the desired density.

In all these cases, we got reasonable estimates:

− In the environmental and civil engineering applications, we got the same results as
sensitivity analysis, but much faster.
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− In geotechnical engineering, the dependence of the accuracy on the location and depth
fits much better with the geophysicists’ understanding than the previous accuracy
results obtained under the assumption that all the measurement errors are independent
and normally distributed.

5. Limitations of the Existing Cauchy Deviate Techniques and How These
Limitations Can Be Overcome

5.1. Limitations

Cauchy deviate technique is based on the following assumptions:

− that the measurement errors are small, so we can safely linearize the problem;

− that we only have interval information about the uncertainty, and

− that we can actually call the program f 200 times.

In real-life engineering problems, these assumptions may not be satisfied. In this section,
we describe how we can modify the Cauchy deviate technique so as to overcome these
limitations.

5.2. What If We Cannot Perform Many Iterations

Problem. In many real-life engineering problems, we do not have the possibility to run the
program f 200 times. In this case, we can still use the Cauchy deviates estimates with the
available amount of N iterations, but we need to come up with new formulas that translate
the numerical estimate into the enclosure for ∆.

Case when N is large enough. In this case, the difference ∆̃−∆ is still Gaussian, we can

conclude that ∆ ≤ ∆̃ ·
(

1 + k0 ·
√

2
N

)
(where k0 = 2), with certainty 95%. (If we want,

e.g., 99.9% certainty, which corresponds to 3 sigma, then we should take k0 = 3.)
Thus, e.g., for N = 50, we conclude that ∆ ≤ 1.4 · ∆̃. This is not such a bad estimate.

Case of very small number of iterations: idea. When the number of iterations is even
smaller, then we can no longer assume that the distribution of the error ∆̃−∆ is Gaussian.
In this case, to find the bounds on ∆ with, e.g., 95% certainty, we must perform numerical
experiments.

The possibility of such experiments is caused by the fact that, as we have mentioned in
the above description of the Cauchy deviates method, the distribution of the results δy(k)

always follows the Cauchy distribution, no matter how small N is.
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So, to find out the confidence bounds on the Cauchy deviate estimates, it is sufficient to
make experiments with the Cauchy distribution. The Cauchy distribution with a parameter
∆ can be obtained by multiplying the Cauchy-distributed random variable with parameter
∆0 = 1 by the number ∆. Thus, it is sufficient to test the method on Cauchy deviates with
parameter 1.

For each N and α, we want to find k(N,α) for which ∆ ≤ k(N, α) · ∆̃ with certainty
1 − α, i.e., for which ∆̃ ≥ (1/k(N, α)) · ∆ with probability 1 − α. Since we will be using
Cauchy distribution with ∆ = 1, we must thus find k(N, α) for which ∆̃ ≥ 1/k(N, α) with
probability 1− α.

To find such value, we do the following. We pick a large number of iterations M (the
relative accuracy of our estimate of k(N, α) will be ≈ 1/

√
M). Then:

− For each m from 1 to M :

• we simulate Cauchy distribution (with parameter ∆0 = 1) N times, producing N
numbers

δy
(m)
1 = tan(π · (r(m)

1 − 0.5)), . . . , δy(m)
N = tan(π · (r(m)

N − 0.5));

• we then apply the above Maximum Likelihood Method to find ∆̃m as the solution
to the following equation:

1

1 +

(
δy

(m)
1

∆̃m

)2 + . . . +
1

1 +

(
δy

(m)
N

∆̃m

)2 =
N

2
;

we solve this equation by applying a bisection method to the interval[
0, max

i

∣∣∣δy(m)
i

∣∣∣
]
.

− After that, we sort the values ∆̃m into an increasing sequence

∆̃(1) ≤ . . . ≤ ∆̃(M).

− We take the value ∆̃(α·M) for which the probability to be greater than this number is
exactly 1− α, and estimate k(N, α) as 1/∆̃(α·M).

Simulation results. We wrote a C program that implements this algorithm. For α = 0.05,
the results of applying this program are:

− For N = 20, we get k ≈ 1.7, which fits very well with the above Gaussian-based formula
knorm ≈ 1 + 2 ·√2/20 ≈ 1.7.

− For N = 10, we get k ≈ 2.1, which is slightly higher than the Gaussian-based formula
knorm ≈ 1 + 2 ·√2/10 ≈ 1.9.
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− For N = 5, we get k ≈ 5, which is already much higher than the Gaussian-based value
knorm ≈ 1 + 2 ·√2/5 ≈ 2.3.

5.3. p-Boxes and Dempster-Shafer Knowledge Bases:
An Idea

Formulation of the problem. In the previous sections, we described and analyzed different
methods for estimating uncertainty in the cases when we have probabilistic or interval
uncertainty in the inputs. What if the uncertainty in each input xi is characterized, e.g., by
the Dempster-Shafer knowledge bases?

Why this problem is difficult. One reason why this problem is difficult is that it is not even
clear how we can represent the DS knowledge base corresponding to the output.

Indeed, a DS knowledge base for each input variable xi means that we may have different
intervals [x(k)

i , x
(k)
i ], with different probabilities p

(k)
i . For each combination of intervals,

[x(k1)
1 , x

(k1)
1 ], . . . , [x(kn)

n , x
(kn)
n ], we can use the known techniques to find the correspond-

ing interval [y(k1,...,kn), y(k1,...,kn)] for the output. Since we know the probability p
(ki)
i of

each interval [x(ki)
i , x

(ki)
i ], and we assume that these probabilities are independent, we can

compute the probability p(k1,...,kn) of the corresponding output interval as the product
p(k1,...,kn) = p

(k1)
1 · . . . · p(kn)

n .
At first glance, this may sound like a reasonable solution to our problem, but in reality,

this solution is not practical at all: even in the simplest case, when for each variable, we
have two possible intervals, for n = 50 inputs, we will have an astronomical number of
250 ≈ 1015 output intervals [y(k1,...,kn), y(k1,...,kn)].

Thus, although the resulting uncertainty is still a DS uncertainty, we can no longer
represent it as we represented the uncertainty for each input: by listing all the intervals and
the corresponding probabilities.

Thus, not only it is not clear how to compute the resulting uncertainty, it is not even
clear what exactly we want to compute.

Can we use the fact that DS uncertainty is a generalization of interval uncertainty? Our
idea comes from the fact that the Dempster-Shafer uncertainty is a generalization of interval
uncertainty, a generalization in which, for each inputs xi, instead of a single interval [xi, xi],
we have several possible intervals [x(k)

i , x
(k)
i ], with different probabilities p

(k)
i . For the interval

uncertainty, in a realistic case when the black-box function is linearizable, we can use the
Cauchy deviates method to estimate the interval uncertainty of the output. Let us see
whether it is possible – at least, under some reasonable assumptions – to extend the Cauchy
deviates method to the more general Dempster-Shafer case.

Analysis. The fact that the black-box function is linearizable means that we have

f(x1, . . . , xn) = ỹ +
n∑

i=1
ci · (xi− x̃i), where ỹ

def= f(x̃n, . . . , x̃n) and for every i, ci denotes the
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(unknown) value of the partial derivative ∂f/∂xi of the black-box function f(x1, . . . , xn)
with respect to i-th input xi.

If we know the exact values x1, . . . , xn of all the inputs, then we can simply plug in the
values xi and get the desired value.

If for each i, we know the interval [xmid
i − ∆i, x

mid
i + ∆xi], then, in the linearized case

described above, the corresponding range of y can be described by the interval [ymid −
∆, ymid + ∆], where:

ymid = ỹ +
n∑

i=1

ci · (ymid
i − ỹi); (2)

∆ =
n∑

i=1

|ci| ·∆i. (3)

In the Dempster-Shafer case, for each i, instead of a single pair (ymid
i , ∆i), we have different

pairs with different probabilities. Due to the formulas (2) and (3), the vector (ymid, ∆) is a
linear combination of the vectors (ymid

i ,∆i) corresponding to different inputs xi.
If one of these vectors was prevailing, then we would have a single input (or a few

dominating inputs), and there would be no need to consider the uncertainty in all n inputs.
Thus, the only case when this problem makes sense is when the contributions of all n vectors
is approximately of the same size (or at least the same order of magnitude). In this case,
the vector (ymid, ∆) is a linear combination of n independent vectors of approximately the
same size.

This situation is exactly the case covered by the Central Limit Theorem, the case when
in the limit n → ∞, we have a normal 2-D distribution and hence, for sufficient large n,
with a good approximation, we can assume that the pair (ymid,∆) is normally distributed.

Comment: strictly speaking, the distribution is almost normal but not exactly normal. From
the purely theoretical viewpoint, the distribution of the pairs (ymid,∆) cannot be exactly
normal, because:

− the interval half-width ∆ is always non-negative, while

− for every normally distributed random variable, there is a non-zero probability that
this value attains negative values.

However, in practice, every normal distribution with mean µ and standard deviation σ is
located within the interval [µ−k·σ, µ+k·σ] with practically a certainty, i.e., with probability
≈ 1:

− for k = 3, the probability to be outside the 3 sigma interval is ≈ 0.1%;

− for k = 6, the probability to be outside the 3 sigma interval is ≈ 10−6%; etc.

Thus, if µ ≥ k · σ, then, for all practical purposes, the half-width ∆ is indeed always
non-negative.
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Resulting idea. It is therefore reasonable to conclude that for large n, the uncertainty in
y can be characterized as follows: we have different intervals [ymid −∆, ymid + ∆], and the
probability of an interval is described by a 2-D normal distribution on the (ymid, ∆) plane.

To describe a 2-D normal distribution, it is sufficient to know 5 parameters: the means and
standard deviations of both variables and the covariance (that describes their dependence).

Discussion: are we abandoning the idea of non-parametric estimates? At first glance, it
may seem like we are abandoning our approach: we started with the idea of having non-
parametric estimates, and we ended up with a 5-parametric family.

However, realistically, to exactly describe a generic distribution, we must use infinitely
many parameters. In reality, we only have finitely many runs of the black-box function f
with reasonable accuracy, and based on their results, we can only estimate finitely many
parameters anyway.

Even in the ideal case of Monte-Carlo tests, we need N experiments to get a value of
each parameter with an accuracy of 1/

√
N . Thus, to get a reasonably low accuracy of 30%

(everything worse makes it order-of-magnitude qualitative estimate), we need ≈ 10 runs.
With 50 runs, we can therefore determine the values of no more than 5 parameters

anyway. The above 5-parametric family is reasonable, its justification is very similar to the
justification of the Gaussian distribution – the main workhorse of statistics – so why not
use it?

How can we determine the parameters of this model? If we simply take the midpoints
x

(k)mid
i of the corresponding intervals in our simulations, then the resulting value y(k) are

normally distributed, with the distribution corresponding to ymid. We can therefore estimate
the mean and standard deviation of ymid as simply the sample mean and the sample variance
of the values y(1), y(2), . . .

For ∆, from the formula (3), we conclude that

E[∆] =
n∑

i=1

|ci| · E[∆i] (4)

and

σ[∆] =

√√√√
n∑

i=1

|ci|2 · σ2[∆i]. (5)

Due to the formula (4), we can use the Cauchy deviates technique to estimate E[∆] if for
each input xi, we use the average half-width

E[∆i] = p
(1)
i ·∆(1)

i + p
(1)
i ·∆(1)

i + . . .

of the corresponding interval.
Due to the fact that |ci|2 = c2

i , the formula (5) means that we can compute σ[∆] by using
the standard Monte-Carlo simulation technique: namely, we simulate δxi to be normally
distributed with 0 mean and standard deviation σ[∆i], then the resulting value of δy =
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∑

ci · δxi is also normally distributed, with the standard deviation equal to (5). We can
thus estimate (5) as a sample variance of the corresponding simulated values δy(k).

We thus know how to estimate 4 of 5 parameters that describe the desired uncertainty.
The only remaining problem is how to estimate the covariance between ymid and ∆. For
this, we propose the following idea.

The non-zero covariance means, in particular, that the conditional average E[∆ | ymid ≤
E[ymid]] of ∆ over the cases when ymid is smaller than its average E[ymid] is different from
the conditional average E[∆ | ymid ≥ E[ymid]] of ∆ over the cases when ymid is larger than
its average E[ymid]. From the difference between these two conditional averages, we can
determine the desired value of the covariance.

To compute the conditional averages, we can use the Cauchy deviates idea. Namely,
at each simulation, for each variable xi, we select one of the intervals [x(k)

i , x
(k)
i ] with the

corresponding probability p
(k)
i , and we apply the black box function f to the centers of

the corresponding intervals, to get the result ymid. We then apply the Cauchy techniques
with the corresponding intervals and get the value distributed according to the Cauchy
distribution with the width corresponding to selected intervals for xi.

The main difference between what we propose to do here and the previously described
Cauchy deviates methods is the following:

− in the previously described Cauchy deviates method, we combine all the results of
Cauchy simulation into a single sample, and we then compute the parameter ∆ based
on this sample;

− in the proposed methods, we separate the results of Cauchy simulation into two different
samples:

• a sample containing all the cases in which ymid ≤ E[ymid], and
• a sample containing all the cases in which ymid ≥ E[ymid].

In the previous described approach, in all simulations, we had the same interval width,
so the results of the simulation belong to the same Cauchy distribution. In the new method,
we have different widths with different probabilities, so the resulting distribution is a
combination of different Cauchy distributions, with different probabilities.

For each sample, we can safely assume that the distribution of the width ∆ is a Gaussian
distribution, with mean µ and standard deviation σ. Thus, our sample corresponds to the
combination in which the Cauchy distribution with parameter ∆ occurs with the Gaussian

probability density
1√

2 · π · σ · exp

(
−(∆− µ)2

2σ2

)
. Cauchy-distributed random variable ξ

with the parameter ∆ can be described by its characteristic function E[exp(i · ωξ)] =
exp(−|ω| ·∆). Thus, the above-described probabilistic combination of Cauchy distributions
can be described by the corresponding probabilistic combination of these characteristic
functions:

E[exp(i · ω · ξ)] =
∫ 1√

2 · π · σ · exp
(
−∆− µ

2σ2

)
· exp(−|ω| ·∆)d∆. (6)
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By separating the full square in the integrated expression, one can show that this integral
is equal to:

exp
(

1
2
· σ2 · ω2 − µ · |ω|

)
. (7)

We can estimate the characteristic function by its sample value

E[exp(i · ω · ξ)] ≈ 1
N
·

N∑

k=1

cos(ω · y(k))

(Since the expression (7) is real, it makes sense to only consider the real part of exp(i ·ω ·ξ),
i.e., cos(ω · ξ).)

So, we arrive at the following algorithm for computing µ and σ from the sample values
y(1), . . . , y(N):

− for different real values ω1, . . . , ωk > 0, compute l(ωk)
def= − ln(c(ωk)), where c(ωk)

def=
1
N
·

N∑
k=1

cos(ω · y(k));

− use the Least Squares Method to find the values µ and σ for which

µ · ωk − 1
2
σ2 · ω2

k ≈ l(ωk).

The resulting value µ is the average ∆.
Thus, when we repeat this algorithm for both samples, we get the two desired conditional

averages of ∆ – from which we can then compute the covariance.

What about p-boxes? It is known that a p-box can be described as a DS knowledge base.
Namely, a p-box [F (t), F (t)] is a generalization of a cdf function F (t). A cdf function can be
represented by an explicit formula, or it can be represented if we list, for uniformly spaced
levels p = 0, ∆p, 2 · ∆p, . . . , 1.0 (e.g., for p = 0, 0.1, 0.2, . . . , 0.9.1.0), the corresponding
quantiles, i.e., values t for which F (t) = p. In mathematical terms, quantiles are the values
of the inverse function f(p) = F−1(t) at equally spaced values p.

The variable with a probability distribution F (t) can be approximately described as
follows: we have the values f(0), f(∆p), etc., with equal probability ∆p.

Similarly, a p-box can be alternatively represented by listing, for each p, the interval
[f(p), f(p)] of the possible quantile values. Here:

− the function f(p) is an inverse function to F (t), and

− the function f(p) is an inverse function to F (t).

This description, in effect, underlies some algorithms for processing p-boxes that are
implement in RAMAS software (Ferson, 2002).
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Because of this description, we can interpret the p-box as the DS knowledge base, in
which, with equal probability ∆p, we can have intervals [f(0), f(0)], [f(∆p), f(∆p)], etc.

Thus, whatever method we have for DS knowledge bases, we can apply it to p-boxes as
well.

How can we describe the resulting p-boxes? We have just mentioned that, in principle, we
can interpret each p-box as a DS knowledge base, and apply the above DS-based method
to describe th uncertainty of the output. The result, however, is a DS knowledge base. How
can we describe the corresponding “Gaussian” DS knowledge base as a p-box?

It is known that for a DS knowledge base, i.e., for a probabilistic distribution on the set
of intervals [x, x]:

− The probability F (t) = Prob(X ≤ t) attains its largest possible value F (t) if for each
interval, we take the smallest possible value x.

− Similarly, the probability F (t) = Prob(X ≤ t) attains its smallest possible value F (t)
if for each interval, we take the largest possible value x.

Thus:

− F (t) is a probability distribution for the lower endpoints ymin −∆, and

− F (t) is a probability distribution for the upper endpoints ymin +∆ of the corresponding
intervals.

Since the 2-D distribution of the pairs (ymid, ∆) is Gaussian, the distributions of both linear
combinations ymin −∆ and ymin + ∆ are Gaussian as well.

Therefore, as a result of this procedure, we get a p-box [F (t), F (t)] for which both bounds
F (t) and F (t) correspond to Gaussian distributions.

Comment: strictly speaking, the distributions are almost normal but not exactly normal.
Let us denote the cdf of the standard Gaussian distribution, with 0 mean and standard
deviation 1 by F0(t). Then, an arbitrary Gaussian distribution, with mean µ and standard
deviation σ, can be described as F (t) = F0((t− µ)/σ). In particular, if we denote:

− the mean and the standard deviations of the Gaussian distribution F (t) by µ and σ,
and

− the mean and the standard deviations of the Gaussian distribution F (t) by µ and σ,

then we conclude that F (t) = F0((t− µ)/σ) and F (t) = F0((t− µ)/σ).
From the theoretical viewpoint, for thus defined functions F (t) and F (t), we cannot

always have F (t) ≤ F (t), because, due to monotonicity of F0(t), this would be equivalent

to
t− µ

σ
≤ t− µ

σ
for all t, i.e., to one straight line being always below the other – but this

is only possible when they are parallel.
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However, as we have mentioned while describing the similar situation with the DS knowl-
edge bases, in practice, we can have this inequality if we ignore the values t for which F0(t)
is very small – and thus, not practically possible.

Alternatively, we can assume that the inequality F (t) ≤ F (t) holds for all t – but the
distributions F (t) and F (t) are only approximately – but not exactly – normal.

What if we have different types of uncertainty for different inputs? If we have different
types of uncertainty for different inputs, we can transform them to p-boxes (Ferson, 2002)
– hence, to DS knowledge bases – and use a similar approach.

5.4. Cauchy Deviates Methods for Non-Linear Functions f(x1, . . . , xn)

Case of weak non-linearity. In some cases, we cannot reasonably approximate f by a linear
expression on the entire box, but we can divide the box into a few subboxes on each of which
f is approximately linear. For example, if the dependence of f on one of the variables xi is
strongly non-linear, then we can divide the interval [xi, xi] of possible values of this variable
into two (or more) subintervals, e.g., [xi, x

mid
i ] and [xmid

i , xi], and consider the corresponding
subboxes

[x1, x1]× . . .× [xi−1, xi−1]× [xi, x
mid
i ]× [xi+1, xi+1]× . . .× [xn, xn]

and
[x1, x1]× . . .× [xi−1, xi−1]× [xmid

i , xi]× [xi+1, xi+1]× . . .× [xn, xn].

By using the Cauchy deviates methods, we compute the range of f over each of these
subboxes, and then take the union of the resulting range intervals.

Quadratic case. Linearization technique is based on the assumption that the measurement
errors ∆xi and/or uncertainties are so small that we can safely ignore terms that are
quadratic (or of higher order) in ∆xi. If the measurement errors are larger, so that we
can no longer reasonably approximate f by a linear expression, a natural next step is to
take quadratic terms into consideration while still ignoring cubic and higher-order terms:
f(xmid

1 + δx1, . . . , x
mid
n + δxn) ≈ ymid + δy, where

δy
def=

n∑

ı=1

ci · δxi +
n∑

i=1

n∑

j=1

cij · δxi · δxj , (8)

where ci are the same as for the linearized case and cij
def=

1
2
· ∂2f

∂xi∂xj
.

In general, computing the exact bound for a quadratic function of n variables in case of
interval uncertainty is an NP-hard problem (Vavasis, 1991; Kreinovich et al., 1997). Luckily,
in many practical case, the dependence of f on xi is monotonic (see, e.g., (Lakeyev and
Kreinovich, 1995)), so we can use, e.g., the above-described sensitivity analysis technique.
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The problem with the sensitivity analysis technique, as we have mentioned, is that this
technique requires n calls to the program f , which for large n may be too long. It is therefore
desirable to modify the Cauchy deviate technique so that it can be used for quadratic
functions as well.

Analysis of the problem. We consider the case when the function f(x1, . . . , xn) is monotonic
in each variable xi.

If the function f is increasing in xi, then the derivative
∂f

∂xi
is always positive; in partic-

ular, it is positive at the central point (xmid
1 , . . . , xmid

n ), so ci > 0. In this case, the maximum
of f is attained when δxi = ∆i and xi = xi = xmid

i + ∆i.
Similarly, when the function f is decreasing in f , then ci < 0 and the maximum is

attained when δxi = −∆i and xi = xmid
i −∆i. In both cases, the largest possible value ∆+

of the difference δy is attained when for every i, we have δxi = εi ·∆i, where εi
def= sign(ci).

Substituting this expression for δxi into the above formula for δy, we conclude that

∆+ =
n∑

i=1

ci · εi ·∆i +
n∑

i=1

n∑

j=1

cij · εi · εj ·∆i ·∆j =

n∑

i=1

|ci| ·∆i +
n∑

i=1

n∑

j=1

cij · εi · εj ·∆i ·∆j . (9)

Similarly, the smallest possible value δymin of δy is attained when δxi = −εi · ∆i, hence
∆− def= |δymin| is equal to:

∆− =
n∑

i=1

|ci| ·∆i −
n∑

i=1

n∑

j=1

cij · εi · εj ·∆i ·∆j . (10)

We would like to use a Cauchy-type method to find the bounds (9) and (10). For this,
we consider, for every pairs of vectors z = (z1, . . . , zn) and t = (t1, . . . , tn), the following
auxiliary expression:

f(xmid + z + t)− f(xmid + z − t)
2

=

1
2
· f(xmid

1 + z1 + t1, . . . , x
mid
n + zn + tn)−

1
2
· f(xmid

1 + z1 − t1, . . . , x
mid
n + zn − tn). (11)

Substituting δxi = zi + ti into the formula (8), we conclude that

f(xmid + z + t) = ymid +
n∑

ı=1

ci · (zi + ti) +
n∑

i=1

n∑

j=1

cij · (zi + ti) · (zj + tj), (12)
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and similarly,

f(xmid + z − t) = ymid +
n∑

ı=1

ci · (zi − ti) +
n∑

i=1

n∑

j=1

cij · (zi − ti) · (zj − tj), (13)

hence
1
2
· (f(xmid + z + t)− f(xmid + z − t)) =

n∑

i=1


ci + 2 ·

n∑

j=1

cij · zj


 · ti. (14)

This expression is linear with respect to t1, . . . , tn. Therefore, we can use the existing linear
Cauchy algorithm in order to find bounds for this expression as a function of ti when
|ti| ≤ ∆i.

Let g(z) = g(z1, . . . , zn) denote the result of applying the linear Cauchy method to the
expression (14) considered as as a function of t; then,

g(z) =
n∑

i=1

∣∣∣∣∣∣
ci + 2 ·

n∑

j=1

cij · zj

∣∣∣∣∣∣
·∆i.

Since the function f is monotonic on the box, its derivative
∂f

∂xi
has the same sign at all

the points from the box. Hence, the sign of the derivative ci + 2 ·
n∑

j=1
cij · zj at the point

xmid + z = (xmid
1 + z1, . . . , x

mid
n + zn)

is the same as the sign εi of the derivative ci at the midpoint xmid = (xmid
1 , . . . , xmid

n ) of the
box. Since |E| = sign(E) · E for every expression E, we thus conclude that

∣∣∣∣∣∣
ci + 2 ·

n∑

j=1

cij · zj

∣∣∣∣∣∣
= εi ·


ci + 2 ·

n∑

j=1

cij · zj


 ,

hence

g(z) =
n∑

i=1

|ci| ·∆i + 2 ·
n∑

i=1

n∑

j=1

cij · εi ·∆i · zj . (15)

In particular, for z = 0 = (0, . . . , 0), we get g(0) =
n∑

i=1
|ci| ·∆i.

¿From (12) and (14), we conclude that

f(xmid + z)− f(xmid − z) = 2 ·
n∑

i=1

ci · zi.

We can therefore construct a new function h(z) as follows:

h(z) def=
1
2
· (g(z)− g(0) + f(xmid + z)− f(xmid − z)) =
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n∑

i=1

ci · zi +
n∑

i=1

n∑

j=1

cij · εj ·∆j · zi. (16)

This expression is linear with respect to z1, . . . , zn. Therefore, we can use the existing linear
Cauchy algorithm in order to find bounds for this expression as a function of zi when
|zi| ≤ ∆i. As a result, we get the estimate

H
def=

n∑

i=1

∣∣∣∣∣∣
ci +

n∑

j=1

cij · εj ·∆j

∣∣∣∣∣∣
·∆i.

Since the function f is monotonic on the box, its derivative
∂f

∂xi
has the same sign at all

the points from the box. Hence, the sign of the derivative ci +
n∑

j=1
cij · εj ·∆j at the point

(xmid
1 +

1
2
· ε1 ·∆1, . . . , x

mid
n +

1
2
· εn ·∆n)

is the same as the sign εi of the derivative ci at the midpoint xmid = (xmid
1 , . . . , xmid

n ) of the
box. Since |E| = sign(E) · E for every expression E, we thus conclude that

∣∣∣∣∣∣
ci +

n∑

j=1

cij · εj ·∆j

∣∣∣∣∣∣
= εi ·


ci +

n∑

j=1

cij · εj ·∆j


 ,

hence

H =
n∑

i=1

|ci| ·∆i +
n∑

i=1

n∑

j=1

cij · εi ·∆i · εj ·∆j ,

which is exactly the above expression for ∆+. The value ∆− can now be computed as
2g(0)−∆+.

We thus arrive at the following algorithm for computing ∆+ and ∆−.

Algorithm. As an auxiliary step, we first design an algorithm that, given a vector z =
(z1, . . . , xn), computes g(z). This algorithm consists of applying the linear Cauchy deviate

method to the auxiliary function t → 1
2
· (f(xmid + z + t)− f(xmid + z − t)) and the values

ti ∈ [−∆i, ∆i]. The linear Cauchy methods requires N calls to the auxiliary function (where
N depends on the desired accuracy), and each call to the auxiliary function means 2 calls
to the program f ; so, overall, we need 2N calls to f .

The algorithm itself works as follows:

− First, we apply the algorithm g(z) to the vector 0 = (0, . . . , 0), thus computing the
value g(0).

− Second, we apply the linear Cauchy deviate method to the auxiliary function h(z) =
1
2
· (g(z)− g(0) + f(xmid + z)− f(xmid − z)); the result is the desired value ∆+.
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− Finally, we compute ∆− as 2g(0)−∆+.

What is the computational complexity of this algorithm? How many calls to the program
f did we make?

− In the first stage, we made a single call to g, so this stage requires 2N calls to f .

− The second stage requires N calls to h. Each call to h means 2 calls to f and 1 call to
g; each call to g, as we have mentioned, requires 2N calls to f . Thus, overall, each call
to h requires 2 + 2N calls to f ; in total, the second stage requires N · (2 + 2N) calls
to f .

− On the final stage, there are no calls to f .

So, overall, this algorithm requires 2N + n · (2 + 2N) = 2N · (N + 2) calls to f .
For example, if we want the 20% accuracy on average, we need N = 50, so this algorithm

would require ≈ 5000 calls to f . Thus, when we have n ¿ 5000 variables, it is faster to use
the sensitivity analysis method, but when we have n À 5000 variables, this Monte-Carlo-
type method is faster.

If we want 20% accuracy with certainty 95%, then we need N = 200. In this case, the
above quadratic method requires ≈ 80000 calls to f , so this method is faster only if we have
n À 80000 variables.
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Abstract. In this paper we consider hierarchically decomposed multilevel systems, and extend previous
deterministic methodologies for optimal and consistent design of such systems to account for the presence
of uncertainties. Specifically, we use the probabilistic formulation of the analytical target cascading process
to solve the multilevel problem, and use an advanced mean value-based technique to estimate uncertainty
propagation. The proposed methodology is demonstrated by means of a simple yet illustrative optimal
bi-level system design example.
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1. Introduction

Optimal design of complex engineering systems can be accomplished only by decomposition.
The system is partitioned into subsystems, the subsystems are partitioned into components,
the components into parts, and so on. This decomposition process results in a multilevel
hierarchy of elements that comprise the system.

Deterministic optimization approaches assume that complete information of the problem
is available, and that design decisions can be implemented. These assumptions imply that
optimization results are as good (and therefore useful) as the design and simulation/analysis
models used to obtain them, and that they are meaningful only if they can be realized
exactly.

In reality, these assumptions do not hold. We are rarely in a position to represent
a physical system without using approximations, have complete knowledge on all of its
parameters, or control the design variables with high accuracy. It is therefore necessary to
treat all quantities associated with uncertainty as stochastic.

In this paper, we consider hierarchically decomposed multilevel systems, and we extend
deterministic methodologies for optimal and consistent design of such systems to account
for the presence of uncertainties. Our objective is to introduce the concept of uncertainty,
model its propagation through the multilevel hierarchy, set the ground for the application of
“single-element” optimization under uncertainty methods in multilevel systems, and identify
needs for future research.

To the best of our knowledge, no research work on addressing the presence of uncertain-
ties in hierarchically decomposed multilevel systems has been reported in the literature.
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However, there is ongoing work to take uncertainties into consideration in the multidis-
ciplinary optimization (MDO) framework [1–10]. Most of these references utilize a simple
first-order Taylor expansion to calculate the mean and variance of the response in robust
multidisciplinary design or use “worst case” concepts based on first-order sensitivity to
evaluate the performance range of a multidisciplinary system.

Although the calculation of the response mean and variance using first-order sensitivity
may be adequate for robustness calculations, it does not provide enough statistical infor-
mation to consider design feasibility under uncertainty. As will be illustrated in this paper,
probabilistic representation of the constraints requires complete probabilistic distributions
of the system output.

Reliability analysis using probabilistic distributions has been used in MDO [11–13].
Reliability analysis introduces an additional iteration loop resulting in coupled optimiza-
tion problems that are computationally expensive. Response surfaces have been used to
reduce the computational effort [1]. Decoupled reliability and optimization procedures in
an MDO framework have been also proposed using approximate probabilistic constraint
representations [12]. In general, a double-loop optimization process exists in reliability-based
MDO analysis, which repeatedly calls expensive system-level multidisciplinary analyses. A
single-loop collaborative reliability analysis method has been recently proposed in [11]. A
Most Probable Point (MPP) reliability analysis method is combined with the collaborative
disciplinary analyses to automatically satisfy the interdisciplinary consistency in reliability
analyses. A single reliability optimization loop uses equality constraints to enforce disci-
plinary compatibility. Despite the use of a single optimization loop, it is a computationally
expensive, “all-at-once” procedure due to the presence of the equality discipline constraints.

It is important to differentiate our research work from that related to multidisciplinary
design optimization (MDO). MDO approaches are non-hierarchical in the sense that the
optimal design problems are not decomposed according to disciplines into multilevel hi-
erarchies. Discipline outputs are inputs to other disciplines and vice versa. This is the
significant difference between MDO and our work. In hierarchically decomposed multilevel
systems outputs of lower-level elements are inputs to higher-level elements, but not vice
versa.

The paper is organized as follows. In the next section we present a methodology for
optimal design of hierarchical multilevel systems, and extend its formulation to account
for uncertainties. In Section 3 we address the issue of modeling uncertainty propagation
in multilevel hierarchies and present some analytical examples. A simple yet illustrative
simulation-based example is used in Section 4 to demonstrate our methodology for hier-
archical multilevel system design. Finally, concluding remarks are summarized in Section
5.
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2. Optimal Design of Hierarchically Decomposed Multilevel Systems

Our framework for hierarchical multilevel system optimization under uncertainty is based
on analytical target cascading (ATC). In this section we first review the deterministic
formulation of ATC, and then we present its extension to account for uncertainties.

2.1. Deterministic Formulation

ATC is a mathematical methodology for translating (“cascading”) overall system design
targets to element specifications based on a hierarchical multilevel decomposition [14–16].
The objective is to assess relations and identify possible trade-offs among elements early
in the design development process, and to determine specifications that yield consistent
system design with minimized deviation from design targets.

The ATC process is proven to be convergent when using a specific class of coordination
strategies [17], and has been successfully applied to a variety of optimal design problems,
e.g., [18–21].

We refer the reader to the above references for a detailed description of ATC. Here,
we will briefly present the concept and the general mathematical formulation. In ATC
a minimum deviation optimization problem is formulated and solved for each element in
the multilevel hierarchy that reflects the decomposed optimal system design problem, cf.
Figure 1. Therefore, responses of lower-level elements are inputs into higher-level elements.

system j=1

subsystem j=1 subsystem j=2

component j=1 component j=2 component j=m

subsystem j=n

level i=0

level i=1

level i=2

Figure 1. Example of hierarchically decomposed multilevel system

The ATC process aims at minimizing the gap between what higher-level elements “want”
and what lower-level elements “can”. If design variables are shared among some elements at
the same level, their consistency is coordinated by their parent element at the level above.

The mathematical formulation of problem pij , where i and j denote level and element,
respectively, is

min
x̃ij ,εr

ij ,εy
ij

‖rij − ru
ij‖22 + ‖yij − yu

ij‖22 + εr
ij + εy

ij (1)

subject to
∑nij

k=1 ‖r(i+1)k − rl
(i+1)k‖

2
2 ≤ εr

ij
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164 ∑nij

k=1 ‖y(i+1)k − yl
(i+1)k‖

2
2 ≤ εy

ij

gij(r(i+1)1, . . . , r(i+1)nij
,xij ,yij) ≤ 0

hij(r(i+1)1, . . . , r(i+1)nij
,xij ,yij) = 0

with rij = fij(r(i+1)1, . . . , r(i+1)nij
,xij ,yij),

where the vector of optimization variables x̃ij consists of (nij) children response design
variables r(i+1)1, . . . , r(i+1)nij

, local design variables xij , local shared design variables yij

(i.e., design variables that this element shares with other elements at the same level), and
coordinating variables for the shared design variables of the children y(i+1)1, . . . ,y(i+1)nij

,
and where gij and hij denote local design inequality and equality constraints, respectively.
Tolerance optimization variables εr and εy are introduced to coordinate responses and shared
variables, respectively. Superscripts u (l) are used to denote response and shared variable
values that have been obtained at the parent (children) problem(s), and have been cascaded
down (passed up) as design targets (consistency parameters), cf. Figure 2.

element optimization problem pij, 
where rij is provided by the 
analysis/simulation model

1( 1) ( 1)( ,..., , , )+ +=
cijij ij i k i k ij ijr f r r x y

1( 1) ( 1),...,+ + cij

l l
i k i ky y

( 1) 1 ( 1),...,+ + cij

l l
i k i kr r

u
ijr

l
ijr

u
ijy

l
ijy

( 1) 1 ( 1),...,+ + cij

u u
i k i kr r

1( 1) ( 1),...,+ + cij

u u
i k i ky y

response and shared
variable values cascaded 

down from the parent

response and shared 
variable values passed

up to the parent

response and shared 
variable values passed 

up from the children

response and shared
variable values cascaded 

down to the children

optimization inputs optimization outputs

Figure 2. ATC information flow at element j of level i

Assuming that all the parameters have been updated using the solutions obtained at
the parent- and children-problems, Problem (1) is solved to update the parameters of the
parent- and children-problems. This process is repeated until the tolerance optimization
variables in all problems cannot be reduced any further.

2.2. Non-deterministic Formulations

In this section, the ATC formulation is modified to account for uncertainties. Stochastic
quantities are represented by random variables and parameters (denoted by upper case
latin symbols). For the sake of simplicity, in the following formulations we will assume that
all design variables are random and that there exist no random parameters.
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2.2.1. Stochastic Formulation
In the stochastic formulation, each random variable is represented by a parameter that
describes its probabilistic characteristics. Typically, this parameter is the first moment,
or mean, of the random variable. Responses and other functions of random variables are
expressed as expected values. Thus, Problem (1) becomes

min
µX̃ij

,εR
ij ,εY

ij

‖E[Rij ]− µu
Rij
‖22 + ‖µYij − µu

Yij
‖22 + εR

ij + εY
ij (2)

subject to
∑nij

k=1 ‖µR(i+1)k
− E[Rij ]l‖22 ≤ εR

ij∑nij

k=1 ‖µY(i+1)k
− µl

Y(i+1)k
‖22 ≤ εY

ij

E[gij(R(i+1)1, . . . ,R(i+1)nij
,Xij ,Yij)] ≤ 0

E[hij(R(i+1)1, . . . ,R(i+1)nij
,Xij ,Yij)] = 0

with Rij = fij(R(i+1)1, . . . ,R(i+1)nij
,Xij ,Yij),

where E[·] denotes the expectation operator.
In words, this formulation attempts to

1. Match the expected values of the local responses with the targets cascaded from the
higher level; these targets are the optimal values of the random design variables, i.e.,
the means, of the higher-level problem.

2. Match the optimal values of the random response design variables, i.e., the means, with
the expected values of the children responses.

3. Match the optimal values of the local and children random shared variables, i.e., the
means, with the target values cascaded from the higher and lower levels, respectively.

The challenge in solving stochastic optimization problems such as Problem (2) is that
evaluating expectations requires knowledge of the probability density functions of the ran-
dom variables and evaluation of multidimensional integrals.

The solution of Problem (2) satisfies the design inequality and equality constraints in
an average sense, but does not provide any information on the percentage of constraint
violations due to uncertainty. In practical applications, however, there is a need to satisfy
the constraints at a specified target reliability level.

2.2.2. Probabilistic Formulation
The constraints are thus reformulated. We now require that the probability of satisfying
a constraint under the presence of uncertainties greater than some appropriately selected
threshold, or, alternatively, that the probability of violating a constraint is less than some
pre-specified probability of failure. The formulation of Problem (2) becomes

min
µX̃ij

,εR
ij ,εY

ij

‖E[Rij ]− µu
Rij
‖22 + ‖µYij − µu

Yij
‖22 + εR

ij + εY
ij (3)

subject to
∑nij

k=1 ‖µR(i+1)k
− E[Rij ]l‖22 ≤ εR

ij
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k=1 ‖µY(i+1)k
− µl

Y(i+1)k
‖22 ≤ εY

ij

P [g̃ij(R(i+1)1, . . . ,R(i+1)nij
,Xij ,Yij) > 0] ≤ Pf ,

with Rij = fij(R(i+1)1, . . . ,R(i+1)nij
,Xij ,Yij),

where P [·] denotes probability measure and Pf is a vector of prespecified probability of
failure thresholds.

Note that the mathematical formulation of Problem (3) does not contain equality con-
straints. Equality constraints do not make sense in a probabilistic framework (it is meaning-
less to require that a function takes exactly a specific value under the presence of uncertainty,
since the probability of a continuous random variable taking an exact value is zero), one
has to introduce some slack and treat equality constraints as inequality constraints. For
example, if in a deterministic framework it is required that h(x) = 0, in a probabilistic
framework it is required that | h(X) |≤ δ, where δ is a small positive constant, so that
the constraint is formulated as P [| h(X) | −δ > 0] ≤ Pf . Therefore, we rewrite equality
constraints as inequality constraints and unite the two constraint function vectors into one,
denoted by g̃.

Problem (3) can be solved with any of the available commercial software packages or the
methods reported recently in the literatures, e.g., the hybrid mean value (HMV) method or
the sequential optimization and reliability assessment (SORA) method [22, 23]. We adopt
a recently developed single-loop method that is as accurate as the HMV and the SORA
methods, but much more efficient [24].

3. Propagation of Uncertainties

The responses of the elements in the multilevel hierarchy are typically nonlinear functions of
the elements’ inputs, which include random variables and parameters. Thus, responses are
themselves random variables, whose expected value must be computed to evaluate objec-
tive and constraints when solving probabilistic optimization problems. Moreover, estimated
variance of responses is required if robustness considerations are included.

In a multilevel hierarchy, responses of lower-level subsystems are inputs to higher-level
subsystems. Therefore, it is necessary to obtain probability distribution information required
for the solution of the higher-level problems. This is an issue of outmost importance in design
optimization of hierarchically decomposed multilevel systems. An efficient and accurate
mechanism is required for propagating probabilistic information in the form of cumulative
distribution and probability density functions throughout the hierarchy.

3.1. Estimating Moments Using the Mean-Value First-Order
Second-Moment Method

In an initial effort, a mean-value first-order second-moment (MVFOSM) approach was
adopted to estimate the mean and standard deviation of a nonlinear function of random
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variables [25]. Specifically, a first-order Taylor expansion about the current design, repre-
sented by the mean vector µX of the random variables X, was used to linearize a nonlinear
random response R:

R = f(X) ≈ f(µX) +
n∑

i=1

∂f(µX)
∂Xi

(Xi − µXi), (4)

where n is the dimension of the vector X. Assuming that all the random variables are
statistically independent (uncorrelated), the first-order approximations of the mean and
the variance of R were given by

E[R] = µR ≈ f(µX) (5)

and

V ar[R] = σ2
R ≈

n∑
i=1

(
∂f(µX)

∂Xi

)2

σ2
Xi

, (6)

respectively.
The advantage of this approach, besides efficiency, is that it allowed us to assume that

the responses are normally distributed if all input random variables and parameters were
normal. Therefore, propagation of uncertainty in ATC was modeled as a linear process.
With the distribution information known, all that was necessary was the estimation of the
first two moments, which characterize a normal distribution completely. The validity of
the successive linearizations during the ATC process was ensured by virtue of the ATC
consistency constraints that do not allow large deviations from current designs.

To our knowledge, this linearization approach is currently embedded in all state-of-the-art
software packages for optimization under uncertainty. As will be demonstrated shortly, the
linearization approach does a fairly good job in estimating the expected value of nonlinear
functions of random variables. However, it can be quite inaccurate in estimating higher
moments, e.g., the standard deviation. Moreover, it is limiting in that it does not provide
us with the correct probability distribution information of the random nonlinear responses.

It is also important to note that if the linearization approach is used to compute expecta-
tions in the stochastic formulation, Problems (1) and (2) generate identical solutions. There
is no value in solving the stochastic ATC formulation if expectations are not computed
exactly, which requires accurate probability distribution information and multidimensional
integrations. This is an additional reason that may explain why the probabilistic constraint
formulation is used universally today to solve non-deterministic problems.

3.2. Generating Distributions Using the Advanced Mean Value Method

In this paper, we utilize the advanced mean value (AMV) method to generate the cumulative
distribution function (CDF) of a nonlinear response. The AMV method [26] is a computa-
tionally efficient method for generating the CDF of nonlinear functions of random variables.
It improves the Mean Value (MV) prediction (Section 3.1) by using a simple correction to
compensate for errors introduced from the Taylor series truncation. A response performance
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function R = f(X) is linearized as shown in Eq. (4) and its first and second order moments
µR and σR are calculated using Eqs. (5) and (6), respectively.

A limit state function is then defined as

g(X) = f(X)− f0, (7)

where f0 is a particular value of the performance function. The reliability index β is then
given by

β =
µg

σg
, (8)

where µg = µR−f0 and σg = σR. The CDF value of f at f0 is calculated from the first-order
relation

P [f ≤ f0] = P [g ≤ 0] = Φ(−β), (9)

where Φ is the standard normal cumulative distribution function. It is emphasized that
Eq. (8) is equivalent to calculating the most probable point (MPP) using the linear approx-
imation of Eq. (4). The MPP in the standard normal space is given by

U∗ = −β
∇g(X)
|∇g(X)|

. (10)

In the original X space, the MPP coordinates vector is

X∗ = U∗σx + µx, (11)

where µx and σx are the mean and standard deviation vectors, respectively, of the vector
of random variables X.

In the AMV method, the following relation is used instead of Eq. (9):

P [f ≤ f(X∗)] = Φ(−β), (12)

i.e., the f0 value at which the reliability index β is calculated is replaced by f(X∗).
To generate the CDF of R = f(X), the Most Probable Point is first approximated using

the simple MV method, which has minimal computational requirements relative to existing
MPP-based reliability analysis methods. Once all MPP’s X∗

i for an appropriately discretized
range of the performance function at points fi are obtained, the so-called MPP locus
(MPPL) is identified, and is equivalent with the CDF of R = f(X). Subsequently, a single
function evaluation f(X∗

i ) is used at each CDF level i to correct the CDF value obtained
with the MV method. This so-called AMV-based method is computationally efficient since
it requires only a single linearization of the performance function at the mean value and
an additional function evaluation at each CDF level (discretized f range at values fi). It
is also very accurate as repeatedly demonstrated in the literature [27–29]. Note that the
MPPL-based CFD generation concept has been reported before, but is was based on a less
efficient MPP determining procedure [30].

With the CDF available, one can differentiate numerically to obtain the probability
density function (PDF). We use central differences to obtain second-order accurate approx-
imations. Finally, to compute moments, we integrate numerically, using spline interpolation
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to estimate response values that lie between the available PDF values. As will be shown by
means of several analytical examples, this method is quite accurate.

3.3. Examples

The MVFOSM-based and AMV-based methods were used to estimate the first two moments
of several nonlinear analytical expressions. All random variables were assumed to be normal.
Test functions and input statistics are presented in Table I and results are summarized in
Table II. One million samples were used for the Monte Carlo simulations.

Table I. Test functions and input statistics

# Expression Input Statistics

1 X2
1 + X2

2 X1 ∼ N(10, 2), X2 ∼ N(10, 1)

2 − exp(X1 − 7)−X2 + 10 X1,2 ∼ N(6, 0.8)

3 1− X2
1X2
20

X1,2 ∼ N(5, 0.3)

4 1− (X1+X2−5)2

30
− (X1−X2−12)2

30
X1,2 ∼ N(5, 0.3)

5 1− 80
X2

1+8X2+5
X1,2 ∼ N(5, 0.3)

Table II. Estimated moments and errors relative to Monte Carlo
simulation (MCS) results

# 1 2 3 4 5

µlin 200.0 3.6321 −5.25 −1.0333 −0.1428

µAMV 203.4 3.6029 −5.3495 −1.0380 −0.1454

µMCS 205.0 3.4921 −5.3114 −1.0404 −0.1448

εlin [%] −2.44 4.00 −1.15 −0.68 −1.30

εAMV [%] −0.78 3.17 0.71 −0.23 0.41

σlin 44.72 1.9386 0.8385 0.1166 0.00627

σAMV 45.20 0.9013 0.8423 0.1653 0.00631

σMCS 45.10 0.9327 0.8407 0.1653 0.00630

εlin [%] −0.84 107.85 −0.26 29.46 −0.47

εAMV [%] 0.22 −3.36 0.19 0 0.15

By inspecting Table II, it can be seen that while the mean-related errors of the lin-
earization approach are within acceptable limits, standard deviation errors can be quite
large. The AMV-based moment estimation method performs always better, and never
exhibits unacceptable errors. Moreover, the AMV-method provides accurate probability
distribution information of nonlinear responses. For example, Figure 3 depicts the CDF
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and PDF, respectively, of function # 1, obtained using both the MVFOSM-based and the
AMV-based method. It can be seen that, using the linearization approach, the nonlinear
response would be incorrectly assumed as normally distributed.

Figure 3. Cumulative distribution and probability density functions for analytical example #1

3.4. Propagating Uncertainty in ATC

Our methodology for propagating uncertainty information during the ATC process can be
summarized in the following steps:

1. Start at the bottom level of the hierarchy, where probability distribution on the input
random variables and parameters is assumed as known. If such information is not
available at the bottom level, start at the lowest level possible where such information
is available.

2. Solve the probabilistic design optimization problems for the level specified in step 1.

3. Use the approach described in Section 3.2 to obtain distribution information for the
response variables that are inputs to higher-level (“parent”) problems.

4. Using the information obtained at step 3, solve the parent problems. Note that the CDFs
and PDFs of lower-level (“children”) responses that constitute optimization variables in
the parent problems are required for solving these problems correctly. Second moment
(variance) information alone is inadequate to guarantee proper solution process and
uncertainty propagation throughout the hierarchy (as opposed, e.g., to “single”-element
robust design optimization).

5. Move your way to the top of the hierarchy.

6. Once you have reached the top-level problem start moving towards the bottom using
previous solutions to update parameters as shown in Figure 2.

7. Keep iterating until all ε values in all problems in the hierarchy have been reduced as
much as possible, i.e., have converged to a steady state value. Note that the ε variables
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are deterministic, as are the constraints they appear in. While uncertainties are taken
into account in the probabilistic design constraints, the non-deterministic ATC process
aims at coordinating values of shared variables and responses in an average sense.

Since the linearization approach is sufficiently accurate for estimating expected values, it
can be used to reduce computational cost. However, the AMV-based method is so efficient,
that it is suggested for use in estimating expected values to improve accuracy and thus,
possibly, the convergence rate of the ATC process.

4. Example

The probabilistic formulation of the ATC process (Problem (3)) is used to solve a simple yet
illustrative simulation example. We consider a V6 gasoline engine as the system, which is
“decomposed” into a subsystem that represents the piston-ring/cylinder-liner subassembly
of a single cylinder. The system simulation predicts engine performance in terms of brake-
specific fuel consumption. Although the engine has six cylinders, they are all designed to
be identical. For this reason, we only consider one subsystem.

The associated bi-level hierarchy, shown in Figure 4, includes the engine as a system at
the top level and the piston-ring/cylinder-liner subbassembly as a subsystem at the bottom
level. The ring/line subassembly simulation takes as inputs the surface roughness of the

engine simulation

brake-specific fuel consumption

power loss due to friction

piston-ring/cylinder-liner
subassembly

ring and liner surface roughness liner material properties
(Young’s modulus and hardness)

oil consumption
blow-by
liner wear rate

Figure 4. Hierarchical bi-level system

ring and the liner and the Young’s modulus and hardness and computes power loss due
to friction, oil consumption, blow-by, and liner wear rate. The root mean square (RMS) of
asperity height is used to represent asperity roughness, which is assumed to be normally
distributed. The engine simulation takes then as input the power loss and computes brake-
specific fuel consumption of the engine. Commercial software packages were used to perform
the simulations. A detailed description of the problem can be found in [25].
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4.1. Problem Formulation

Due to the simplicity of the given problem structure, we will use here a modified version of
the notation introduced earlier. Since there are only two levels with only one element in each,
we skip element indices and denote the upper-level element with subscript 0 and the lower-
level element with subscript 1. We use second indices to denote entries in the design variable
vector of the lower-level element optimization problem. The design problem is to find optimal
mean values µX11 and µX12 for the piston-ring and cylinder-liner surface roughness random
variables X11 and X12, respectively, and optimal values for the deterministic design variables
representing the material properties (Young’s modulus x13 and hardness x14) of the liner
that yield minimized expected value of brake-specific fuel consumption R0. The optimal
design is subject to constraints on liner wear rate, oil consumption, and blow-by. The power
loss due to friction R1 links the two levels.

The top- and bottom-level ATC problems are formulated as

min
µR1

,εR
(E[R0]− T )2 + εR (13)

subject to (µR1 − E[R1]l)2 ≤ εR

with R0 = f0(R1)

and

min
µX11

,µX12
,x13,x14

(E[R1]− µu
R1

)2 (14)

subject to P [liner wear rate > 2.4× 10−12 m3/s] ≤ Pf

P [blow-by > 4.25× 10−5 kg/s] ≤ Pf

P [oil consumption > 15.3× 10−3 kg/hr] ≤ Pf

P [X11 < 1µm] ≤ Pf

P [X11 > 10µm] ≤ Pf

P [X12 < 1µm] ≤ Pf

P [X12 > 10µm] ≤ Pf

340 GPa ≥ x13 ≥ 80 GPa

240 BHV ≥ x14 ≥ 150 BHV

with R1 = f1(X11, X12, x13, x14),

respectively. The standard deviation of the surface roughnesses was assumed to be 1.0 µm,
and remained constant throughout the ATC process. The assigned probability of failure Pf

was 0.13%, which corresponds to the target reliability index β = 3. The fuel consumption
target T was simply set to zero to achieve the best fuel economy possible.

Note that since the random variables are normally distributed, the associated linear
probabilistic bound constraints can be reformulated as deterministic. For example,

P [X11 < 1µm] ≤ Pf ⇔ P [X11 − 1µm < 0] ≤ Pf ⇔

REC2004



173

Φ(0− µX11 − 1µm

σX11

) ≤ Φ(−β) ⇒ −µX11 − 1µm

σX11

≤ −β ⇔

µX11 − 1µm

σX11

≥ β ⇔ µX11 − 1µm ≥ βσX11 ⇔

µX11 ≥ 1µm + βσX11 ⇔ µX11 ≥ 4µm

Similarly, the other three probabilistic bound constraints in Problem (14) can be reformu-
lated as

µX11 ≤ 7µm; µX12 ≥ 4µm; µX12 ≤ 7µm.

4.2. Results

It is desired to minimize power loss due to friction in order to optimize engine operation
and thus maximize fuel economy. Therefore, it was anticipated that the bottom-level opti-
mization problem would yield a design with as smooth surfaces (low surface roughnesses)
as possible.

The probabilistic ATC process of solving Problems (14) and (13) iteratively converged
after two iterations. The obtained optimal ring/liner subassembly design is shown in Ta-
ble III. The ring surface roughness optimal value is at its probabilistic lower minimum,

Table III. Optimal ring/liner subassembly design

Variable Description Value

X11 Ring surface roughness, [µm] 4.00

X12 Liner surface roughness, [µm] 6.15

x13 Liner Young’s modulus, [GPa] 80

x14 Liner hardness, [BHV ] 240

while the liner’s Young’s modulus and hardness optimal values are at their deterministic
lower and upper bounds, respectively.

The liner surface roughness is not, however, at its lower bound because the problem is
bounded by the oil consumption constraint. A certain degree of surface roughness is required
to maintain an optimal oil film thickness in order to avoid excessive oil consumption. For
this reason, the associated constraint is active, and the surface roughness of the liner is an
interior optimizing argument.

An interesting theoretical issue arises. How do we define activity for probabilistic con-
straints? The definition of constraint activity in deterministic optimization is the following:
A constraint is active if removing it or moving its boundary affects the location of the
optimum. In probabilistic design, a constraint is active if the reliability index associated
with the constraint’s MPP is equal to the target reliability index. In other words, the
constraint’s MPP lies on the target reliability circle.
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A Monte Carlo simulation was performed to assess the accuracy of the reliability analyses
of the probabilistic constraints. One million samples were generated using the mean and
standard deviation values of the design variables, and the constraints were evaluated using
these samples to calculate the probability of failure. Results are summarized in Table IV.

Table IV. Reliability analysis results

Constraint Active Pf MCS Pf

Liner wear rate No ≤ 0.13 % 0 %

Blow-by No ≤ 0.13 % 0 %

Oil consumption Yes 0.13 % 0.16 %

The obtained design is actually 0.03% less reliable than found. This error is due to the
first-order reliability approximation used in the probabilistic optimization problem.

Propagation of uncertainty was modeled using the approach described in Section 3.2.
Table V summarizes the estimated moments for the two responses of the bi-level hierarchy.

Table V. Estimated moments and errors rela-
tive to Monte Carlo simulation (MCS) results
for the simulation example

Response Power loss Fuel consumption

µlin 0.3950 0.5341

µAMV 0.3922 0.5431

µMCS 0.3932 0.5432

εlin [%] 0.45 −0.01

εAMV [%] −0.25 −0.01

σlin 0.0481 0.00757

σAMV 0.0309 0.00760

σMCS 0.0311 0.00759

εlin [%] 54.6 −0.25

εAMV [%] −0.64 0.13

The linearization approach results are included to illustrate the large error that this ap-
proach introduces to the top-level problem. This happens because the power loss function
is highly nonlinear. In fact, its PDF is multi-modal, as illustrated in Figure 5. Figure 5
also depicts the histogram obtained by Monte Carlo simulation using one million samples;
note that the perpendicular axis of the histogram must be divided by 1,000,000 to obtain
the probability density relative to the sample size. The agreement is quite satisfactory and
illustrates the usefulness of the AMV-based approach to propagate uncertainty for highly
nonlinear functions. The fuel consumption is almost a linear function of the power loss.
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Figure 5. Power loss PDF (left) and histogram obtained using Monte Carlo simulation (right)

5. Summary and Conclusions

We have presented a methodology for design optimization of hierarchically decomposed
multilevel systems under uncertainty. We extended the deterministic formulation of ana-
lytical target cascading (ATC) to account for uncertainties. We modeled the propagation
of uncertainty in the ATC process by using the advanced mean value (AMV) method
to generate accurate probability distributions of nonlinear responses. We demonstrated
the presented methodology by means of a simple yet illustrative engine design example.
The proposed methodology for simulation-based optimal system design by decomposition
is not related to multidisciplinary design optimization (MDO) methods in either its de-
terministic or its probabilistic formulation. Stochastic formulations are meaningful only
if expectations of nonlinear responses are computed exactly, which requires probability
distribution information of the input random variables and parameters and accurate multi-
dimensional integrations. Probabilistic formulations are suggested for practical applications.
The linearization approach for propagating uncertainties yields inaccurate second moment
estimations and is inadequate for multilevel optimization under uncertainty since it does
not provide probability distribution information that is necessary for solving higher-level
problems.
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Abstract. Risk is a part of almost all civil engineering projects. Usually there is a difference between the
real and the estimated cost of the civil engineering projects. Unfortunately, in civil engineering applications
usually we do not have enough data to calculate probabilistic characteristics [13]. There are also different
methods of modeling of uncertainty [6, 4]. In this paper probabilistic characteristics are modeled by fuzzy
numbers, which are defined by some expert. The resulting cost is described by probability density functions
with fuzzy characteristics (for example mean or standard deviation). Using assessment from different (or
even one) experts we can estimate the uncertainty of the probability density function of total costs and the
risk. Then using modified Monte-Carlo simulation and the alpha cut method we can calculate the results.

Keywords: risk, costs, uncertainty, impresise probability

1. Introduction

Risk us an integral part of each civil engineering project. We can define it as possibility
of occurrence of loss. One of the most popular type contracts in Poland is (guaranteed
maximum price or cost contract) . At this time task and costs are predicted on the basis
on deterministic unit costs [13].

Tasks and unit costs are deterministic. Unfortunately, in reality schedule tasks and unit
costs may change because of the influence of different and usually uncertain factors[2].

2. Calculating of cost of civil engineering projects

Today in Poland the cost of civil engineering project is calculated by using pure deterministic
methods which are based on some catalogues [11], set of prices [8, 9] and/or different norms.
Existing practical methods of calculating costs are pure deterministic.

The total cost can be calculated as:

cT = DC + IC + P + T (1)

where DC - direct costs (labor, material, equipment), IC - indirect cost (costs of man-
agement, cost of insurance etc.), P - profit and risk of the project, T – taxes.
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In this paper only direct costs DC are taken into account.

DC =
n∑

i=1

DCi (2)

where DCi direct costs of each tasks.

3. Probabilistic definition of risk

Many variables have impact upon cost overruns. The prime variables have been commonly
identified as: unpredictable weather, inflationary material cost, inaccurate materials esti-
mates, complexity of project, contractor’s lack experience, poor labor productivity, project
changes [10, 6].

The risk of cost is equal to the probability that the real cost cT is grater than assumed
cost cT,0 (maximal).

R = P {cT > cT,0} = 1− P {cT ≤ cT,0} (3)

If we know the probability density function fcT (x) of the random variable cT then

R = 1−
cT,0∫

−∞
fcT (x) dx = 1− ΦcT (cT,0) (4)

where

ΦcT (x) =
x∫

−∞
fcT (t) dt (5)

is a cumulative distribution function of the random variable cT .
It should be emphasize that the influence of the uncertainty to the final cost is very

difficult to estimate by using pure probabilistic methods due to lack of credible statistical
data.

4. Calculating of risk of direct costs

At this moment the direst costs are calculated on the basis on standards [13] which are very
general and they do not take into account different factors which have influence on their
values. Because of that there is a difference between the real costs and predicted costs.

Risk is calculated as constant value which is introduced in order to cover the losses. The
final result of the calculation is a fixed value.

The final price is a result of negotiation between investor and contractors.
Important information for the contractor is the following:
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- what is the level of risk which accompany assumed maximal level of direct costs.
- what is the minimal cost for which the risk can be accepted.
Knowledge about influence of random parameters of the system would be a very good

in negotiations.
There are many programs which enable to calculate project risk (for example Pert Master,

Risk, MS Project etc.) in pure probabilistic sense. However in practice it is very difficult
to obtain reliable statistical data, because of that the results of the calculations are not
credible.

5. Example of analysis of risk

Let’s assume that contractor would like to realize some civil engineering project for fixed
price. The project consist of: determine tasks, alternative tasks and additional tasks.

One can called the task deterministic if occurrence of it is certain.
Let’s assume that we have two tasks. If in each realization of that process we can get

only one of them, then we can call these tasks alternative.
If the task may occur in each realization with some probability then we can call that

task additional.

5.1. Preparation of data

Valuation of identified tasks was made on the basis of [8, 9, 11]. Then the data was aggre-
gated with taking into account technology of realization and allocation of risk. The results
are presented in the table 1.

The model of the system consists of some node. Each node is characterized by some
costci. One can also define some relations between the elements. Both route thru the graph
and the costs ci are random. The process can be shown as a Petri nets[14] on the Fig. 1.

The tasks are represented by rectangles, conditions are represented as circle and the ar-
rows show the direction of movement in the graph. On some connections there is information
about the probability of occurrence of each variant.

According to many numerical experiments adequacy of the cost estimation can be char-
acterized by using beta Pert distribution. Beta Pert distribution can be define by using
most optimistic cost co, most likely cost cmand most pessimistic cp [3, 12, 1] .

α =
4 · (cm − co)

cp − co
, β = 4− α (6)

where α, β are parameters of beta distribution.

fα,β(x) =
Γ (α + β)
Γ (α) Γ (β)

(1− x)β−1 xα−1, x ∈ [0, 1] (7)
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Figure 1. Graphical representation of the process

Table I. Tasks description

No. Name of tasks Costs [PLN] Remarks:

1 P0 217.500 deterministic task

2 P1 132.000 alternative task with P3

3 P2 187.700 alternative task with P3

4 P3 420.000 alternative task with P1, P2

5 P4 261.700 deterministic task

6 P5 43.200 additional task

7 P6 125.300 deterministic task

In calculation it is necessary to use the PDF which is defined on the interval [co,cp] i.e.

f(x) =
1

cp − co
fα,β

(
x− co

cp − co

)
. (8)

Beta Pert distribution is widely used to modeling of uncertainty of cost because of it is
very intuitive (can be defined using co, cm, cp).

However usually we do not know the numbers co, cm, cp precisely. However, usually it is
possible to estimate upper and lower bounds its values by using expert knowledge.

c−o ≤ co ≤ c+
o , c−m ≤ cm ≤ c+

m, c−p ≤ cp ≤ c+
p (9)
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Figure 2. Beta distribution

This information is very imprecise. In order to make the calculations more precisely fuzzy
numbers can be applied.

Let’s assume that we would like to define fuzzy numbers co,F , cm,F , cp,F which represent
the number co, cm, cp. We assume that we know the expert(syrveyor-E1, planner-E2 , site
agent-E3) opinions co (ωi) , cm (ωi) , cp (ωi) for each expert ω1, ω2, ..., ωn ∈ Ω. We can treat
ωi as elementary event of some probability spaceΩ. Examples of such expert opinions are
shown in the table 2 and 3. The expert opinions are interval valued cp (ωi) , cm (ωi) , co (ωi)
or set they are simply numbers i.e.

cp (ωi) , cm (ωi) , co (ωi) ∈ I (R) (10)

Alpha cut of fuzzy numbers cp,F , cm,F , co,F can be constructed by using confidence in-
tervals [7]. For given α level the appropriate α cut cp,F,α, cm,F,α, co,F,α should satisfy the
following condition.

P{ωi : cp (ωi) ∩ cp,F,α 6= ∅} = 1− α (11)

P{ωi : cm (ωi) ∩ cm,F,α 6= ∅} = 1− α (12)

P{ωi : co (ωi) ∩ co,F,α 6= ∅} = 1− α (13)

In the simplest case it is possible to apply triangular fuzzy numbers which are defined in
the following way:

c−p,F,0 = min{c−p (ωi) : ωi ∈ Ω} (14)

c+
p,F,0 = min{c+

p (ωi) : ωi ∈ Ω} (15)

c−m,F,0 = min{c−m (ωi) : ωi ∈ Ω}, (16)

c+
m,F,0 = min{c+

m (ωi) : ωi ∈ Ω} (17)

c−o,F,0 = min{c−o (ωi) : ωi ∈ Ω}, (18)

c+
o,F,0 = min{c+

o (ωi) : ωi ∈ Ω} (19)
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The vertex of triangle fuzzy number can be defined using generalized main value.

cp,F,1 =
∑

ωi∈Ω

P{ωi} ·mid (cp (ωi)), (20)

cm,F,1 =
∑

ωi∈Ω

P{ωi} ·mid (cp (ωi)), (21)

co,F,1 =
∑

ωi∈Ω

P{ωi} ·mid (cp (ωi)). (22)

Table II. Table of cost evaluation

Process name: P1

Cost: 217.500

Person: E2

Percent of
cost [%]

Min Mid Max

75

80

85

90

95 X

100

105 X

110

115 X

120 X

125

130

135

140

The fuzzy numbers are which will be used in calculations are given in the table 5 and 6.
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Table III. Fuzzy probability of alternative costs

Probability of occurrence of alternative

lp. Task Degree of member-
ship

p− p+

P2 α = 0 0.35 0.55

α = 1/3 0.3889 0.5222

α = 2/3 0.4407 0.4944

α = 1 0.4667 0.4667

P5 α = 0 0.15 0.35

α = 1/3 0.1778 0.3111

α = 2/3 0.2148 0.2722

α = 1 0.2333 0.2333

The total cost can be calculated as a sum of random variable with uncertain parameters
h ∈ ĥα.

cT (ω,h) =
n∑

i=1

χi (ω,h) · ci (ω,h) (23)

where χ : Ω × ĥα (ω,h) → χ (ω,h) ∈ {0, 1}, ci : Ω × ĥα � (ω,h) → ci (ω,h) ∈ R,
cT : Ω× ĥα � (ω,h) → cT (ω,h) ∈ R are some random variables with uncertain parameters,
ĥα =

[
h−1 , h+

1

]
×

[
h−2 , h+

2

]
× ...× [h−m, h+

m] ⊆ I (Rm) is an interval vector.
Extreme values of the risk can be defined in the following way:

R̂α (cT,0) =
[
R−

α (cT,0) , R+
α (cT,0)

]
(24)

R̂α (cT,0) =
{
P {ω : cT (ω,h) > cT,0, ω ∈ Ω} : h ∈ ĥα

}
(25)

or

R̂α (cT,0) =
{
1− ΦcT (cT,0,h) : h ∈ ĥα

}
(26)

where

ΦcT (cT,0,h) = P {ω ∈ Ω:cT (ω,h) ≤ cT,0} (27)

Fuzzy membership function µ (x|RF (cT )) of the risk of cost RF (cT ) can be described
using the following formula:
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Table IV. Fuzzy costs

Alpha Task min mid max

c−o c+
o c−m c+

m c−p c+
p

α = 0 184,88 228,38 206,63 250,13 250,13 293,63

α = 1/3 P0 190,91 219,91 212,66 241,66 254,95 283,95

α = 2/3 196,95 211,45 218,70 233,20 259,78 274,28

α = 1 202,99 202,99 224,74 224,74 264,61 264,61

α = 0 112,20 125,40 125,40 151,80 151,80 178,20

α = 1/3 P1 114,40 123,20 129,07 146,67 154,73 172,33

α = 2/3 116,60 121,00 132,73 141,53 157,66 166,46

α = 1 118,80 118,80 136,40 136,40 160,59 160,59

α = 0 159,55 197,09 178,32 215,86 215,86 253,40

α = 1/3 P2 164,76 189,78 182,48 207,51 221,07 246,09

α = 2/3 169,97 182,48 186,65 199,16 226,28 238,79

α = 1 175,18 175,18 190,82 190,82 231,49 231,49

P3 420,00 420,00 420,00 420,00 420,00 420,00

α = 0 222,45 274,79 248,62 300,96 327,13 379,47

α = 1/3 P4 232,62 267,51 258,79 293,68 334,39 369,26

α = 2/3 242,79 260,23 268,96 286,40 341,66 359,05

α = 1 252,96 252,96 279,13 279,13 348,92 348,85

α = 0 36,72 41,04 41,04 45,36 45,36 49,68

α = 1/3 P5 37,44 40,32 41,76 44,64 46,08 48,96

α = 2/3 38,16 39,60 42,48 43,92 46,80 48,24

α = 1 38,88 38,88 43,20 43,20 47,52 47,52

α = 0 93,98 119,04 119,04 131,57 144,10 169,16

α = 1/3 P6 98,84 115,55 121,12 129,48 146,88 163,58

α = 2/3 103,71 112,07 123,21 127,39 149,66 158,01

α = 1 108,58 108,58 125,30 125,30 152,44 152,44

µ (x|RF (cT )) = sup
{
α : x ∈ R̂α (cT,0)

}
(28)
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6. Approximate algorithm of calculation of fuzzy probability

We can find the approximate values of the fuzzy setRF (cT ) using alpha cut method and
the formula (26).

1) For the discrete values 0 ≤ α1 ≤ α2 ≤ ... ≤ αk ≤ 1 calculate alpha cut of the uncertain
parameters ĥα1 , ĥα2 , . . . , ĥαk

.
2) Divide the intervals ĥαi,1, ĥαi,2, ..., ĥαi,m into k parts.
3) For each combination of the parameters (hαi,1,j1 , hαi,2,j2 , ..., hαi,m,jm) = hαi,j1,j2,...,jm

calculate the cumulative distribution function ΦcT (c,hαi,j1,j2,...,jm). The approximate value
of the alpha cut R̂αi (cT,0) can be calculated. In the following way.

R−
αi

(cT,0) = (29)

= min {1− ΦcT (cT,0,hαi,j1,j2,...,jm) : j1, ..., jm ∈ {1, ..., k}} (30)

R+
αi

(cT,0) = (31)

= max { 1− ΦcT (cT,0,hαi,j1,j2,...,jm) : j1, ..., jm ∈ { 1, ..., k}} , (32)

4) Approximate value of the fuzzy membership function µ (x|RF (cT )) is given by the
following formula

µ (x|RF (cT,0)) = sup
{
αi : x ∈ R̂αi (cT,0)

}
, (33)

7. Computer implementation of the algorithm

Algorithm which was described above was implemented in C++ language and can be run
on Linux and Windows. To generation of random numbers GSL library was applied.

The models can be described by using BPFPRAL language (Bȩtkowski Pownuk Fuzzy
Probability Risk Analysis Language) [5] . As and example below is show the code of simu-
lator which is shown on the Fig. 1

Node

NumberOfNode 0, NumberOfChildren 2, Children 1 3, Probability 0.415,

IntervalProbability 0.088, xMinMin 198.766, xiMnMax 206.016, xMidMin

215.688, xMidMax 219.313, xMaxMin 231.391, xMaxMax 238.641, ProbabilityGrids 3

End

Node

NumberOfNode 1, NumberOfChildren 1, Children 2, xMinMin 125.761, xMinMax

130.161, xMidMin 133.830, xMidMax 138.230, xMaxMin 147.030, xMaxMax 153.63

End

Node
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NumberOfNode 2, NumberOfChildren 1, Children 4, xMinMin 171.533, xMinMax

177.789, xMidMin 186.136, xMidMax 189.264, xMaxMin 206.983, xMaxMax 213.24

End

Node

PointValue, NumberOfNode 3, NumberOfChildren 1, Children 4, xMinMin 420.0,

xMinMax 420.0, xMidMin 420.0, xMidMax 420.0, xMaxMin 420.0, xMaxMax 420.0,

NumberOfGrid 1

End

Node

NumberOfNode 4, NumberOfChildren 2, Children 5 6, Probability 0.224,

IntervalProbability 0.088, xMinMin 239.159, xMinMax 247.882, xMidMin

252.244, xMidMax 260.967, xMaxMin 282.863, MaxMax 295.948, NumberOfGrid 2,

ProbabilityGrids 3

End

Node

NumberOfNode 5, NumberOfChildren 1, Children 6, xMinMin 38.52, xMinMax

40.68, xMidMin 42.84, xMidMax 44.28, xMaxMin 47.40, xMaxMax 48.84

End

Node

NumberOfNode 6, xMinMin 121.123, xMinMax 125.3, xMidMin 126.344, xMidMax

130.521, xMaxMin 140.267, xMaxMax 146.532, NumberOfGrid 2

End

Results

Xmin 820, Xmax 1120, NumberOfSimulations 10000, NumberOfClasses 20,

NumberOfGrid 2, DistributionType 2

End

In presented example only one alpha cut was described. In order to get full description
of fuzzy probability model it is necessary to repeat these calculations for each alpha cut.

In the program we can define the upper and lower bounds of co, cm, cp in the following
way:

cMinMin ≤ co ≤ cMinMax (34)

cMidMin ≤ cm ≤ cMidMax (35)

cMaxMin ≤ cp ≤ cMaxMax (36)

The meaning of other instructions is explaind in the BPFPRAL user manual.

8. Numerical results of the calculations

For the example which is shown on the Fig. 1 and is also described in the BPFPRAL
language above. In the numerical experiment 10000 Monte Carlo simulations was used
for each combination of uncertain parameters in each alpha cut. Extreme values of risk
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and probability density function of cost were calculated by using 262144 combinations of
uncertain parameters.

Table V. Numerical results

Cost Probability

α = 0 α = 1/3 α = 2/3 α = 1

Min Max Min Max Min Max

8350 - 8500 1 1 1 1 1 1 1

8500 - 8650 1 1 1 1 1 1 1

8650 - 8800 0,989 1 1 1 1 1 1

8800 - 8950 0,941 1 0,997 1 0,997 1 0,997

8950 - 9100 0,784 1 0,954 1 0,964 1 0,964

9100 - 9250 0,528 1 0,808 1 0,85 1 0,85

9250- 9400 0,172 1 0,515 1 0,719 1 0,719

9400 - 9550 0,006 1 0,179 1 0,481 0,989 0,634

9550 - 9700 0 0.992 0,019 0,99 0,102 0,824 0,574

9700 - 9850 0 0.927 0 0,78 0,007 0,531 0,531

9850 - 10000 0 0,691 0 0,514 0 0,514 0,514

10000 - 10150 0 0,406 0 0,406 0 0,406 0,406

10150 - 10300 0 0,259 0 0,259 0 0,259 0,259

10300 - 10450 0 0,176 0 0,176 0 0,176 0,176

10450 - 10600 0 0,111 0 0,111 0 0,111 0,111

10600 - 10750 0 0,031 0 0,031 0 0,031 0,031

10750 -10900 0 0,009 0 0,009 0 0,009 0,009

10900 - 11050 0 0 0 0 0 0 0

11050 - 11200 0 0 0 0 0 0 0

The envelopes of the risk curves for particular alpha level equal to 0.33 are shown below.
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Figure 3. Uncertain risc curve for α = 1/3

Now we can show the shape of fuzzy risk surfaces for particular alpha levels on the Fig.
4, 5, 8 .
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Figure 4. Fuzzy probability surface for α = 1/3
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9. Conclusions

Presented method allows estimating the direct cost risk of civil engineering projects in the
case when there are no credible data. In presented algorithm the costs can be deterministic,
probabilistic, fuzzy number. It is also possible to take into account the cost which is modeled
by probability density function with fuzzy parameters. Unfortunately, at this moment the
computational complexity of the algorithm grows exponentially with respect to the number
of the fuzzy parameters. The method shows the relation between the assumed maximal
direct costs, the risk of overrun and the uncertainty of the statistical data.
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Towards Combining Probabilistic and Interval

Uncertainty in Engineering Calculations
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Abstract. In many engineering applications, we have to combine probabilistic and interval errors. For
example, in environmental analysis, we observe a pollution level x(t) in a lake at different moments of time
t, and we would like to estimate standard statistical characteristics such as mean, variance, autocorrelation,
correlation with other measurements. In environmental measurements, we often only know the values with
interval uncertainty. We must therefore modify the existing statistical algorithms to process such interval
data. Such modification are described in this paper.

Keywords: probabilistic uncertainty, interval uncertainty, engineering calculations

1. Formulation of the Problem

Computing statistics is important. In many engineering applications, we are interested in
computing statistics. For example, in environmental analysis, we observe a pollution level
x(t) in a lake at different moments of time t, and we would like to estimate standard
statistical characteristics such as mean, variance, autocorrelation, correlation with other
measurements. For each of these characteristics C, there is an expression C(x1, . . . , xn) that
enables us to provide an estimate for C based on the observed values x1, . . . , xn. For example,
a reasonable statistic for estimating the mean value of a probability distribution is the

population average E(x1, . . . , xn) =
1
n

(x1+. . .+xn); a reasonable statistic for estimating the

variance V is the population variance V (x1, . . . , xn) =
1
n
·

n∑
i=1

(xi− x̄)2, where x̄
def=

1
n
·

n∑
i=1

xi.

Interval uncertainty. In environmental measurements, we often only know the values with
interval uncertainty. For example, if we did not detect any pollution, the pollution value v
can be anywhere between 0 and the sensor’s detection limit DL. In other words, the only
information that we have about v is that v belongs to the interval [0, DL]; we have no
information about the probability of different values from this interval.

Another example: to study the effect of a pollutant on the fish, we check on the fish
daily; if a fish was alive on Day 5 but dead on Day 6, then the only information about the
lifetime of this fish is that it is somewhere within the interval [5, 6]; we have no information
about the probability of different values within this interval.

In non-destructive testing, we look for outliers as indications of possible faults. To detect
an outlier, we must know the mean and standard deviation of the normal values – and
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these values can often only be measured with interval uncertainty (see, e.g., (Rabinovich,
1993; Osegueda et al., 2002)). In other words, often, we know the result x̃ of measuring the
desired characteristic x, and we know the upper bound ∆ on the absolute value |∆x| of
the measurement error ∆x

def= x̃− x (this upper bound is provided by the manufacturer of
the measuring instrument), but we have no information about the probability of different
values ∆x ∈ [−∆,∆]. In such situations, after the measurement, the only information that
we have about the actual value x of the measured quantity is that this value belongs to
interval [x̃−∆, x̃ + ∆].

In geophysics, outliers should be identified as possible locations of minerals; the im-
portance of interval uncertainty for such applications was emphasized in (Nivlet et al.,
2001; Nivlet et al., 2001a). Detecting outliers is also important in bioinformatics (Shmulevich
and Zhang, 2002).

In bioinformatics and bioengineering applications, we must solve systems of linear equa-
tions in which coefficients come from experts and are only known with interval uncertainty;
see, e.g., (Zhang et al., 2004).

In biomedical systems, statistical analysis of the data often leads to improvements in
medical recommendations; however, to maintain privacy, we do not want to use the exact
values of the patient’s parameters. Instead, for each parameter, we select fixed values, and
for each patient, we only keep the corresponding range. For example, instead of keeping the
exact age, we only record whether the age is between 0 and 10, 10 and 20, 20 and 30, etc.
We must then perform statistical analysis based on such interval data; see, e.g., (Kreinovich
and Longpré, 2003; Xiang et al., 2004).

Estimating statistics under interval uncertainty: a problem. In all such cases, instead of
the actual values x1, . . . , xn, we only know the intervals x1 = [x1, x1], . . . ,xn = [xn, xn]
that contain the (unknown) actual values of the measured quantities. For different values
xi ∈ xi, we get, in general, different values of the corresponding statistical characteris-
tic C(x1, . . . , xn). Since all values xi ∈ xi are possible, we conclude that all the values
C(x1, . . . , xn) corresponding to xi ∈ xi are possible estimates for the corresponding statisti-
cal characteristic. Therefore, for the interval data x1, . . . ,xn, a reasonable estimate for the
corresponding statistical characteristic is the range

C(x1, . . . ,xn) def= {C(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.
We must therefore modify the existing statistical algorithms so that they would be able to
estimate such ranges. This is a problem that we solve in this paper.

This problem is a part of a general problem. The above range estimation problem is a
specific problem related to a combination of interval and probabilistic uncertainty. Such
problems – and their potential applications – have been described, in a general context,
in the monographs (Kuznetsov, 1991; Walley, 1991); for further developments, see, e.g.,
(Rowe, 1988; Williamson, 1990; Berleant, 1993; Berleant, 1996; Berleant and Goodman-
Strauss, 1998; Ferson et al., 2001; Ferson, 2002; Berleant et al., 2003; Lodwick and Jamison,
2003; Moore and Lodwick, 2003; Regan et al., (in press)) and references therein.
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2. Analysis of the Problem

Mean. Let us start our discussion with the simplest possible characteristic: the mean.
The arithmetic average E is a monotonically increasing function of each of its n variables
x1, . . . , xn, so its smallest possible value E is attained when each value xi is the smallest
possible (xi = xi) and its largest possible value is attained when xi = xi for all i. In
other words, the range E of E is equal to [E(x1, . . . , xn), E(x1, . . . , xn)]. In other words,

E =
1
n

(x1 + . . . + xn) and E =
1
n

(x1 + . . . + xn).

Variance: computing the exact range is difficult. Another widely used statistic is the vari-
ance. In contrast to the mean, the dependence of the variance V on xi is not monotonic,
so the above simple idea does not work. Rather surprisingly, it turns out that the problem
of computing the exact range for the variance over interval data is, in general, NP-hard
(Ferson et al., 2002; Kreinovich, (in press)) which means, crudely speaking, that the worst-
case computation time grows exponentially with n. Moreover, if we want to compute the
variance range with a given accuracy ε, the problem is still NP-hard. (For a more detailed
description of NP-hardness in relation to interval uncertainty, see, e.g., (Kreinovich et al.,
1997).)

Linearization. ¿From the practical viewpoint, often, we may not need the exact range,
we can often use approximate linearization techniques. For example, when the uncertainty
comes from measurement errors ∆xi, and these errors are small, we can ignore terms that
are quadratic (and of higher order) in ∆xi and get reasonable estimates for the correspond-
ing statistical characteristics. In general, in order to estimate the range of the statistic
C(x1, . . . , xn) on the intervals [x1, x1], . . . , [xn, xn], we expand the function C in Taylor series
at the midpoint x̃i

def= (xi + xi)/2 and keep only linear terms in this expansion. As a result,

we replace the original statistic with its linearized version Clin(x1, . . . , xn) = C0−
n∑

i=1
Ci ·∆xi,

where C0
def= C(x̃1, . . . , x̃n), Ci

def=
∂C

∂xi
(x̃1, . . . , x̃n), and ∆xi

def= x̃i − xi. For each i,

when xi ∈ [xi, xi], the difference ∆xi can take all possible values from −∆i to ∆i, where
∆i

def= (xi − xi)/2. Thus, in the linear approximation, we can estimate the range of the

characteristic C as [C0 −∆, C0 + ∆], where ∆ def=
n∑

i=1
|ci| ·∆i.

In particular, for variance, Ci =
∂V

∂xi
=

2
n

(x̃i− ¯̃x), where ¯̃x is the average of the midpoints

x̃i. So, here, V0 =
1
n

n∑
i=1

(x̃i − ¯̃x)2 is the variance of the midpoint values x̃1, . . . , x̃n, and

∆ =
2
n

n∑
i=1

|x̃i − ¯̃x| ·∆i.
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It is worth mentioning that for the variance, the ignored quadratic term is equal to
1
n

n∑
i=1

(∆xi)2 − (∆x)2, where ∆x
def=

1
n

n∑
i=1

∆xi, and therefore, can be bounded by 0 from

below and by ∆(2) def=
1
n

n∑
i=1

∆2
i from above. Thus, the interval [V0 −∆, V0 + ∆ + ∆(2)] is a

guaranteed enclosure for V.

Linearization is not always acceptable. In some cases, linearized estimates are not suffi-
cient: the intervals may be wide so that quadratic terms can no longer be ignored, and/or
we may be in a situation where we want to guarantee that, e.g., the variance does not exceed
a certain required threshold. In such situations, we need to get the exact range – or at least
an enclosure for the exact range.

Since, even for as simple a characteristic as variance, the problem of computing its exact
range is NP-hard, we cannot have a feasible-time algorithm that always computes the exact
range of these characteristics. Therefore, we must look for the reasonable classes of problems
for which such algorithms are possible. Let us analyze what such classes can be.

First class: narrow intervals. As we have just mentioned, the computational problems
become more complex when we have wider intervals. In other words, when intervals are
narrower, the problems are easier. How can we formalize “narrow intervals”? One way to do
it is as follows: the actual values x1, . . . , xn of the measured quantity are real numbers, so
they are usually different. The data intervals xi contain these values. When the intervals xi

surrounding the corresponding points xi are narrow, these intervals do not intersect. When
their widths becomes larger than the distance between the original values, the intervals
start intersecting.

Definition. Thus, the ideal case of “narrow intervals” can be described as the case when
no two intervals xi intersect.

Second class: slightly wider intervals. Slightly wider intervals correspond to the situation
when few intervals intersect, i.e., when for some integer K, no set of K intervals has a
common intersection.

Third class: single measuring instrument. Since we want to find the exact range C of a
statistic C, it is important not only that intervals are relatively narrow, it is also important
that they are approximately of the same size: otherwise, if, say, ∆x2

i is of the same order as
∆xj , we cannot meaningfully ignore ∆x2

i and retain ∆xj . In other words, the interval data
set should not combine high-accurate measurement results (with narrow intervals) and low-
accurate results (with wide intervals): all measurements should have been done by a single
measuring instrument (or at least by several measuring instruments of the same type).

How can we describe this mathematically? A clear indication that we have two measuring
instruments (MI) of different quality is that one interval is a proper subset of the other one:
[xi, xi] ⊆ (xj , xj).
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Definition. So, if all pairs of non-degenerate intervals satisfy the following subset property
[xi, xi] 6⊆ (xj , xj), we say that the measurements were done by a single MI.

Comment. This restriction only refers to inexact measurement results, i.e., to non-
degenerate intervals. In additional to such interval values, we may have exact values
(degenerate intervals). For example, in geodetic measurements, we may select some point
(“benchmark”) as a reference point, and describe, e.g., elevation of each point relative to this
benchmark. For the benchmark point itself, the relative elevation will be therefore exactly
equal to 0. When we want to compute the variance of elevations, we want to include the
benchmark point too. ¿From this viewpoint, when we talk about measurements made by
a single measuring instrument, we may allow degenerate intervals (i.e., exact numbers) as
well.

A reader should be warned that in the published algorithms describing a single MI case
(Xiang et al., 2004), we only considered non-degenerate intervals. However, as one can easily
see from the published proofs (and from the idea of these proofs, as described below), these
algorithms can be easily modified to incorporate possible exact values xi.

Fourth class: same accuracy measurement. In some situations, it is also reasonable to
consider a specific case of the single MI case when all measurements are performed with
exactly the same accuracy, i.e., in mathematical terms, when all non-degenerate intervals

[xi, xi] have exactly the same half-width ∆i =
1
2
· (xi − xi).

Fifth class: several MI. After the single MI case, the natural next case is when we have
several MI, i.e., when our intervals are divided into several subgroups each of which has the
above-described subset property.

Sixth class: privacy case. Although these definitions are in terms of measurements, they
make sense for other sources of interval data as well. For example, for privacy data, intervals
either coincide (if the value corresponding to the two patients belongs to the same range)
or are different, in which case they can only intersect in one point. Similarly to the above
situation, we also allow exact values in addition to ranges; these values correspond, e.g., to
the exact records made in the past, records that are already in the public domain.

Definition. We will call interval data with this property – that every two non-degenerate
intervals either coincide or do nor intersect – privacy case.

Comment. For the privacy case, the subset property is satisfied, so algorithms that work
for a single MI case work for the privacy case as well.

Seventh class: non-detects. Similarly, if the only source of interval uncertainty is detection
limits, i.e., if every measurement result is either an exact value or a non-detect, i.e., an inter-
val [0, DLi] for some real number DLi (with possibly different detection limits for different
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sensors), then the resulting non-degenerate intervals also satisfy the subset property. Thus,
algorithms that work for a single MI case work for this “non-detects” case as well.

Also, an algorithm that works for the general privacy case also works for the non-detects
case when all sensors have the same detection limit DL.

3. Results

Variance: known results. The lower bound V can be always computed in time O(n · log(n))
(Granvilliers et al., 2004).

Computing V is, in general, an NP-hard problem; V can be computed in time 2n. If
intervals do not intersect (and even if “narrowed” intervals [x̃i − ∆i/n, x̃i + ∆i/n] do not
intersect), we can compute V in time O(n · log(n)) (Granvilliers et al., 2004). If for some
K, no more than K interval intersect, we can compute V in time O(n2) (Ferson et al.,
2002; Kreinovich, (in press)).

For the case of a single MI, V can be computed in time O(n · log(n)); for m MIs, we need
time O(nm+1) (Xiang et al., 2004).

Variance: main ideas behind the known results. The algorithm for computing V is based
on the fact that when a function V attains a minimum on an interval [xi, xi], then either
∂V

∂xi
= 0, or the minimum is attained at the left endpoint xi = xi – then

∂V

∂xi
> 0, or xi = xi

and
∂V

∂xi
< 0. Since the partial derivative is equal to (2/n) · (xi− x̄), we conclude that either

xi = x̄, or xi = xi > x̄, or xi = xi < x̄. Thus, if we know where x̄ is located in relation to all
the endpoints, we can uniquely determine the corresponding minimizing value xi for every
i: if xi ≤ x̄ then xi = xi; if xi ≤ xi, then xi = xi; otherwise, xi = x̄. The corresponding
value x̄ can be found from the condition that x̄ is the average of all the selected values xi.

So, to find the smallest value of V , we can sort all 2n bounds xi, xi into a sequence
x(1) ≤ x(2) ≤ . . .; then, for each zone [x(k), x(k+1)], we compute the corresponding values xi,
find their variance Vk, and then compute the smallest of these variances Vk.

For each of 2n zones, we need O(n) steps, so this algorithm requires O(n2) steps. It turns
out that the function Vk decreases until the desired k then increases, so we can use binary
search – that requires that we only analyze O(log(n)) zones – find the appropriate zone k.
As a result, we get an O(n · log(n)) algorithm.

For V , to the similar analysis of the derivatives, we can add the fact that the second
derivative of V is ≥ 0, so there cannot be a maximum inside the interval [xi, xi]. So, in
principle, to compute V , it is sufficient to consider all 2n combinations of endpoints. When
few intervals intersect, then, when xi ≤ x̄, we take xi = xi; when x̄ ≤ xi, we take xi = xi;
otherwise, we must consider both possibilities xi = xi and xi = xi.

For the case of a single MI, we can sort the intervals in lexicographic order: xi ≤ xj if
and only if xi < xj or (xi = xj and xi ≤ xj). It can be proven that the maximum of V is
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always attained if for some k, the first k values xi are equal to xi and the next n− k values
xi are equal to xi. This result is proven by reduction to a contradiction: if in the maximizing
vector x = (x1, . . . , xn), some xi is preceding some xj , i < j, then we can increase V while
keeping E intact – which is in contradiction with the assumption that the vector x was
maximizing. Specifically, to increase V , we can do the following: if ∆i ≤ ∆j , we replace xi

with xi = xi − 2∆i and xj with xj + 2∆i; otherwise, we replace xj with xj = xj + 2∆j and
xi with xi − 2∆j .

As a result, to find the maximum of V , it is sufficient to sort the intervals (this takes
O(n · log(n)) time), and then, for different values k, check vectors (x1, . . . , xk, xk+1, . . . , xn).
The dependence of V on k is concave, so we can use binary search to find k; binary search
takes O(log(n)) steps, and for each k, we need linear time, so overall, we need time O(n ·
log(n)).

In case of several MI, we sort intervals corresponding to each of m MI. Then, to find
the maximum of V , we must find the values k1, . . . , km corresponding to m MIs. There are
≤ nm combinations of kis, and checking each combination requires O(n) time, so overall,
we need time O(nm+1).

Variance: new results. Sometimes, most of the data is accurate, so among n intervals, only
d ¿ n are non-degenerate intervals. For example, we can have many accurate values and
m non-detects. In this situation, to find the extrema of V , we only need to find xi for d
non-degenerate intervals; thus, we only need to consider 2d zones formed by their endpoints.
Within each zone, we still need O(n) computations to compute the corresponding variance.

So, in this case, to compute V , we need time O(n · log(d)), and to compute V , we need
O(n ·2d) steps. If narrowed intervals do not intersect, we need time O(n · log(d)) to compute
V ; if for some K, no more than K interval intersect, we can compute V in time O(n · d).

For the case of a single MI, V can be computed in time O(n · log(d)); for m MIs, we need
time O(n · dm).

In addition to new algorithms, we also have a new NP-hardness result. In the original
proof of NP-hardness, we have x̃1 = . . . = x̃n = 0, i.e., all measurement results are the same,
only accuracies ∆i are different. What if all the measurement results are different? We can
show that in this case, computing V is still an NP-hard problem: namely, for every n-tuple
of real numbers x̃1, . . . , x̃n, the problem of computing V for intervals xi = [x̃i−∆i, x̃i +∆i]
is still NP-hard.

To prove this result, it is sufficient to consider ∆i = N ·∆(0)
i , where ∆(0)

i are the values
used in the original proof. In this case, we can describe ∆xi = x̃i − xi as N ·∆x

(0)
i , where

∆(0)
i ∈ [−∆(0)

i , ∆(0)
i ]. For large N , the difference between the variance corresponding to

the values xi = x̃i + N · ∆x
(0)
i and N2 times the variance of the values ∆x

(0)
i is bounded

by a term proportional to N (and the coefficient at N can be easily bounded). Thus, the
difference between V and N2 ·V (0) is bounded by C ·N for some known constant C. Hence,
by computing V for sufficiently large N , we can compute V

(0) with a given accuracy ε > 0,
and we already know that computing V

(0) with given accuracy is NP-hard. This reduction
proves that our new problem is also NP-hard.
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Covariance: known results. In general, computing the range of covariance Cxy =
1
n

n∑
i=1

(xi−
x̄) · (yi − ȳ) based on given intervals xi and yi is NP-hard (Osegueda et al., 2002). When
boxes xi × yi do not intersect – or if ≥ K boxes cannot have a common point – we can
compute the range in time O(n3) (Beck et al., 2004).

The main idea behind this algorithm is to consider the derivatives of C relative to xi and
yi. Then, once we know where the point (x̄, ȳ) is in relation to xi and yi, we can uniquely
determine the optimizing values xi and yi – except for the boxes xi×yi that contain (x̄, ȳ).
The bounds xi and xi divide the x axis into 2n + 2 intervals; similarly, the y-bounds divide
the y-axis into 2n + 2 intervals. Combining these intervals, we get O(n2) zones. Due to the
limited intersection property, for each of these zones, we have finitely many (≤ K) indices i
for which the corresponding box intersects with the zone. For each such box, we may have
two different combinations: (xi, yi

) and (xi, yi) for C and (xi, yi) and (xi, yi
) for C. Thus,

we have finitely many (≤ 2K) possible combinations of (xi, yi) corresponding to each zone.
Hence, for each of O(n2) zones, it takes O(n) time to find the corresponding values xi and
yi and to compute the covariance; thus, overall, we need O(n3) time.

Covariance: new results. If n− d measurement results (xi, yi) are exact numbers and only
d are non-point boxes, then we only need O(d2) zones, so we can compute the range in time
O(n · d2).

In the privacy case, all boxes xi × yi are either identical or non-intersecting, so the only
case when a box intersects with a zone is when the box coincides with this zone. For each
zone k, there may be many (nk) such boxes, but since they are all identical, what matters
for our estimates is how many of them are assigned one of the possible (xi, yi) combinations
and how many the other one. There are only nk +1 such assignments: 0 to first combination
and nk to second, 1 to first and nk − 1 to second, etc. Thus, the overall number of all
combinations for all the zones k is

∑
k

nk +
∑
k

1, where
∑

nk = n and
∑
k

1 is the overall

number of zones, i.e., O(n2). For each combination of xi and yi, we need O(n) steps. Thus,
in the privacy case, we can compute both C and C in time O(n2)·O(n) = O(n3) (or O(n·d2)
if only d boxes are non-degenerate).

Another polynomial-time case is when all the measurements are exactly of the same
accuracy, i.e., when all non-degenerate x-intervals have the same half-width ∆x, and all
non-degenerate y-intervals have the same half-width ∆y. In this case, e.g., for C, if we have
at least two boxes i and j intersecting with the same zone, and we have (xi, yi) = (xi, yi

)
and (xj , yj) = (xj , yj), then we can swap i and j assignments – i.e., make (x′i, y

′
i) = (xi, yi)

and (x′j , y
′
j) = (xj , yj

) – without changing x̄ and ȳ. In this case, the only change in Cxy

comes from replacing xi ·yi +xj ·yj . It is easy to see that the new value C is larger than the

old value if and only if zi > zj , where zi
def= x̃i ·∆y + ỹi ·∆x. Thus, in the true maximum,

whenever we assign (xi, yi
) to some i and (xi, yj) to some j, we must have zi ≤ zj . So, to get

the largest value of C, we must sort the indices by zi, select a threshold t, and assign (xi, yi
)

to all the boxes with zi ≤ t and (xj , yj) to all the boxes j with zj > t. If nk ≤ n denotes the
overall number of all the boxes that intersect with k-th zone, then we have nk + 1 possible
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choices of thresholds, hence nk + 1 such assignments. For each of O(n2) zones, we test ≤ n
assignments; testing each assignment requires O(n) steps, so overall, we need time O(n4).

If only d boxes are non-degenerate, we only need time O(n · d3).

Detecting outliers: known results. Traditionally, in statistics, we fix a value k0 (e.g., 2 or
3) and claim that every value x outside the k0-sigma interval [L,U ], where L

def= E − k0 · σ,
U

def= E +k0 ·σ (and σ
def=
√

V ), is an outlier; thus, to detect outliers based on interval data,
we must know the ranges of L and U . It turns out that we can always compute U and L
in O(n2) time (Kreinovich et al., 2003a; Kreinovich et al., 2004). In contrast, computing
U and L is NP-hard; in general, it can be done in 2n time, and in quadratic time if ≤ K
intervals intersect (even if ≤ K appropriately narrowed intervals intersect) (Kreinovich et
al., 2003a; Kreinovich et al., 2004).

For every x, we can also determine the “degree of outlier-ness” R as the smallest k0 for
which x 6∈ [E − k0 · σ,E + k0 · σ], i.e., as |x − E|/σ. It turns out that R can be always
computed in time O(n2); the lower bound R can be also computed in quadratic time if ≤ K
narrowed intervals intersect (Kreinovich et al., 2003a).

Detecting outliers: new results. Similar to the case of variance, if we only have d ¿ n non-
degenerate intervals, then instead of O(n2) steps, we only need O(n · d) steps (and instead
of 2n steps, we only need O(n · 2d) steps).

For the case of a single MI, similarly to variance, we can prove that the maximum of U
and the minimum of L are attained at one of the vectors (x1, . . . , xk, xk+1, . . . , xn); actually,
practically the same proof works, because increasing V without changing E increases U =
E + k0 ·

√
V as well. Thus, to find U and L, it is sufficient to check n such sequences;

checking each sequence requires O(n) steps, so overall, we need O(n2) time. For m MI, we
need O(nm+1) time.

If only d ¿ n intervals are non-degenerate, then we need, correspondingly, time O(n · d)
and O(n · dm).

Moments. For population moments
1
n
·

n∑
i=1

xq
i , known interval bounds on xq leads to exact

range. For central moments Mq =
1
n
·

n∑
i=1

(xi− x̄)q, we have the following results (Kreinovich

et al., 2004a). For even q, the lower endpoint M q can be computed in O(n2) time; the upper
endpoint M q can always be computed in time O(2n), and in O(n2) time if ≤ K intersect.
For odd q, if ≤ K intervals do not intersect, we can compute both M q and M q in O(n3)
time.

If only d out of n intervals are non-degenerate, then we need O(n · 2d) time instead of
O(2n), O(n · d) instead of O(n2), and O(n · d2) instead of O(n3).

For even q, we can also consider the case of a single MI. The arguments work not only

for Mq, but also for a generalized central moment Mψ
def=

1
n

n∑
i=1

ψ(xi − E) for an arbitrary

convex function ψ(x) ≥ 0 for which ψ(0) = 0 and ψ′′(x) > 0 for all x 6= 0. Let us first show
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that the maximum cannot be attained inside an interval [xi, xi]. Indeed, in this case, at the
maximizing point, the first derivative

∂Mψ

∂xi
=

1
n
· ψ′(xi − E)− 1

n2
·

n∑

j=1

ψ′(xj −E)

should be equal to 0, and the second derivative

∂2Mψ

∂x2
i

=
1
n
· ψ′′(xi −E) ·

(
1− 2

n

)
+

1
n3
·

n∑

j=1

ψ′′(xj − E)

is non-positive. Since the function ψ(x) is convex, we have ψ′′(x) ≥ 0, so this second
derivative is a sum of non-negative terms, and the only case when it is non-negative is
when all these terms are 0s, i.e., when xj = E for all j. In this case, Mψ = 0 which, for
non-degenerate intervals, is clearly not the largest possible value of Mψ.

So, for every i, the maximum of Mψ is attained either when xi = xi or when xi = xi.
Similarly to the proof for the variance, we will now prove that the maximum is always
attained for one of the vectors (x1, . . . , xk, xk+1, . . . , xn). To prove this, we need to show that
if xi = xi and xj = xj for some i < j (and xi ≤ xj), then the change described in that proof,
while keeping the average E intact, increases the value of Mψ. Without losing generality,
we can consider the case ∆i ≤ ∆j . In this case, the fact that Mψ increase after the above-
described change is equivalent to: ψ(xi+2∆i−E)+ψ(xj−E) ≤ ψ(xi−E)+ψ(xj +2∆i−E),
i.e., that ψ(xi + 2∆i −E)− ψ(xi −E) ≤ ψ(xj + 2∆j −E)− ψ(xj −E). Since xi ≤ xj and
xi−E ≤ xj −E, this can be proven if we show that for every ∆ > 0 (and, in particular, for
∆ = 2∆i), the function ψ(x+∆)−ψ(x) is increasing. Indeed, the derivative of this function
is equal to ψ′(x + ∆)− ψ′(x), and since ψ′′(x) ≥ 0, we do have ψ′(x + ∆) ≥ ψ′(x).

Therefore, to find Mψ, it is sufficient to check all n vectors of the type
(x1, . . . , xk, xk+1, . . . , xn), which requires O(n2) steps. For m MIs, we similarly need
O(nm+1) steps.

Summary. These results are summarized in the following table. In this table, the first
row corresponds to a general case, other rows correspond to different classes of problems
described in Section 2:
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class number class description

0 general case

1 narrow intervals: no intersection

2 slightly wider intervals
≤ K intervals intersect

3 single measuring instrument (MI):
subset property –

no interval is a “proper” subset of the other

4 same accuracy measurements:
all intervals have the same half-width

5 several (m) measuring instruments:
intervals form m groups,

with subset property in each group

6 privacy case:
intervals same or non-intersecting

7 non-detects case:
only non-degenerate intervals are [0, DLi]

# E V Cxy L,U,R M2p M2p+1

0 O(n) NP-hard NP-hard NP-hard NP-hard ?

1 O(n) O(n · log(n)) O(n3) O(n2) O(n2) O(n3)

2 O(n) O(n2) O(n3) O(n2) O(n2) O(n3)

3 O(n) O(n · log(n)) ? O(n2) O(n2) ?

4 O(n) O(n · log(n)) O(n4) O(n2) O(n2) ?

5 O(n) O(nm+1) ? O(nm+1) O(nm+1) ?

6 O(n) O(n · log(n)) O(n3) O(n2) O(n2) ?

7 O(n) O(n · log(n)) ? O(n2) O(n2) ?
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The case when only d out of n data points are intervals is summarized in the following
table:

# E V Cxy L,U,R M2p M2p+1

0 O(n) NP-hard NP-hard NP-hard NP-hard ?

1 O(n) O(n log(d)) O(n · d2) O(n · d) O(nd) O(nd2)

2 O(n) O(nd) O(n · d2) O(n · d) O(nd) O(nd2)

3 O(n) O(n log(d)) ? O(n · d) O(nd) ?

4 O(n) O(n log(d)) O(n · d3) O(n · d) O(nd) ?

5 O(n) O(ndm) ? O(n · dm) O(ndm) ?

6 O(n) O(n log(d)) O(n · d2) O(n · d) O(nd) ?

7 O(n) O(n log(d)) ? O(n · d) O(nd) ?

Weighted mean and weighted average. In the above text, we considered the case when
we only know the upper bound ∆i on the overall measurement error. In some real-life
situations (see, e.g., (Rabinovich, 1993)), we know the standard deviation σi of the random
error component and the bound ∆i on the absolute value of the systematic error component.
If we had no systematic errors, then we would able to estimate the mean E by solving the

corresponding Least Squares problem
∑

σ−2
i ·(xi−E)2 → min

E
, i.e., as Ew =

n∑
i=1

pi ·xi, where

pi
def=

σ−2
i

n∑

j=1

σ−2
j

. In this case, the variance can be estimated as Vw =
n∑

i=1
pi · (xi − Ew)2 =

n∑
i=1

pi · x2
i − E2

w. Due to the presence of systematic errors, the actual values xi may be

anywhere within the intervals [xi, xi]
def= [x̃i −∆i, x̃i + ∆i]. Thus, we arrive at the problem

of estimating the range of the above expressions for weighted mean and weighted variance
on the interval data [xi, xi].

The expression for the mean is monotonic, so, similar to the average, we substitute the
values xi to get Ew and the values xi to get Ew.

For the weighted variance, the derivative is equal to 2pi ·(xi−Ew), and the second deriva-
tive is always≥ 0, so, similarly to the above proof for the non-weighted variance, we conclude
that the minimum is always attained at a vector (x1, . . . , xk, Ew, . . . , Ew, xk+l, . . . , xn). So,
by considering 2n + 2 zones, we can find V w in time O(n2).
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For V w, we can prove that the maximum is always attained at values xi = xi or xi = xi,
so we can always find it in time O(2n). If no more than K intervals intersect, then, similarly
to the non-weighted variance, we can compute V w in time O(n2).

Robust estimates for the mean. Arithmetic average is vulnerable to outliers: if one of the
values is accidentally mis-read as 106 times larger than the others, the average is ruined.
Several techniques have been proposed to make estimates robust; see, e.g., (Huber, 2004).
The best known estimate of this type is the median; there are also more general L-estimates

of the type
n∑

i=1
wi · x(i), where w1 ≥ 0, . . . , wn ≥ 0 are given constants, and x(i) is the i-th

value in the ordering of x1, . . . , xn in increasing order. Other techniques include M-estimates,

i.e., estimates a for which
n∑

i=1
ψ(|xi − a|) → max

a
for some non-decreasing function ψ(x).

Each of these statistics C is a (non-strictly) increasing function of each of the variables
xi. Thus, similarly to the average, C = [C(x1, . . . , xn), C(x1, . . . , xn)].

Robust estimates for the generalized central moments. When we discussed central mo-

ments, we considered generalized central moments Mψ =
1
n
·

n∑
i=1

ψ(xi−E) for an appropriate

convex function ψ(x). In that description, we assumed that E is the usual average.
It is also possible to consider the case when E is not the average, but the value for which

n∑
i=1

ψ(xi − E) → min
E

. In this case, the robust estimate for the generalized central moment

takes the form

M rob
ψ = min

E

(
1
n
·

n∑

i=1

ψ(xi − E)

)
.

Since the function ψ(x) is convex, the expression
n∑

i=1
ψ(xi − E) is also convex, so it only

attains its maximum at the vertices of the convex box x1 × . . . × xb, i.e., when for every
i, either xi = xi or xi = xi. For the case of a single MI, the same proof as for the average
E enables us to conclude that the maximum of the new generalized central moment is also
always attained at one of n vectors (x1, . . . , xk, xk+1, . . . , xn), and thus, that this maximum
can be computed in time O(n2). For m MIs, we need time O(nm+1).

Correlation. For correlation, we only know that in general, the problem of computing the
exact range is NP-hard (Ferson et al., 2002d).

4. Additional Issues

On-line data processing. In the above text, we implicitly assumed that before we start
computing the statistics, we have all the measurement results. In real life, we often con-
tinue measurements after we started the computations. Traditional estimates for mean
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and variance can be easily modified with the arrival of the new measurement result xn+1:
E′ = (n · E + xn+1)/(n + 1) and V ′ = M ′ − (E′)2, where M ′ = (n · M + x2

n+1)/(n + 1)
and M = V + E2. For the interval mean, we can have a similar adjustment. However,
for other statistics, the above algorithms for processing interval data require that we start
computation from scratch. Is it possible to modify these algorithms to adjust them to on-line
data processing? The only statistic for which such an adjustment is known is the variance,
for which an algorithm proposed in (Wu et al., 2003; Kreinovich et al., (in press)) requires
only O(n) steps to incorporate a new interval data point.

In this algorithm, we store the sorting corresponding to the zones and we store auxiliary
results corresponding to each zone (finitely many results for each zone). So, if only d out of
n intervals are non-degenerate, we only need O(d) steps to incorporate a new data point.

Fuzzy data. Often, in addition to (or instead of) the guaranteed bounds, an expert can
provide bounds that contain xi with a certain degree of confidence. Often, we know several
such bounding intervals corresponding to different degrees of confidence. Such a nested
family of intervals is also called a fuzzy set, because it turns out to be equivalent to a more
traditional definition of fuzzy set (Nguyen and Kreinovich, 1996; Nguyen and Walker, 1999)
(if a traditional fuzzy set is given, then different intervals from the nested family can be
viewed as α-cuts corresponding to different levels of uncertainty α).

To provide statistical analysis of fuzzy-valued data, we can therefore, for each level α,
apply the above interval-valued techniques to the corresponding α-cuts (Martinez, 2003;
Nguyen et al., 2003).

Can we detect the case of several MI? For the several MI case, we assumed that measure-
ment are labeled, so that we can check which measurements were done by each MI; this
labeling is used in the algorithms. What if we do not keep records on which interval was
measured by which MI; can we then reconstruct the labels and thus apply the algorithms?

For two MI, we can: we pick an interval and call it MI1. If any other interval is in subset
relation with this one, then this new interval is MI2. At any given stage, if one of the un-
classified intervals is in subset relation with one of the already classified ones, we classify it
to the opposite class. If none of the un-classified intervals is in subset relation with classified
ones, we pick one of the un-classified ones and assign to MI1. After ≤ n iterations, we get
the desired labeling.

In general, for m MI, the labeling may not be easy. Indeed, we can construct a graph
in which vertices are intervals, and vertices are connected if they are in a subset relation.
Our objective is to assign a class to each vertex so that connected vertices cannot be of the
same class. This is exactly the coloring problem that is known to be NP-hard (Garey and
Johnson, 1979).

Parallelization. In the general case, the problem of computing the range C of a statistic C
on interval data xi requires too much computation time. One way to speed up computations
is to use parallel computations.
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If we have a potentially unlimited number of parallel processors, then, for the mean, the
addition can be done in time O(log(n)) (Jaja, 1992). In O(n · log(n)) and O(n2) algorithms
for computing V and V , we can perform sorting in time O(log(n)), then compute Vk for
each zone in parallel, and find the largest of the n resulting values Vk in parallel (in time
O(log(n))). The sum that constitutes the variance can also be computed in parallel in time
O(log(n)), so overall, we need O(log(n)) time.

Similarly, we can transform polynomial algorithms for computing the bounds for
covariance, outlier statistics (L, U , and R), and moments into O(log(n)) parallel algorithms.

In the general case, to find V and other difficult-to-compute bounds, we must compute
the largest of the N

def= 2n values corresponding to 2n possible combinations of xi and
xi. This maximum can be computed in time O(log(N)) = O(n). This does not mean, of
course, that we can always physically compute V in linear time: communication time grows
exponentially with n; see, e.g., (Morgenstein and Kreinovich, 1995).

It is desirable to also analyze the case when we have a limited number of processors
p ¿ n.

Quantum algorithms. Another way to speed up computations is to use quantum com-
puting. In (Martinez, 2003; Kreinovich and Longpré, 2004), we describe how quantum
algorithms can speed up the computation of C.

What if we have partial information about the probabilities? Enter p-boxes. In the above
text, we assumed that the only information that we have about the measurement error ∆x
is that this error is somewhere in the interval [−∆, ∆], and that we have no information
about the probabilities of different values from this interval. In many real-life situations, we
do not know the exact probability distribution for ∆x, but we have a partial information
about the corresponding probabilities. How can we describe this partial information?

To answer this question, let us recall how the complete information about the probability
distribution is usually described. A natural way to describe a probability distribution is
by describing its cumulative density function (cdf) F (t) def= Prob(∆x ≤ t). In practice, a
reasonable way to store the information about F (t) is to store quantiles, i.e., to fix a natural
number n and to store, for every i from 0 to n, the values ti for which F (ti) = i/n. Here,
t0 is the largest value for which F (t0) = 0 and tn is the smallest value for which F (tn) = 1,
i.e., [t0, tn] is the smallest interval on which the probability distribution is located with
probability 1.

If we only have partial information about the probabilities, this means that – at least for
some values t – we do not know the exact value of F (t). At best, we know an interval F(t) =
[F (t), F (t)] of possible values of F (t). So, a natural way to describe partial information about
the probability distribution is to describe the two functions F (t) and F (t). This pair of cdfs
is called a p-box; see, e.g., a book (Ferson, 2002). In addition to the theoretical concepts,
this book describes the software tool for processing different types of uncertainty, a tool
based on the notion of a p-box.

Similarly to the case of full information, it is reasonable to store the corresponding
quantiles, i.e., the values ti for which F (ti) = i/n and the values ti for which F (ti) = i/n.
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(The reason why we switched the notations is because F (t) ≤ F (t) implies ti ≤ ti.) This is
exactly the representation used in (Ferson, 2002).

What if we have partial information about the probabilities? Processing p-boxes and how the
above alorithms can help. Once we have a probability distribution F (t), natural questions
are: what is the mean and the variance of this distribution? A p-box means that several
different distributions are possible, and for different distributions, we may have different
values of means and variance. So, when we have a p-box, natural questions are: what is the
range of possible values of the mean? what is the range of possible values of the variance?

The mean E is a monotonic function of F (t); so, for the mean E, the answer is simple:
the mean of F (t) is the desired upper bound E for E, and the mean of F (t) is the desired
lower bound E for E. The variance V is not monotonic, so the problem of estimating the
variance is more difficult.

For the case of the exact distribution, if we have the quantiles t(α) corresponding to all
possible probability values α ∈ [0, 1], then we can describe the mean of the corresponding
probability distribution as E =

∫
t(α) dα, and the variance as V =

∫
(t(α) − E)2 dα. If we

only know the quantiles t1 = t(1/n), . . . , tn = t(n/n), then it is reasonable to replace the

integral by the corresponding integral sum; as a result, we get the estimates E =
1
n

n∑
i=1

ti

and V =
1
n

n∑
i=1

(ti −E)2.

In these terms, a p-box means that instead of the exact value ti of each quantile, we have
an interval of possible values [ti, ti]. So, to find the range of V , we must consider the range
of possible values of V when ti ∈ [ti, ti]. There is an additional restriction that the values ti
should be (non-strictly) increasing: ti ≤ ti+1.

The resulting problem is very similar to the problems of estimating mean and variance
of the interval data. In this case, intervals satisfy the subset property, i.e., we are in the
case that we called the case of single MI. The only difference between the current problem
of analyzing p-boxes and the above problem is that in the above problem, we looked for
minimum and maximum of the variance over all possible vectors xi for which xi ∈ xi for
all i, while in our new problem, we have an additional monotonicity restriction ti ≤ ti+1.
However, the solutions to our previous problems of computing V and V for the case of a
single MI are actually attained at vectors that are monotonic. Thus, to find the desired
value V , we can use the same algorithm as we described above.

Specifically, to find V , we find k for which the variance of the vector t =
(t1, . . . , tk, t̄, . . . , t̄, tk+l, . . . , tn) for which the variance is the smallest. To find V , we find
k for which the variance of the vector t = (t1, . . . , tk, tk+1, . . . , tn) for which the variance is
the largest. Intuitively, this makes perfect sense: to get the smallest V , we select the values
ti as close to the average t̄ as possible; to get the largest V , we select the values ti as far away
from the average t̄ as possible. In both case, we can compute V and V in time O(n · log(n)).

The above algorithm describes a heuristic estimate based on approximating an integral
with an integral sum. To get reliable bounds, we can take into consideration that both
bounds F (t) and F (t) are monotonic; thus, we can always replace the p-box by a larger
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p-box in which the values t(α) are piecewise-constant: namely, we take t′i = [ti−1, ti] for
each i. For this new p-box, the integral sum coincides with the integral, so the range [V , V ]
produced by the above algorithm is exactly the range of the variance over all possible
distributions from the enlarged p-box. It is therefore guaranteed to contain the range of
possible values of the variance V for the original p-box.

What if we have partial information about probabilities? Multi-dimensional case. How can
we describe partial information about probabilities in multi-dimensional case? A traditional
analogue of a cdf is a multi-dimensional cdf

F (t1, . . . , tp) = Prob(x1 ≤ t1 & . . . &xp ≤ tp);

see, e.g., (Wadsworth, 1990). The problem with this definition is that often multi-D data
represent, e.g., vectors with components x1, . . . , xp. The components depend on the choice
of coordinates. As a result, even if a distribution is symmetric – e.g., a rotation-invariant
Gaussian distribution – the description in terms of a multi-D cdf is not rotation-invariant.

It is desirable to come up with a representation that preserves such a symmetry. A natural
way to do it is to store, for each half-space, the probability that the vector ~x = (x1, . . . , xp)
is within this half-space. In other words, for every unit vector ~e and for every value t, we
store the probability F (~e, t) def= Prob(~x · ~e ≤ t), where ~x · ~e = x1 · e1 + . . . + xn · en is a
scalar (dot) product of the two vectors. This representation is clearly rotation-invariant: if
we change the coordinates, we keep the same values F (~e, t); the only difference is that we
store each value under different (rotated) ~e. Moreover, this representation is invariant under
arbitrary linear transformations.

Based on this information, we can uniquely determine the probability distribution. For
example, if the probability distribution has a probability density function (pdf) ρ(~x), then
this pdf can be reconstructed as follows. First, we determine the characteristic function
χ(~ω) def= E[exp(i · (~x · ~ω))], where E[·] stands for the expected value. To get the value
of χ(~ω), we apply the 1-D Fourier transform, to the values F (~e, t) for different t, where
~e

def= ~ω/‖~ω‖ is a unit vector in the direction of ~ω. Then, we can find ρ(~x) by applying the
p-dimensional Inverse Fourier Transform to χ(~ω).

It is therefore reasonable to represent a partial information about the probability distri-
bution by storing, for each ~e and t, the bounds F (~e, t) and F (~e, t) that describe the range
of possible values for F (~e, t).

It is worth mentioning that since for continuous distributions, F (~e, t) = 1−F (−~e,−t), we
have F (~e, t) = 1 − F (−~e,−t). So, it is sufficient to only describe F (~e, t), the lower bounds
F (~e, t) can then be uniquely determined (or, vice versa, we can only describe the values
F (~e, t); then the values F (~e, t) will be uniquely determined).

In order to transform this idea into an efficient software tool, we need to solve two types
of problems. First, we must solve algorithmic problems: develop algorithms for estimating
the ranges of statistical characteristics (such as moments) for the corresponding multi-D
p-boxes.
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Second, we must solve implementation problems. Theoretically, to uniquely describe a
probability distribution, we need to know infinitely many values F (~e, t) corresponding to
infinitely many different vectors ~e and infinitely many different numbers t. In practice, we
can only store finitely many values F (~e, t) corresponding to finitely many vectors ~e.

In principle, we can simply select a rectangular grid and store the values for the vectors
~e from this grid. However, the selection of the grid violates rotation-invariance and thus,
eliminates the advantage of selecting this particular multi-D analogue of a cdf. It turns
out that there is a better way: instead of using a grid, we can use rational points on a
unit sphere. There exists efficient algorithms for generating such points, and the set of
all such points is almost rotation-invariant: it is invariant with respect to all rotations for
which all the entries in the corresponding rotation matrix are rational numbers (Oliverio,
1996; Trautman, 1998).

Beyond p-boxes? A p-box does not fully describe all kinds of possible partial information
about the probability distribution. For example, the same p-box corresponds to the class of
all distributions located on an interval [0, 1] and to the class of all distributions located at
two points 0 and 1.

Similarly, in the multi-D case, if we only use the above-defined multi-D cdfs, we will not
be able to distinguish between a set S (= the class of all probability distributions localized
on the set S with probability 1) and its convex hull. To provide such a distinction, we may
want, in addition to the bounds on the probabilities Prob(f(x) ≤ t) for all linear functions
f(x), to also keep the bounds on the similar probabilities corresponding to all quadratic
functions f(x).

Let us show that this addition indeed enables us to distinguish between different sets S.
Indeed, for every point x, to check whether x ∈ S, we ask, for different values ε > 0, for the
upper bound for the probability Prob(d2(x, x0) ≤ ε2), where d(x, x0) denotes the distance
between the two points. If x 6∈ S, then for sufficiently small ε, this probability will be 0; on
the other hand, if x ∈ S, then it is possible that we have a distribution located at this point
x with probability 1, so the upper bound is 1 for all ε (Nguyen et al., 2000).

In 1-D case, the condition f(x) ≤ t for a non-linear quadratic function f(x) is satisfied
either inside an interval, or outside an interval. Thus, in 1-D case, our idea means that in
addition to cdf, we also store the bounds on the probabilities of x being within different
intervals. Such bounds are analyzed, e.g., in (Berleant, 1993; Berleant, 1996; Berleant and
Goodman-Strauss, 1998; Berleant et al., 2003).
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Abstract. In this paper a procedure for designing structures under uncertainty is presented. The uncertainty model of
fuzzy randomness is employed to take into account the uncertainty of structural parameters in a realistic and comprehen-
sive manner. This uncertainty model includes real valued random variables and fuzzy variables as special cases. Objective
uncertainty and subjective uncertainty are processed simultaneously.

Algorithms of fuzzy structural analysis (processing of fuzzy variables in structural analysis) and fuzzy probabilistic
safety assessment (processing of fuzzy random variables, real random variables, and fuzzy variables in safety assessment)
are used to compute fuzzy structural responses and fuzzy safety prognoses, which are the backbone of the new design
concept. Comparing fuzzy structural responses and the fuzzy safety level with permissible values, discrete permissible and
nonpermissible parameter vectors are identified. These are introduced into a fuzzy cluster analysis to obtain permissible
and nonpermissible clusters (continuous sets of real parameter vectors with similar properties), which represent the basis
for generating uncertain structural design parameters.

This concept is referred to as fuzzy cluster design. It can be combined with arbitrary fundamental solutions for de-
terministic and probabilistic structural safety analyses. For instance, well developed algorithms of Monte Carlo simulation
and codes of nonlinear structural analysis can be incorporated in the procedure.

The algorithm of fuzzy cluster design is presented in detail and demonstrated by way of a numerical example.

Keywords: Fuzzy variables; Fuzzy random variables; Fuzzy structural analysis; Fuzzy probabilistic safety assessment;
Fuzzy clustering; Uncertain structural design; Nonlinear structural design.

1. Introduction

Structural engineering focuses on computing structural responses, assessing structural safety, and
determining parameters for structural design that meet all relevant requirements. For these purposes,
the structural engineer has to apply appropriate structural models, suitably-matched computational
models and reliable structural parameters close to reality. Computational models must be capable
of numerically simulating the system behavior of the chosen structural model. Such models have
already been developed up to a high quality level and are available as nonlinear numerical pro-
cedures for solving many problems. Structural models and structural parameters, however, have
to be established in the particular case on the basis of plans, drawings, measurements, observa-
tions, experiences, expert knowledge, codes, and standards. As a rule certain information regarding
structural models and precise values of structural parameters do not exist. Structural models and
structural parameters are characterized by uncertainty. Human errors in the manufacture, the use
and maintenance of constructions, expert evaluations, and insufficient information sources represent
only some examples of uncertain influences. In order to perform realistic structural analysis and
safety assessment this uncertainty must be appropriately taken into consideration.
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Various concepts are available for mathematically describing and quantifying uncertainty such
as, e.g., probability theory [17], including subjective probability approach [31] and Bayes methods
[6], interval mathematics [1], convex modeling [5], theory of rough sets [23], fuzzy set theory [2],
theory of fuzzy random variables [15] and chaos theory [13]. In the scientific literature the new
uncertainty models are not only controversially discussed [9] but also increasingly implemented for
the solution of practice-relevant problems [4, 8, 12, 16, 22, 24, 29] These different developments of
uncertainty models do not directly contradict each other but rather constitute an entirety.

The procedure presented in this paper takes account of uncertainty that may be quantified using
the concept of fuzzy randomness. Structural parameters are modeled as fuzzy random variables, real
random variables, or fuzzy variables. These are simultaneously processed in special procedures of
fuzzy structural analysis and fuzzy probabilistic safety assessment to yield the associated uncertain
structural responses and uncertain safety levels. The uncertainty of the structural parameters is
apparent in the results. Generally, arbitrary computational models may be employed as determinis-
tic and probabilistic fundamental solutions in these special procedures. If necessary, sophisticated
nonlinear codes for structural analysis such as described in [26] and well developed algorithms of
computational stochastics such as Monte Carlo simulation [27] may be applied to obtain results
close to reality.

The uncertain results from fuzzy structural analysis and fuzzy probabilistic safety assessment
provide a suitable basis for deriving an uncertain structural design. With the aid of a fuzzy cluster
analysis algorithm permissible and nonpermissible clusters are detected in the space of the design
parameters. These are taken as the basis to generate modified uncertain structural parameters, which
represent alternative design variants. By comparing requirements regarding structural responses and
safety levels with the fuzzy results associated with these design variants, their permissibility and
quality is finally assessed to find the optimum uncertain structural design.

This fuzzy cluster design concept does not make any demands on the underlying deterministic
and probabilistic fundamental solutions for fuzzy structural analysis and fuzzy probabilistic safety
assessment. As it solves the inverse problem of structural analysis and safety assessment numeri-
cally, it is generally applicable and may also be employed to solve deterministic design problems in
arbitrary nonlinear cases.

The basis and algorithmic development of fuzzy cluster design are discussed in detail in the
sequel.

2. Processing Uncertainty in Structural Safety Assessment

For introducing uncertain structural parameters into structural analysis and safety assessment these
must be quantified. Depending on the characteristic of the uncertainty appropriate mathematical
models are applied. The uncertain parameters are classified according to the cause of their uncer-
tainty. If exclusively informal or lexical uncertainty appears, the uncertainty characteristic fuzziness
may be stated. If the uncertain parameter considered is partly influenced by stochastic uncertainty,
but cannot be described clearly using random variables, then the characteristic fuzzy randomness
may be assigned. Thereby, real valued random variables may be treated as a special case of fuzzy
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random variables. These represent uncertain variables whose uncertainty exclusively arises from
stochastic causes.

Uncertain parameters whose uncertainty characteristic has been identified as fuzziness are
treated on the basis of fuzzy set theory. They are described as fuzzy variablesx̃ quantified by
membership functionsµ(x) [2, 32], see Figure 1. The specification of the membership function
is referred to as fuzzification. General algorithms for fuzzification cannot be provided as it basically
represents a subjective assessment [20, 30].

Uncertainty with the characteristic fuzzy randomness is described, quantified, and processed
on the basis of the theory of fuzzy random variables. For quantifying fuzzy random variablesX̃
fuzzy probability distributions̃F(x) are introduced [18, 30], see Figure 1. These may be understood
as being a bunch of real valued probability distributions assessed by membership valuesµ indicating
their degree of plausibility. The fuzzy probability distribution functions are analytically described
by introducing fuzzy functional parametersp̃ into the common equations for distribution functions.
Additionally, fuzzy functional types of distributions may be defined. The fuzzy parametersp̃ of
the fuzzy probability distributions represent fuzzy variables characterized by membership functions
µ(p). These fuzzy parameters may be determined on the basis of common statistical methods in
combination with procedures from fuzzy set theory[18, 20, 30].
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x
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µ = 0
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Figure 1. Fuzzy variablẽx and fuzzy random variablẽX

For the purpose of fuzzy cluster design, the uncertain structural parameters are mapped to
fuzzy structural responses and fuzzy safety levels, which are compared with required or permissible
values as design constraints.

Fuzzy structural responses are obtained from fuzzy structural analysis [18, 20]. Fuzzy structural
analysis implies the analysis of a structure with the aid of a crisp (or uncertain) algorithm applied to
fuzzy variables for structural parameters. It may formally be described as the mapping of the fuzzy
input vectorx̃ consisting of the fuzzy structural parametersx̃k to the vector̃z containing the fuzzy
structural responses̃zj,
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x̃ → z̃ , (1)

see Figure 2. The mapping 1 is realized with the aid of the mapping model f,

z = (z1, ..., zj, ..., zm) = f(x1, ..., xk, ..., xr) , (2)

which is represented here by a deterministic algorithm for statical or dynamic structural analysis as
a deterministic fundamental solution.

Figure 2. Mapping of fuzzy input variables to a fuzzy result variable

Fuzzy safety levels are computed by applying the concept of fuzzy probabilistic safety as-
sessment. The developed Fuzzy First Order Reliability Method (FFORM) [18, 21] is selected here.
Fuzzy random variables together with fuzzy structural parameters are introduced into the algorithms
of FFORM to compute a fuzzy reliability index̃β. In terms of fuzzy analysis this may be formulated
as the mapping

x̃e = (x̃1, ..., x̃k, ..., x̃r, p̃1, ..., p̃t, ..., p̃q) → β̃ , (3)

of an extended fuzzy input vectorx̃e to the fuzzy reliability index̃β representing a special fuzzy
result variable. The extended fuzzy input vectorx̃e not only contains fuzzy structural parameters
x̃k but also comprises the fuzzy parametersp̃t of the fuzzy random variables̃Xs. For purposes of
notation convenience, all fuzzy input variables are subsequently denoted byx̃k, whereas all fuzzy
result variables are designated asz̃j.

For processing the fuzziness of the fuzzy input vector a generally applicable as well as ef-
ficient numerical algorithm has been developed and formulated in terms ofα-level optimization
[18, 20]. This concept permits to implement an arbitrary nonlinear deterministic fundamental solu-
tion without any special properties. The membership scale of the fuzzy input vector is discretized
(α-discretization), which leads to a certain number ofα-level sets

Xα = {x ∈ x̃ | µ(x) ≥ α} . (4)
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The mapping 1 may then be described by

Xα → Zα ∀ α ∈ (0, 1] . (5)

Theα-level setsXα are mapped to the associatedα-level setsZα of the fuzzy results. Forα = 0 (as
an abbreviation for the limitα → +0) this mapping concerns the support subspacesXα=0 andZα=0,
which contain all elements of the fuzzy input vector and the fuzzy result, respectively, see Figure 2.
The resultingα-level setsZα are described with the aid of their boundings. For their determination
a modified evolution strategy has been developed and combined with a repeated solution of the
associated optimization problem.

As a consequence, the fuzzy results are obtained with numerically determined membership
functions. This means that fuzzy results are not available as connected sets but represent discrete sets
of randomly distributed points in the space of the fuzzy result variables. Additionally, the parameter
coordinates in the space of the fuzzy input variables which belong to these result points are known.

3. Fuzzy Cluster Design

3.1. CONCEPT

The basic idea of fuzzy cluster design is to derive an appropriate structural design accounting for
the uncertainty of design parameters. It is thus reasonable to make use of the numerical results
from fuzzy structural analysis and fuzzy probabilistic safety assessment. In contrast to deterministic
computations, these results not only provide a single input-output dependency but offer some sys-
tematic insight into relationships between structural parameters and structural responses and safety
levels over a certain range of parameter values. If the uncertain structural parameters are initially
defined in such a way that they cover a proper design domain, then the information gained from
fuzzy structural analysis and fuzzy probabilistic safety assessment may be used to find continuous
sets of suitable design parameter vectors within this defined domain.

As a result of the mapping 5, a set of input pointsxi from the support subspaceXα=0 of x̃ and
a set of result pointszi from the support subspaceZα=0 of z̃ are obtained. The result pointszi are
assigned to the input pointsxi by means of the mapping model according to 2 on a point-by-point
basis,

zi = f(xi) . (6)

Fromα-level optimization, the inverse assignment is also available point-by-point,

xi = f−1(zi) . (7)

The fact that these dependencies are only known in a discrete form excludes a closed solution of the
design problem; continuous sets of permissible design parameter vectors cannot be determined by
simply applying 7. The pointwise information from 6 and 7, however, permits designing structures
virtually directly with the aid of cluster analysis methods.
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The pointsxi, i = 1, ..., n, are lumped together in the discrete point setMx, whereas the pointszi,
i = 1, ..., n, are combined to form the discrete point setMz. According to the design constraintsCTh

with h = 1, ..., q, the point setMz is subdivided into two disjoint subsetsMz+ andMz− comprising
exclusively permissible pointsz+

i = (z+
i,1, ...,z+

i,m) or only nonpermissible pointsz−i = (z−i,1, ...,z−i,m),
respectively. As a consequence the point setMx also becomes decomposed due to the dependencies
in 6 and 7. The resulting disjoint subsetsMx+ andMx− of Mx contain only permissible pointsx+

i =
(x+

i,1, ..., x+
i,r) or only nonpermissible pointsx−i = (x−i,1, ..., x−i,r), respectively. A cluster analysis is

then separately applied to both the permissible pointsx+
i and the nonpermissible pointsx−i . The

obtained clusters comprised of permissible points represent alternative structural design variants
[3, 18, 19], see Figure 3.

µ(z1)

� = 1

� = 0

Design constraint

z1

Nonpermissible
points zi,1

Permissible
points zi,1

Fuzzy result
variable z1

~

x1

x2

xixi,2

xi,1

–_Clusters with nonpermissible points xi,1
                      (nonpermissible clusters)

Clusters with
permissible points xi,1
(permissible clusters)

_ –
+

+

Figure 3. Clustering permissible and nonpermissible input points

The concept presented may be applied to designing structures based on fuzzy structural analy-
sis as well as on fuzzy probabilistic safety assessment. Depending on the particular design problem
fuzzy structural parameters or fuzzy parameters of fuzzy probability distributions may be selected
as design parameters. Design constraints may be formulated for fuzzy structural responses or for the
fuzzy safety level. Furthermore, the concept of fuzzy structural design for the first time provides a
tool for designing structures directly and independently of the computational model. That is, every
arbitrary nonlinear structural analysis algorithm may be taken as a basis.

3.2. FUZZY CLUSTER ANALYSIS

For generating permissible and nonpermissible clusters arbitrary established cluster analysis algo-
rithms may be taken as a basis. The aim of these algorithms is to generate clusters from a given set
of data, which are referred to as objects. Objects that are similar to each other are lumped together to
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form one cluster, whereas objects that are dissimilar are assigned to different clusters. Each cluster
should only contain objects of high similarity. That is, the distances d(i, j) between its objects¤i and
¤j should be as small as possible. Objects from different clusters are characterized by dissimilarity,
the distances between these objects should be as large as possible. In structural design with clusters
the input pointsx+

i andx−i in the support subspaceXα=0 are the objects.
For determining clusters from point sets a variety of methods are available [10, 14, 28]. Fuzzy

cluster methods are particularly suitable for designing structures. These are characterized by the
fact that the assignment of objects to clusters is fuzzy, which yields fuzzy clusters. The degree with
which an object¤i belongs to a particular clusterCv is expressed by the membership valueµiv ∈
[0, 1]. An object may simultaneously be assigned to different clusters with different membership
values.

Herein, the fuzzy cluster method presented in [14] is selected as a basis for fuzzy cluster
design. In this method the determination of the cluster configuration is formulated as the nonlinear
optimization problem

k∑

v=1

∑n
i=1

∑n
j=1 µr

iv · µr
jv · d (¤i, ¤j)

2 ·∑n
j=1 µr

jv

⇒ Min (8)

with the equality and inequality constraints

µiv ≥ 0; i = 1, ..., n; v = 1, ..., k (9)

and
k∑

v=1

µiv = 1; i = 1, ..., n . (10)

The number k of clusters must be predefined. Then, the objective function is minimized by
iteratively improving the membership valuesµiv andµjv. The exponentr ∈ [1, ∞) controls the
influence of the membership values sought. For large values r the result of the cluster analysis
exhibits a strong fuzziness characterized by equal membership valuesµiv = k−1 for all objects. In
contrast to this, a value r close to unity results in an almost crisp clustering. For applications the
exponent r = 2 is frequently chosen.

In order to determine a suitable number k of clusters the cluster analysis is usually repeated
with a varying number of clusters. The results are then compared based on quality measures to find
the optimum solution. The absolute value of the quality measure, however, should not be taken into
consideration as the sole criterion. Additionally, the relative improvement in the quality measure
when sucessively increasing the number of clusters should be accounted for. In the present study
the partition coefficient and the separation degree are applied as major quality measures [10].

The partition coefficient evaluates the ”clearness” with which the objects are assigned to clus-
ters. The more uncertain an assignment is obtained, the worse the cluster configuration is assessed
to be. It is defined as

PC =
1
n

k∑

v=1

n∑

i=1

µ2
iv . (11)

As an enhancement, the normalized partition coefficient
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PCN = 1− k
k− 1

· (1− PC) (12)

is defined [28], which takes values from the interval [0, 1]. An appropriate clustering is characterized
by a PCN close to unity.

The separation degree measures the separation of the clusters. That is, the average distance
between the clusters and their assigned objects is evaluated with respect to the squared minimum
distance between different clusters,

SD =
∑n

i=1

∑k
v=1 µ2

iv · d (¤i, ¤pv)
n ·min [d2 (¤pv , ¤pw) | ¤pv , ¤pw ∈ C1, ..., Ck; ¤pv 6= ¤pw ]

. (13)

The objects¤pv and¤pw denote the prototypes of the clustersCv andCw, respectively, which
may be interpreted as ”artificial, representative objects” of the clusters. In the desired case of a
high similarity between the objects of the particular clusters and, simultaneously, of a distinctive
dissimilarity between objects from different clusters, the separation degree 13 takes on small values.

3.3. ALGORITHMIC PROCEDURE

The concept from Section 3.1 together with the method of fuzzy cluster analysis from Section 3.2 is
now taken as the basis to formulate an algorithm for fuzzy cluster design. This is comprised of the
following six steps:

Step I. Fuzzy structural parameters and fuzzy parameters of fuzzy probability distributions that
are chosen as fuzzy design parameters are initially defined in such a way that they cover a proper
design domain. The parameter values taken into account by this means must be technically rea-
sonable and practically realizable. Design constraintsCTh, h = 1, ..., q, are formulated according
to the particular problem. Fuzzy structural analysis and fuzzy probabilistic safety assessment are
performed on the basis ofα-level optimization. The final results as well as the intermediate results,
which are accumulated during the included repeated optimization, are summarized in the point sets
Mx = {xi; i = 1, ..., n} andMz = {zi; i = 1, ..., n} and plotted in the support subspacesXα=0

andZα=0, respectively.

Step II. The result pointsziin Zα=0 are evaluated by checking the design constraintsCTh. This
permits the separation of the point setMz into the subsetMz+ comprising all pointsz+

i proven to be
permissible and the subsetMz− containing all nonpermissible pointsz−i ,

Mz = {Mz+ , Mz−} . (14)

With the aid of the inverse assignment 7, which is known fromα-level optimization, the as-
signed permissible pointsx+

i and nonpermissible pointsx−i in Xα=0 are determined. Accordingly,

the point setMx is subdivided intoMx+ =
{
x+

i

}
andMx− =

{
x−i

}
,

Mx = {Mx+ , Mx−} . (15)
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Step III. Fuzzy cluster analysis is applied separately to the point setsMx+ and Mx− . The set
Mx+ is decomposed intok1 permissible clusters. From the setMx− k2 nonpermissible clusters
are determined. The search for an appropriate cluster configuration is performed in two stages.
First, clustering is carried out for a varying number of clustersk1 andk2. Second, the obtained
cluster configurations are assessed based on the numerical quality measures 12 and 13 to select the
most suitable clustering. In addition to the values of these quality measures, their relative variation
when changing the number of clusters is taken into consideration. Demanding a minimum cluster
membershipµiv of all pointsx+

i andx−i the size of the clusters and hence the intersections between
permissible and nonpermissible clusters may be reduced. Permissible clusters may be merged to
obtain superclusters covering a bigger domain of permissible pointsx+

i , which may be advantageous
when finally defining the structural design.

Step IV. Thek1 permissible clustersCv are taken as the basis for constructing modified uncertain
structural parameters of the first generation. Intersections with nonpermissible clusters are removed
from the permissible ones. The remaining reduced clustersCv,red then comprise exclusively per-
missible parameter combinations to a high probability. The boundaries of the reduced permissible
clusters are used to form theα-level setsX [v]

1, α=0, ..., X [v]
r, α=0 for constructing the modified fuzzy

design parameters̃x[v]
1 , ..., x̃[v]

r with v = 1 , . . . , k1. Each reduced permissible cluster yields one

sequence ofα-level setsX [v]
1, α=0, ..., X [v]

r, α=0. That is, a total ofk1 sequences are generated. The

associated support subspacesX[v]
α=0 may intersect each other. With the setsX

[v]
1, α=0, ..., X

[v]
r, α=0

the supports of the modified fuzzy design parameters are already determined. The membership
functions of thẽx[v]

1 , ..., x̃[v]
r may generally be constructed with arbitrary shapes. As simple shapes

are usually preferred, e.g., fuzzy triangular numbers may be used. Their mean values may be
determined, e.g., by considering the cluster centers, the prototypes, or other specifically selected
points. Moreover, the curves of the membership functions may be oriented to, e.g., the membership
values of the points resulting from fuzzy cluster analysis, the local density of points in the cluster, or
other characteristics and properties of the cluster. Design parameter values that are preferred due to
constructional convenience may be furnished with higher membership values. Generally speaking,
all concepts of fuzzification may be applied [18]. The obtained sequences of modified fuzzy design
parameters̃x[v]

1 , ..., x̃[v]
r represent alternative structural design variants [v] of the first generation.

These design variants may be partly included in each other.

Step V. Clustering permissible points and generating reduced permissible clusters do not guaranty
that all design variants include exclusively permissible design parameter values. For the purpose of
verification fuzzy structural analysis and fuzzy probabilistic safety assessment are carried out for
each design variant. That is, the sequences of modified fuzzy design parametersx̃[v]

1 , ..., x̃[v]
r , v =

1, ...,k1, are introduced intoα-level optimization one after the other. This leads tok1 sequences of
modified fuzzy results̃z[v]

1 , ..., z̃[v]
m , v = 1, ...,k1, of the first generation with associated point sets

M[v]
x =

{
x[v]

i ; i = 1, ..., n[v]
}

andM[v]
z =

{
z[v]
i ; i = 1, ..., n[v]

}
.
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Step VI. For each of thek1 structural design variants of the first generation all pointsz[v]
i ; i =

1, ..., n[v] obtained fromα-level optimization are evaluated by means of the design constraintsCTh.
A design variant is considered permissible only if all pointsz[v]

i ; i = 1, ..., n[v] comply with the

requirements according to theCTh. As soon as one pointz[v]
i does not meet allCTh, the associated

design variant [v] is considered as not permissible. If the remainingk+
1 permissible design variants

do not represent satisfying results for some reason or if no permissible design variants have been
found, k+

1 = 0, fuzzy cluster analysis according to Step III may be repeated to obtain modified

design variants of the second generation. Taking account of the additional pointsx[v]
i andz[v]

i from
the verification analyses and selecting an other cluster configuration may so lead to more satisfying
results. Thek+

1 alternative permissible design variants are compared to find out the most suitable
one. For this comparison the numerical assessment criteria considered in the subsequent section may
be used. Finally, the selected design variant is taken as the basis for defining the structural design.
The final structural design parameters must lie within the uncertainty of the permissible design
parameters. They may be crisp or uncertain depending on the conditions for their specification.

3.4. ASSESSMENT OFALTERNATIVE DESIGN VARIANTS

For assessing the alternative permissible structural design variants obtained in Step VI of the design
procedure (Section 3.3) arbitrary criteria may be formulated and combined with each other. The
following two criteria, however, may represent the most important ones being of major interest in
almost all design problems.

Criterion I - Constraint Distance. This criterion assesses the degree of exploitation of the design
constraints for a design variant. The fuzzy result variablesz̃[v]

1 , ..., z̃[v]
m are defuzzified with the aid

of suitably selected methods, see [18, 25]. For example, the centroid method and the defuzzification
algorithms after Chen [7] and Jain [11] may be applied. The Chen/Jain algorithms permit a ”biased”
defuzzification. That is, the defuzzification can be focused on small values (e.g., when defuzzifying
a fuzzy reliability index) or on large values (e.g., when evaluating an internal force). Defuzzification
leads to the crisp valuesz[v]

1 0, ..., z[v]
j 0 , ..., z[v]

m 0 for the results. Assessment Criterion I is then defined

as the sum of the weighted distancesd[v] (.) between the crisp valuesz[v]
j 0 and the design constraints

CTh,

A[v] =
q∑

h=1

wh · d
(
CTh,

{
z[v]
j 0

})
(16)

with wh representing real weighting factors. In the simple but common case that a particular design
constraintCTh is given for each fuzzy result̃z[v]

j alone (that is, q = m and h = j) as a permissible
valueperm_zj, the sum 16 may be rewritten as

A[v] =
m∑

j=1

wj ·
∣∣∣ perm_zj − z[v]

j 0

∣∣∣ . (17)

The weighting factorswh are introduced for taking account of the importance of the particular
constraints. A small valueA[v] characterizes a structural design that exploits the constraints to a
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high degree. On the other hand, a largeA[v] indicates a structural design providing some reserves,
e.g., in load-bearing capacity, which may be considered as advantageous.

Criterion II - Robustness. The designed structure is considered as being robust if the sensitivity
of the result variables (structural responses or safety measures) is low with regard to fluctuations
of the design parameters. That is, a robust structure is characterized by a low uncertainty of the
fuzzy results̃z[v]

j in relation to the uncertainty of the fuzzy design parametersx̃[v]
k . The uncertainty

of fuzzy values is computed on the basis of an analog to Shannon’s entropy [2, 32]. This yields the
absolute uncertainty of̃z[v]

j as [18]

H(z̃[v]
j ) = −k ·

∫

z
[v]
j ∈ z̃

[v]
j

g
(
µ(z[v]

j )
)

dz[v]
j ; k > 0 (18)

with
g

(
µ(z[v]

j )
)

= µ(z[v]
j ) · ln

(
µ(z[v]

j )
)

+
(
1−µ(z[v]

j )
)
· ln

(
1−µ(z[v]

j )
)

. (19)

The sensitivity of a structure is then defined as

B[v] =
m∑

j=1

um

r∑

k=1

H(z̃[v]
j )

H(x̃[v]
k )

(20)

with the weighting factorsum for emphasizing particular result variablesz̃[v]
j depending on their

importance. A low valueB[v] indicates a low sensitivity (high robustness) of the structure according
to design variant [v].

4. Examples

4.1. PROBLEM DEFINITION

The presented concept of fuzzy structural design is demonstrated for the plane reinforced concrete
frame shown in Figure 4. The geometrical and physical nonlinear behavior of the structure is
numerically simulated on the basis of the analysis algorithms in [26]. Physical nonlinearities are
accounted for by using material laws for reinforcement steel and concrete after OETES, which are
also provided in [26]. Tension stiffening and the effects of stirrup reinforcement are accounted for in
the concrete material law. As for geometrical nonlinearities, the quadratic terms in the deformation-
displacement dependencies are taken into account in addition to considering equilibrium for the
deformed system. This enables the algorithm to simulate large displacements and moderate ro-
tations. The stiffness of the system is determined by numerical integration incorporated into an
incremental iterative approach. The selected computational model is thus capable of considering
all essential nonlinearities. The load bearing behavior of the structure is numerically simulated in a
sufficiently realistic manner.

The system is modeled using three bars. Fifty integration increments are chosen for each bar
and each cross section is subdivided into 60 layers. The loading process is comprised of dead weight,

REC2004



226

horizontal loadPH, vertical nodal loadsν ·PV0, and the line loadν ·p0. After applying dead weight
the horizontal loadPH is introduced. Finally,PV0 andp0 are increased incrementally using the load
factorν.

Uncertainty is present in the load factorν and in the rotational spring stiffnesskϕ. For dif-
ferent uncertainty models applied to these structural parameters an appropriate structural design is
determined with the aid of fuzzy structural analysis and fuzzy probabilistic safety assessment.

k � k �

PH

� � PV0
� � PV0

� � p0
cross-sections: 50 / 35 cm (all bars)

stirrups: �  8 mm
s = 200 mm

4 �  16 mm

4 �  16 mm

2 �  16 mm

concrete cover:
c = 50 mm

6.00 m 6.00

1 2

3 4

(1) (3)

(2)

PH  =   10 kN
PV0 = 100 kN
p0   =   10 kN/m

�  load factor

  fy,m   =  420 N/mm2

  fu,m   =  620 N/mm2

  �y,m  =    2.0 ‰
  �u,m  =   7.5 %
  �

Pois. =     0.3

fc0,m =   20 N/mm2,   �c0,m = 1.97 ‰
fct,m =  2.3 N/mm2,   �

Pois. = 0.2
fc,rest =  4.0 N/mm2,   �c,rest = 5.00 ‰
Em = 20,328 N/mm2

concrete:reinforcement steel:

Figure 4. Reinforced concrete frame

4.2. DESIGN WITH THE A ID OF FUZZY STRUCTURAL ANALYSIS

The uncertainty of the structural parametersν andkϕ is modeled as fuzziness. Load factor and
rotational spring stiffness represent fuzzy design parameters. These are described with the aid of
fuzzy triangular numbers,

ν̃ = < 5.5, 5.9, 6.7 > , (21)

k̃ϕ = < 5.0, 9.0, 13.0 >

[
MNm
rad

]
. (22)

Design constraintCT1 is a serviceability requirement for the maximum horizontal displacement
vH(3) of node 3. The permissible displacement is defined asperm_vH(3) = 4.0 cm.

Fuzzy structural analysis [18, 20] yields a nonlinear fuzzy load-displacement dependency and,
finally, the fuzzy result variablẽvH(3) for the horizontal displacement of node 3, see Figure 5.
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�
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0.144

0.00
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~

Design constraint CT1

perm_vH(3) = 4.0 cm

Not permissible

Figure 5. Fuzzy load-displacement dependency and fuzzy resultṽH(3)

Moreover, from fuzzy structural analysis 75 points(ν, kϕ)i from the space of the fuzzy design
parameters and the associated result valuesvH,i(3) are known. The fuzzy result̃vH(3) contains
both permissible and nonpermissible points, see Figure 5. Accordingly, 62 permissible and 13 non-
permissible points are identified in the space of the fuzzy design parameters.

Fuzzy cluster analysis is separately applied to these permissible and nonpermissible points.
A suitable cluster configuration is obtained with three permissible clusters and one nonpermissible
cluster, see Figure 6.

Figure 6. Cluster configuration

A minimum cluster membership ofµiv = 0.30 is hereby prescribed for the assignment of
objects to the clusters. ClusterC1 possesses some intersection with the nonpermissible cluster and
is thus excluded from the further design procedure. ClustersC2 and C3 cover only permissible
points (ν, kϕ)+i and are considered as capable for generating modified fuzzy design parameters.
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This yields two resulting alternative design variants,

ν̃[2] = < 5.56, 5.74, 5.92 > , (23)

k̃[2]
ϕ = < 5.60, 8.00, 10.40 >

[
MNm
rad

]
, (24)

and

ν̃[3] = < 5.50, 5.94, 6.38 > , (25)

k̃[3]
ϕ = < 8.00, 10.50, 13.00 >

[
MNm
rad

]
. (26)

For verifying the permissibility of the design variants fuzzy structural analysis is carried out
for both pairs of modified design parameters. The associated fuzzy results meet the design con-
straint regarding the permissible displacement in either case, see Figure 7. Defuzzifying the fuzzy
displacements̃v[2]

H (3) andṽ[3]
H (3) after JAIN and computing the sensitivity of the structure lead to

− cluster C2: v[2]
H 0(3) = 2.49 cm,B[2] = 3.81

− cluster C3: v[3]
H 0(3) = 2.54 cm,B[3] = 2.03

The results show no significant difference in the constraint distance, whereas the sensitivity of
design variant [2] is almost twice as high as the sensitivity of design variant [3]. The fuzzy de-
sign parameters according to 25 and 26 corresponding to cluster C3 are thus selected as being the
most suitable ones. These fuzzy structural design parameters have to be ensured by an appropri-
ate construction of the system, whereby the remaining uncertainty initialized by noncontrollable
parameters, such as soil stiffness, must lie within the design uncertainty.

Figure 7. Fuzzy results according to the alternative design variants
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4.3. DESIGN WITH THE A ID OF FUZZY PROBABILISTIC SAFETY ASSESSMENT

The reinforced concrete frame shown in Figure 4 is designed with an alternative modeling of the
structural parameters. Both the load factorν and the rotational spring stiffnesskϕ are described with
fuzzy random variables,

ν → X̃1 , (27)

kϕ → X̃2 . (28)

The load factor is assumed to follow an extreme value distribution of Ex-Max Type I. The spring
stiffness is described by a logarithmic normal distribution. The expected values m and standard
deviationsσ of both distributions are modeled as fuzzy triangular numbers,

m̃X1 = < 5.70, 5.90, 6.30 > , (29)

σ̃X1 = < 0.08, 0.11, 0.15 > , (30)

and

m̃X2 = < 8.50, 9.00, 10.00 >

[
MNm
rad

]
, (31)

σ̃X2 = < 1.00, 1.35, 1.50 >

[
MNm
rad

]
. (32)

The minimum value of the logarithmic normal distribution ofkϕ is assumed to be crisp withx0,2 =
0MNm/rad. The fuzzy parameters̃mX1 , σ̃X1 , m̃X2 , andσ̃X2 are chosen as fuzzy design parameters.
Design constraintCT1 is the required reliability indexreq_β = 3.8 for global system failure.

The actual safety level is computed on the basis of the Fuzzy First Order Reliability Method
(FFORM)[18, 21]. This yields the fuzzy reliability index̃β shown in Figure 8. Fromα-level op-
timization a total of 609 result points are known inβ̃, which are subdivided into 414 permissible
points and 195 nonpermissible points by means of the design constraintCT1. Also, the associated
permissible and nonpermissible points in the four-dimensional space of the fuzzy design parameters
are known fromα-level optimization.
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Figure 8. Fuzzy result̃β and design constraintCT1

The fuzzy cluster method is separately applied to permissible and nonpermissible points in the
space of the fuzzy design parameters. The number of clusters is varied within the interval[1, 10].
The obtained cluster configurations are assessed on the basis of the numerical quality measures from
Section 3.2. As a compromise a clustering withk1 = 6 permissible clusters is considered as being
suitable, see Figure 9.
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Figure 9. Assessing cluster configurations for permissible points

For the number of nonpermissible clustersk1 = 7 is selected. With a minimum cluster mem-
bership ofµiv = 0.25 a cluster configuration without intersections between permissible and non-
permissible clusters is obtained. The permissible clustersC1, C2, C5, andC6 are very small in
size. They cover only a very limited value range of permissible design parameters and are thus not
taken as a basis for generating alternative design variants. ClustersC3 andC4 are approximately
congruent and are merged to constitute the superclusterC3,4. Hence, only one set of modified fuzzy
design parameters is obtained,

m̃[3,4]
X1

= < 5.85, 5.90, 6.00 > , (33)

σ̃
[3,4]
X1

= < 0.08, 0.10, 0.11 > , (34)

and

m̃[3,4]
X2

= < 8.50, 9.50, 10.00 > , (35)

σ̃
[3,4]
X2

= < 1.30, 1.40, 1.50 > . (36)

For verifying this design variant FFORM is applied again with the modified fuzzy design pa-
rameters. This yields the modified fuzzy reliability indexβ̃[3,4], see Figure 10. All elements ofβ̃[3,4]

comply with the design constraintCT1. The modified fuzzy design parameters define modified
fuzzy probability distribution functions for the modified fuzzy random variablesX̃1 andX̃2.
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Figure 10. Modified fuzzy result variablẽβ[3,4]

To ensure the permissibility of the structural design, the final design parameters must be ele-
ments of the modified fuzzy design parameters. This may be realized by acquiring more information
aboutν andkϕ. For example, additional prior information or additional sample elements drawn
subsequently may be accounted for with the aid of a Bayesian approach. Also, a larger sample may
be taken as the basis for an interval estimation of the parameters. The extent to which additional
information is needed can be determined iteratively or inferred by inverting the parameter estimation
problem. As a result, a minimum sample size may so be determined.

5. Conclusions

In this paper a concept for designing structures based on nonlinear fuzzy structural analysis (pro-
cessing of fuzzy variables in nonlinear structural analysis) and fuzzy probabilistic safety assessment
(processing of fuzzy random variables, real random variables, and fuzzy variables in safety assess-
ment) has been provided. Thereby, uncertainty is accounted for as fuzziness, randomness, and fuzzy
randomness of structural parameters. This is exploited to analyze an initially defined proper range
of design parameter values with regard to the associated structural responses and safety levels. With
the aid of fuzzy cluster analysis (to determine clusters of design parameter vectors as continuous sets
of real vectors with similar properties) alternative uncertain structural design variants are generated
from the analysis results. These are compared on the basis of numerical criteria to select the opti-
mum design variant. For instance, a robust structural design may be found in this manner. The final
design parameters may then be determined within the fuzziness of the optimum uncertain design
variant. They are not necessarily crisp but may contain uncertainty that fits into the uncertainty of
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the design variant. This is particularly suitable if the information about these parameters is limited,
e.g., due to a small sample size.

This concept permits designing structures directly in combination with arbitrary nonlinear
computational models and under consideration of nonstochastic uncertainty.
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Abstract.  The paper presents a stochastic methodology for handling uncertainty in process 
development as part of a general framework for batch and continuous process models. The 
method combines systematic modelling procedures with Hammersley sampling based uncertainty 
analysis and a range of sample-based sensitivity analysis techniques, used to quantify predicted 
performance uncertainty and identify key uncertainty contributions. The methodology was 
implemented on a batch reactor process and some clear recommendations as to how to reduce the 
uncertainty in the main output variables are obtained. The paper concludes with some discussion 
about an alternative approach to use instead error bars from experimental data as intervals and 
using interval methods to determine the best ‘worst-case’ design. 
 
 

1. Introduction 
 

In the development of new chemical manufacturing processes, particularly in the pharmaceutical 
industry, there is a large element of process uncertainty since detailed knowledge of the chemical 
reaction mechanisms and of the power and effectiveness of separation devices (to purify the 
product and recover raw materials) is often limited.  Data is obtained from the laboratory during 
the identification stage of a new product (for example a new drug) and this is used during the 
manufacturing process development stage.  Much data is generated but often not useful for the 
development of the large scale manufacturing process.  In some cases large amounts of data are 
available but often single data points with confidence limits are obtainable in the form of interval 
bounds. Using a structured approach with the computational process design tools, which are used 
extensively, the uncertainty can be managed and improved process performance may be 
obtained. The methodology proposed is based on a stochastic formulation but the use of interval 
methods which have a natural role arising from the form of data used is also discussed briefly. 
 This work was undertaken for process development in the pharmaceutical industry.  New 
products are constantly being proposed and the decision about whether to proceed with 
development depends on the efficacy of the drug but also whether the manufacturing process will 
be possible and will make a profit.  It is therefore necessary to develop new processes but this is 
often done without regard to the data being obtained in the laboratory and without consideration 
of the accuracy of that data.  The objective was to develop a model based approach that could 
help identify major causes of uncertainty and hence help to direct when better data is required.  
Much good data is developed but often the data required for manufacturing process development 
is not available or of poor quality.  

Pharmaceutical processes typically consist of a sequence of unit operations, for example 
reactors and separation devices.  It is important that the methodology is able to handle a large 
sequence of units as well as single units.  The main causes of uncertainty in process development 
are in the data obtained about reaction and separation which are then used in the model and also 
in the quality of the raw materials that are used in the reactions.  Assumptions about models are 
also uncertain which can cause the mathematical structure to be incorrect as well as the model 
parameters, for example in the case of the order of the reaction kinetics. 
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While the approach was developed with pharmaceutical processes in mind it could in fact be used 
for any type of process.  
 
 

2. A Methodology for Design Under Uncertainty: Combined risk analysis and 
systematic model development 

 
The proposed methodology aims to introduce some form of management of the uncertainty 
associated with the model representations of the current process knowledge. It is assumed that the 
conceptual process design (equipment allocation and design) is already decided. The 
deterministic process models may exhibit non-linear and dynamic characteristics as may be 
expected in typical pharmaceutical processes. However, spatially distributed models are not 
considered for computational reasons.  

In the face of large amounts of uncertainty predicted in the important process output criteria, 
three issues have been considered:  
(i) reduction of the uncertainty by improving current models/parameter estimations associated 

with the  key contributing uncertainty factors identified, 
(ii) manipulation of the available process decisions (operating policy) to improve process 

robustness to model uncertainty, 
(iii) consideration of process alternatives.  
Issue (i) concerns the gathering of additional information for systematic model development for 
more reliable models. Issues (ii) and (iii) concern the optimisation and comparison of uncertain 
but integrated processes sequences.  This will be dealt with in a future paper. 
 

Systematic model development 

 
Improve model 

Get data 

 

Process models 
Uncertainty  

characterisation 
Feedback   

Stochastic system 
 

Risk Analysis:  
Uncertainty Analysis 
→ quantify uncertainty 

Sensitivity Analysis 
→ identify contributors 

Optimal input uncertainty reductions 
→ identify reduction to meet  

desired output performance 
uncertainty limits 

Implement  
Get new data 

 
 
Figure 1. Management of uncertainty in a model-based approach to integrated design under 
uncertainty for pharmaceutical processes. 
 
The elements of the Risk Analysis approach have been combined with systematic procedures for 
the development of deterministic process models (Figure 1). A stochastic representation of the 
complete model of the integrated process sequence is generated to quantify modelling 
uncertainties and to identify and rank the most important contributors in the uncertain (but 
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structured) system with respect to the important system responses. The suggestion is that this 
information can be used to drive the general direction for data collection (within process 
development) to improve the key models and reduce the uncertainty in the most significant areas. 
As more data becomes available the methodology allows the tracking of the effect of increased 
knowledge in certain process models and the effect this has on the complete system, in an 
iterative manner. A key issue is the flexibility of the approach to incorporate new data into the 
analyses.  A more detailed schematic of the approach is shown in Figure 2. The reader is referred 
to Hangos and Cameron (2001) for further detail about conventional model development.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Schematic for the systematic model development incorporating the Risk Analysis 
approach under uncertainty. 
  
Once a model has been developed and before the Risk Analysis methods are implemented a 
screening procedure is used to determine which of the parameter uncertainties in the complete 
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sequence model may be potentially significant regarding the response variables in the stochastic 
representation of the system. This is necessary when the number of parameters increases and it is 
necessary to limit the number of dimensions in the following Risk Analysis. For this purpose a 
Perturbation Analysis (one at a time approach) is used since it is a common and easy method to 
implement. The deterministic model is systematically simulated at  positive and negative 
deviations from the nominal parameter estimates. The magnitude of the deviations may be based 
on the judgement of the developer (for example these could be the approximate precision ranges 
for different types of model parameters as suggested by Hangos and Cameron, 2001), or at 
estimated confidence limits if available. 
 
 

3. Uncertainty Analysis 
 
Following the selection of the significant uncertain parameters, Steps 1 to 7 in figure 2 comprise 
the elements of Uncertainty Analysis. The information required for the stochastic distributions of 
the input variables needs to be developed typically from sparse data sets so the methodology 
includes the development of these distributions. In Step 1 the approach used for the quantitative 
estimation of the uncertainties in these parameters is determined by the data available for 
parameter estimation which may be based on three different information sources:  
• analysis of the performance of the model building based on experimental measurement data 

(Step 1a), allows the estimation of uncertainty in the parameter estimates using confidence 
intervals or regions,  

• expert technical judgement is needed when quantitative data is not available for systematic 
model building and models are assumed whose parameter values are instead based on 
observations and/or assumed along with associated confidence intervals and probability 
distributions (Step 1b),  

• either specific published information or information from which judgements can be inferred 
(Step 1a or 1b).  

If parameters are estimated or assumed independently of each other, the joint sampling space 
may be described as a hyper-rectangle where each dimension represents one uncertain input 
bounded by its respective upper and lower confidence limits. If no data is available for model 
parameter estimation, confidence limits around the nominal values are assumed as some 
percentage of the nominal. For uncertainty in independent parameters of assumed nominal 
values, to be characterised by normal distributions, the standard deviation is assumed at some 
percentage of the nominal value. Confidence limits around the nominal value can be assumed at 
some number of standard deviations (typically two or three deviations for approximately 95 or 
99.9% probability of containment according to Chebyshev’s rule).  

Least squares regression is a commonly used parameter estimation method for which 
confidence intervals can be simply stated assuming normally distributed uncertainty. Although 
likelihood and lack of fit are more accurate methods for estimating parameter confidence regions 
for non-linear models, Donaldson and Schnabel (1987) conclude from their general study on 
regression parameter confidence regions that the linearization methods provide the most concise 
representation of information required to construct confidence intervals and regions.  
For a model that is non-linear in its parameters, individual confidence intervals can be 
approximated assuming a linearization of the model about its optimal estimated parameter values, 
θ′, 

 ( )
2

2
1

1,
ˆ

αθθ
−−

≤′−
PNpppp tV  (1) 

where subscript p is the index of the input uncertainty (θ), V is the covariance matrix, and the 
values of the confidence limits are defined where the value of t is taken from the Student’s t-test 
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distribution with N-P degrees of freedom (number of regression data points, N, and number of 
parameters, P, in the regression model), assuming a desired level of confidence, 1-α. In a multi-
parameter model where the parameters are estimated simultaneously, a joint confidence region 
provides a more appropriate measure of the (normally distributed) uncertainty space that would 
be a hyper-rectangle comprising the individual confidence intervals. Similarly, for a non-linear 
model, a hyper-ellipsoidal joint confidence region is approximated by, 
 

 ( ) ( ) αθθθθ −−
− ≤′−′− 1,,

1ˆ
PNN

T PFV  (2) 
 

 
where θ is a vector of the model parameters and the value of F is taken from the F distribution. 
This is the distribution of a random variable, F, defined as the ratio of two independent chi-
squared random variables divided by their respective degrees of freedom.  
Linearization methods for the estimation of confidence intervals and regions require the 
estimation of the parameter covariance matrix. Donaldson and Schnabel (1987) state that the 
most common and easily computed estimate for the covariance matrix is,  
 

 ( )( ) 12ˆ −
′′= JJsV Tθ         (3) 

 
where ( )J ′θ  is the Jacobian matrix of the model predictions at the optimal parameter estimates 
(i.e. the N × P matrix with the (n, p)th element estimated by ∂f(xn, θ)/∂θp at θ′, for N data points 
and P parameters), s2 is the estimated residual variance computed from the residual sum of 
squares (RSS) between the regression model predictions, $Φ , at the optimum parameter estimates 
and the measurement data, Φ,  
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and where $Vpp  is the ppth element of the covariance matrix, $V , and is the variance estimate of 
the pth model parameter (input uncertainty). J is estimated numerically using the first order 
Taylor’s approximation J by introducing deviations into each optimal parameter value in turn and 
re-evaluating the change in the predicted dependent variable at each data point. 
Given the covariance matrix it is straightforward to determine the correlation matrix, $C ,  
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where ρ is the correlation coefficient and σ is the parameter standard deviation (determined from 
the square root of the parameter variances, σ2, in the leading diagonal of the covariance matrix). 
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Step 2 defines the stochastic system considered by combining the deterministic process model 
sequence with the uncertain parameter characterisations as obtained in step 1.  

A sampling procedure is invoked in Step 3 in order to approximate the uncertain system. In 
this methodology, the quasi-Monte Carlo Hammersley Sequence Sampling (HSS, Diwekar and 
Kalagnanam, 1997) is implemented. Sampling approaches are the most flexible because of their 
capacity to capture different perspectives of risk, the examination of the entire Θ-space, and they 
are not severely limited by the number of dimensions, of which HSS appears to be the most 
efficient. A unit hyper-rectangle of dimension P is sampled using HSS in Step 3.  
Diwekar and Kalagnanam (1997) define the M points of the Hammersley sequence variant, ep(m) 
in a P-dimensional hyper-cube.  Rank correlation coefficients are a meaningful way to describe 
dependencies between stochastic inputs. The desired rank correlation matrix, $ *C , of a matrix of 
independently generated sample input column vectors, X, is set as equal to $C  (the desired 
correlation matrix of X). A new matrix, K, is defined which has the same dimension as X but is 
independent of X, to give a correlation matrix close to the identity matrix. These are inverted 
over the standard normal cumulative distribution and the elements in K are rearranged to obtain 
the correlation structure defined by $C , to give a matrix, K*. Not only is it necessary that the 
correlation matrix of K is close to the identity matrix but also that the correlation and rank 
correlation matrices of K* should be close to each other.  

The stochastic system is solved in Step 4, to obtain probability distributions and distribution 
parameters for the desired process performance variables (i.e. the desired output variables). This 
is achieved by sequential simulation of the deterministic model in Step 6 at each observation of 
the uncertain parameters and at the initial conditions and operating conditions fixed in Step 5, 
given the matrix of stochastic input observations with any induced correlation structures (X*) and 
the deterministic model of the complete flowsheet. To terminate the solution of the stochastic 
model, a convergence test is employed (Step 7). The convergence test used in this methodology 
is a tolerance limit on the average sum of squared deviations measured in a distribution 
parameter, w, over all  previous iterations up to the current iteration observation, mi. This limit, 
∆w, for the qth predicted process output quality criterion is shown in Equation 7,  
 

( ) qw

m

m
mqmq

i
q

i

i
ww

m
w ,

1

2
,,

1 ε≤−=∆ ∑
=

   (7) 

 
where w is the mean or variance estimate from all the previous observations and ε is a permitted 
tolerance. The test requires that tolerances on the mean and variance parameters characterising 
the distributions in the key outputs are met. 
 
 

4. Validation 
 

The individual models of the process sequence need to be validated with available independent 
data of good quality. In the case of using data from a pilot plant run, data for individual 
operations may not be available since measurements are not taken at all points in the sequence. 
Here, validation may only be possible over sub-sequences of integrated models. In Step 8, a form 
of statistical model validation compares distributions of performance predicted from Uncertainty 
Analysis with independent data to validate the uncertain sequence model. Both the location and 
spread of the predicted distributions in relation to the independent data are important in the 
validation. Independent data may already be available from previous runs or if resources permit 
from specific model validation runs (for specific operations). As stated by Basu et al. (1999) 
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there should be plenty of opportunities to obtain more data for this purpose given the nature of 
pharmaceutical process development.  

Following this, Sensitivity Analysis is used to estimate the ranking priority of the key 
stochastic inputs contributing to the uncertainty in the stochastic process output criteria (Step 9). 
In an efficient manner the sensitivity techniques employed in this methodology reuse the sample 
results generated from Uncertainty Analysis to avoid the need for any further simulations of the 
deterministic model. 
 Standardised regression coefficients (SRC) may be compared to correlation coefficients (CC) 
to avoid the affect of spurious correlations to which the CCs are susceptible. SRCs may be 
calculated either from first determining the linear regression coefficients, bp, and then multiplying 
these by the parameter sample standard deviation, sθ, and dividing by the output standard 
deviation, sΦ, 

 SRC
b s

sp
p p=

θ

Φ
  (8) 

 
or by standardising the raw sample data and then applying the regression,  
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where θ  and Φ  are the sample means of θ and $Φ , and the subscript ‘std’ represents a 
standardised value. To avoid over-fitting problems in determining SRCs, stepwise regression 
procedures are employed.  

The input sample set is split into a number of disjoint intervals which each contain an equal 
number of observations. In this way the conditional means of the outputs at given values of the 
inputs can be approximated for the first order CRp for θp,  
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where Φ is the vector of deterministic model performance outputs, θp is the vector of 
observations in the pth uncertain input, 

p
Varθ and E

pθ  are the variance and expectation condition 

for θp. If there is any element of doubt then scatter plots between individual input-output pairs 
can be viewed, though these may also be susceptible to spurious correlations.  
Following identification of the critical uncertain parameters from Sensitivity Analysis, the 
methodology provides the possibility to determine the minimum reduction in these uncertainties 
required to meet desired levels of reduction in the uncertainty contained in the performance 
criteria of the original system (Step 10).  A quantitative estimate of the minimum extent of 
reductions required in the important uncertainty sources to meet  desired output uncertainty levels 
can be provided by formulating a stochastic optimisation problem. In addition, trade-off curves 
between different parameter reductions can be plotted by solving at different levels of desired 
performance uncertainty reduction.  
 By defining the decision variables as the fractions of the original values (before uncertainty 
reduction) of the parameters which characterise the spread of the parameter uncertainties and 
formulating the objective function, ℑ, as a summed term of these decisions, the desired problem 
formulation is obtained. Since only normal and bounded range parameter uncertainties are 
currently considered in the combined modelling and Risk Analysis part of the methodology, the 
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space size characterising parameters, δ, in the optimisation are the standard deviation, σ, for 
normally distributed uncertainties, pN, and the deviation of the limits, θUB and θLB, from the 
mean, µ,  for bounded range uncertainties, pU. The values of these decisions are passed to the 
HSS sampling sub-routine which locates observations within the redefined uncertainty space. 
The new stochastic model is solved given the fixed initial conditions, operating policy and 
remaining set of parameters. The objective is maximised subject to inequality constraints which 
permit a fraction, α, of the original level of the uncertainties observed in the original output 
variables.  A stochastic optimisation algorithm is used to solve the following problem: 
 

 max
,δ δ

δ δ
p N pU

N U

U

U

N

N

p p
p

P

p

P
ℑ = +

==
∑∑

11
 (11) 

Subject to the deterministic model equations and constraints and  
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where the indices o, s, m, d and q are associated with the initial conditions, process stages, 
parameter scenarios, operating policy variables (z) and performance criteria (Φ). The time 
invariant policy variables, υ, the time dependent variables, ν, and the stage duration times, tf, 
remain fixed at the values specified in the prior Risk Analysis. The measure of uncertainty in the 
performance criterion, Φ, is the width between the 5 and 95% fractiles, FW(Φ). The prime 
represents the original value before uncertainty reduction. The total uncertainty space, Θ, is the 
combined space of the normal and uniform spaces ΘN and ΘU.  The Matlab Sequential Quadratic 
Programming routine was used to solve these problems. 

It is assumed that the original values of the distribution means (nominal parameter values) 
are maintained. If the stochastic problem contains decisions in linearly correlated inputs, it is 
assumed that a change in the spread of one of the correlated parameters gives an equivalent 
change in the others, while maintaining the same correlation structure.  
 The solutions of these problems can provide a quantitative idea of the required efforts in 
reducing specific parameter uncertainties compared to returns in performance uncertainties, 
which may be used to support data collection decisions. 
 This information, combined with that obtained from model validation (Step 8) and 
Sensitivity Analysis (Step 9), provides a useful breakdown of the information required to focus 
relative experiment planning and data collection efforts towards improving a specific process 
model within the sequence (by inferring the key uncertain phenomena associated with the 
identified process sub-sequence and parameter uncertainties), with respect to the possible relative 
benefits which may be obtained in doing so. The data driver feedback loop shows the position of 
experiment planning and data collection in Figure 2, though specific decisions regarding these 
procedures are not explicitly considered in this work.  
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5. Case study: A multiphase semi-batch reactor process 
 

This case study is based on an exothermic multiphase reaction process and kinetic model 
investigated by Sano et al. (1998).  This case study is a single unit operation but the methodology 
has been used on a sequence of unit operations (Johnson). The process is for the production of a 
pharmaceutical intermediate, formed from the amination of a bromopropyl compound. Sano et al 
developed a kinetic model based on reaction calorimetry data obtained under laboratory 
conditions in order to determine the optimum feasible and safe operating policy.  There is 
considerable uncertainty in many of the experimental parameters and even in the assumptions 
underlying the model. 

Solid particles of the active pharmaceutical ingredient (API) bromopropyl feed compound 
(A) reside in an organic solvent (methanol) inside the reaction vessel. A fixed volume of a 50 
wt% aqueous dimethylamine reagent (B) is added to the vessel at a constant flowrate under 
continuous agitation. The solids gradually dissolve and react with the dimethylamine. A diagram 
of the process is shown in Figure 3. The exact physico-chemical phenomena for this process are 
not known. The reaction consists of a parallel-series reaction in which the dimethylamine reacts 
with the dissolved API feed to form the desired intermediate (C) which in turn reacts with the 
active feed (A) to form a dimeric byproduct (D) in parallel, 
 

A  +  B   →   C   Main reaction  
 A  +  C   →   D   Sub-reaction 
 
By-product D is known to be very difficult to remove in the downstream purification stages. 
Intrinsic first order reaction kinetics are assumed in the deterministic process model proposed by 
Sano et al. (1998) but this is a source of uncertainty. An initial rate limiting period due to the 
dissolution of solids B, was observed to be independent of solvent concentration and agitation 
speed within the range of conditions approved. A crude approximation of first order kinetics 
(with Arrhenius constant and activation energy) is assumed in the model for this dissolution 
controlled period. This period was observed to last until approximately 55% conversion of A for 
all the conditions considered, at which point the reaction appeared to be limited by the intrinsic 
reaction kinetics.  

The kinetic model is combined with a standard semi-batch reactor model with constant 
volume addition (of reagent B).  The model equations are given in the Appendix. Consideration 
of the cooling capacity of the reactor resulted in a limiting relationship between the operating 
policy variables of feed B addition time, tadd, and isothermal temperature, Tiso. For the purposes of 
this study, this relationship is well approximated with Tiso as a quadratic function of tadd since data 
regarding the energy balance is unavailable, where the nominal values of the constants C1, C2 and 
C3 are 7.06, -43.50 and 352.67 respectively. 
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Methanol, org
Bromopropyl, solid (A)

Dimethylamine , aq (B)

 
Figure 3. Multiphase batch reaction process 
      

One of the process development objectives for which the model would be used is to help 
determine the best operating conditions for maximum product yield, YC. A reaction time, tf, of 
less than 8 hours (terminated when the rate of conversion of A falls below 0.1%) and a final yield 
in the impurity, YD, of below 2% must be maintained. The model was optimised to obtain a 
nominal set of operating conditions which maximise the yield of C. 
Of course uncertainty in the model parameters could have a large effect on any results predicted 
by the model. This may be of particular importance regarding the optimal operating policy 
determined subject to the desired limits on process performance.  Hence the methodology 
presented in figure 2 was implemented on the case study. 

Perturbation Analysis indicates 11 uncertain parameters which appear to have a non-
negligible influence on yield of C (YC), yield of D (YD) and the final time (tf): the kinetic rate law 
parameters (Ea1,int, A1,int, Ea2,int, A2,int, Ea1,diss, A2,diss), the conversion related transition point from 
dissolution controlled kinetics to intrinsically controlled kinetics, (XA,diss), the molar ratio of 
active feed (mA0) to reagent feed (mB0) and the quadratic constants of the safety constraint (C1, C2 
and C3). The assumed uncertainties of these parameters are quantified in Table 1. Correlations are 
assumed between the activation energy (Ea) and the natural logarithm of the Arrhenius 
coefficient (A) parameters for each reaction rate constant and between the safety constraint 
constants. 

A total of 490 scenarios were required to satisfy the convergence criterion of 0.5% error in 
the mean and variance parameters for both YD and tf. The key results of an Uncertainty Analysis 
under the nominal optimum isothermal operating conditions are shown in Table 2. Under 
uncertainty in the model parameters the process is predicted to perform particularly poorly 
regarding violation of the safety constraint for Tiso, with an expected probability of passing of 
only 0.281. The probability of passing the YD constraint (at most 2%) is only 0.670 with an 
expected extent of violation of 0.245%. However, the corresponding values for tf appear to 
perform better (at most 8 hours). 
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Table 1. Uncertainty characterisation in the parameters of Case Study. 
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Table 2. Uncertainty Analysis results under nominal optimum isothermal operating conditions 

  YC 
(%) 

YD 
(%) 

tf 
(hr) 

safety 
constraint 

Expected value 96.34 1.79 6.33 - 
Expected extent of constraint violation - 0.245 0.118 0.440 
Probability of passing - 0.670 0.876 0.281 

 
Sensitivity Analysis (step 9) shows which of the parameters are identified as key to the 

important output criteria. Correlated parameters are not included in the analysis since the 
presence of strongly correlated inputs invalidates the linear regression for the standardised 
regression coefficients. Approximate correlation ratios, Figure 4, show that the variance in the 
activation energy of the intrinsic parallel reaction, Ea2 which is parameter number 2 in the figure 
(and the Arrhenius parameter, A2, through correlation and the assumption of a linear joint 
confidence region), is the key uncertain parameter affecting the uncertainty in the prediction for 
both Yield D and Yield C. No single uncertain parameter is identified as being the main 
contributor to the uncertainty in the final time, tf.  
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Figure 4. Sensitivity Analysis results under nominal optimum isothermal operating conditions 
 
 
Further information quantifying the potential uncertainty reduction requirements to meet levels of 
reduction in the YC, YD and tf criteria (step 10) is obtained from the solution of the following 
problem at different levels of desired output uncertainty reduction: 
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original bounding widths about the means of the uniformly distributed uncertain parameters, 
mA0,ratio and XA,diss. Equivalent reductions in the uncertainty in the correlated parameters (A1,int, 
A2,int, A1,diss) are assumed, to maintain the original correlation structures.  
 

 
Figure 5. Model parameter uncertainty reductions meeting desired output criteria uncertainty 
reduction levels.  
Key: ∗ = σEa1,int, ×⋅⋅⋅⋅ = σEa1,diss, •--- = ∆mA0,ratio, o⋅-⋅ = σEa2,int. 
 
The key results of these optimisation problems are shown in Figure 5. Reduction of the 
uncertainty in the intrinsic product and by-product activation energies (and the correlated 
Arrhenius constants) is shown to reduce the uncertainty in the output criteria to levels of around 
60% of the original predicted uncertainties, at a constant rate. As uncertainty in the key input 
parameters is reduced in order to meet the desired levels of uncertainty in the output criteria, the 
contributions of the uncertainty in other input parameters become important and additionally 
need to be reduced. This is indicated in Figure 5 at levels of 60% and 90% output uncertainty 
reductions, where the respective optimal solutions state that reductions in the uncertainty in the 
dissolution activation energy (and the corresponding Arrhenius constant) and the API feed ratio 
become relatively more important than in Ea1,int and Ea2,int. This has clear implications for where 
further more accurate experimental data should be obtained. 
 
 

6. An interval based approach 
 
The approach as implemented above relies on developing statistical information about the data 
items (in the sampling and repeated solution of the stochastic model), often from few data points, 
and the expensive machinery of stochastic optimisation.  
 In the case of process development shown above data is often obtained as a measurement 
with error or uncertainty bounds.  These bounds give an important indication of the uncertainty 
of the measurement but it is only with in depth knowledge can someone know whether the degree 
uncertainty in the measurement is going to have a significant effect in process development.  The 
measurements are often taken by development chemists who are not involved in development of 
the manufacturing process and so while they will have a feeling for the effects on the chemistry 
they will not necessarily know the effect on the manufacturing process. 
 There is again a role for systematically incorporating the uncertainty into the development 
process using a model based approach.  If the model based approach presented in figure 2 is used 
but with intervals rather than stochastic distributions a systematic approach can be developed.  A 
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weakness is that if only intervals are used the approach could be very conservative but it should 
be able to indicate which uncertainty in which measurements have the most effect and whether 
the uncertainty in the design can be significantly improved by better measurement. If data is now 
provided as a measurement with error bounds (intervals), optimization could also be achieved by 
application of interval global optimisation algorithms. 

Two important distinctions are identified in formulating flowsheeting problems. In the 
equation-oriented formulation the flowsheet is treated as a set of mass/energy balance equations 
that are solved simultaneously. The alternative sequential modular approach views the flowsheet 
as interconnected black boxes. Both approaches have their advantages; however the modular 
approach has a particular advantage in that it matches more closely the natural structure of the 
flowsheet. Modular approaches are in general more popular in the chemical industry.  Using 
modular flowsheets built from general models Byrne and Bogle (2000) showed how interval 
methods could be used in conjunction with this type of system.  Modular flowsheets are 
constructed with generic unit modules that can provide the interval bounds, linear bounds, 
derivatives and derivative bounds using extended arithmetic types. Using interval analysis and 
automatic differentiation as the arithmetic types, lower bounding information is used in a branch 
and bound network.   
 The approach shown in Figure 2 could be modified to exploit this interval information using 
interval optimization techniques to solve the optimization problems.  Step 1 requires obtaining 
intervals instead of distributions of the model parameters.  Step two defines instead a 
deterministic system but with intervals for the uncertain parameters (such as the activation 
energies) and uncertain outputs (such as yield in the example above).  The sampling procedure is 
no longer necessary since the optimization is done in terms of the interval bounds only.  Step 5 
remains as for the stochastic problem and step six involves obtaining the globally optimal 
solution for the deterministic problem using the real data points.  In step 4 the models are used to 
obtain the interval bounds on the output variables and a sensitivity analysis can be performed to 
determine the key predicted output uncertainties and hence reduce the dimensionality of the 
subsequent optimization problem.  Finally an interval optimization problem should be solved to 
determine the optimal reduction in input uncertainty that will keep the output uncertainties within 
their desired limits. 
 
This approach has the advantage of requiring only data and error bounds and can use the interval 
optimisation software that is available.  Error bounds can be conservative and this approach will 
help to indicate when it would be most appropriate to really try and improve the accuracy of 
measurements by more careful procedures or by obtaining more sophisticated measuring 
equipment. 
 
 

Conclusions 
 

A systematic approach for incorporating uncertainty in process design has been presented.  A 
stochastic optimisation problem is solved using distributions in the parameter uncertainties to 
determine where the key uncertainties in the data lie.  This was applied to a multiphase batch 
reactor problem shown here and has also been applied to a pharmaceutical process involving 15 
unit operations in sequence (Johnson).  The methodology produced some clear recommendations 
about which measurements would best be improved to reduce the uncertainty in the output 
variables which are key for ensuring that the quality of the product is acceptable. 
 Since much data is often obtained from the laboratory with error bounds we have also 
discussed briefly how the problem could be cast as an interval optimisation problem which would 
determine where error bounds on particular data points were causing particular uncertainty in 
process development. 
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Appendix 

The deterministic model for the multiphase batch reactor 
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2 3   (safety constraint) 
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Initial conditions (inside reactor) 

 m molesA0 1075= .  
m B0 0= , mC0 0= , m D0 0=  

 V dm= 0 7 3.  
 X A0 0=          
           
  
The subscripts diss and int denote dissolution and intrinsic kinetic controlled periods, and k2,diss is 
assumed to follow a similar temperature relationship as k1,diss relative to its intrinsic value.  
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Abstract.  Currently available CAD systems require geometric parameters to have fixed values. 
Valid range information on parameters cannot be properly represented and embedded in existing 
CAD data.  Specifying fixed parameter values implicitly adds rigid constraints on the geometry, 
which have the potential to introduce conflicts during later design stages.  
In this paper, a geometric modeling scheme based on nominal interval representation and analysis 
is presented to represent design uncertainty and inexactness. Parameters are represented by 
nominal intervals, which contain the information of nominal values, lower bounds, and upper 
bounds. Interval constraints represent inexactness at the early design stages, uncertainty in the 
detailed design, as well as the boundary information for design optimization.  
 To solve under-constrained and over-constrained interval problems, iteration-based equation 
solving methods are used. A generalized nonlinear constraint solving method based on linear 
enclosure is developed for fast convergence. Inequalities are transformed into equations and can 
be solved uniformly. Interval subdivision and constraint re-specification methods are developed 
for design refinement. Active and inactive constraints are differentiated in sensitivity analysis.  
 
 

1. Introduction 
 
During the process of design, various parameters are specified, which include geometric 
parameters (e.g. dimension, coordinate, and tolerance) and non-geometric ones (e.g. material 
characteristics, tooling speed, and expected life). Current CAD systems only allow geometric 
parameters to have fixed values, such as the position of a point in 3D space, the direction of a 
line, and the distance between two axes. Instead of simply assigning one real value to a 
parameter, there are some advantages to give an interval value to each parameter in a CAD 
model, which means that the parameter can take any valid value between the lower and upper 
bounds of the interval.  

Fixed parameter values generate some problems. First, fixed-value constraints bring up 
conflicts easily at later design stages. Specifying determined parameter values implicitly adds 
rigid constraints on geometry. The rigid constraints reduce the freedom of geometric entities to 
the minimal level. These dominant constraints will be carried to other design stages and become 
the sources of conflicts. To resolve the conflicts, some parameter values have to be changed. This 
trial-and-error cycle will continue until no conflicts are found. If an interval instead of a fixed 
value is assigned to a parameter so that any real value within the interval is valid, the degrees of 
freedom of geometric entities are increased. As more constraints are imposed onto the designed 
object during the process of design, the freedom of geometric entities will be restricted gradually. 
The allowable intervals of parameter values are reduced by stages. There will be fewer chances 
for conflicts to occur, and several cycles of modification can be saved.  

Second, the requirement of fixed parameter values makes the development of conceptual 
design tools difficult. At the conceptual design stage, actual values of parameters may not be 
known. Usually it is not important to specify fixed values of certain parameters at this stage yet. 
Current CAD systems require that parameter values be fully specified and fixed, thus they are not 
effective tools for conceptual design. It is quite challenging to develop a practically usable 
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Computer-Aided Conceptual Design tool based on the current scheme of fixed parameter values. 
Nevertheless, if a parameter is specified as a range, the problem of parameter partial integrity can 
be solved, i.e., it is not necessary to fix all values of parameters. This increases the flexibility of 
the geometric shape, and the inexactness of design is modeled. 

Third, the specifications of valid parameter range are not captured by fixed-value data. 
Current design optimization process often occurs after parameters are specified at the detailed 
design stage, while the original intention of feasible ranges of parameters from upstream design 
activities is not transferable with the fixed-value scheme. Parameter bounds have to be added 
separately for optimization purpose. However, with the interval representation, the inherent range 
information is directly applicable for parameter optimization. Parameter intervals appropriately 
represent design intent of feasibility, thus integrating the sketching and optimization of design.  

In real design situations, there are some uncertainty factors in CAD modeling. The 
dimensions and shape of the designed objects are computed and stored digitally in CAD systems. 
Representing an infinite number of real numbers by a finite number of bits requires 
approximation. Not all decimal numbers can be represented in binary format exactly. Rounding 
errors come from the approximation. Cancellation errors occur because of catastrophic and 
benign cancellation. The precision of numbers in a computer depends on the word size and 
floating-point representation. Variation exists among different systems with different 
architectures. Uncertainty also comes from the measurement and tolerance of human perception 
during the parameter specification. The real value of measurement is the ideal case that is hard to 
realize from the statistical point of view. In the interval geometry representation, a computer-
generated value can be looked as a sample from the range of values, while the CAD data of a 
designed object is a sample from the population of models. Parameter intervals capture the 
uncertainty characteristics of design. 

In this paper, a nominal interval constraint representation (NICR) scheme based on nominal 
interval values is described to represent design uncertainty and inexactness. It represents soft 
constraints, thus reducing the chance of conflicts during constraint imposition. It provides a 
generic numerical parameter scheme to represent inexactness at the early design stages, 
uncertainty in the detailed design, as well as the boundary information for design optimization. 

 
2. Background 

 
Methods of interval analysis have started being used in computer graphics, including rasterizing 
parametric surfaces (Mudur and Koparkar [1]), ray tracing of parametric surfaces (Toth [2]) and 
implicit surfaces (Kalra and Barr [3]), collision detection of polyhedral objects (Moore and 
Wilhelms [4]) and surfaces (Von Herzen et al. [5], Duff [6], Snyder et al. [7, 8]).  In design and 
engineering applications, Bliek [9] studied the interval analysis to ensure the numerical reliability 
in design computation. Rao and Berke [10] used interval arithmetic in imprecise structural 
analysis. Rao and Cao [11] applied interval analysis in design optimization of mechanical 
systems. Muhanna and Mullen [12, 13] developed interval-based finite-element formulation 
methods for uncertainty in solid and structural mechanics. Interval arithmetic and analysis 
provide efficient and scalable methods to solve constraint systems. Related to interval 
representation, set-based modeling [14], probabilistic modeling, and fuzzy logic are also applied 
in engineering design.  

In CAD applications, Sederberg and Farouki [15] used interval arithmetic in approximating 
Bezier curves. Maekawa and Patrikalakis [16, 17] used interval Bezier curves to solve shape 
interrogation problems. Hu et al. [18, 19] developed rounded-interval arithmetic (RIA) to ensure 
numerical robustness in Boolean operations and boundary evaluation. Further, Abrams et al. [20], 
Shen and Patrikalakis [21] applied RIA in interval non-uniform rational B-splines. Tuohy et al. 
[22] applied interval methods for interpolating measured data with B-spline curves and surfaces. 
Wallner et al. [23] used intervals to bound errors in geometric construction. Chen and Lou [24] 
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proposed methods to bound interval Bezier curve with lower degree interval Bezier curve. Lin et 
al. [25] investigated the boundary evaluation of interval Bezier curve. The above research 
concentrates on the improvement of model’s robustness. Interval parameters embody rounding 
and cancellation errors during floating-point computation.  
From a different perspective, the NICR presented here allows all numerical values of parameters 
including coordinates, dimensions, and other values to be nominal interval numbers. Thus, it 
allows incomplete and inexact of design specification especially at the conceptual design stage. 
Soft constraints compared to traditional fixed-value rigid constraints can be represented. 
Parameters have intrinsic bounds for design optimization. Design intent of parameter validity can 
be integrated into constraints. The probabilistic property of variables is captured in interval 
constraints, which provides a unified representation for different model applications, such as 
Monte Carlo simulation for finite element analysis, tolerance analysis and synthesis, and 
producibility analysis 
 

3. Nominal interval constraints 
 
In NICR, we define interval number X as X = [xL, xN, xU] which contains lower bound value 
xL, nominal value xN, and upper bound value xU. The nominal value is usually corresponding to 
the specified fixed value in current CAD systems.  

The introduction of the nominal value into an interval is necessary for CAD modeling. The 
nominal value represents the actual user specification if the parameter is fixed. It allows current 
CAD modeling system to adopt interval parameters so that ICR can be integrated with current 
fixed-value schemes and visualization methods. Furthermore, the nominal value is allowed to 
change within the range when user specifies a different value. This allows more user interaction 
and captures more specification information. For example, a 2D point P([1,2,3],[4,5,6]) can be 
displayed at (2,5). When P is fixed, its coordinates are ([2,2,2],[5,5,5]). To simplify the notation, 
we can use a real number for a degenerated interval.  

 
3.1  Basic Nominal Interval Definitions 
An n dimensional real number space is denoted as Rn. An n dimensional interval number space is 

denoted as IRn. { }UNLULUNL xxxxxxxxxxX ≤≤≤≤== ,],,[ , where xL ∈ R, xN ∈ R, 
xU ∈ R, and X ∈ IR. 
Given that A = [aL, aN, aU], B = [bL, bN, bU], and ∧  is logical and, we have the following 
relations: 

• equivalence: ( ) ( )UULL babaBA =∧=⇔= .  

• nominal equivalence: ( ) ( ) ( )UUNNLL bababaBA =∧=∧=⇔=: .  

• strictly greater than or equal to: UL baBA ≥⇔≥~ .  

• strictly greater than: UL baBA >⇔>~ .  

• strictly less than or equal to: LU baBA ≤⇔≤~ .  

• strictly less than: LU baBA <⇔<~ .  

• inclusion: ( ) ( )LLUU babaBA ≥∧≤⇔⊆ , ( ) ( )LLUU babaBA >∧<⇔⊂ . 
 

The relations of intervals are illustrated in Figure 1. 0 = [0,0,0] is zero interval. Interval A is 
positive (negative), iff A ~> 0 (A ~< 0). If the nominal value of A = [aL, aN, aU] is not of concern, 
A can simply be denoted as [aL, aU].  
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  A: 
  B: 
                A ~> B                       A ~≥ B                       A ~< B                      A ~≤ B         
 
  A: 
  B: 
                A = B                        A := B                        A ⊂ B                       A ⊃ B 
 
  A: 
  B: 
                A ⊃ B                        A ⊂ B                         A ⊇ B                       A ⊆ B        
 
 
  *Notation:  
                 xL   xN   xU  

Figure 1: Relations between intervals 

 
Interval A = [aL, aN, aU] is empty, denoted as A = ∅, iff aL > aU. A is invalid when aN > aU, or aL 
> aN, or A is empty. The basic arithmetic and set operations are defined as: 

• },and|{ R∈∈∈=∩ xBxAxxBA . If A ∩ B ≠ ∅, it can be derived by 
{ } { } { } { }],min,2/),min,(max,,[max UUUULLLL babababaBA +=∩ . 

• },or|{ R∈∈∈=∪ xBxAxxBA . If A ∩ B ≠ ∅, it can be derived by 
{ } { } { } { }],max,2/),max,(min,,[min UUUULLLL babababaBA +=∪ . 

• },and|{\ R∈∉∈= xBxAxxBA . 
• ],,[ UUNNLL bababaBA +++=+ . 
• ],,[ LUNNUL bababaBA −−−=− . 
• { } { }],,,max,,,,,[min UULUULLLNNUULUULLL bababababababababaBA =⋅ . 

• 








∉∈= BBy
yB

0,11
. 

• 


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

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


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
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
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





>=≥+∞

><≥+∞∪−∞
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The width of an interval is a real number, denoted as wid(A) = aU − aL. wid(∅) = 0. Some 

other notations are ub(A) = aU, lb(A) = aL, and nom(A) = aN. 
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3.2  Sampling Relation between Real Number and Interval Number 
The intervals capture the uncertainty of design. A real number x is a sample of interval X, iff x ∈ 
X. The value of a parameter, which is generated by computer or selected by human designer, is a 
sample of the corresponding set of values within the interval. Therefore, one CAD interval model 
is allowed to generate different shapes because of parameter intervals. Implicitly, a CAD interval 
model defines a set of geometric shapes that automatically accommodate geometry variation.  

Some strict relations exist among intervals, which are related to real number samples. 
yxYyXxYX ℜ∈∀∈∀⇔ℜ ,, . XℜY denotes that X has a strict relation ℜ with Y (X ∈ IR, Y ∈ 

IR). 
•  (strict equivalence): yxByAxBA =∈∀∈∀⇔= ,,~ . 
•  (strictly greater than or equal to): yxByAxBA ≥∈∀∈∀⇔≥ ,,~ .  
•  (strictly greater than): yxByAxBA >∈∀∈∀⇔> ,,~ . 
•  (strictly less than or equal to): yxByAxBA ≤∈∀∈∀⇔≤ ,,~ . 
•  (strictly less than): yxByAxBA <∈∀∈∀⇔< ,,~ . 

 
Besides strict relations, some global relations exist in interval arithmetic evaluation and 

problem solving. yxYyXxYX ℑ∈∃∈∀⇔ℑ ,, . XℑY denotes that X has a global relation ℑ 
with Y (X ∈ IR, Y ∈ IR).  

Global relations ensure the feasibility of interval arithmetic operations and solutions. The goal 
of solving interval problems is to find a region that includes all feasible solutions. The 
corresponding process is to eliminate certainly infeasible points from a given region so as to 
make it as compact as possible. The global relations make global solution and optimization of 
interval analysis possible. For example, the four basic arithmetic operations of intervals follow 
the rule of global relation and generate the global solution with a compact bound. This is the 
default relation in interval analysis. Strict inequalities are special cases of global inequalities. 
Function evaluation and problem solving in interval analysis are normally based on global 
relations. 

•  (global equivalence): yxByAxBA =∈∃∈∀⇔= ,, . 
•  (greater than or equal to): LL baBA ≥⇔≥ . Equivalently, 

yxByAxBA ≥∈∃∈∀⇔≥ ,, . 
•  (greater than): LL baBA >⇔> . Equivalently, yxByAxBA >∈∃∈∀⇔> ,, . 
•  (less than or equal to): UU baBA ≤⇔≤ . Equivalently, 

yxByAxBA ≤∈∃∈∀⇔≤ ,, . 
•  (less than): UU baBA <⇔< . Equivalently, yxByAxBA <∈∃∈∀⇔< ,, . 

 
In a multidimensional interval space, an interval vector can be defined in IRn with each 

component as an interval value, and an interval matrix is defined in IRm × IRn with each element 
as an interval value. Corresponding to a real function f: Rn → Rm, if fset(X) denotes {f(x) | x = (x1, 
x2, …, xn), xi ∈ Xi (i = 1, ..., n), X = (X1, X2 …, Xn), X ∈ IRn}, the inclusion function for f at X F: 
IRn → IRm  if fset(X) ⊆ F(X). A natural inclusion function f(X) for f(x) is obtained by replacing 
each occurrence of the variable xi by interval variable Xi. It is based on the inclusion isotonicity of 
the interval operations [26] and the property of pre-declared inclusions [27]. Generally, the 
natural inclusion function f(X) for f(x) is not tight enough because of dependency between 
variables and wrapping effect [28]. 

Interval vectors with same dimensions can be ranked and sorted.  
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• Interval vector A and B are in a non-decreasing order, 
),,,(),,,,(where, 2121 nn BBBAAA LLp == BABA , if nn BA ≤ , and 

)()( 11 −− ≤→<¬ iiii BABA  recursively apply, starting from i = n.  
• Interval vector A and B are in a non-increasing order, 

),,,(),,,,(where, 2121 nn BBBAAA LLf == BABA , if nn BA ≥ , and 
)()( 11 −− ≥→>¬ iiii BABA  recursively apply, starting from i = n. 

• ).,,,(where)),(wid(max)(maxwid 21 nii
AAAA L== AA  

• ).,,,(where)),(wid(min)(minwid 21 nii
AAAA L== AA  

3.3  Geometry Description 
With the inherent capability of modeling variation, NICR has some special properties that make it 
different from current geometric modeling schemes. It models uncertainty and inexactness in the 
process of design. As the available ranges of parameters are narrowed down gradually, 
uncertainty is ruled out and decisions can be made throughout the design process until design is 
finalized. Changing current constraints or adding extra constraints would lead to different 
geometries. As illustrated in Figure 2, the shape of a 2D rectangular object may vary based on 
coordinates of four corner points within their allowable intervals.  

 
 

 
Figure 2: Constraint-driven geometry in interval modeling 

 
Current parametric modeling scheme has strict requirements on the number of constraints. Only 
well-constrained geometry can be properly solved. The concept of under-constrained geometry in 
traditional parametric or variational design is not critical in NICR. Soft constraint is applied to 
geometry implicitly at every step of value specifications. The effect of adding more constraints is 
to reduce the allowable region of geometric entities systematically so that the final geometry can 
be fixed.  

Over-constrained situation is also allowed in NICR. As illustrated in Figure 3, if the 
geometric constraints in a bracket design are specified as: the position of P0; distances between P0 
and P1, P1 and P2, P2 and P3, and P3 and P0; L0 is perpendicular to L1 as well as to L3; and L0 is 
horizontal, current CAD systems will complain that this geometry is over-constrained,  
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Figure 3: An example of over-constrained geometry in bracket design 

 
In NICR, only those constraints that cause no feasible regions generate conflicts. Intervals 

loosen the current requirement on the number of constraints and give a different view of 
specifying parameters. Some of the previous over-constrained problems will no longer be over-
constrained. 

 
4. Solving interval constraints 

 
To incorporate interval geometric modeling methodology into current CAD systems, several 
fundamental issues related to geometric computation should be addressed. These include linear 
and nonlinear equation representation and solution, which are essential for transformation 
operation, surface intersection, and constraint solving, etc. The process of solving systems of 
equations or inequalities is also called contraction. It starts with initial values of intervals, which 
are rough estimates of variable values. Subintervals that do not contain solutions are then 
eliminated, and intervals are “contracted”. This process proceeds iteratively until there is no 
further improvement. Interval operations involve more steps and procedures than real arithmetic 
operations. Time and space efficient algorithms for solving interval constraint are needed. 
 
4.1  Interval Linear Equations 
Commonly used numerical methods for solving real-value linear equations can be extended to 
solve interval-value linear equations, such as Gaussian elimination and triangular factorization. 
But matrix-based methods only solve well-constrained problems. In contrast, iteration-based 
methods such as Jacobi iteration and Gauss-Seidel iteration have no requirement on the number 
of constraints. An algorithm for solving linear equations with nominal intervals is presented here, 
which is an extension of the Gauss-Seidel method, as listed in Figure 4. Different from methods 
of Alefeld and Herzberger [29], and Hansen and Sengupta [30], under-constrained and over-
constrained linear systems are the major considerations here. 

To solve  

    miYXA i

n

j
jij ,...2,1

1
==∑

=

     (1) 

where X1, X2, …, Xn are interval variables, Aij is interval constant for each i and j, and Y1, Y2, …, 
Ym are interval constants. If an empty interval is derived during the process, there is no solution 
within the given initial intervals. 
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INPUT:  Interval matrix A 
        Interval vector Y 
OUTPUT: Interval vector X 
 
Interval V 
int i, j, k 
REPEAT until stop criterion is met 
    FOR each 1 <= i <= m 
        FOR each 1 <= j <= n 
            IF Aij=0 
                continue next j iteration 
            ENDIF 
            V = 0 
            FOR each 1<=k<j 
                V = V+Aik*Xk 
            ENDFOR 
            FOR each j+1<=k<=n 
                V = V+Aik*Xk 
            ENDFOR 
            V = (Yi – V)/Aij 
            Xj = Xj ∩ V 
        ENDFOR 
    ENDFOR 

 
Figure 4: Algorithm of extended Gauss-Seidel method for solving linear equations (1) 

 
4.2  Interval Nonlinear Equations 
Nonlinear equation systems can be solved by the fix-point method, forward-backward 
propagation, Newton’s method, and Krawczyk method, etc. Given the requirement that a 
constraint solving system should be flexible on the number of constraints yet with fast 
convergence, a linear enclosure method is presented here. This algorithm is more general than 
Kolev’s method [31, 32]. Kolev’s method only considers the degenerated case where the right-
hand sides of constants are all 0s. The evaluation based on linear enclosure has sharper bounds 
than the one based on the interval Newton’s method if the widths of intervals are non-trivial. 
Methods using coefficient matrix inverse operation are not applicable for under-constrained and 
over-constrained problems. Let us consider the interval nonlinear equation system  

    ( ) liCF ii ,...2,1==X ,      (2) 
where X is the interval variable vector [X1, X2, …, Xn]T and Ci is a constant interval.  The 
following steps are needed to solve the system:  
STEP 1: Transform each equation of (2) to separable form to eliminate dependency among 
variables;  
STEP 2: Find the linear enclosure of each of the univariate nonlinear functions and form a linear 
equation system;  
STEP 3: Solve the linear system by the algorithm of Section 4;  
STEP 4: If stopping criterion is met, stop. Otherwise, repeat from STEP 2 to STEP 4.  

 
STEP 1:  
According to Yamamura’s algorithm [33], functions that are composed of four basic arithmetic 
operations (+, −, ×, /), unary operations (sin, exp, log, sqrt, etc.), and the power operation (^) can 
be transformed into the separable form by introducing necessary functions. For example, f = f1 × 
f2 can be transformed to f = (y2− f1

2− f2
2)/2 and y = f1 + f2; f = f1 / f2 can be transformed to f = (y2− 

f1
2−1/ f2

2)/2 and y = f1 + 1/f2; and f = (f1)f2 can be transformed to f = exp(y1), y1= (y2
2− (log(f1))2− 

f2
2)/2, and y2 = log(f1) + f2. In geometric modeling, most of constraints/functions can be 

transformed into the separable form. 
Thus equations (2) can be transformed to 

    ( ) miDXf
n

j
ijij ,...,2,1

0
==∑

=

,    (3) 
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where X1, X2, …, Xn are interval variables and D1, D2, …, Dm are interval constants.  
 

STEP 2:  
Linear enclosure of fij(xj) is found within the initial interval of Xj

(0) for each i and j as follows. Let 
Xj

(0) = [xL
j, xN

j, xU
j], we can have 

    ( )j
Lij

S
ij xff = , and      (4) 

    ( )j
Uij

T
ij xff = .       (5) 

Let  

    j
L

j
U

S
ij

T
ij

ij xx
ff

a
−

−
= .      (6) 

The linear enclosure of fij(xj) can be defined as 
    ( ) )0(

jijijij XxforxaBxE ∈+= ,    (7) 
such that 

    ( ) ( ) )0(
jijij XxforxExf ∈∀∈ ,    (8) 

as illustrated in Figure 5. 
 

 
fij(xj)

xj

Xj
(0)

Dij
 

fij
S

fij
T

Bij
 

 
Figure 5: Linear enclosure of nonlinear interval function 

 
To find a Bij with the minimum width with the given aij, derivation of fij(x) is used if fij(x) is 
continuous and differentiable within interval Xj

(0). The problem is reduced to solve real value 
nonlinear equation and find out solutions of 

    ( ) )0(
jijij Xxforaxf ∈=′ .     (9) 

Given that fij(x) is continuous and differentiable for most geometric relations, equations (9) have 
at least one solution. The Secant method can be used to solve the equation efficiently. Having 
been transformed to the separable form, f'ij(x) is a univariate polynomial function or a function 
with unary operations for most geometric constraints. For polynomial functions, roots can be 
isolated within disjointed intervals individually based on Descartes’ rule of signs before equations 
are solved. Descartes’ bound gives the upper bound of the number of positive roots of a 
polynomial. Once polynomial functions are solved, solutions to unary functions such as sin and 
cos can be easily found. 

Let P(x) be a polynomial with real coefficients, the following transformations are defined: 
•  (Reverse transformation): )/1()]([ xPxxPR n=  where n is the degree of P.  
•  (Translation transformation): )()]([ txPxPTt +=  for t ∈ R. 
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•  (Homothetic transformation): )()]([ cxPxPH c =  for c ∈ R.  
 

Based on the algorithm of Collins et al. [34, 35], Pij(x) for x ∈ Xj
(0) is transformed to Pij

0(x) 
for x∈ [0, 1] by Pij

0(x) = Hb-a[Ta[Pij(x)]] where a is the lower bound of Xj
0 while b is the upper 

bound of Xj
0. The roots of Pij(x) for x ∈ Xj

0 have one-to-one correspondence with the roots of 
Pij

0(x) for x ∈ [0, 1]. A list of root intervals or exact roots can be obtained by calling 
RootIsolation(Pij

0, 0, 0) listed in Figure 6. For each root interval or exact root with information of 
(depth, index) in the list, there is an corresponding 

]
2

)1)((,
2

)([ aindexabaindexabx depthdepth +
+−

+
−

∈  for root intervals or aindexabx depth +
−

=
2

)(
 for 

exact roots such that Pij(x)=0.  
 

INPUT:  Polynomial P with n degree 
        int depth 
        int index 
OUTPUT: RootIntervalList 
 
IF P(0) = 0 
    RootIntervalList.addExactRoot(depth, index) 
ENDIF 
IF P(1) = 0 
    RootIntervalList.addExactRoot(depth, index+1) 
ENDIF 
Polynomial Q = T1[R(P)] 
IF DecartesBound(Q) = 1 
    RootIntervalList.addRootInterval(depth, index) 
ELSEIF DecartesBound(Q) >= 2 
    Polynomial P1 = 2nH1/2[P] 
    RootIsolation(P1, depth+1, 2*index) 
    Polynomial P2 = T1[P1] 
    RootIsolation(P2, depth+1, 2*index+1) 
ENDIF  

Figure 6: RootIsolation procedure based on Descartes’ rule of signs 

 
Thus, interval Xj

(0) can be subdivided into small intervals containing an individual root. Let 
( ) ijij axfxg −′=)( . Solutions to (9) within interval Xj

(0) can be found by (10) iteratively. 

    ,...3,2,1)(
)()( 1

1
1 =

−
−

−=
−

−
+ nxg

xgxg
xxxx n

nn

nn
nn   (10) 

Suppose xjp (p=1, 2, …, P) is the pth solution of equation (9), and xj0 = xL
j. Let Bij = [bL

ij, bN
ij, 

bU
ij], where 
    ( ){ }Ppxaxfb jpijjpij

p

ij
U ,...,2,1,0,max =−= ,   (11a) 

    ( ) 00 jijjij
ij
N xaxfb −= ,      (11b) 

    ( ){ }Ppxaxfb jpijjpij
p

ij
L ,...,2,1,0,min =−= .   (11c) 

From equation (8), we have 
    ( ) ( ) miforXEXf jijjij ,...,2,1=⊆ ,    (12) 

thus, 

    ( ) ( ) ( ) miforXaBXEXf
n

j
jijij

n

j
jij

n

j
jij ,...,2,1

111
=+=⊆ ∑∑∑

===

. (13) 

 
STEP 3: 
Solving (3) thus is reduced to solving linear equations (14) iteratively. 
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   ( ) miforDXaB i

n

j
jijij ,...,2,1

1
==+∑

=

.   (14) 

This linear system can be solved using the algorithm described in Section 4. Because the 
coefficient aij’s are degenerated intervals, only one iteration is needed to solve the linear 
equations. Suppose Yj is the jth variable solution of (14) in the kth iteration. By formula (15), the 
initial value of Xj in the (k+1)th iteration is calculated. If an empty interval is derived, the original 
system has no solution within the given initial intervals (X1

(0), X2
(0), …, Xn

(0)).  
   njforYXX j

k
j

k
j ,...,2,1)()1( =∩=+ .   (15) 

 
STEP 4: 
When the stopping criterion, such as the width of intervals has no further improvement (16a) or 
the intervals are sharp enough (16b), is met, the iteration is stopped. Otherwise, go back to (3) to 
find out the new linear enclosures within the updated intervals and repeat the procedure starting 
from STEP 2. 

    1
1

)(

1

)1( )(wid)(wid ε<−∑∑
==

+
n

j

k
j

n

j

k
j XX  for iteration k.  (16a) 

   2
1

)( )(wid ε<∑
=

n

j

k
jX     for iteration k.  (16b) 

4.2  Interval Inequalities 

Inequalities can be solved by the methods for equations. Consider a set of linear or nonlinear 
inequalities 

   ( ) liCF ii ,...2,1=≤X ,      (17) 
where X is the interval variable vector and Ci is a constant interval, inequalities are transformed 
into equations 

   ( ) liCSF iii ,...2,1==+X ,      (18) 
where Si is a slack variable with initial value of [0,0,+∞]. Similarly, 

   ( ) liCF ii ,...2,1=≥X ,      (19) 
can be transformed into 

   ( ) liCSF iii ,...2,1==+X ,      (20) 
where Si is a slack variable with initial value of [−∞,0,0]. Inequalities can be easily integrated into 
systems of equalities, which is another property of interval constraint representation. 
 

5. Design refinement 
 

One important aspect related to interval representation of allowance is the over estimation of 
allowance. An interval vector simply encloses the allowable region by a hyper cube, which 
usually includes some infeasible region. During the function evaluation, inclusion functions are 
likely to give a set that is larger than the actual solution set. Design refinement is needed to 
generate more delicate design if desirable details have not been achieved yet. There are two ways 
to refine design: interval subdivision and constraint re-specification. Interval subdivision is to 
divide existing interval regions into unions of subintervals to achieve the refined views of current 
design. Constraint re-specification is to modify some of constraints or to add extra valid 
constraints to contract feasible regions. 
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5.1  Interval subdivision 
Interval subdivision (also called subpaving) substitutes an interval vector with multiple interval 
vectors such that the corresponding real space region is subdivided into multiple smaller regions 
to cover the actual solution set more compactly. As shown in Figure 7, the interval vector X can 
be bisected recursively and subintervals are tested individually if they belong to the actual 
solution set. The actual solution set is approximated by the union of subinterval regions. 

 
 

 
Figure 7: Two-dimensional interval vector subdivision 

 
To represent subdivision of intervals concisely, a power interval can be used. An n-

dimensional power interval with degrees of m, denoted as P(m, n), is an ordered list of m non-
overlapped interval vectors of n-dimensional, i.e., P(m, n) = [X1, X2, …, Xm], where Xi ∈ IRn (i = 1, 
…, m), minwid(Xi ∩ Xj) = 0 (i ≠ j), and Xi p  Xi+1 (i = 1, …, m−1).  

Consider a design problem f(X) = Y. The target is to find the actual solution set S ⊆ X with 
the minimal size such that f(S) = Y. Interval arithmetic only gives a valid solution D with f(D) ⊇ 
Y. If the valid solution is represented by power intervals, refinement can be looked as degree 
elevation of power intervals. If the original solution to a problem is found as an n-dimensional 
vector X = [X1, X2, … , Xn,], the corresponding power interval is P(0)

(1,n) = [X]. One elevation 
operation will bisect X, with each interval vector being deleted and new subintervals inserted. 
Feasibility of each new subinterval then can be tested. The procedure of subdivision is shown in 
Figure 8. 

 
INPUT:  Power Interval P(m,n) 
        Interval vector Y 
        Mapping function f 
OUTPUT: Power Interval P(k,n) 
 
IF stop criterion is met 
    Return P(m,n) 
ELSE  
    j = m*n 
    Q(j,n) = Bisect(P(m,n)) 
    FOR 1 <= i <= m*n 
        IF f(Q(j,n)(i))⊄ Y 
           Delete(Q(j,n)(i)) 
        ENDIF 
    ENDFOR 
    Subdivide(Q(j,n),Y,f) 
ENDIF  

Figure 8: Subdivide procedure for power interval elevation 
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5.2  Constraint Re-specification 
Another way to contract a solution is to modify or add valid constraints to narrow down feasible 
regions. Feasibility and effectiveness should be considered simultaneously. Constraint 
modification depends on sensitivity analysis, while adding constraints is largely dependent on 
user’s specification. One basic question is how to differentiate active and inactive constraints. 
Active constraints scope the actual range of solution while inactive constraints have certain level 
of slackness. At the beginning of interval computation, all constraints are active if a sufficiently 
large initial region is given. As the iteration proceeds, some constraints turn to be inactive. The 
decision of which constraints to be modified is based on the selection of active constraints.  
Lemma: For a constraint set p = {f(X) = Y and g(X) = Z}, the subset f(X) = Y with respect to a 
solution D ⊂ X is inactive if f(D) ⊂ Y and g(D) ⊇ Z. 
Proof: 
Suppose S1 and S2 are actual solution sets of f and g respectively, and S is the actual solution set 
of p. Given that f(S1) = Y and f(D) ⊂ Y, because of the property of inclusion monotonic, S1 ⊃ D. 
Similarly, D ⊇ S2. Thus, S1 ⊃ S2.     � 

 

(a) 

(b) 

(c) 

S1 

S2

D1 
S1 D2

D2
S2D1 

x-space
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Z Y 

z-spacey-space 

g

D1 
S1 
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f 

Z Y 

z-spacey-space 
gD2

S2

x-space
f

Z Y 

z-spacey-space 
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Figure 9: Relations of two constraint subsets 

 
As illustrated by Figure 9, subset f is inactive and g is active in case (a); both f and g are 

active in case (b); and f is active and g is inactive in case (c).    
 

6. A numerical example 
 

The NICR kernel is implemented in C++ with an object-oriented programming style. The kernel 
includes the fundamental structure and arithmetic operations of the nominal intervals. It also 
includes the implementation of the algorithms described in previous sections for solving linear 
and nonlinear constraint systems as well as design refinement. The NICR kernel is integrated and 
tested in a geometric modeling system, which is based on ACIS® kernel. 

As a demonstration, the design of the bracket in Figure 3 is used as a numerical example. The 
designer specifies the nominal value, lower bound, and upper bound of each coordinate and 
parameter. Geometric constraints are assigned to generate the outline of the bracket, which is 
over-constrained in the sense of the traditional parametric modeling. The interval geometric 
modeler then calculates the ranges of geometric points based on the algorithms of solving interval 
linear and nonlinear equations. 
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Figure 10 lists the constraint equations in Figure 3 (b), which are transformed to separable 
form. Based on the algorithm in Section 0, this over-constrained nonlinear equation system is 
solved. The numerical results are listed in Table 1.  
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Figure 10: Constraint equations of Figure 3 (b) in separable form 

 

Table 1: Numerical results of the bracket example 

Initial values Final values (after 20 
iterations) 

Descriptions 

X0 = [0, 0.25, 
0.5] 

X0 = [0, 0, 0] x coordinate 
of P0 

Y0 = [0, 0.25, 
0.5] 

Y0 = [0, 0, 0] y coordinate 
of P0 

X1 = [0.5, 0.75, 
1] 

X1 = [0.5, 0.505012, 
0.510024] 

x coordinate 
of P1 

Y1 = [0, 0.25, 
0.5] 

Y1 = [0, 0, 0] y coordinate 
of P1 

X2 = [0.5, 0.75, 
1] 

X2 = [0.5, 0.516686, 
0.533372] 

x coordinate 
of P2 

Y2 = [0, 0.25, 
0.5] 

Y2 = [0.23886, 0.249714, 
0.260569] 

y coordinate 
of P2 

X3 = [0, 0.25, 
0.5] 

X3 = [0, 0.0116355, 
0.0232709] 

x coordinate 
of P3 

Variabl
es 

Y3 = [0, 0.25, 
0.5] 

Y3 = [0.238869, 0.249677, 
0.260485] 

y coordinate 
of P3 

A0 = [0, 0, 0] fixed position 
of P0 

B0 = [0, 0, 0] fixed position 
of P0 

D0 = [0.49, 0.50, 0.51] distance d0 
D1 = [0.24, 0.25, 0.26] distance d1 
D2 = [0.49, 0.50, 0.51] distance d2 
D3 = [0.24, 0.25, 0.26] distance d3 
O1 = [-0.001, 0, 0.001] perpendiculari

ty 

Paramet
ers 

O2 = [-0.001, 0, 0.001] perpendiculari
ty 
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Figure 11 shows the convergence speed when solving the nonlinear equations. After 15 

iterations, the widths of intervals are stabilized.  
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Figure 11: Convergence of Interval calculation in the bracket example 

 
7. Conclusion 

 
This paper presents a nominal interval constraint representation scheme based on nominal interval 
for CAD applications. It provides a generic numerical parameter scheme to represent inexactness 
at early design stages, uncertainty in detailed design, as well as the boundary information for 
design optimization. It relaxes the restriction of under-constrained and over-constrained situations 
for variational geometry. A generalized iterative nonlinear constraint solving method based on 
linear enclosure is developed for fast convergence. Inequalities are transformed into equations 
and can be solved uniformly. Interval subdivision and constraint re-specification methods are 
developed for design refinement. Active and inactive constraints are differentiated in sensitivity 
analysis. 
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Reliable Modeling and Optimization for Chemical Engineering

Applications: Interval Analysis Approach

Youdong Lin, C. Ryan Gwaltney and Mark A. Stadtherr∗
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN
46556, USA

Abstract. In many applications of interest in chemical engineering it is necessary to deal with nonlinear
models of complex physical phenomena, on scales ranging from the macroscopic to the molecular. Frequently
these are problems that require solving a nonlinear equation system and/or finding the global optimum of
a nonconvex function. Thus, the reliability with which these computations can be done often an important
issue. Interval analysis provides tools with which these reliability issues can be addressed, allowing such
problems to be solved with complete certainty. This presentation will focus on three types of applications: 1)
Parameter estimation in modeling of phase equilibrium, including implications of using locally vs. globally
optimal parameters in subsequent computations; 2) Nonlinear dynamics, in particular the location of equi-
librium states and bifurcations of equilibria in ecosystem models used to assess the risk associated with the
introduction of new chemicals into the environment; 3) Molecular modeling, with focus on transition state
analysis of diffusion of a sorbate molecule in a zeolite.

1. Introduction

In many applications of interest in chemical engineering it is necessary to deal with nonlinear
models of complex physical phenomena, on scales ranging from the macroscopic to the
molecular. Frequently these are problems that require solving a nonlinear equation system
and/or finding the global optimum of a nonconvex function. Thus, the reliability with
which these computations can be done often an important issue. For example, if there are
multiple solutions to the model, have all been located? If there are multiple local optima,
has the global solution been found? Interval mathematics can provide the modeler with
the tools needed to resolve these issues with mathematical and computational certainty,
thus providing a degree of problem-solving reliability not available when using standard
methods.

In recent years, it has been shown that strategies based on an interval-Newton approach
can be used to reliably solve a wide variety of global optimization and nonlinear equation
solving problems in chemical engineering, including computation of fluid phase equilibrium
from activity coefficient models [35, 42, 45], cubic equation-of state (EOS) models [5, 19,
20, 44] and statistical associating fluid theory [50], calculation of critical points from cubic
EOS models [43], location of azeotropes [32] and reactive azeotropes [33], computation
of solid-fluid equilibrium [40, 51], parameter estimation using standard least squares [8]
and error-in-variables (EIV) [9, 11, 10], and calculation of adsorption in nanoscale pores
from a density function theory model [34]. In each case, the interval approach provides a
mathematical and computational guarantee either that all solutions have been located in
∗ Author to whom all correspondence should be addressed. E-mail: markst@nd.edu
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a nonlinear equation solving problem or that the global optimum has been found in an
optimization problem.

In this paper, we will summarize recent work on three types of applications: 1) Parameter
estimation in modeling of phase equilibrium, including implications of using locally vs. glob-
ally optimal parameters in subsequent computations; 2) Nonlinear dynamics, in particular
the location of equilibrium states and bifurcations of equilibria in ecosystem models used
to assess the risk associated with the introduction of new chemicals into the environment;
and 3) Molecular modeling, with focus on transition state analysis of diffusion of a sorbate
molecule in a zeolite. In the next section, we provide a brief outline of the interval-Newton
methodology used for nonlinear equation solving and global optimization in the applications
of interest.

2. Background

Several good introductions to interval computations are available [17, 22, 26, 37]. Of partic-
ular interest here is the interval-Newton method. Given an n×n nonlinear equation system
f(x) = 0 with a finite number of real roots in some initial interval, this technique provides
the capability to find tight enclosures of all the roots of the system that lie within the given
initial interval. For the unconstrained minimization of φ(x), a common approach is to seek
stationary points, that is, to solve the nonlinear system f(x) = ∇φ(x) = 0. The global
optimum will be one of roots of this nonlinear equation system, but there may be other
roots as well, representing local optima and saddle points. To identify the global optimum,
it is critical that none of the roots be missed, and such a guarantee can be provided by the
interval-Newton approach. For a constrained optimization problem, the interval-Newton
method can be applied to solve the KKT or Fritz-John conditions. In this section, we
first summarize the interval-Newton methodology used, and then give a couple of simple
examples that demonstrate the power of the approach.

2.1. Methodology

Given some initial interval X(0), the interval-Newton algorithm is applied to a sequence of
subintervals. For a subinterval X(k) in the sequence, the first step is the function range test.
An interval extension F (X(k)) of the function f(x) is calculated. An interval extension
provides upper and lower bounds on the range of values that a function may have in a given
interval. It is often computed by substituting the given interval into the function and then
evaluating the function using interval arithmetic. Thus the interval extension is often wider
than the actual range of function values, but it always includes the actual range. If there
is any component of the interval extension F (X(k)) that does not include zero, then the
interval can be discarded, since no solution of f(x) = 0 can exist in this interval. The next
subinterval in the sequence may then be considered. Otherwise, testing of X(k) continues.
During this step, other interval-based techniques (e.g., constraint propagation) may also be
applied to try to shrink X(k) before proceeding.
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For a global minimization problem, the next step is the objective range test. The interval
extension Φ(X(k)), containing the range of φ(x) over X(k) is computed. If the lower bound
of Φ(X(k)) is greater than a known upper bound on the global minimum, then X(k) can be
discarded since it cannot contain the global minimum and need not be further tested. If it
is known that X(k) contains a point that can be used to update (reduce) the upper bound
on the global minimum (i.e., if the upper bound of Φ(X(k)) is less than the current upper
bound on the global minimum), then this update is performed. This can be done in many
different ways. A simple, cheap approach that we have used effectively is to evaluate φ(x)
at the midpoint of X(k) and use this to update the upper bound. Another approach is to
use a local minimization routine starting at the midpoint of X(k). For this purpose, we have
used the simple, low-overhead direct search algorithm of Hooke and Jeeves [18, 25]. Use of
the local minimizer involves additional computational overhead, but it most cases leads to
a better upper bound on the global minimum. In cases when all the stationary points are
desired rather than just the global minimum, this test step can be turned off.

The next step is the interval-Newton test. The linear interval equation system

F ′(X(k))(N (k) − x(k)) = −f(x(k)), (1)

is solved for a new interval N (k), where F ′(X(k)) is an interval extension of the Jacobian
of f(x), and x(k) is an arbitrary point in X(k). It has been shown [17, 26, 37] that any root
contained in X(k) is also contained in the image N (k). This implies that if the intersection
between X(k) and N (k) is empty, then no root exists in X(k), and also suggests the iteration
scheme X(k+1) = X(k) ∩ N (k). In addition, it has also been shown [17, 26, 37] that, if
N (k) ⊂ X(k), then there is a unique root contained in X(k) and thus in N (k). Thus,
after computation of N (k) from Eq. (1), there are three possibilities: (1) X(k) ∩N (k) = ∅,
meaning there is no root in the current interval X(k) and it can be discarded; (2) N (k) ⊂
X(k), meaning that there is exactly one root in the current interval X(k); (3) neither of
the above, meaning that no conclusion can be drawn. In the last case, if X(k) ∩ N (k) is
sufficiently smaller than X(k), then the interval-Newton test can be reapplied to the resulting
intersection, X(k+1) = X(k)∩N (k). Otherwise, the intersection X(k)∩N (k) is bisected, and
the resulting two subintervals are added to the sequence (stack) of subintervals to be tested.
If an interval containing a unique root has been identified, then this root can be tightly
enclosed by continuing the interval-Newton iteration, which will converge quadratically to
a desired tolerance (on the enclosure diameter).

This approach is referred to as an interval-Newton/generalized-bisection (IN/GB)
method. At termination, when the subintervals in the sequence have all been tested, either
all the real roots of f(x) = 0 have been tightly enclosed, or it is determined that no
root exists. Applied to nonlinear equation solving problems, this can be regarded as a type
of branch-and-prune scheme on a binary tree. Applied to global optimization problems,
with the objective range test turned on, it can be regarded as a type of branch-and-bound
scheme, again on a binary tree. It should be emphasized that the enclosure, existence, and
uniqueness properties discussed above, which are the basis of the IN/GB method, can be
derived without making any strong assumptions about the function f(x) for which roots
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are sought. The function must have a finite number of roots over the search interval of
interest; however, no special properties such as convexity or monotonicity are required, and
f(x) may have transcendental terms.

Clearly, the solution of the linear interval system given by Eq. (1) is essential to this
approach. To see the issues involved in solving such a system, consider the general linear
interval system Az = B, where the matrix A and the right-hand-side vector B are interval-
valued. The solution set S of this system is defined by S =

{
z

∣∣∣ Ãz = b, Ã ∈ A, b ∈ B
}

.
However, in general this set is not an interval and may have a very complex, polygonal
geometry. Thus to “solve” the linear interval system, one instead seeks an interval Z con-
taining S. Computing the interval hull (the tightest interval containing S) is NP-hard [39],
but there are several methods for determining an interval Z that contains but overestimates
S. Various interval-Newton methods differ in how they solve Eq. (1) for N (k) and thus in
the tightness with which the solution set is enclosed. By obtaining bounds that are as tight
as possible, the overall performance of the interval-Newton approach can be improved, since
with a smaller N (k) the volume of X(k) ∩N (k) is reduced, and it is also more likely that
either X(k) ∩N (k) = ∅ or N (k) ⊂ X(k) will be satisfied. Thus, intervals that may contain
solutions of the nonlinear system are more quickly contracted, and intervals that contain
no solution or that contain a unique solution may be more quickly identified, all of which
leads to a likely reduction in the number of bisections needed.

Frequently, N (k) is computed component-wise using an interval Gauss-Seidel approach,
preconditioned with an inverse-midpoint matrix. Though the inverse-midpoint precondi-
tioner is a good general-purpose preconditioner, it is not always the most effective approach
[26]. Recently, a hybrid preconditioning approach (HP/RP), which combines a simple piv-
oting preconditioner with the standard inverse-midpoint scheme, has been described by
Gau and Stadtherr [12] and shown to achieve substantially more efficient computational
performance than the inverse-midpoint preconditioner alone, in some cases by multiple
orders of magnitude. However, it still cannot yield the tightest enclosure of the solution set,
which, as noted above, is in general an NP-hard problem. Lin and Stadtherr [29, 31] have
recently suggested a strategy (LISS LP) based on linear programming (LP) for solving the
linear interval system, Eq. (1), arising in the context of interval-Newton methods. Using
this approach, exact component-wise bounds on the solution set can be calculated, while
avoiding exponential time complexity. In numerical experiments [29, 31], LISS LP has been
shown to achieve further computational performance improvements compared with HP/RP.

2.2. Examples

To provide some initial examples of the power of this methodology, we use two global
optimization problems, both of which have a very large number of local minima.

2.2.1. Trefethen Challenge Problem
This is a global optimization problem given by Trefethen [46] as part of a set of challenge
problems in which at least 10 digits of precision were required in the final results. The global
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minimum of the function

f(x, y) = exp(sin(50x)) + sin(60 exp(y)) + sin(70 sin(x)) + sin(sin(80y))

− sin(10(x + y)) + (x2 + y2)/4
(2)

is sought, where x ∈ [−1, 1] and y ∈ [−1, 1]. On the unit square ([0, 1] × [0, 1]) alone, the
function has 667 local minima, as well as many other stationary points.

This global optimization problem was solved successfully, with more than 10 digits of
precision, in only 0.16 seconds CPU time on a Sun Blade 1000 model 1600 workstation,
using the LISS LP approach. The results for the global optimum are

x ∈ [−0.02440307969437517,−0.02440307969437516],

y ∈ [0.2106124271553557, 0.2106124271553558],

and
f ∈ [−3.306868647475245,−3.306868647475232]

This proves to be a very easy problem to solve using the interval approach.

2.2.2. Siirola’s Problem
This problem is to find the global minimum of the function

f(x) = 100
N∏

i=1

5∑

j=1

(
j5

4425
cos(j + jxi)

)
+

1
N

N∑

i=1

(xi − x0,i)2, (3)

where xi ∈ [x0,i − 20, x0,i + 20] and x0,i = 3, i = 1, ..., N . This is used as a test problem by
Siirola et al. [41]. There are 2048 local minima for the case N = 2 and on the order of a
hundred million (108) local minima for the case N = 5. The problem also has multiple (N)
global minimizer points. The problems were solved for the cases of N = 2 to N = 6 on a
Dell workstation (1.7 GHz Intel Xeon processor running Linux) using LISS LP with local
minimizer.

Results are shown in Table I. For each value of N , there are N global minimizer points,
all of which have been found. The global minimizer points can all be expressed in terms
of only two numbers, denoted in Table I as x∗i and x∗j 6=i. The i-th global minimizer point
will have the value x∗i for its i-th element, and the value x∗j 6=i for its other N − 1 elements.
Again this proves to be a relatively easy problem to solve using the interval methodology.
The results also show the exponential complexity that may be associated with deterministic
global optimization (in general, an NP-hard problem).

The subsequent sections will now focus on three types of actual applications in chemical
engineering, involving parameter estimation, nonlinear dynamics, and molecular modeling.
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Table I. Global solution of Siirola’s problem.

Global Minimizer Points

N x∗i x∗j 6=i Global Minimum CPU time (s)

2 4.6198510288 5.2820519601 -88.1046253312 0.07

3 4.6201099154 5.2824296177 -87.6730486951 2.12

4 4.6202393815 5.2826184940 -87.4572049443 33.95

5 4.6203170683 5.2827318347 -87.3276809494 413.61

6 4.6203688625 5.2828074014 -87.2413242244 4566.42

3. Parameter Estimation in VLE Modeling

Because of its importance in the design of separation systems such as distillation, much
attention has been given to modeling the thermodynamics of phase equilibrium in fluid
mixtures, especially the case of vapor-liquid equilibrium (VLE). Typically these models take
the form of excess Gibbs energy models or equation of state models, with binary parameters
in the models determined by parameter estimation from experimental data. As an example,
we consider here the estimation from binary VLE data of the energy parameters in the
Wilson equation for liquid phase activity coefficient.

3.1. Problem Formulation

Expressed in terms of the molar excess Gibbs energy gE for a binary system, and the
liquid-phase mole fractions x1 and x2, the Wilson equation is

gE

RT
= −x1 ln(x1 + Λ12x2)− x2 ln(x2 + Λ21x1) (4)

from which expressions for the activity coefficients are

ln γ1 = − ln(x1 + Λ12x2) + x2

[
Λ12

x1 + Λ12x2
− Λ21

Λ21x1 + x2

]
(5)

ln γ2 = − ln(x2 + Λ21x1)− x1

[
Λ12

x1 + Λ12x2
− Λ21

Λ21x1 + x2

]
. (6)

The binary parameters Λ12 and Λ21 are given by

Λ12 =
v2

v1
exp

[
− θ1

RT

]
(7)

Λ21 =
v1

v2
exp

[
− θ2

RT

]
, (8)

where v1 and v2 are the pure component liquid molar volumes, T is the system temperature,
R is the gas constant, and θ1 and θ2 are the energy parameters that need to be estimated.
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Given VLE measurements and assuming an ideal vapor phase, experimental values γ1,exp

and γ2,exp of the activity coefficients can be obtained from the relation

γi,exp =
yi,expPexp

xi,expP 0
i

, i = 1, 2, (9)

where xi,exp and yi,exp are, respectively, the experimental liquid and vapor phase mole
fractions of component i, Pexp is the experimental pressure, and P 0

i is the vapor pressure
of pure component i at the system temperature T . For the example problem here we follow
Gmehling et al. [13] and use the relative least squares objective

φ(θ) ≡
n∑

j=1

2∑

i=1

(
γji,exp − γji,calc(θ)

γji,exp

)2

, (10)

where the γji,calc(θ) are calculated from the Wilson equation at conditions (temperature,
pressure and composition) coincident to those used when measuring γji,exp, and n is the
number of data points.

3.2. Results and Discussion

This parameter estimation problem has been solved for a large number of systems, and
results presented in the DECHEMA VLE Data Collection [13]. Gau et al. [8] applied an
interval-Newton approach to a few systems to determine the globally optimal parameters,
and found that, in several cases, the parameters reported in the DECHEMA collection
were only locally optimal parameters. A particularly interesting problem is the system
benzene(1) – hexafluorobenzene(2), for which there are ten data sets, both isothermal and
isobaric, found in DECHEMA. As shown in Table II, using the interval-Newton methodology
(IN/GB), new globally optimal parameter values are discovered in five of the ten cases. CPU
times are on a Sun Ultra 2/1300 workstation.

While the globally optimal parameter values provide a somewhat better prediction of
activity coefficients, as measured by the relative least squares objective φ, it is not clear
whether this better fit will actually result in more accurate calculations of vapor-liquid
equilibrium from the activity coefficient model. To test this, for the five cases in which
new globally optimal parameters were found, we used both the locally optimal parameters
(DECHEMA) and the globally optimal parameters (IN/GB) to predict the presence and
location of homogeneous azeotropes. A homogeneous azeotrope is an equilibrium state in
which the vapor and liquid phases have the same composition. Knowledge of azeotropes is
critical in the design of distillation operations. Since separation by distillation is based on
the difference in composition between liquid and vapor phases, if there is a homogeneous
azeotrope at some composition, it will create a bottleneck beyond which no further separa-
tion can occur. The method of Maier et al. [32], which employs an interval method and is
guaranteed to find all homogeneous azeotropes, or determine with certainty that there are
none, was used to do the computation of azeotropes.
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Results of the azeotrope calculations are shown in Table III, along with experimental
data indicating that this system has two homogeneous azeotropes. However, when the
locally optimal parameters reported in DECHEMA are used in azeotrope prediction, there
are three cases in which no azeotrope is found, and in the remaining two cases only one
azeotrope is found. Using the globally optimal parameters found using the interval method,
two azeotropes are predicted in all cases. In this case, by finding the globally, as opposed to
locally, optimal parameter values, it clearly makes the difference between predicting physical
reality or not. If the DECHEMA parameters are used, one would conclude that the Wilson
equation is a very poor model. However, when the globally optimal parameters values are
used, it appears that the Wilson equation is actually a relatively good model, though a
better prediction of the azeotrope compositions would be desirable.

The difference between the use of the globally and locally optimal parameters can also
have an effect on many other types of calculations. For example, Ulas et al. [48] demon-
strate how batch distillation optimal control profiles are affected by using the globally
optimal parameter values predicted by IN/GB, versus the locally optimal parameters
published in DECHEMA. Since batch distillation is a dynamic process, the uncertain-
ties in model parameters are translated into time-dependent uncertainties. Two different
time-dependent relative volatility profiles are obtained using global and local parameter
values for the Wilson model. These profiles are statistically analyzed and represented
by Ito processes. The batch distillation optimal control problem is then solved for three
cases: the stochastic global case (relative volatility is represented by an Ito process, obtained
from global parameters), the stochastic local case (relative volatility is represented by an
Ito process, obtained from local parameters) and the deterministic case (relative volatility
is taken as constant). The results of these case studies show that the stochastic global reflux
ratio profile results in the highest product yield and the product purity is significantly closer
to the specified purity for optimal control.

In addition to problems involving a simple least squares objective, such as discussed
above, the interval methodology can also be applied to parameter estimation problems in
which the error-in-variables (EIV) approach is used. For example, Gau and Stadtherr [9, 11,
10], consider EIV parameter estimation problems in the modeling of VLE, reaction kinetics,
and heat exchange networks, and solve them using the HP/RP algorithm for the interval-
Newton method. When the EIV approach is used, the dimensionality of the optimization
problem becomes much larger. The largest problem solved was a heat exchanger network
problem with 264 variables [11]. Parameter estimation problems that require solving a
nonlinear and nonconvex optimization problem, and for which there is thus the potential
for multiple local optima, occur in many areas of engineering and science. This is an area
in which use of an interval approach to guarantee global optimality could have a significant
impact.

REC2004



278

T
a
b
le

II
I.

A
ze

o
tr

o
p
e

p
re

d
ic

ti
o
n

fo
r

b
en

ze
n
e(

1
)

–
h
ex

a
fl
u
o
ro

b
en

ze
n
e(

2
)

sy
st

em
.

D
a
ta

T
(o

C
)o

r
D

E
C

H
E

M
A

IN
/
G

B
E

x
p
er

im
en

t

S
et

P
(m

m
H

g
)

x
1

x
2

P
o
r

T
x

1
x

2
P

o
r

T
x

1
x

2
P

o
r

T

1
T

=
3
0

0
.0

6
6
0

0
.9

3
4
0

P
=

1
0
7

0
.0

5
4
1

0
.9

4
5
9

P
=

1
0
7

0
.1

5
0
.8

5
P

=
1
0
7

0
.9

3
4
2

0
.0

6
5
8

1
2
1

0
.9

5
0
.0

5
1
2
0

2
4
0

0
.0

3
1
5

0
.9

6
8
5

1
6
8

0
.0

7
6
1

0
.9

2
3
9

1
6
8

0
.1

6
0
.8

4
1
6
7

0
.9

2
4
4

0
.0

7
5
6

1
8
5

0
.9

3
0
.0

7
1
8
3

3
5
0

N
O

N
E

0
.0

9
8
8

0
.9

0
1
2

2
5
5

0
.1

7
0
.8

3
2
5
4

0
.9

1
1
4

0
.0

8
8
6

2
7
5

0
.9

0
0
.1

0
2
7
3

4
5
0

N
O

N
E

0
.0

5
8
8

0
.9

4
1
2

2
5
6

0
.1

7
0
.8

3
2
5
4

0
.9

1
1
3

0
.0

8
8
7

2
7
4

0
.9

0
0
.1

0
2
7
3

7
P

=
3
0
0

N
O

N
E

0
.1

6
1
2

0
.8

3
8
8

T
=

5
4
.1

3
0
.2

0
0
.8

0
T

=
5
4
.5

5

0
.9

3
1
5

0
.0

6
8
5

5
2
.4

9
0
.8

9
0
.1

1
5
2
.5

0

REC2004



279

4. Nonlinear Dynamics: Ecological Modeling

A problem of frequent interest in many fields of science and engineering is the study of
nonlinear dynamics. Through the use of bifurcation diagrams, a large amount of information
concerning the number and stability of equilibria in a nonlinear ODE model can be concisely
represented. Bifurcations of equilibria are typically found by solving a nonlinear algebraic
system consisting of the equilibrium (steady-state) conditions along with one or more aug-
menting functions. Typically this equation system is solved using some continuation-based
tool (e.g., AUTO [6]). However, in general, these methods do not provide any guarantee
that all bifurcations will be found, and are often initialization dependent. Thus, without
some a priori knowledge of system behavior, one may not know with complete certainty if
all bifurcation curves have been identified and explored. We demonstrate here the use of an
interval-Newton methodology as a way to ensure that all equilibrium states and bifurcations
of interest are found.

In particular, we are interested in locating equilibrium states and bifurcations in food
chain models. These models are descriptive of a wide range of behaviors in the environment,
and are useful as a tool to perform ecological risk assessments. Our interest in ecological
modeling is motivated by its use as one tool in studying the impact on the environment of
the industrial use of newly discovered materials. Clearly it is preferable to take a proactive,
rather than reactive, approach when considering the safety and environmental consequences
of using new compounds. Of particular interest is the potential use of room temperature
ionic liquid (IL) solvents in place of traditional solvents [4]. IL solvents have no measurable
vapor pressure and thus, from a safety and environmental viewpoint, have several potential
advantages relative to the traditional volatile organic compounds (VOCs) used as solvents,
including elimination of hazards due to inhalation, explosion and air pollution. However, ILs
are, to varying degrees, soluble in water; thus, if they are used industrially on a large scale,
their entry into the environment via aqueous waste streams is of concern. The effects of trace
levels of ILs in the environment are today essentially unknown and thus must be studied.
Single species toxicity information is very important as a basis for examining the effects that
a contaminant will have on an environment. However, this information, when considered
by itself, is insufficient to predict impacts on a food chain, food web, or an ecosystem.
Ecological modeling provides a means for studying the impact of such perturbations on
a localized environment by focusing not just on the impact on one species, but rather on
the larger impacts on the food chain and ecosystem. Of course, ecological modeling is just
one part of a much larger suite of tools, including toxicological [7, 21], hydrological and
microbiological studies, that must be used in addressing this issue.

Food chain models are often simple, but display rich mathematical behavior, with varying
numbers and stability of equilibria that depend on the model parameters (e.g., [14, 36]).
Therefore, bifurcation analysis is quite useful in characterizing the mathematical behavior
of predator/prey systems, as it allows for the concise representation of model behavior over
a wide range of parameters. We will focus on one particular food chain model here, namely
a tritrophic (prey, predator, superpredator) Rosenzweig-MacArthur model, as described in
much more detail by Gwaltney et al. [16]
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4.1. Problem Formulation

The Rosenzweig-MacArthur model features a logistic prey (i = 1), and hyperbolic (Holling
Type II) predator (i = 2) and superpredator (i = 3) responses. In terms of the biomasses
x1, x2 and x3, the model is given by

dx1

dt
= x1

[
r

(
1− x1

K

)
− a2x2

b2 + x1

]
(11)

dx2

dt
= x2

[
e2

a2x1

b2 + x1
− a3x3

b3 + x2
− d2

]
(12)

dx3

dt
= x3

[
e3

a3x2

b3 + x2
− d3

]
. (13)

Here r is the prey growth rate constant, K is the prey carrying capacity of the ecosystem,
the di are death rate constants, the ai represent maximum predation rates, the bi are
half-saturation constants, and the ei are predation efficiencies.

The equilibrium (steady-state) condition is simply

dx/dt = 0, (14)

which in this case is subject to the feasibility condition x ≥ 0. Thus, once all the model
parameters have been specified, there is a 3×3 system of nonlinear equations to be solved for
the equilibrium states. The stability of these states can be determined from the eigenvalues
of the Jacobian J (of dx/dt). According to linear stability analysis, for an equilibrium
state to be stable, all of the eigenvalues of the Jacobian must have negative real parts. In
addition to equilibrium states, we are also interested in computing bifurcations of equilibria.
These include the appearance and disappearance of equilibrium states (fold or saddle node
bifurcation), the exchange of stability of two equilibria (transcritical bifurcation), and the
change of stability of an equilibrium point (Hopf bifurcation). Three types of codimension-1
bifurcations, namely fold, transcritical and Hopf, and two types of codimension-2 bifur-
cations, namely double-fold (or double-zero) and fold-Hopf are of particular interest. For
codimension-1 bifurcations there is one free parameter and one additional augmenting con-
dition that must be satisfied. For a fold or transcritical bifurcation the additional condition
is that an eigenvalue of the Jacobian is zero, or equivalently

det[J(x, α)] = 0, (15)

where α is the free parameter. For a Hopf bifurcation the additional condition is that
the Jacobian has a pair of complex conjugate eigenvalues whose real parts are zero. This
condition can also be expressed [28] in terms of a bialternate product as

det[2J(x, α)¯ I] = 0. (16)

It can also be shown that to locate a double-fold or a fold-Hopf codimension-two bifurca-
tion of equilibrium, the equilibrium condition can be augmented with the two additional
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equations

det[J(x, α, β)] = 0 (17)
det[2J(x, α, β)¯ I] = 0 (18)

and two additional variables (free parameters) α and β.
Whether one is looking for equilibrium states, or the bifurcations of equilibria discussed

above, there is a system of nonlinear equations to be solved that may have multiple solutions,
or no solutions, and the number of solutions may be unknown a priori. For simple models,
including the Rosenzweig-MacArthur model, it may be possible to solve for some of equi-
librium states and bifurcations analytically, but for more complex models a computational
method is needed that is capable of finding, with certainty, all the solutions of the nonlinear
equation system.

4.2. Results and Discussion

Following Gragnani et al. [14], the parameters used were set to a2 = 5/3, b2 = 1/3, e2 = 1,
d2 = 0.4, a3 = 0.05, b3 = 0.5, e3 = 1, and d3 = 0.01. A bifurcation diagram with the prey
carrying capacity, K, and the prey growth rate constant, r, as the free parameters was then
computed using the IN/GB methodology, with the result shown in Fig. 1. In an r vs. K
bifurcation diagram the values of r at which bifurcations occur are plotted as a function of
K. Such a diagram was generated here by using the IN/GB method to repeatedly solve the
augmented systems for r and x for slightly different values of K, going from K = 0 to K
= 2 in steps of K = 0.005. There may be some values of K for which one of the augmented
systems has an infinite number of solutions for r (i.e., the vertical line in Fig. 1). This case
cannot be handled directly by the IN/GB technique, or could be missed entirely by the
stepping in K. Thus, to ensure that all of the bifurcations are found, it is necessary to also
scan in the r direction. That is, the IN/GB method was also used to repeatedly solve the
augmented systems for K and x for slightly different values of r, in this case going from
r = 0 to r = 2 in steps of r = 0.005. To locate codimension-two bifurcations (double-fold
and fold-Hopf), the IN/GB method was used to solve the doubly-augmented system given
by Eqs. (14,17,18) for K, r and x. The average CPU time (1.7 GHz Intel Xeon processor
running Linux) for each solution of Eqs. (14,15) for fold and transcritical bifurcations was
about 0.6 seconds, and for each solution of Eqs. (14,16) for Hopf bifurcations was about
1.4 seconds. Solving Eqs. (14,17,18) for codimension-two bifurcations required about 39
seconds. The initial intervals used for the components of x were in all cases [0, 5000] and
for the parameters K and r were [0, 2].

As shown in Fig. 1, fold and transcritical of equilibria curves were both found, and are
labeled FE and TE respectively. Hopf bifurcation curves were also found, and are labeled
H or Hp (for planar Hopf). A planar Hopf bifurcation is one that occurs in a independent
two-variable subset of state space. A single fold-Hopf bifurcation was located; this point is
represented as an open diamond and labeled FH (no double-fold bifurcations were found).
This bifurcation diagram corresponds exactly with the known K vs. r bifurcation diagram
for this model, as reported by Gragnani et al. [14] This confirms the utility and accuracy of
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Figure 1. Bifurcation diagram of r vs. K. TE: Transcritical of equilibrium; FE: Fold of equilibrium; H: Hopf;
Hp: Planar Hopf; FH: Fold-Hopf codimension-2.

the IN/GB algorithm for computing bifurcation of equilibria diagrams. Bifurcation diagrams
such as this can be very easily and automatically generated using the IN/GB methodology,
with complete certainty that all bifurcation curves have been found.

Using the same procedure as described above, a d2 vs. K bifurcation diagram for the
Rosenzweig-MacArthur model was also generated. The predator death rate constant d2 is
now a free parameter, and r is now a fixed parameter set at r = 1. The resulting bifurcation
diagram is shown in Fig. 2. This diagram illustrates that at a constant prey carrying capacity
and growth rate constant (r = 1), increasing or decreasing the predator death rate will
cause macroscopic changes (bifurcations) in system behavior. For relatively small values
of K, there are two transcritical bifurcations that occur as d2 is changed, and for larger
values of K there are also two Hopf bifurcations. No double-fold or fold-Hopf codimension-
two bifurcations were found. In order to more closely observe these changes in behavior,
solution branch diagrams showing the equilibrium states were generated by using IN/GB
to solve Eq. (14) for the case of K = 1. Fig. 3 gives the solution branch diagrams for x as
d2 is varied from 0 to 2.

Based on the bifurcation diagram (Fig. 2) at K = 1, we would expect that as d2 is
increased from 0 to 2, there should be observed first a Hopf bifurcation (the planar Hopf is
not observed in this case, due to the sign of the third eigenvalue) and then two transcritical
bifurcations. This is what is in fact seen in Fig. 3. These diagrams illustrate that there
is a minimum predator death rate constant d2 that results in stable system behavior. At
low predator death rates, the system is unstable and likely exhibits cycles of population
booms and busts. As the predator death rate increases, enough predators are dying off at
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Figure 2. Bifurcation diagram of d2 vs. K. TE: Transcritical of equilibrium; FE: Fold of equilibrium; H:
Hopf; Hp: Planar Hopf.

any given time to prevent the cycles from occurring, and the cycles collapse to a stable
steady-state in a Hopf bifurcation. These results also give a sense of the effects of releasing
a toxin that specifically targets the predator trophic level, and increases the predator death
rate constant. Prior to examining these diagrams, one would expect that such a release
would have an impact on both the predator and the superpredator populations. The plot
of x3 in Fig. 3 shows that increasing the predator death rate constant causes a linear
decrease in the stable superpredator biomass. However, according to the plot of x2 in Fig.
3, the stable predator population is not affected until the superpredator population reaches
zero. Though these results may seem somewhat counterintuitive, they are indicative of the
complex interactions that may occur in food chains. An ecotoxin released at a very low
concentration could affect organisms at different trophic levels to varying degrees. For the
case considered here, one might observe an impact on the superpredator population and
thus assume that the effect of the ecotoxin was at that level, even though the actual effect
is on the predator level (death rate constant d2). Using models such as this one can obtain
insights into the impacts of an ecotoxin that might not otherwise be apparent.

The interval methodology has been applied successfully to several other ecological models
by Gwaltney et al. [16] and Gwaltney and Stadtherr [15]. We anticipate that this method-
ology will also be useful for computing equilibrium states and bifurcations of equilibria in
a wide variety of other problems in engineering and science in which nonlinear dynamical
behavior is of interest.
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Figure 3. Solution branch diagram illustrating the change in equilibrium states (species biomass) with
changes in d2. From left to right: prey, predator, and superpredator biomasses. K = 1 and r = 1 for all three
plots.

5. Molecular Modeling: Transition State Analysis

Transition-state theory is a well-established methodology which, by providing an approach
for computing the kinetics of infrequent events, is useful in the study of numerous physical
systems. Classically, it assumes that there exists a potential energy hypersurface which
divides the space into a reactant region and a product region. Although the theory was
originally for interpretation of chemical reaction rates, it can be amended for non-reacting
systems, including desorption/adsorption and diffusion processes in which no chemical
bonds are broken or made.

Of particular interest here is the problem of computing the diffusivity of a sorbate
molecule in a zeolite. This can be done using the methodology of transition-state theory, as
described by June et al. [23] It is assumed that diffusive motion of the sorbate molecules
through the zeolite occurs by a series of uncorrelated hops between potential minima in the
zeolite lattice. A sorption state or site is constructed around each minimum of the potential
energy hypersurface. A first order rate constant, kij , is then associated with the rate of
transition between a given pair of neighboring sites, i and j. Any such pair of sites is then
assumed to be separated by a dividing surface on which a saddle point of the potential energy
hypersurface is located. The saddle point can be viewed as the transition state between sites,
and a couple of steepest decent paths from the saddle point connect the minima associated
with the i and j sites. After rate constants have been determined for all possible transitions
between the sorption sites, a continuous-time/discrete-space Monte Carlo calculation can
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then be used to determine the self-diffusivity of the sorbate molecules. Obviously, in this
application, and in other applications of transition-state theory, finding all local minima
and saddle points of the potential energy surface, V, is critical. We demonstrate here, using
a sorbate-zeolite system, the use of the interval-Newton methodology to find all stationary
points of a potential energy surface.

Stationary points satisfy the condition g = ∇V = 0; that is, at a stationary point
the gradient of the potential energy surface is zero. Using the eigenvalues of H = ∇2V,
the Hessian of the potential energy surface, stationary points can be classified into local
minima, local maxima, and saddle points (of order determined by the number of negative
eigenvalues). There are a number of methods for locating stationary points. A Newton or
quasi-Newton method, applied to solve the nonlinear equation system ∇V = 0, will yield a
solution whenever the initial guess is sufficiently close to a stationary point. This method can
be used in an exhaustive search, using many different initial guesses, to locate stationary
points. The set of initial guesses to use might be determined by the user (intuitively or
arbitrarily) or by some type of stochastic multistart approach. Another popular approach
is the use of eigenmode-following methods, as done, for example, by Tsai and Jordan [47].
These methods can be regarded as variations of Newton’s method. In an eigenmode-following
algorithm, the Newton step is modified by shifting some of the eigenvalues of the Hessian
(from positive to negative or vice versa). By selection of the shift parameters, one can
effectively find the desired type of stationary points, e.g. minima and first-order saddles.
There are also a number of other approaches, many involving some stochastic component,
for finding stationary points.

In the context of sorbate-zeolite systems, June et al. [23] use an approach in which minima
and saddle points are located separately. A three step process is employed in an exhaustive
search for minima. First, the volume of the search space (one asymmetric unit) is discretized
by a grid with a spacing of approximately 0.2Å, and the potential and gradient vector are
tabulated on the grid. Second, each cube formed by a set of nearest-neighbor grid nodes
is scanned, and the three components of the gradient vector on the eight vertices of the
cube checked for changes in sign. Finally, if all three components are found to change sign
on two or more vertices of the cube, a BFGS quasi-Newton minimization search algorithm
is initiated to locate a local minimum, using the coordinates of the center of the cube as
the initial guess. Two different algorithms are tried for determining the location of saddle
points. One searches for global minimizers in the function gTg, i.e. the sum of the squares
of the components of the gradient vector. The other algorithm, due to Baker [3], searches
for saddle points directly from an initial point by maximizing the potential energy along
the eigenvector direction associated with the smallest eigenvalue and by minimizing along
directions associated with all other eigenvalues of the Hessian.

All the methods discussed above, however, have a major shortcoming, namely that they
provide no guarantee that all local minima and first order saddle points will actually be
found. One approach to resolving this difficulty is given by Westerberg and Floudas [49], who
transform the equation-solving problem ∇V = 0 into an equivalent optimization problem
that has global minimizers corresponding to the solutions of the equation system (i.e.,
the stationary points of V). A deterministic global optimization algorithm, based on a
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branch-and-bound strategy with convex underestimators, is then used to find these global
minimizers. Whether or not all stationary points are actually found depends on proper
choice of a parameter (alpha) used in obtaining the convex underestimators, and Westerberg
and Floudas do not use a method that guarantees a proper choice. However, there do
exist techniques [1, 2], based on an interval representation of the Hessian, that in principle
could be used to guarantee a proper value of alpha, though likely at considerable expense
computationally. We demonstrate here an approach in which interval analysis is applied
directly to the solution of ∇V = 0 using an interval-Newton methodology. This provides a
mathematical and computational guarantee that all stationary points of the potential energy
surface will be found (or, more precisely, enclosed within an arbitrarily small interval).

5.1. Problem Formulation

Zeolites are materials in which AlO4 and SiO4 tetrahedra are the building blocks of a
variety of complex porous structures characterized by interconnected cavities and channels
of molecular dimensions [24]. Silicalite contains no aluminum and thus no cations; this has
made it a common and convenient choice as a model zeolite system. The crystal structure
of silicalite, well known from X-ray diffraction studies [38], forms a three-dimensional in-
terconnected pore network through which a sorbate molecule can diffuse. In this work, the
phase with orthorhombic symmetry is considered and a rigid lattice model, in which all
silicon and oxygen atoms in the zeolite framework are occupying fixed positions and there
is perfect crystallinity, is assumed. One spherical sorbate molecule (united atom) will be
placed in the lattice, corresponding to infinitely dilute diffusion. The system is comprised of
27 unit cells, each of which is 20.07× 19.92× 13.42Å with 96 silicon atoms and 192 oxygen
atoms.

All interactions between the sorbate and the oxygen atoms of the lattice are treated
atomistically with a truncated Lennard-Jones 6-12 potential. That is, for the interaction
between the sorbate and oxygen atom i the potential is given by

Vi =





a
r12
i

− b
r6
i

ri < rcut

0 ri ≥ rcut,
(19)

where a is a repulsion parameter, b is an attraction parameter, rcut is the cutoff distance,
and ri is the distance between the sorbate and oxygen atom i. This distance is given by

r2
i = (x− xi)2 + (y − yi)2 + (z − zi)2, (20)

where (x, y, z) are the Cartesian coordinates of the sorbate, and (xi, yi, zi), i = 1, . . . , N
are the Cartesian coordinates of the N oxygen atoms. The silicon atoms, being recessed
within the SiO4 tetrahedra, are neglected in the potential function [27]. Therefore, the
total potential energy, V, of a single sorbate molecule in the absence of neighboring sorbate
molecules is represented by a sum over all lattice oxygens,

V =
N∑

i=1

Vi. (21)
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The interval-Newton methodology will be applied to determine the sorbate locations
(x, y, z) that are stationary points on the potential energy surface V given by Eq. (21), that
is, to solve the nonlinear equation system ∇V = 0. To achieve tighter interval extensions of
the potential function and its derivatives, and thus improve the performance of the interval-
Newton method, the mathematical properties of the Lennard-Jones potential and its first-
and second-order derivatives can be exploited, as described in detail by Lin and Stadtherr
[30].

5.2. Results and Discussion

The interval-Newton methodology described above (LISS LP) is now applied to find the
stationary points of the potential energy surface V for the case of xenon as a sorbate in
silicalite, as described by June et al. [23] Due to the orthorhombic symmetry of the silicalite
lattice, the search space is only one asymmetric unit, [0, 10.035] × [0, 4.98] × [0, 13.42]Å,
which is one-eighth of a unit cell. This defines the initial interval for the interval-Newton
method, namely X(0) = [0, 10.035]Å, Y (0) = [0, 4.98]Å, and Z(0) = [0, 13.42]Å. Following
June et al. [23], stationary points with extremely high potential, such as V > 0, will not be
sought. To do this, we calculate the interval extension of V over the interval currently being
tested, and if its lower bound is greater than zero, then the current interval is discarded. All
computations were performed on a Dell workstation running a 1.7 GHz Intel Xeon processor
under Linux.

Using the LISS LP strategy for the interval-Newton method, a total of 15 stationary
points were found in a computation time of 724 s. The locations of the stationary points,
their energy value, and their type are listed in Table IV. Five local minima were found,
along with 8 first-order saddle points and two second-order saddle points. June et al. [23]
report the same five local minima, as well as 9 of the 10 saddle points. They do not report
finding the lower energy second-order saddle point (saddle point #14 in Table IV).

For each first-order saddle point in Table IV, we followed June et al.’s method [23] to
associate the saddle point with the transition state between two specific minima. The saddle
point first was perturbed by 10−5Å in either direction along the eigenvector of the Hessian
matrix associated with the negative eigenvalue. A steepest descent method using a step of
0.01Å was taken in the direction −g. After 500 iterations, the steepest descent calculation
was terminated and a Newton method was used to locate the minima connected through
the saddle point. The results of these calculations are given in the rightmost column of
Table IV. For example, the lowest energy saddle point (#6) can be viewed as connecting
minima #1 and #3. In some cases the descent path from a saddle point led to a state
outside the initial search box. Since the search box is one asymmetric unit, for each state
found outside the search box, we can always find the equivalent state inside the search box
through the symmetry operator and/or the periodic operator. In Table IV this is indicated
by marking the state number with a prime. Thus, saddle point #7 connects minimum #2
with an equivalent point in a neighboring asymmetric unit. As expected, the results found
for the states connected by the first-order saddle points is consistent with the analysis of
June et al. [23]
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Table IV. Stationary points of the potential energy surface of xenon in
silicalite

No. Type Energy(kcal/mol) x(Å) y(Å) z(Å) Connects

1 minimum -5.9560 3.9956 4.9800 12.1340

2 minimum -5.8763 0.3613 0.9260 6.1112

3 minimum -5.8422 5.8529 4.9800 10.8790

4 minimum -5.7455 1.4356 4.9800 11.5540

5 minimum -5.1109 0.4642 4.9800 6.0635

6 1st order -5.7738 5.0486 4.9800 11.3210 (1, 3)

7 1st order -5.6955 0.0000 0.0000 6.7100 (2′, 2)

8 1st order -5.6060 2.3433 4.9800 11.4980 (1, 4)

9 1st order -4.7494 0.1454 3.7957 6.4452 (2, 5)

10 1st order -4.3057 9.2165 4.9800 11.0110 (3, 4)

11 1st order -4.2380 0.0477 3.9147 8.3865 (2, 4)

12 1st order -4.2261 8.6361 4.9800 12.8560 (3, 5′)

13 1st order -4.1405 0.5925 4.9800 8.0122 (4, 5)

14 2nd order -4.1404 0.5883 4.8777 8.0138 (4,5),(4,4′)

15 2nd order -4.1027 9.1881 4.1629 11.8720 (2,3),(4,5)

A similar procedure was used on the two second-order saddle points, but using both nega-
tive eigenvalues. For example, in the case of saddle point #15, beginning with perturbations
in either direction along the eigenvector associated with the most negative eigenvalue leads
to a connection between minima #2 and #3. Repeating with the least negative eigenvalue
leads to a connection between minima #4 and #5. Thus, this saddle point can be viewed
as providing a crossconnection involving these four points. However, there are lower energy
connections between all except #2 and #3. Though June et al. [23] do not identify this
point as a second-order saddle, they do identify it as associating minima #2 and #3.

The second-order saddle point #14, not reported by June et al. [23], is very close to the
first-order saddle point #13, and slightly lower in energy. Apparently neither of the two
methods tried by June et al. [23] was able to locate this point. The first method they tried
uses the same grid-based optimization scheme used to locate local minima in V, but instead
applied to minimize gTg. However, stationary points #13 and #14 are approximately 0.1Å
apart, while the grid spacing they used was approximately 0.2Å. This illustrates the danger
in using grid-based schemes for finding all solutions to a problem. By using the interval
methodology described here, one never needs to be concerned about whether or not a
grid spacing is fine enough to find all solutions. The second method they tried was Baker’s
algorithm [3], as described briefly above, but it is unclear how they initialized the algorithm.
A key advantage of the interval method is that no point initialization is required. Only
an initial interval must be supplied, here corresponding to one asymmetric unit, and this
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is determined by the geometry of the zeolite lattice. Thus, in this context the interval
methodology is initialization independent.

Lin and Stadtherr [30] have also studied two other sorbate-zeolite systems, and used the
interval methodology to find all stationary points on the potential energy surfaces. While
we have concentrated here on problems involving transition-state analysis of diffusion in
zeolites, we anticipate that the methodology will be useful in many other types of problems
in which transition-state theory is applied.

6. Concluding Remarks

We have demonstrated that the interval-Newton approach is a powerful, deterministic ap-
proach to the solution of a number of global optimization problems, as well as nonlinear
equation solving problems, such as those that arise in chemical engineering and other areas
of engineering and science. Problems with a very large number of local optima can be
effectively solved, as can problems with a relatively large number of variables. Continuing
improvements in methodology, together with advances in software and hardware will make
this an increasingly attractive problem solving tool.

The validation provided by the interval approach comes at the expense of additional
computation time. Essentially one has a choice between fast methods that may give the
wrong answer, or a slower method that is guaranteed to give the correct answer. Thus, a
modeler may need to consider the trade off between the additional computing time and the
risk of getting the wrong answer to a problem. Certainly, for “mission critical” situations,
the additional computing expense is well spent.
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Abstract. Horowitz’s quantitative feedback theory (QFT) (Horowitz, 1993) approach to robust control
has been gaining popularity in the control literature for design of robust feedback systems. A central
problem in QFT consists of proving the existence (or non-existence) of a QFT controller solution to a
given design problem. In this paper, we propose a novel method based on interval analysis (Moore, 1979)
to computationally verify the existence (or non-existence) of a controller solution, for a specified controller
structure and an initial domain of controller parameter values. A feature of our proposed method is that it
is a constructive existence method, i.e., if a solution of the specified structure exists for the given parameter
domain, then all controller solutions lying in the domain are generated with our method. Essentially, the
proposed method uses successive partitioning of the parameter domain and controller feasibility tests. We
demonstrate the proposed method through a benchmark example.

Keywords: Control Synthesis, Interval Analysis, Quantitative Feeback Theory, Robust Control, Robust
Synthesis.

1. Introduction

A versatile and practical engineering approach to the robust control problem is based on
quantitative feedback theory (QFT) of Horowitz (Horowitz, 1991; Horowitz, 1993). The
design is quantitative in the sense that the feedback is directly related to the amount of
uncertainty and external disturbance. QFT has evolved with techniques to deal with single-
input single-output (SISO) as well as multi-input multi-output (MIMO) cases, for linear and
nonlinear, lumped and distributed parameter, time varying and time invariant systems. The
QFT technique has been successfully applied to several practical problems with large plant
uncertainty.

Consider a linear time invariant plant with parametric uncertainty given by P (s, λ),
where

λ = (λ1, . . . , λl)
T ∈ Rl

is a plant parameter vector, which varies over a box λ =
[
λ, λ

]
consisting of two real column

vectors λ and λ of length l with λ ≤ λ. This gives rise to the parametric plant family or set

P ≡{P (s, λ) : λ ∈ λ }
with the nominal plant P (s, λ0) corresponding to an arbitrary nominal λ0 ∈ λ.
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Figure 1. The two degree-of-freedom structure used in QFT

To achieve various specifications (specs), generally, the plant P (s, λ) is embedded in the
two degree-of-freedom feedback structure of QFT formulation as shown in Fig. 1, where G (.)
and F (.) are transfer functions for the controller and prefilter, respectively. The controller
G (s, x) can be represented in the gain-pole-zero form as

G(s, x) =
kG

nz∏
i=1

(s + z̃i)
n′z∏
i=1

(
s2 + 2ζiυis + υ2

i

)

np∏
k=1

(s + pk)
n′p∏

k=1

(
s2 + 2ξkϑks + ϑ2

k

) (1)

where the controller parameter vector x is

x = ( kG, z̃1, . . . , z̃nz , ζ1, . . . , ζn′z , υ1, . . . , υn′z
, (2)

p1, . . . , pnp , ξ1, . . . , ξn′p , ϑ1, . . . , ϑn′p)

The open loop transmission function is defined as

L(s, x, λ) = G(s, x)P (s, λ)

and the nominal open loop transmission function as

L0(s, x) = G(s, x)P (s, λ0)

The magnitude and angle functions of L0(s, x) are defined as

L0 mag (ω, x) = |L0(s = jω, x)| ; L0 ang (ω, x) = ∠L0(s = jω, x) (3)

Typically, following specifications are to be met for all P (s, λ) ∈ P and ω ∈ [0, ω′].

− Robust stability margin spec:
∣∣∣∣

L(jω, x, λ)
1 + L(jω, x, λ)

∣∣∣∣ ≤ ws (4)
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− Robust tracking performance spec:

|TL(jω)| ≤
∣∣∣∣F (jω)

L(jω, x, λ)
1 + L(jω, x, λ)

∣∣∣∣ ≤ |TU (jω)| (5)

− Robust input disturbance rejection performance spec:
∣∣∣∣

G(jω, x)
1 + L(jω, x, λ))

∣∣∣∣ ≤ wdi
(ω)

− Robust output disturbance rejection performance spec:
∣∣∣∣

1
1 + L(jω, x, λ)

∣∣∣∣ ≤ wdo (ω)

The QFT design procedure begins with the generation of the plant template, which is
nothing but the value set of plant at a design frequency ω, given as

P (ω) = {P (s = jω, λ) : λ ∈ λ}

This is followed by the QFT bound generation step. At each design frequency ωi, the plant
template P(ωi) is used to translate the given performance and stability specs into regions
in the Nichols chart where the nominal loop transmission L0(jωi, x) is allowed to lie. The
composition of all such bounds at ωi is referred to as the bound on L0(jωi, x) at ωi and is
denoted as B (L0 ang(jωi, x), ωi) or simply as B(ωi). For example, the bounds at various
ωi are plotted in Fig. 4 along with the so-called universal high frequency bound (UHFB)
valid for all ω ≥ ωh, where ωh is some sufficiently “high” frequency. At any given ωi, the
magnitude of the bound generally varies with the phase L0 ang(jωi, x); while some bounds
are single-valued upper or lower bounds, the others are multiple-valued.

The objective of the QFT procedure is to synthesize G(s, x) that satisfies the bounds
B(ωi) at all the design frequencies, and then synthesize a prefilter F (s) which places the
allowable variation in magnitude of the closed loop system, inside the respective tracking
bounds. The details of the QFT design procedure can be found in (Horowitz, 1993).

A central problem in QFT consists of proving the existence of a controller solution
to a given design problem. Any arbitrary design specs cannot be achieved by a specified
controller transfer function structure, particularly for the plants with uncertainty. In certain
cases, e.g., for non-minimum phase plants with uncertainty, one can analytically verify the
non-existence of controller solution, as demonstrated by Horowitz (Horowitz, 1993). But
this argument cannot be generalised, and a great deal of expertise would be required for
commenting on the existence of the controller solution. This motivates us to propose a
method to computationally verify the existence of a controller solution. In this paper, we
propose a novel method based on interval analysis (Moore, 1979) to computationally verify
the existence (or non-existence) of a controller solution, for a specified controller structure
and an initial domain of controller parameter values.
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2. Existence Verification

We propose an algorithm to computationally verify the existence of a controller solution
for an uncertain plant transfer function, given certain performance and stability specs. The
proposed existence verification method is constructive in its approach, i.e., if a solution of
the specified structure exists for the given parameter domain, then all controller solutions
lying in the domain are generated with the method.

Using the QFT formulation, the given specs are converted to the constraints satisfac-
tion problem. The set of bounds B(ωi) as described in section 1, gives rise to the set of
constraints in the existence verification problem. The tracking and disturbance bounds at
design frequency ωi are to be respected, leading to the following type of constraints:

− single-valued upper bound :

hi (x) = |B (L0 ang(jωi, x), ωi)| − L0 mag(jωi, x) ≤ 0 (6)

− single-valued lower bound :

hi (x) = L0 mag(jωi, x)− |B (L0 ang(jωi, x), ωi)| ≤ 0 (7)

To ensure the nominal closed loop stability of the system, the nominal loop transmission is
forced to lie on the right side of the respective stability bounds. Thus, the multiple valued
stability bounds give rise to additional constraints of following type:

hs
i (x) = ∠B(L0 mag(jωi, x), ωi)− L0 ang(jωi, x) ≤ 0, (8)

for L0 mag(jωi, x) ∈ [min |B(ωi)| ,max |B(ωi)|]
With these bounds, the constraint satisfaction problem can be given as

find all x ∈ x (9)
such that H(x) ≤ 0

where, H (x) = {hi(x), hs
i (x)} is the set of bound constraints in (6,7) and (8), and x is

the bound constrained controller parameter domain. The parameter domain is either user
specified, or is constructed based on the given structure of the controller transfer function.
To verify if the given constraints can be satisfied with a pre-specified controller structure,
we suggest the following procedure to construct the controller parameter domain:

− The upper bound for the interval values of the corner frequency of the poles and zeros
of the controller is set to 10aωh, where, for instance, a ≈ 1 or 2. This sets the cutoff
frequency for the poles and zeros to a few decades beyond the high frequency ωh. The
upper bound for the interval value of the high frequency gain of the controller can be
set to a large value. To avoid the internal stability problem and the RHP pole/zero
cancellation of the design, the lower bound for the interval values of the corner frequency
of poles and zeros is set to zero.
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Finding the solution over a bounded domain is as good as testing the feasibility of infinite
combinations of controller parameter values. The most efficient and reliable techniques to
do this are based on the rigorous search using interval analysis. Hence, we next present
an algorithm based on interval analysis to solve this constraints satisfaction problem for
existence verification of controller solution.

2.1. The Proposed Algorithm

The proposed algorithm uses successive partitioning of the given search domain, and the
range inclosure property of the interval arithmetic

range (f, z) ⊆ f (z)

where, f (z) is the natural interval evaluation of a function f over the box z.
In this strategy of the proposed algorithm, at each iteration the controller parameter

box z, currently under process, is split into two subboxes, and tested for its feasibility. Any
subbox which does not satisfy the constraints is discarded. The subbox which satisfy the
constraints is added to a solution list Lsol, and the remaining subbox(s) are added to a
stack list Lstack for further processing. This process is recursively carried out till the stack
list Lstack is exhausted (emptied), i.e., till the given search domain is completely processed.

The proposed algorithm essentially consists of five major components: a feasibility test,
list handling, initialization, a termination criterion, and a bisection strategy.

The Feasibility test determines if a box z of controller parameter values satisfies the
QFT bound constraints. Evaluation of the natural interval extensions of the nominal loop
transmission magnitude and angle functions on z at some ωi gives an angle-magnitude
rectangle {L0 ang(jωi, z), L0 mag(jωi, z)}, in the Nichols chart. This rectangle is called as
the L0 box at ωi. Based on the relative location of this rectangle w.r.t. the bound B(ωi),
the parameter box z is determined as feasible, infeasible, or ambiguous at ωi. The overall
feasibility of box z is decided based on its feasibility at each of the design frequencies. A
flag variable flagz represents the feasibility of box z. The details for the feasibility test are
given in sec. 2.1.1.

List handling: A stack list Lstack and a solution list Lsol is maintained to save the boxes
generated during the partitioning process. The boxes which are determined as feasible are
put into the solution list Lsol, and the ambiguous boxes, which need further processing, are
put into the stack list Lstack. Since the whole stack list Lstack is to be processed, any box
from this list can be picked up for further processing, but for convenience, the first box of
the stack list Lstack is taken up as current box y for processing in the next iteration.

Initialization (step 1 in the algorithm): The current box under process denoted as z is
set to the initial search box z0, and the feasibility test is done for z. If z is infeasible, then
by the inclusion property of interval analysis there is no feasible solution ∀z ∈ z; hence,
the algorithm exits, declaring that no feasible solution exists in the given initial search box.
Else, a stack list Lstack is initialized with the box z, and the solution list Lsol is initialized
as an empty list.
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Termination (step 2 in the algorithm): Since the objective is to find out all the solutions
of the constraints satisfaction problem, the algorithm should terminate only after the given
initial search domain is completely processed. The stack list Lstack holds the boxes (i.e.,
part of initial search domain) which are neither fully acceptable nor rejectable as controller
solutions. Thus, the algorithm can terminate when all such boxes are completely processed
or in other words when the stack list Lstack is emptied. The termination condition is given
as

Lstack = ∅ (10)

Bisection (step 4 in the algorithm): If the above termination condition is not met, i.e.,
box z is ambiguous, then z is split along the maximum width direction into two subboxes
v1 and v2.

Feasibility check for new subboxes (step 5 in the algorithm): The feasibility check
is performed on each of these two subboxes, any infeasible subbox(s) which does not satisfy
the constraints is discarded and the feasible one is added to the solution list Lsol.

The algorithm for existence verification of a controller solution based on the above
described strategy is now presented.

Inputs: Numerical bound set, the design frequency set {ωi : i = 1, · · · , n}, expressions
for natural interval extensions L0 mag (ω, z) , L0 ang (ω, z) of the nominal loop transmission
magnitude and angle functions in (3), and the initial search box z0.

Output: List of feasible controller parameters or a message ”No feasible solution exists
in the given initial search domain”.

BEGIN Algorithm

1. Checking the feasibility of initial search box.

a) Set the current box to the initial search box, i.e., set z = z0.

b) Call Feasibility Subroutine to determine if the current box z is completely infeasible,
completely feasible, or an ambiguous case. The feasibility test returns a value for
the variable flagz.

c) Initialization

i) IF flagz = infeasible THEN print the message “No feasible solution exists in
the given initial search domain”, and Exit the algorithm.

ii) ELSE IF flagz = feasible THEN print the message “The complete initial search
domain is a feasible set of solution”, and Exit the algorithm.

iii) ELSE initialize the stack list Lstack ⇐ {z} and initialize the solution Lsol ⇐ {}.
END IF

2. Choose the first box from the stack list Lstack as current box z, and delete its entry
from the stack list Lstack.

3. Split the current box z in the maximum width direction to get two new subboxes v1

and v2, such that z = v1 ⋃
v2 .
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4. Call Feasibility Subroutine to determine the feasibility of each new subbox, and get the
value of flagv1 and flagv2 .

5. DO for i = 1, 2,

a) IF flagvi = infeasible, THEN discard the subbox vi

b) ELSE IF flagvi = feasible, THEN add the subbox vi to the solution list Lsol

c) ELSE add vi to the stack list Lstack.
END IF

END DO

6. IF the termination condition given in (10) holds, THEN

a) IF Lsol = ∅, THEN print the message “No feasible solution exists in the given
initial search domain” and Exit the algorithm.

b) ELSE IF Lsol 6= ∅, THEN print the message “The feasible solutions are:” Lsol,
and Exit the algorithm.
END IF

END IF

7. Go to step 6.

END Algorithm

2.1.1. Feasibility Subroutine
This subroutine finds the feasibility of the controller parameter box z, and returns the value
of flagz, which represents its feasibility.

Inputs: Numerical bound set, the design frequency set {ωi : i = 1, · · · , n}, expressions
for natural interval extensions L0 mag (ω, z) , L0 ang (ω, z) of the nominal loop transmission
magnitude and angle functions in (3), and the parameter box z.

Output: Value of flagz.
BEGIN Subroutine

1. At every design frequencies ωi, i = 1, · · · , n, do the following:

a) Evaluate L0 mag (ωi, z) and L0 ang (ωi, z).

b) For single valued upper bounds: Over the phase interval
L0 ang (ωi, z), find out the maximum and minimum magnitude value of the bound
B(ωi), and denote it as Bmax

mag(ωi, z) and Bmin
mag(ωi, z), respectively (Fig. 2 explains

this notation).

c) For multiple valued stability bounds:
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i) IF L0 mag (jωi, z)
⋂

[min |B(ωi)| , max |B(ωi)|] 6= ∅ THEN

A) Over the magnitude interval L0 mag (ωi, z), find out the maximum and min-
imum phase value of the bound B(ωi), and denote it as Bmax

ang (ωi, z) and
Bmin

ang (ωi, z), respectively (Fig. 3 explains this notation).
END IF

2. Set the feasibility flag as follows:

a) IF for all ωi, i = 1, · · · , n,

inf{L0 mag (ωi, z)} 1 Bmax
mag(ωi, z)

AND

{L0 mag (jωi, z)
⋂

[min |B(ωi)| , max |B(ωi)|] = ∅
OR

L0 ang (ωi, z) 1 Bmax
ang (ωi, z)}

THEN set the flagz = feasible and RETURN.

b) ELSE IF for any ωi, i = 1, · · · , n,

sup{L0 mag (ωi, z)} 0 Bmin
mag(ωi, z)

OR

{L0 mag (jωi, z)
⋂

[min |B(ωi)| , max |B(ωi)|] 6= ∅
AND

L0 ang (ωi, z) 6 Bmin
ang (ωi, z)}

THEN set the flagz = infeasible and RETURN.

c) ELSE set the flagz = ambiguous and RETURN.
END IF

END Subroutine
Thus, the feasibility subroutine returns flagz = infeasible, feasible, or ambiguous, de-

pending on whether the parameter box z is completely infeasible, completely feasible, or
an ambiguous case, respectively, w.r.t. the bound constraints.

REMARK 1. Convergence and Reliability: The convergence of the proposed algorithm
can be easily proved on the lines of interval branch and bound algorithms (Ratschek and
Rokne, 1988) and the reliability of the algorithm immediately follows from the interval
analysis techniques.
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3. Design Example

The proposed algorithm was tested on a QFT benchmark example, so that the results can
be compared with that of an existing method. The example chosen is the design of robust
controller for a non-minimum phase plant with uncertainty, given by Horowitz (Horowitz,
1993).

The uncertain plant transfer function is given as

P (s, λ) =
k(1− τs)
s(1 + βs)

: k ∈ [1, 3], β ∈ [0.3, 1], τ ∈ [0.05, 0.1]. (11)

The specs are:

− Robust stability margin spec (4): ws = 1.3032

− Tracking spec (5): |TU (j4)| = 0.5dB and |TL(j4)| = −3.5dB.

With just two design frequencies 4 and 45.4 rad/sec, using the Bode gain-phase relation-
ship, Horowitz (Horowitz, 1993) showed analytically that, for the uncertain plant transfer
(11), no controller solution exists for the above given specs.

We use the proposed algorithm to computationally verify the above finding of Horowitz,
i.e., of the non-existence of a controller of first and second order for the above specs. We
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choose the non-minimum phase plant

P0(s) =
(1− 0.05s)
s(1 + 0.3s)

as the nominal case. The stability and tracking bounds for these specs are shown in Fig.
4. These bounds B (ωi) at each design frequency ωi are generated using the QFT toolbox
(Borghesani et al., 1995). From the nature of the generated QFT templates, we find that
the UHFB frequency ωh ≈ 600 rad/sec. Based on this value of ωh, the upper bound on the
pole/zero can be fixed as 6000 rad/sec. (see sec. 2), but instead we choose an arbitrarily
large value of 104 rad/sec. Moreover, using an arbitrarily large upper bound for the gain,
the initial search box z0 is constructed as follows:

− For the first order controller, the parameter vector z = {k, z̃1, p1} is

z0 = (0, 108], (0, 104], (0, 104]

− For the second order controller, the parameter vector
z = {k, z̃1, z̃2, p1, p2} is

z0 = (0, 108], (0, 104], (0, 104], (0, 104], (0, 104]

For the aforementioned structures and the initial search domains, the proposed algorithm
terminated with the message: “No feasible solution exists in the given initial search domain”.
Thus, this finding is in agreement with the analytically found ‘non-existence’ of Horowitz
mentioned above.

4. Conclusions

An algorithm has been proposed in this paper to computationally verify the existence (or
non-existence) of a QFT controller solution, for a specified controller structure and an initial
domain of controller parameter values. The proposed algorithm has been tested successfully
on a QFT benchmark example for cross validating the results.
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Abstract. In this paper sensitivity analysis method [4] and first order Taylor expansion method will be
applied to solution of finite element equations of truss structures and non-stationary diffusion equation with
interval parameters. Only linear-elastic model of truss structures is considered.

In order to calculate the interval solution (i.e. displacement vector u ) it is necessary to calculate derivative
∂u
∂h

. According to many numerical experiments and some theoretical results it is convenient to assume that
in some engineering applications the function u=u(h) is monotone. Under such assumption it is possible
to predict how to calculate the extreme solutions. Presented method gives quite accurate, however only
approximate results.

Monotonicity assumption is not always true. Because of that the results are not always exact. The
function u=u(h) is highly nonlinear, because of that presented algorithm is better than first order Taylor
expansion. On the following web page [1] it is possible to compare presented algorithm, the exact results
and the first order Taylor expansion using appropriate web applications.

Keywords: uncertainty, interval equations, truss structures

1. Introduction to interval FEM

Many engineering problems can be described by parameter dependent system of equations
in the following form [5]:

K (h)u = Q(h) (1)

where K ∈ Rn×n, Q ∈ Rn, u ∈ Rn, h ∈ Rm. h is a vector of parameters of the
structures (i.e. material characteristics, geometric characteristics, loads and other externals
fields such as temperature. Very often we do not know the exact values of the parameters of
the structure. Usually, if we do not know the exact values of the parameter hi it is possible
to estimate an upper and lower bound such that:

h−i ≤ hi ≤ h+
i for i = 1, . . . ,m (2)

in general we can write:

h ∈ ĥ ⊂ Rm (3)

where ĥ =
[
h−1 , h+

1

]
×

[
h−2 , h+

2

]
× ...× [h−m, h+

m]. Presented method can be applied, when
it is not possible to obtain probabilistic characteristic of the structure.
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Exact solution set of the equation (1) is very complicated and can be defined in the
following way:

u
(
ĥ

)
= {h : K (h)u = Q(h),h ∈ ĥ} (4)

Due to high complexity of the set u
(
ĥ

)
in applications we can only find the smallest

interval û
(
ĥ

)
which contains the set u

(
ĥ

)
i.e.

û
(
ĥ

)
= hull u

(
ĥ

)
(5)

One can call the set û
(
ĥ

)
the interval solution.

Now some selected methods of finding the interval solution will be presented.

2. Endpoints combinations method

According to many numerical examples [4, 2] very the endpoint combination method

u−i = min { ui (hα1
1 , hα2

2 , ..., hαm
m ) : α1, ..., αm ∈ {−, +}} (6)

u+
i = max { ui (hα1

1 , hα2
2 , ..., hαm

m ) : α1, ..., αm ∈ {−,+}} (7)

give very good approximation of the solution, particularly when the intervals are relatively
narrow. In some cases the results are exact (for example in the case of system of linear
interval equations).

3. First order Taylor expansion method

We can approximate the value of the nonlinear function u = u (h) by using first order
Taylor expansion method:

u (h) ≈ uL (h) = u (h0) +
∂u (h0)

∂h
(h− h0) (8)

h0is a mid point of the interval vector ĥ (i.e. h0 = mid
(
ĥ

)
).

The vector u (h0) is a solution of the following system of linear equations:

K (h0)u (h0) = Q (h0) (9)

If one calculate derivative of the equation (9) it is possible to get the matrix ∂u(h0)
∂h

K (h0)
∂u (h0)

∂hi
=

∂Q (h0)
∂hi

− ∂K (h0)
∂hi

u (h0) , i = 1, . . . , m, (10)
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when parameters h belong to the interval vectorĥ, then the extreme values of the function
uL(h) can be calculated by using natural interval extension [3]

ûL

(
ĥ

)
= u (h0) +

∂u (h0)
∂h

(
ĥ− h0

)
. (11)

In calculation we can calculate upper and lower bounds in the following way:

u−i,L
(
ĥ

)
= ui (h0)−

m∑

α=1

∣∣∣∣
∂ui (h0)

∂hα

∣∣∣∣
(
h+

α − hα,0
)
, (12)

u+
i,L

(
ĥ

)
= ui (h0) +

m∑

α=1

∣∣∣∣
∂ui (h0)

∂hα

∣∣∣∣
(
h+

α − hα,0
)
. (13)

4. High order Taylor expansion method

In order to find better approximation of the exact solution one can apply the following
algorithm.

Algorithm 1
1) Approximate the value of the function u=u(h) by high order Taylor expansion u =

uap (h).
2) Find the points h∗1,h∗2, ...,h∗p where the approximate function uap (h) has extreme

values.
3) Calculate the values of the function uap (h) in the points h∗1,h∗2, ...,h∗p.
4) Calculate the interval solution.

u−i = min
{

uap,i (h∗1) , uap,i (h∗2) , ..., uap,i

(
h∗p

)}
, i = 1, . . . , n, (14)

u+
i = max

{
uap,i (h∗1) , uap,i (h∗2) , ..., uap,i

(
h∗p

)}
, i = 1, . . . , n. (15)

In general, instead of Taylor expansion it is possible to apply any approximation method.

5. Monotonicity assumption and first order sensitivity analysis method

In engineering applications the function u=u(h) is very often monotone (usually for narrow
intervals ĥ1, ĥ2, ..., ĥm). In that case it is possible to calculate the extreme values of the
displacements ui by using appropriate endpoints of the intervals ĥ1, ĥ2, ..., ĥm. The algorithm
of calculation is the following:

Algorithm 2
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1) Calculate the mid point solution of the equation (9).
2) Calculate the derivatives of the solution in the mid point from the equation (4).
3) Calculate the sign vectors S1, ...,Sn.

Si =
[

sign
(

∂ui(h0)
∂h1

)
sign

(
∂ui(h0)

∂h2

)
... sign

(
∂ui(h0)

∂hm

) ]
. (16)

4) Calculate the independent sign vectors.
Two sign vectors Si,Sj are independent if

Si 6= Sj , Si 6= (−1) · Sj , (17)

Independent sign vectors will be denoted as S∗1, ...,S∗n∗ , where n∗ is a number of inde-
pendent sign vectors.

5) Calculate the extreme values of the solution for all independent sign vectors.

u−,∗
i = u

(
H−

(
S∗i , ĥ

))
, u+,∗

i = u
(
H+

(
S∗i , ĥ

))
, (18)

where

H−
j

(
S∗i , ĥ

)
=

{
h−j , if S∗i,j ≥ 0
h+

j , if S∗i,j < 0
, i = 1, . . . , n, (19)

H+
j

(
S∗i , ĥ

)
=

{
h+

j , if S∗i,j ≥ 0
h−j , if S∗i,j < 0

, i = 1, . . . , n. (20)

6) Calculate the interval solution û.

u−i = min
{

ui

(
h−1

)
, ..., ui

(
h−n∗

)
, ui

(
h+

1

)
, ..., ui

(
h+

n∗
)}

, (21)

u+
i = max

{
ui

(
h−1

)
, ..., ui

(
h−n∗

)
, ui

(
h+

1

)
, ..., ui

(
h+

n∗
)}

, (22)

where

h−i = H−
(
S∗i , ĥ

)
, h+

i = H+
(
S∗i , ĥ

)
. (23)

6. High order sensitivity analysis method

The first order sensitivity analysis method is based on the following general algorithm.
Algorithm 3
1) Approximate the value of the function by first order Taylor expansion.
2) Find the points h∗1,h∗2, ...,h∗p where the Taylor expansion has extreme values.
3) Calculate the values of the exact solution in the points h∗1,h∗2, ...,h∗p.
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4) Calculate the interval solution.

u−i = min
{

ui (h∗1) , ui (h∗2) , ..., ui

(
h∗p

)}
, i = 1, . . . , n, (24)

u+
i = max

{
ui (h∗1) , ui (h∗2) , ..., ui

(
h∗p

)}
, i = 1, . . . , n. (25)

In order to get better approximation of the exact solution one can approximate the
function by high order Taylor expansion (or other approximation method).

Algorithm 4
1) Approximate the value of the function u=u(h) by high order Taylor expansion.
2) Find the points h∗1,h∗2, ...,h∗p where the approximate function (i.e. Taylor expansion)

has extreme values.
3) Calculate the values of the exact solution in the points h∗1,h∗2, ...,h∗p.
4) Calculate the interval solution.

u−i = min
{

ui (h∗1) , ui (h∗2) , ..., ui

(
h∗p

)}
, (26)

u+
i = max

{
ui (h∗1) , ui (h∗2) , ..., ui

(
h∗p

)}
. (27)

In general, instead of Taylor expansion it is possible to apply any approximation method.

7. Comparison of First order Taylor expansion method and second order
monotonicity test.

Let us consider a truss structure which is shown on Fig. 1.

In calculation the following numerical data was assumed P = 10 [kN], L = 1 [m], E = 210
[GPa] (Young modulus), A = 0.0025 [m2] (area of cross-section).

Accuracy of the first order sensitivity analysis method and first order Taylor expansion
method is expressed by using the following numbers:

du−i =

(
umid

i − u−i
)
−

(
umid

i − u−i,exact

)

umid
i − u−i,exact

· 100% (28)

du+
i =

(
u+

i − umid
i

)
−

(
u+

i,exact − umid
i

)

u+
i,exact − umid

i

· 100% (29)

where umid
i is a mid point solution, u+

i,exact is an exact value of upper bound, u−i,exact is
an exact value of upper bound.

Time of calculations is shown below. Calculation was done using computer with AMD
Athlon XP 2600 with 512 MB RAM under RedHat Linux 9.0.
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Figure 1. Truss structure

8. Interval solution of non-stationary diffusion equation

Let us consider non-stationary diffusion equation with interval parameters

∂

∂x

(
β

kxAx

µB

∂p

∂x

)
∆x +

∂

∂y

(
β

kyAy

µB

∂p

∂y

)
∆y =

Vb

αc

∂

∂t

(
φ

B

)
(30)

where kx, Ax, ky, Ay, β, µ, B, φ are some (interval) parameters, p is the pressure of oil, t
is the time.

In order to get interval valued pressure of oil first order sensitivity analysis method was
applied. The algorithm was implemented in C++ language using Borland C++ Builder
compiler.

The program is able to take into account dependency of the parameters in different
regions. The examples of the regions with different independent parameters are shown on
Fig. (2).

Graphical representation of the interval solution (interval peruse of oil) for 7-th time step
is shown in the Fig. (3).
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Table I. Uncertainty of E and A 5%

Sensitivity Taylor

du−i du+
i du−i du+

i

0.00 -0.50 5.34 -5.50

0.28 -0.37 5.03 -5.14

-1.31 -0.07 2.64 -4.36

-2.72 -2.82 -6.49 0.76

1.45 0.67 6.36 -4.31

1.11 -1.43 -3.42 3.10

-1.12 -0.34 3.15 -4.72

-0.19 0.00 -0.60 -0.47

-0.43 0.00 3.41 -4.52

0.21 0.00 -3.95 3.95

1.36 0.00 5.78 -4.61

-1.12 0.00 -5.74 4.57

Figure 2. Graphical representation of dependences
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Table II. Uncertainty of E and A 20%

Sensitivity Taylor

du−i du+
i du−i du+

i

0.00 -1.37 18.67 -20.32

0.00 0.00 18.35 -19.30

-0.39 -0.08 14.88 -17.56

0.00 -0.03 -16.16 13.61

-0.18 -0.18 18.84 -19.80

0.00 0.00 -18.48 17.32

0.00 -0.76 16.06 -18.63

-0.34 -5.24 -4.57 -7.82

-1.66 -1.13 14.22 -19.03

-0.06 -1.94 -17.27 12.69

-0.31 -0.93 16.35 -19.22

-0.48 0.00 -19.07 17.91

In presented numerical example there were 10 interval parameters and 10 time steps.
In presented example the system of parameter dependent equations (1) was generated by
using finite difference method.

9. Conclusions

For truss structure:
1) Endpoint combination method gives exact results.
2) Endpoint combination method is very inefficient.
3) First order sensitivity analysis method is much more accurate than first order Taylor

expansion method, particularly for large intervals.
4) Taylor expansion method is much more efficient than sensitivity analysis method.
5) The results of Taylor expansion method are acceptable for small intervals.
For diffusion equation example:
1) Sensitivity analysis method can be applied to solution of complex engineering problem.
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Table III. Uncertainty of E and A 50%

Sensitivity Taylor

du−i du+
i du−i du+

i

-0.03 -1.19 43.01 -48.34

-37.10 -0.39 -11.27 -46.95

-1.53 -0.24 28.41 -44.04

-0.25 -4.30 -41.91 21.75

-0.29 -0.28 43.11 -47.35

-0.33 -0.04 -45.43 38.26

0.00 -1.97 31.88 -45.78

-13.59 -15.68 -32.33 -30.86

0.00 -1.21 25.84 -46.34

-0.34 -7.88 -43.72 19.25

-1.68 -2.03 29.28 -46.56

-1.70 0.00 -46.31 40.78

Table IV. Endpoint combination method

Number of interval parameters Time of calculations in seconds

10 0.02

15 1.86

18 17.18

20 124.69

2) It is using first order sensitivity analysis method possible to take into account different
dependency of the parameters.

3) Parameter dependent system of equations (1) can be created using finite difference
method.
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Table V. First order sensitivity analysis

Number of interval parameters Time of calculations in seconds

105 2

410 452

915 15208

1620 149554

2525 833782

Table VI. First order Taylor expansion

Number of interval parameters Time of calculations in seconds

68 0.01

105 0.02

410 1.22

915 16.64

1314 50.04

Figure 3. Interval pressure
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Abstract. In order to ensure the safety of a structure, one must provide for adequate strength of 
structural elements.  In addition, one must prevent large unstable deformations such as buckling. 
In most analyses of buckling, structural properties and applied loads are considered certain. This 
approach ignores the fact that imperfections and unknown changes in properties, albeit small, are 
required for onset of buckling.   In this paper, we extend the interval finite element methods 
developed by the authors to solve for the possible values of loads that will result in a structural 
stability failure. The analysis requires that interval axial element forces in each frame element in 
a structure be calculated. These values are calculated from a linear system of interval equations 
resulting from the static structural analysis. Using the calculated axial loads, a subsequent 
interval eigenvalue problem is solved for the buckling loads. For both solutions of the linear 
system of equations and the eigenvalue problem, the unique properties of the finite element 
methods result in sharp solutions. Several structural problems are presented as exemplars. The 
sharpness of the solution is demonstrated by comparing to combinatorial solutions.    
 
 
 

1. Introduction 
 
 
In order to ensure the safety of a structure, one must provide for adequate strength of structural 
elements. In addition, one must prevent large unstable deformations known as buckling. In 
determining adequate strength as well as adequate stability, the finite element method has 
become the standard of practice for predicting a structure’s behavior.  
In current practice, uncertainty in system parameters is not considered during the analysis.  
Uncertainty is accounted for in a design by a combination of load amplification and strength 
reduction factor.   
 Such factors are based on probabilistic models of historic data. Thus, consideration of the 
impact of changing uncertainty on a design has been removed from current analysis tools.    
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In order to mitigate this problem, the authors among others (REF IFEM) have developed an 
interval based finite element method (IFEM).  IFEM allows a structural analyst to calculate the 
impact of uncertainty in parameters on the structure’s predicted behavior.    To our knowledge, 
IFEM has only been applied to analysis addressing the strength criterion.  In this paper, we 
extend IFEM to linear stability analysis of structures.  
 
The method presented in this paper requires that interval internal element axial forces in each 
element in a structure be calculated. These values are calculated from a linear system of interval 
equations resulting from the static structural analysis.  Using the calculated internal forces, a 
subsequent interval eigenvalue problem is formulated.  The solution of the interval eigenvalue 
problem is then used to calculate the bounds on the critical buckling load.  For both the solution 
of the linear system of equations and the eigenvalue problem, the unique properties of the finite 
element method are employed to achieve sharp results.   
 
In the following, a brief review of IFEM for calculation of internal element forces is presented.  
Section 3 describes the formulation of the interval linear stability problem.  In section 4, a 
method for calculation of exact bounds on the resulting eigenvalue problem is then given.  An 
example problem is presented in section 5. Observations and conclusions are given in section 6. 
 
 

2. Review of Static Interval Finite Element Methods 
 
 
The linear stability analysis of structures requires the element forces to be determined as the first 
step in the analysis.   For problems with interval values for the stiffness or loads, one needs an 
interval solution to the underlying statics problem. For the solution of interval finite element 
(IFEM) problems, Muhanna and Mullen (2001) introduced an Element-by-Element interval finite 
element formulation, in which a guaranteed enclosure for the solution of interval linear systems 
of equations was achieved. This method accounts for the parametric representation of element 
properties and a very sharp enclosure for the solution set due to loading, material and geometric 
uncertainty in solid mechanics problems. Element matrices were formulated based on the 
physics, and Lagrange multiplier or penalty methods were applied to impose the necessary 
constraints for compatibility and equilibrium.    
 
For example, a two-element finite element construct is shown in figure (1).  In this example, (E) 
is Young’s modulus, (A) the cross-sectional area, and (L) the length of each element.  Subscripts 
here indicate element number.  Nodal loads are denoted by (P), and nodal displacements are 
denoted by (u).   
 
The conventional finite element formulation results in a global stiffness matrix as given in Eq. (1) 

 
 
 

 
 

 
 
 
 

Figure (1) :  Two connected linear truss elements. 

L1, E1, L2, E2, 
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3 21 

P2P1



319 

REC2004 
 

 
 

 















=









































−

−+−

−

3

2

1

3

2

1

2

22

2

22

2

22

2

22

11

11

1

11

1

11

1

11

0

0

P
P
P

u
u
u

L
AE

L
AE

L
AE

L
AE

L
AE

L
AE

L
AE

L
AE

 (1) 

 
 
When the parameters E, A, or L are interval quantities, the resulting interval matrix allows for 
independent interval values for elements of this matrix which is not physically possible. The 
element-by-element method generates a global stiffness matrix in the form shown in Eq. (2).   
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where χi  is the interval multiplier of the ith finite element obtained due to uncertainty in Ei, Ai, 
and li.  Such a form (i.e.DS) allows for factoring out the interval multiplier, resulting with an 
exact inverse for (DS). 
 
To ensure compatibility (unique displacements for all elements connecting to a node), one adds 
constraint conditions in the form of Eq. (3). The resulting system of linear interval equations 
becomes Eq. (3) and (4) 
 
Equation (1) can be introduced in the following equivalent form: 
 

 0~ =UC  (3) 
 

 PCKU T =+ λ~  (4) 

 If we express K ( n × n)  in the form  SD~ and substitute in equation (4): 
 

 λTCPUSD ~~ −=  (5) 
 
where D (n × n) is interval diagonal matrix, where its diagonal entries are the positive interval 
multipliers associated with each element, and  n is the multiplication of  degrees of freedom per 
element and the number of elements in the structure.  S~ (n × n) is a deterministic singular matrix 
(fixed point matrix).  If we multiply equation (3) by TCD ~  and add the result to equation (5), we 
get: 
 

                                      )~()~~~( λTT CPUCCUSD −=+                                                   (6) 
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or: 
 )~()~~( λTCPUQUSD −=+   

 )~()~~( λTCPUQSD −=+   

 )~(~ λTCPURD −=  (7) 
 
where )~(R is a deterministic positive definite matrix, and the displacement vector  U  can be 
obtained from equation (7) in the following form: 
 

 )~(~ 11 λTCPDRU −= −−  (8) 
 
where ( 11~ −− DR ) is an exact inverse of the interval matrix )~( RD .  Equation (8) can be presented 
in the form: 
 

 δ  ~ 1MRU −=  (9) 
 
Matrix (M) has the dimensions (n × number of elements), and its derivation has been discussed in 
the previous works of the authors (Mullen and Muhanna 1999, Muhanna and Mullen 1999).  The 
vector δ is an interval vector that has the dimension of (number of elements × 1) and its elements 
are the diagonal entries of 1−D with the difference that every interval value associated with an 
element is occurring only once.   
    If the interval vector λ  can be determined exactly, the solution of Eq. (8) will represent an 
exact hull for the solution set of the general interval FE equilibrium equation.    
 
More details on optimal implementation of the above concepts for static finite element solutions 
is presented in another paper in this proceedings.  (Muhanna, Mullen and Zhang 2004). 
 
 
 

3. Problem Definition 
 
 

Deterministic Buckling Analysis: 
As discussed in the previous section, the buckling analysis using the linear finite element method 
is carried out in two main steps. First, a parametric static analysis is performed using an arbitrary 
ordinate of applied load.  
 

 }{}]{[ PuKe =  (10) 
 

The solution output includes the internal axial forces in terms of the load ordinate. Using these 
results, the geometric stiffness of the structure is developed which represents the pre-compression 
load’s effects on the total stiffness of the structure (McGuire, Gallagher and Ziemian 2000).       
 
Second, a generalized eigenvalue problem is performed between the elastic and geometric 
stiffness matrices of the structure in order to find the critical buckling loads in terms of the 
geometric and material characteristics of the structure. 
 

 }0{}]){[]([ =− uKgKe λ  (11) 
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Buckling Analysis for Structures with Bounded Uncertainty: 
For structures with bounded uncertainty present in the stiffness characteristics, the buckling 
analysis procedure requires the modifications on the following: First, the representation of 
stiffness characteristics must consider the presence of uncertainty using interval numbers. 
Second, the static analysis must be performed using the obtained interval stiffness matrix; hence, 
the calculated element axial forces are interval values. Third, using the obtained element interval 
axial forces, the interval geometric stiffness matrix can be established. Fourth, the interval 
eigenvalue problem must be solved in order to obtain the bounds on the critical buckling loads. 
 

I. Interval Representation of Uncertainty 
 
Interval Number: 
A real interval is a closed set of the form: 
 

 }|{],[~ ulul zzzzzzZ ≤≤ℜ∈==  (12) 
 
In this work, the symbol (~) represents an interval quantity. 
  
Interval Formulation: 
The structure’s global stiffness can be viewed as a summation of the element contributions to the 
global stiffness matrix:  
 

 ∑
=

=
n

i

T
iii LKeLKe

1

]][][[][  (13) 

 
where [ iL ] is the element Boolean connectivity matrix and ][ iK  is the element stiffness matrix 
in the global coordinate system. Considering the presence of uncertainty in the stiffness 
properties, the non-deterministic element stiffness matrix is expressed as: 

 
 ]])[,([]~[ iiii KeuleK =  (14) 

 
in which ],[ ii ul  is an interval number that pre-multiplies the deterministic element stiffness 
matrix. Therefore, the structure’s global stiffness matrix in the presence of any uncertainty is the 
linear summation of the contributions of non-deterministic interval element stiffness matrices: 
  

 ∑∑
==

==
n

i
iii

n

i

T
iiiii eKulLKeLuleK

11

]])[,([]][][])[,([]~[  (15) 

 
in which, ][ ieK  is the deterministic element stiffness contribution to the global stiffness matrix. 
 
 

II. Interval Geometric Stiffness Matrix 
 
Using the obtained interval axial forces by IFEM (Section 2), the interval geometric stiffness 
matrix can be set up. The structure geometric stiffness can be viewed as a summation of the 
element contributions to the global geometric stiffness matrix: 
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 ∑
=

=
n

i

T
iiii LgKfLKg

1

]])[ˆ)[](([][  (16) 

 
where, ( if ) is the element axial force and ]ˆ[ igK  is the force independent matrix of geometric 
stiffness. Considering the axial force as an interval quantity, the interval structure’s geometric 
stiffness matrix can be established as: 
 

  ∑∑
==

==
n

i
ii

n

i

T
iiii gKfLKgLfgK

11

])[~(]][][)[~(]~[  (17) 

 
where T

iiii LgKLgK ]][ˆ][[][ =  and  ( ]max,min[~
iii fff = ) is the element interval axial load.  

 
III. Interval Eigenvalue Problem for Buckling Analysis 
 

Hollot and Barlett (1987) studied the spectra of eigenvalues of an interval matrix family which 
are found to depend on the spectrum of its extreme sets. Dief (1991) presented a method for 
computing interval eigenvalues of an interval matrix based on an assumption of invariance 
properties of eigenvectors.  
 
The concept of interval eigenvalue problem has been used in structures with interval uncertainty. 
Modares and Mullen (2004) have introduced a method for the solution of the interval eigenvalue 
problem which determines the exact bounds of the natural frequencies of a structure using IFEM 
formulation.  
 
In order to obtain the bounds on the critical buckling loads, a generalized interval eigenvalue 
problem must be performed between the interval elastic and interval geometric stiffness matrices 
as: 
 

 }]){[)~()(~(}){]])[,([(
11

ugKfueKul i

n

i
i

n

i
iii ∑∑

==

= λ  (18) 

 
Interval Eigenvalue Problem Definition: 
The eigenvalue problems for matrices containing interval values are known as the interval 
eigenvalue problems. If ]~[A  is an interval matrix )~( nnIRA ×∈  and ][A  is a member of the 

interval matrix )~( AA∈ , the interval eigenvalue problem is shown as:  
   

 )~(,0}]){[]([ AAuIA ∈=− λ    (19) 
 
 
The solution of interest to the real interval eigenvalue problem is defined as an inclusive set of 
real values )~(λ  such that for any member of the interval matrix, the solution to its eigenvalue 
problem is a member of the solution set shown as: 
 

 }0}]){[]([:~|],[~{ =−∈∀=∈ uIAAAul λλλλλ  (20) 
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which is the enclosure of all possible solutions. A sharp enclosure is defined as the solution with 
the smallest radius as: 
 

 }0}]){[]([:~|],[~{ =−∈∀=∈∃ uIAAAul λλλλλ  (21) 
 

  
4. Solution for Interval Eigenvalue Problem 

 
 

The following concepts must be considered in order to bound the non-deterministic interval 
eigenvalue problem, Eq.(18). 

 
The classical linear eigenpair problem for a symmetric matrix is: 
  

  xAx λ=  (22) 
 
with the solution of real eigenvalues ( nλλλ ≤≤≤ ...21 ) and corresponding eigenvectors 
( nxxx ,...,, 21 ). This equation can be transformed into a ratio of quadratics known as the Rayleigh 
quotient: 
 

  
xx

AxxxR T

T

=)(  (23) 

 
The Rayleigh quotient for a symmetric matrix is bounded between the smallest and the largest 
eigenvalues (Bellman 1960 and Strang 1976). 
 

  nT

T

xx
AxxxR λλ ≤=≤ )(1  (24) 

 
Thus, the first eigenvalue ( 1λ ) can be obtained by performing an unconstrained minimization on 
the scalar-valued function of Rayleigh quotient:   
 

  1)(min)(min λ==
∈∈ xx

AxxxR T

T

RxRx nn
 (25) 

  
For finding the next eigenvalues, the concept of maximin characterization can be used. This 
concept obtains the kth eigenvalue by imposing (k-1) constraints on the minimization of the 
Rayleigh quotient:  

 
  )](max[min xRk =λ  (26) 

(subject to constrains 2,1,...1),0( ≥−== kkizx i
T ) 

 
Bounding the Critical Buckling Loads: 
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Using the concepts of minimum and maximin characterizations of eigenvalues for symmetric 
matrices, the solution to the generalized interval eigenvalue problem for the critical buckling 
loads of a structure with uncertainty in the stiffness characteristics (Eq.(18)) for the first 
eigenvalue can be shown as: 

  

)
)]])[max,min([(

)]])[,([(
(min)

]~[
]~[(min~

1

1
1

xgKffx

xeKulx

xgKx
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n
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iii

T

n

i
iii

T
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T
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∑

∑

=

=

∈∈
==λ  (27) 

for the next eigenvalues: 

)]
)]])[max,min([(

)]])[,([(
(minmax[]

]~[
]~[minmax[~

1

1

1,...,1,0.1,...,1,0.
xgKffx

xeKulx

xgKx
xeKx

n

i
iii

T

n

i
iii

T

kizxT

T

kizxk
ii ∑

∑

=

=

−==−==
==λ  (28) 

 
 
Bounding Deterministic Eigenvalue Problems for the Critical Buckling Loads: 
Since the matrices ][ ieK  and ][ igK  are non-negative definite, the terms ))(( xeKx i

T  

and ))(( xgKx i
T  are non-negative. Therefore, the upper bounds on the eigenvalues in Eqs.(18) 

and (19) are obtained by considering maximum values of interval coefficients of uncertainty for 
all elements in the elastic stiffness matrix and the lower values of axial force in the geometric 
stiffness matrix . Similarly, the lower bounds on the eigenvalues are obtained by considering 
minimum values of interval coefficients of uncertainty for all elements in the elastic stiffness 
matrix and the upper values of axial force in the geometric stiffness matrix.  

Also, it can be observed that any other element stiffness selected from the interval sets will yield 
eigenvalues between the upper and lower bounds. Using these concepts, the deterministic 
eigenvalue problems corresponding to the maximum and minimum critical buckling loads are 
obtained as:  

 

 }]{[)min()(}){])[((
1

max
1

ugKfuKu i

n

i
i

n

i
ii ∑∑

==

= λ  (29) 

 }]{[)max()(}){])[((
1

min
1

ugKfuKl i

n

i
i

n

i
ii ∑∑

==

= λ  (30) 

 
 
 
 

5. Example 
 
 

The bounds on the critical buckling load for a 2D statically indeterminate truss with interval 
uncertainty present in the modulus of elasticity of each element are determined (Figure (2)).  



325 

REC2004 
 

 
Figure (2):  The structure of 2-D truss 

 
 
The cross-sectional area A , the length for horizontal and vertical members L , the Young’s 
moduli E for all elements are EE ])01.1,99.0([~ = . 
 
The problem is solved using the method presented in this work. First, a static analysis on the 
structure with uncertainty is performed using IFEM, and the bounds on obtained element axial 
forces are obtained. Second, two deterministic eigenvalue problems are performed to obtain the 
bounds on the critical buckling load. 
 
For comparison, a combinatorial analysis has performed which considers lower and upper values 
of uncertainty for each element i.e. solving ( 102422 10 ==n ) deterministic problems. 
 
The static analysis results obtained by IFEM and the brute force combination solution are 
summarized in Table (1). 
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Table (1): Static Analysis of the example problem using IFEM and combination method 
  
Second, a buckling analysis is performed using the method presented in this work. Also, the 
solution to a combinatorial buckling analysis is obtained, and the results for the fundamental 
critical buckling load is summarized in Table (2). 
 
 
 
 
 
 
 

 
 
 
 
 
Table (2): Buckling of the example problem using the present method and comparison with the 
combinatorial analysis results 
 
In practice, the lowest buckling load is the only value of interest.  As such, we have compared 
only the lower bound in Table 2. The example problem shows an overestimation of the width of 
the interval results of the proposed method compared to a combinatorial solution.  The 
overestimation could be attributed to three possible sources: overestimation in the interval values 
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Upper 
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IFEM 

 
Lower Bound 

 
Combination 

Method 

 
Upper Bound 

 
Combination 

Method 
 

1f  -0.7943 -0.7863 -0.7945 -0.7862 

2f  -0.3021 -0.2908 -0.3023 -0.2905 

3f  -0.3021 -0.2908 -0.3023 -0.2905 

4f  -0.7943 -0.7863 -0.7945 -0.7862 

5f  0.3887 0.4013 0.3882 0.4018 

6f  -0.8182 -0.8108 -0.8187 -0.8104 

7f  -0.2674 -0.2569 -0.2679 -0.2563 

8f  -0.2674 -0.2569 -0.2679 -0.2563 

9f  -0.8182 -0.8108 -0.8187 -0.8104 

10f  0.1817 0.1891 0.1812 0.1895 
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of the static solution of internal forces, overestimation in the eigenvalue solution or 
overestimation from uncoupling of the element forces Eq. (10) and the critical load Eq. (11).    
The internal forces calculated by the interval method and the exact combinatorial results are 
correct in the first three digits.  The eigen solution has been proved to be sharp.  Therefore the 
uncoupling of the static solution from Eq. (10) and the stability equation (11), is the most likely 
cause of the overestimation of the width seen in the solution. This can be seen by examining a 
solution where the exact combinatorial internal forces are used in Eq. (11) to find the critical 
buckling load.  In this calculation, the critical load in (0.1081), just slightly above the results 
from the proposed method of 0.1080 (See Table 2). 
 
 

6.   Discussion 
 
 

In this paper, we have introduced a method for linear stability analysis of a structure with 
stiffness properties expressed as an interval quantity.  To our knowledge, this is the first 
treatment of interval methods for structural stability. The conventional two step method 
consisting of solving the linear static problem for internal forces and subsequent solution of an 
eigen problem for the critical buckling load has been adapted from the non-interval approach.  
The method presented provides a lower bound for the minimum buckling load. Dependency of 
the interval internal forces and interval stiffness parameters have not been included in the 
method; this is the expected cause of loss of sharpness in the interval results.  
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Experiments with Range Computations using Extrapolation
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Abstract. The natural interval extension (NIE) used widely in interval analysis has the first order con-
vergence property, i.e., the excess width of the range enclosures obtained with the NIE goes down at least
linearly with the domain width. Here, we show how range approximations of higher convergence orders
can be obtained from the sequence of range enclosures generated with the NIE and uniform subdivision. We
combine the well-known Richardson Extrapolation Process (Sidi, 2003) with Brezenski’s error control method
(Brezenski, 1983) to generate non-validated range approximations to the true range. We demonstrate the
proposed method for accelerating the convergence orders on several multidimensional examples, varying from
one to six dimensions. These numerical experiments also show that considerable computational savings can
be obtained with the proposed procedure. However, the theoretical basis of the proposed method remains
to be investigated.

Keywords: Extrapolation, NIE, REP, Acceleration of Sequences.

1. Introduction

A major focus of interval analysis (Moore, 1979) is developing interval algorithms which
produce sharp bounds on the solutions. The natural interval extension (NIE) is the simplest
tool that is widely used in interval analysis to compute the range enclosures of functions.
The range enclosures obtained using NIE can be tightened further with the help of the
uniform subdivision method (Moore, 1979). These range enclosures possesses the property
of first order convergence, i.e., the excess width of the computed range enclosures goes down
at least linearly with the domain width.

In this paper, we propose a new method to accelerate the convergence rate of the range
enclosures, obtained with the NIE and uniform subdivision, using an extrapolation process,
such as the Richardson extrapolation process (REP). In the proposed method, we first obtain
the range enclosures with the NIE and uniform subdivision, for a sequence of geometrically
increasing subdivision factors. Then, we construct two separate sequences of lower and
upper bounds from the obtained range enclosures. Next, we extrapolate these sequences
to their respective limits (which are the range infimum and range supremum) using the
REP. This produces the Romberg Tables for the range infimum and supremum. To these
Romberg Tables, we next apply Brezenski’s error control criterion and generate the so-
called Brezenski’s tables of intervals containing the range infimum and supremum. Finally,
from the Brezenski’s tables, we construct a table of intervals approximating the range.
The sequences of the range approximating intervals in this table converges columnwise
increasingly faster than the sequence of range enclosures obtained with the existing method
of NIE and uniform subdivision.
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The outline of the paper is as follows. In section 2, we discuss the basics of the sequence
transformation, the REP and Brezenski’s error control criterion. In section 3, we review the
NIE and uniform subdivision. In section 4, we present the proposed algorithms. In section
5, we demonstrate the effectiveness of the proposed method on several multidimensional
examples, varying from one to six dimensions. Finally, in section 6 we draw the conclusions
of the work.

2. Extrapolation Process - Sequence Transformation

Extrapolation methods (equivalently, convergence acceleration methods or sequence trans-
formations) are popularly used for accelerating the convergence process of sequences (Brezen-
ski and Zaglia, 2002). Extrapolation methods basically transform the original sequence into
another one which converges to the limit more quickly (when the limit exists).

Let (Sn) be a sequence of (real or complex) numbers which converges to the limit S and
(Tn) be another sequence obtained by transforming the sequence (Sn) using some suitable
transformation method T .

In order to obtain a higher rate of convergence, the new transformed sequence (Tn) must
exhibit the following properties:

1. (Tn) must converge.

2. (Tn) must converge to the same limit as (Sn).

3. (Tn) must converge to S faster than (Sn), that is

lim
n→∞ (Tn − S) / (Sn − S) = 0

If the new sequence (Tn) possesses property (3), we say that the transformation T
accelerates the convergence of the sequence (Sn) or that the sequence (Tn) converges faster
than (Sn) .

These properties, in general, do not hold for all converging sequences (Sn) . We can obtain
the new transformed sequence (Tn) possessing the above mentioned properties only if the
sequence (Sn) to be accelerated belongs to the kernel KT of the transformation used (the
kernel KT is the set of sequences for which there exists an S such that ∀n ≥ N, Tn = S, cf.
(Brezenski and Zaglia, 2002)).

For instance, amongst the wide range of transformation methods available, the well-
known Aitken’s ∆2 transformation process is given by

Tn = Sn − (Sn+1 − Sn)2

Sn+2 − 2Sn+1 + Sn
, n = 0, 1, . . . (1)

For the Aitken’s process, the kernel KT is the set of sequences of the form

Sn = S + aλn (2)
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where, a and λ are scalars with a 6= 0 and λ 6= 1. Usually, S is the limit of the sequence
(Sn) , but this is not always the case. In the Aitken’s process, S is the limit of (Sn) if |λ|
< 1, and is called the anti-limit if |λ| > 1. It can be shown (Brezenski and Zaglia, 2002)
that the Aitken’s process accelerates the convergence of all sequences for which there exists
a λ ∈ [−1 , +1) such that

lim
n→∞

(Sn+1 − S)
(Sn − S)

= λ

A sequence transformation T : (Sn) → (Tn) is said to be an extrapolation method if it
is such that ∀n ≥ N, Tn = S if and only if (Sn) ∈ KT . Thus, any sequence transformation
can be viewed as an extrapolation method.

Amongst the various extrapolation methods (Sidi, 2003), perhaps the most popular and
widely used method is the REP. Let K ∈ N, ρ ≥ 2, and {Sn} be the sequence to be
accelerated. The REP can be given as

T
(j)
0 = Sj , j = 0, 1, . . . ,K (3)

T
(j)
k = T

(j)
k−1 +

(
T

(j)
k−1 − T

(j−1)
k−1

)

(ρk − 1)
,

{
k = 1, 2, . . . , K,
j = k, . . . , K.

(4)

which is similar to the Aitken’s ∆2 process for the first extrapolated column k = 1 as given
in (1).

The sequences
{
T

(j)
k

}
computed using (4) can be arranged in a two-dimensional array

called the Romberg Table, denoted [T ]k, cf. Table 1. The arrows in the table show the
flow of computations. The kth column of the Romberg Table is referred to as the (k − 1)th

extrapolated column. Details of the REP are in (Sidi, 2003).

Table 1. The Romberg Table, [T ]K with K = 5 (i.e., with 5
extrapolated columns)

T
(0)
0

↘
T

(1)
0 → T

(1)
1

↘ ↘
T

(2)
0 → T

(2)
1 → T

(2)
2

↘ ↘ ↘
T

(3)
0 → T

(3)
1 → T

(3)
2 → T

(3)
3

↘ ↘ ↘ ↘
T

(4)
0 → T

(4)
1 → T

(4)
2 → T

(4)
3 → T

(4)
4

↘ ↘ ↘ ↘ ↘
T

(5)
0 → T

(5)
1 → T

(5)
2 → T

(5)
3 → T

(5)
4 → T

(5)
5
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2.1. Brezenski’s Error Control criterion

Brezenski’s theorem on error control (Brezenski, 1983) explains how to construct a sequence
of intervals containing the unknown limit of the sequence under consideration.

Let {Sn} be the sequence under consideration. Let S be the limit of the sequence {Sn}.
Let {Tn} and {Vn} be two other sequences obtained by applying REP to {Sn} . Suppose the
sequence {Tn} converges faster than {Sn} , and {Vn} converges faster than {Tn} , both to
the same limit S. Thus, {Sn} , {Tn} , and {Vn} can be successive columns of the Romberg
Table 1.

Let b ∈ R (called as the Brezenski’s factor). Define

Vn (b) = Vn − b (Vn − Tn) , n ∈ N

and construct the interval

Jn (b) = [min (Vn (b) , Vn (−b)) , max (Vn (b) , Vn (−b))] (5)

THEOREM 1. (Brezenski, 1983) If Tn − S = o (Sn − S) and if Vn − S = o (Tn − S) then
∀b 6= 0, ∃N : ∀n ≥ N, S ∈ Jn (b) . Moreover Vn (±b)− S = o (Sn − S) .

REMARK 2.1. Brezenski has pointed out a fundamental practical point in (Brezenski,
1983): “Under some assumptions, the theorem given above says that for all n greater than N ,
S belongs to some interval. However, such a N is not known without adding supplementary
assumptions. Such an N has been attained if the interval at the step n + 1 is contained in
the interval obtained at the step n, whatever n ≥ N may be. This is a good test for having
attained this N”.

REMARK 2.2. As pointed out in Theorem 1, the Brezenski’s sequence of intervals Vn (±b)
(so, also Jn (b)) can have a rate of convergence faster than {Sn} , at the most of {Tn} , but
not faster than {Tn} . Hence, we lose the benefit of extrapolation by one column.

REMARK 2.3. The value of Brezenski’s factor b decides the two factors in constructing the
Brezenski’s sequence of intervals Jn (b) in (5). One is the width of the sequence of intervals
Jn (b) , and the other is the value of N referred to in Theorem 1. Larger the value of b,
wider is the interval Jn (b), but smaller is N . Whereas, smaller the value of b, tighter is the
interval Jn (b), but larger is N . In general, the suggested value of b is between 0 and 1, cf.
(Brezenski, 1983).
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3. THE NIE AND UNIFORM SUBDIVISION

Consider the interval vector (also called as a box) x =(x1, . . . ,xl)
T with components xj =[

xj , xj

]
. Denote the range of a function f : Rn → R over the box x as

f range (x) = {f (x) |x ∈ x}
Let f (x) denote the natural interval extension (NIE) of f , and e (x) be the error interval
associated with the range enclosure obtained with f (x). Then, we can express f (x) as

f (x) =
[
f (x), f (x)

]
= f range (x) + e (x) (6)

Suppose we uniformly subdivide the interval vector x using the subdivision factor N , as
follows (wid x denotes the width of the box x):

xi,j = [xi + (j − 1) wid xi/N, xi + j wid xi/N ] , j = 1, 2, . . . , N (7)

xi =
N⋃

j=1

xi,j (8)

x =
N⋃

ji=1

(
x1,j1

, x2,j2
, . . . ,x

l,jl

)
(9)

Let e(N) (x) be the error interval associated with N partitions of the interval vector x,
expressed as

e(N) (x) =
N⋃

ji=1

e
(
x1,j1

, x2,j2
, . . . ,xl,jl

)
(10)

Define f(N) (x) as

f(N) (x) =
N⋃

ji=1

f
(
x1,j1

, x2,j2
, . . . ,xl,jl

)
= f range (x) + e(N) (x) (11)

Then, Moore (Moore, 1979) has shown that there exists a constant σ such that the excess
width is given by

wid e(N) (x) ≤ σ

N
wid x (12)

or

wid e(N) (x) =
σ

N
wid x + O

(
wid x2

)
(13)

From (11) and (13),

f(N) (x) = f range (x) +
σ

N
wid x + O

(
wid x2

)
(14)
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f(N) (x) = f range (x) +
σ

N
wid x + O

(
wid x2

)
(15)

Comparing (14) with (2), for the infimum of the range we have

Sn ↔ f(N) (x), S ↔ f range (x) λn ↔ 1
Nn

a ↔ σ (16)

Similarly, from (2) and (15), for the supremum of the range we have

Sn ↔ f(N) (x), S ↔ f range (x) λn ↔ 1
Nn

a ↔ σ (17)

REMARK 3.1. Using NIE and different subdivision factors N , we can thus construct two
separate sequences converging to two different limits. One is the sequence of lower bounds on
the range enclosures converging to the range infimum, and the other is the sequence of upper
bounds on the range enclosures converging to the range supremum. In our work, we shall
construct these two separate sequences of lower and upper bounds of the range enclosure
and extrapolate them to their respective limits (we do not directly apply extrapolation to the
sequence of intervals enclosing the range).

4. The Proposed Method

Based on Remark 3.1, we first construct two separate sequences of lower and upper bounds
on the infimums and supremums of the range enclosures, and then obtain the Romberg
tables for the infimum and supremum by extrapolating these sequences separately to their
respective limits.

The algorithm Sequence infsup accepts as inputs the initial box x, the function f, and
number K of extrapolated columns required in the Romberg Table. It returns the sequences

of infimums
{
A

(j)
0

}K

j=0
and the sequences of supremums

{
B

(j)
0

}K

j=0
. The sequences of lower

and upper bounds are generated for a geometrically increasing uniform subdivision factor
Nj = 2j , j = 0, 1, . . . , K.

ALGORITHM SEQUENCES OF LOWER AND UPPER BOUNDS:[{
A

(j)
0

}K

j=0
,

{
B

(j)
0

}K

j=0

]
= Sequence infsup(x, f, K)

Inputs: Initial box x, function f , the number K of extrapolated columns in Romberg
table.

Output: The sequence of infimums
{
A

(j)
0

}K

j=0
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and supremums
{
B

(j)
0

}K

j=0
.

BEGIN Algorithm

1. Set
A

(0)
0 = f (x), B

(0)
0 = f (x)

2. FOR j = 1, 2, . . . ,K

a) Compute the number of elements in the uniform subdivision partition as Nj = 2j .
b) Using Nj , partition the initial box x uniformly as per (7), (8), and (9)
c) In this subdivision partition of x, obtain the range enclosure f(Nj) (x) as per (11)

f(Nj) (x) =
[
f(Nj) (x), f(Nj) (x)

]
=

Nj⋃

ji=1

f
(
x1,j1

, x2,j2
, . . . ,xl,jl

)

d) Set
A

(j)
0 ←− f(Nj) (x), B

(j)
0 ←− f(Nj) (x)

3. RETURN
{
A

(j)
0

}K

j=0
and

{
B

(j)
0

}K

j=0
.

END Algorithm

4.1. Romberg Table for the infimum and supremum with the REP

Having constructed the sequences of lower and upper bounds on the range enclosure, we can
now apply the REP and obtain the respective Romberg tables by executing the algorithm
Romberg inf and Romberg sup.

ALGORITHM ROMBERG TABLE FOR THE INFIMUM:

[A]K = Romberg inf
({

A
(j)
0

}K

j=0
, K

)

Inputs: The sequence of lower bounds
{
A

(j)
0

}K

j=0
, and the number K of columns required

in the Romberg Table.
Output: The Romberg Table [A]K containing the extrapolated sequences.

BEGIN Algorithm
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1. Set T
(j)
0 = A

(j)
0 , j = 0, 1, . . . , K.

2. Construct the Romberg Table for the range infimum, using the REP in (4):

A
(j)
k = A

(j)
k−1 +

A
(j)
k−1 −A

(j−1)
k−1

(2k − 1)
,

{
k = 1, 2, . . . , K,
j = k, . . . ,K.

[A]K =
{
A

(j)
k , k = 0, 1, . . . , K, j = k, . . . ,K

}

3. RETURN the Romberg Table [A]K

END Algorithm

We can have a similar algorithm Romberg sup based on
{
B

(j)
0

}K

j=0
to generate the

Romberg Table [B]K of extrapolated sequences for the range supremum (the description is
omitted here).

4.2. Brezenski’s Error control and approximated bounds

As there is no guarantee that the extrapolation on the lower bound sequence will again
result in a lower bound on the range infimum, it is necessary to have an error estimate for
the entries in the Romberg Table (the same also holds true for the upper bound sequence).
Among the many error estimation methods (Brezenski and Zaglia, 2002; Sidi, 2003; Walz,
1996), we adopt the error control criterion proposed by Brezenski (Brezenski and Zaglia,
2002) to generate intervals which asymptotically contain the true range.

Based on Theorem 1 and Remark 2.1, we can have an algorithm to construct the so-
called Brezenski’s Table of intervals for the range infimum and Brezenski’s Table of intervals
for the range supremum, and from these, the final Table range approximations with higher
order convergence rate.

ALGORITHM RANGE APPROXIMATOR:

[Range approx]K =Range Approx
(
[A]K and [B]K

)

Input: The Romberg Tables [A]K and [B]K , and a value for Brezenski’s factor b ∈ R.

Output: The Table [Range approx]K containing the range approximating intervals.

BEGIN Algorithm

1. Set k = 0.
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2. From the Romberg Table [A]K , construct Brezenski’s table [C]K of intervals for the
infimum as follows (cf. equation 5):

V
(j)
k+2 (b) = A

(j)
k+2 − b

(
A

(j)
k+2 −A

(j)
k+1

)
,

{
k = 0, 1, . . . , K − 2,
j = k + 2, . . . , K.

C
(j)
k+2 =

[
min

(
V

(j)
k+2 (+b) , V

(j)
k+2 (−b)

)
, max

(
V

(j)
k+2 (+b) , V

(j)
k+2 (−b)

)]
,

k = 0, 1, . . . , K − 2, j = k + 2, . . . ,K.

3. Similarly, from the Romberg Table [B]K , construct Brezenski’s Table [D]K of intervals
for supremums.

4. Check for nestedness1 of the intervals in Table [C]K . For each nested interval, find its
infimum. Form the Table [CL]K with these infimums as the corresponding entries. Do
likewise for the intervals in [D]K , using the supremum of each nested interval to form
the Table [DU ]K .

5. Construct intervals whose lower and upper endpoints are the corresponding entries of
[CL]K and [DU ]K , respectively. Construct a Table of range approximations [Range approx]K

based on these intervals.

6. RETURN [Range approx]K .

END Algorithm

5. Numerical Experiments

We test and compare the performance of the proposed technique on several multidimensional
examples. The examples considered and the test results are listed in the Appendix.

The range overestimation of the intervals in [Range approx]K , and the order of conver-
gence for the same are shown in Tables 2 to 12. The range overestimation of the intervals
are computed as

Range Overestimation = wid [Range approx]K – wid f range (x) .

In Tables 2 to 12, the ‘a’ part of the table shows the range overestimation of the intervals
in [Range approx]K . The first column (k = 0) shows the range overestimation of the range
enclosures obtained with the NIE and uniform subdivision, whereas the second column
(k = 1) , gives the range overestimation for the first extrapolated column. The subsequent
columns in the tables show the range overestimations for extrapolated columns k = 2, . . . , K.

1 Nestedness is checked columnwise, for consecutive intervals in each column.
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The ‘b’ part of the table shows the order of convergence of the same intervals. A star entry
in the tables signifies that the computed quotient value is erratic, because the numerical zero
(i.e. zero within machine precision) is reached for the corresponding range overestimations.

The comparison of the number of subdivisions required and the number of boxes gener-
ated to achieve the desired accuracy ε = 1e − 11, with the proposed method and with the
existing NIE and uniform subdivision method are shown in Tables 13 and 14, respectively2.

5.1. Discussion

Based on the results in Tables 2 to 12, we make the following observations.

− From the quotient entries in the ‘b’ part of Tables 2 to 12, we observe that sequences
converge columnwise with the order O

(
1

NK

)
. Thus, it seems beneficial to apply extrap-

olation and accelerate the rate of convergence of the range enclosures obtained with
the NIE and the uniform subdivision.

− With the proposed technique, the number of subdivisions required to achieve the desired
accuracy are significantly reduced compared to the existing method.

− In all the examples, the intervals in Table [Range approx]K enclose the true function
range (these Tables are omitted here for want of space, but are available from the
authors).

6. CONCLUSIONS

Summarizing the results of the numerical tests, we see that the proposed technique based on
extrapolation works well, and generates range approximating intervals of high accuracy. We
see that the number of uniform subdivisions required by the proposed method is significantly
less compared to the existing NIE and uniform subdivision method. We also obtain, the
significant reductions in the number of generated boxes to achieve the desired accuracy.

However, it should be pointed out that we have also come across several examples where
the REP was unsuccessful. For instance, this happened in the example

f(x) = 1− 5x +
1
3
x3, x ∈ [2, 3] .

The reason for the same is not yet clear. The range approximating intervals generated
by this technique are non-validated intervals, and a technique to rigorously validate the
same remains to be found. The theoretical proof for the proposed method is also to be
investigated.

2 In some examples, we have subdivided more than necessary, just to further illustrate that a much
higher accuracy can usually be achieved with just one or two additional elements in the Romberg Tables.

REC2004



339

References

Asaithambi, N. S., S. Z. and R. E. Moore, ‘On computing the range of values’. Computing 28.
Brezenski, C.: 1983, ‘Error Control in Convergence Acceleration Processes’. IMA J. Nunerical Analysis 3,

65–80.
Brezenski, C. and M. R. Zaglia: 2002, Extrapolation Methods, Theory and Practice. North-Holland,

Amsterdam, second edition.
Cornelius, H. and R. Lohner: 1984, ‘Computing the Range Values of Real Functions with Accuracy Higher

than Second Order’. Computing 33, 331–347.
Costabile, F., G. M. I. and S. Serra: 1996, ‘Asymptotic Expansion and Extrapolation for Bernstein

Polynomials with Applications’. BIT pp. 676–687.
Horowitz, I. M.: 1993, Quantitative Feedback Design Theory (QFT),. QFT Publications, Boulder.
Makino, K.: 1998, Rigorous Analysis of Nonlinear Motion in Particle Accelerators. PhD thesis, Department

of Physics and Astronomy, Michigan State University.
Makino, K. and M. Berz: 2003, ‘Taylor Models and Other Validated Functional Inclusion Methods’.

International Journal of Pure and Applied Mathematics 4(4), 379–456.
Moore, R. E.: 1979, Methods And Applications of Interval Analysis. SIAM Philadelphia.
More, J. J., G. B. S. and K. E. Hillstrom, ‘Testing unconstrained optimization software’. ACM Trans.

Mathematical Software 7.
Ratz, D. and T. Csendes: 1995, ‘On the selection of subdivision directions in interval branch-and-bound

methods for global optimization’. Journal of Global Optimization 7, 183–207.
Sidi, A.: 2003, Practical Extrapolation Methods Theory and Applications. Cambridge University Press.
Walz, G.: 1996, Asymptotics Extrapolation. Akademie Verlag.

REC2004



340

Appendix

EXAMPLE 1. The 1-dimensional example of Makino and Berz (Makino, 1998, Example 1).

f(x) = 1/x + x, x ∈ [1.9, 2.1] .

Table 2.

Table 2a

Range overestimation for the function given in Example 1

N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

2 0.050

4 0.025

8 0.013 0.013

16 6.29E − 3 6.29E − 3 8.07E − 5

32 3.14E − 3 3.14E − 3 1.99E − 5 2.49E − 7

64 1.67E − 3 1.67E − 3 4.98E − 6 3.12E − 8 4.01E − 10

128 7.87E − 4 7.87E − 4 1.24E − 6 3.91E − 9 2.49E − 11 3.10E − 13

256 3.94E − 4 3.94E − 4 3.10E − 7 4.89E − 10 1.55E − 12 9.77E − 15

Table 2b

Quotients of the above entries of Table 2a

N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

2 1.9963

4 1.9972

8 1.9983 1.9983

16 1.9991 1.9991 4.036

32 1.9995 1.9995 4.017 7.980

64 1.9997 1.9997 4.008 7.990 16.104

128 1.9998 1.9998 4.004 7.995 16.045 31.773

O
(

1
N

)
O

(
1
N

)
O

(
1

N2

)
O

(
1

N3

)
O

(
1

N4

)
O

(
1

N5

)

Comments: In the above Table 2a, for the uniform subdivision factor N = 256, the
second extrapolated column (k = 2) gives a reduction in the overestimation by 1271
times (from 3.94E−4 to 3.10E−7), whereas in the 5th extrapolated column (k = 5) the
reduction is 4.03e + 10 times (from 3.94E − 4 to 9.77E − 15). The rate of convergence
of excess width is given in Table 2b. Here, we see that the excess width obtained with

the NIE (given in column 2) goes down linearly with O
(

1
N

)
. The rate of convergence is

accelerated in the subsequent extrapolated columns from O
(

1
N

)
in column 3 to O

(
1

N5

)
in column 7.
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EXAMPLE 2. The 1-dimensional example of Cornelius and Lohner (Cornelius and Lohner, 1984, Example 2).

f(x) =
x + 2√

x
, x ∈ [1, 3] .

Table 3.

Table 3a

Range overestimation for the function given in Example 2

N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

4 0.88

8 0.43 0.43

16 0.22 0.22

32 0.11 0.11 8.24E − 4

64 0.05 0.05 1.88E − 4 5.78E − 6

128 0.03 0.03 4.51E − 5 6.98E − 7 3.42E − 8

256 0.01 0.01 1.10E − 5 8.58E − 8 1.87E − 9 7.90E − 11

512 6.67E − 3 6.67E − 3 2.73E − 6 1.06E − 8 1.10E − 10 2.36E − 12 1.43E − 13

1024 3.33E − 3 3.33E − 3 6.78E − 7 1.32E − 9 6.64E − 12 7.19E − 14 2.22E − 15

Table 3b

Quotients of the above entries of Table 3a

N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

4 2.031

8 2.014 2.014

16 2.006 2.006

32 2.003 2.003 4.38

64 2.001 2.001 4.18 8.29

128 2.0008 2.0008 4.09 8.14 18.25

256 2.0004 2.0004 4.04 8.07 17.07 33.52

512 2.0002 2.0002 4.02 8.03 16.52 32.77 64

O
(

1
N

)
O

(
1
N

)
O

(
1

N2

)
O

(
1

N3

)
O

(
1

N4

)
O

(
1

N5

)
O

(
1

N6

)

Comments: In the above Table 3a, for the uniform subdivision factor N = 1024, the
second extrapolated column (k = 2) gives a reduction in the overestimation by 4912
times (from 3.33E−3 to 6.78E−7), whereas in the 6th extrapolated column (k = 6) the
reduction is 1.50e + 12 times (from 3.33E − 3 to 2.22E − 15). The rate of convergence
of excess width is given in Table 3b. Here, we see that the excess width obtained with

the NIE (given in column 2) goes down linearly with O
(

1
N

)
. The rate of convergence is

accelerated in the subsequent extrapolated columns from O
(

1
N

)
in column 3 to O

(
1

N6

)
in column 8.
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EXAMPLE 3. The 1-dimensional example of Costabile et. al. (Costabile and Serra, 1996, Example 1).

f(x) = sin(x) cos(x), x ∈ [0, 0.5] .

Table 4.

Table 4a

Range overestimation for the function given in Example 3

N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

2 0.044 0.044

4 0.025 0.025

8 0.014 0.014

16 6.98E − 3 6.98E − 3 4.18E − 4

32 3.54E − 3 3.54E − 3 1.04E − 4 9.73E − 7

64 1.78E − 3 1.78E − 3 2.58E − 5 1.34E − 7 4.34E − 9

128 8.95E − 4 8.95E − 4 6.43E − 6 1.75E − 8 2.66E − 10 1.72E − 12

256 4.48E − 4 4.48E − 4 1.61E − 6 2.24E − 9 1.65E − 11 5.47E − 14 1.06E − 15

Table 4b

Quotients of the above entries of Table 4a

N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

2 1.73

4 1.87

8 1.94 1.94

16 1.97 1.97 4.032

32 1.99 1.99 4.017 7.26

64 1.99 1.99 4.008 7.65 16.29

128 2.00 2.00 4.004 7.83 16.15 31.42 −

O
(

1
N

)
O

(
1
N

)
O

(
1

N2

)
O

(
1

N3

)
O

(
1

N4

)
O

(
1

N5

)

Comments: In the above Table 4a, for the uniform subdivision factorN = 256, the
second extrapolated column (k = 2) gives a reduction in the overestimation by 278
times (from 4.48E−4 to 1.61E−6), whereas in the 6th extrapolated column (k = 6) the
reduction is 4.23e + 11 times (from 4.48E − 4 to 1.06E − 15). The rate of convergence
of excess width is given in Table 4b. Here, we see that the excess width obtained with

the NIE (given in column 2) goes down linearly with O
(

1
N

)
. The rate of convergence is

accelerated in the subsequent extrapolated columns from O
(

1
N

)
in column 3 to O

(
1

N5

)
in column 7.
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EXAMPLE 4. The 2-dimensional example of Asaithambi et al. (Asaithambi and Moore, , Example 2).

f(x) = x1 (1− x1)

(
1− 5

8
x2 +

3

2
x2
2 − x3

2

)
, x1 ∈ [−1, 1] , x2 ∈ [0, 1] .

Table 5.

Table 5a

Range overestimation for the function given in Example 4

N k = 0 k = 1 k = 2 k = 3 k = 4

16 0.30 0.30

32 0.09 0.09

64 0.016 0.016

128 8.02E − 3 8.02E − 3

256 3.96E − 3 3.96E − 3 1.05E − 4

512 1.97E − 3 1.97E − 3 2.60E − 5 8.94E − 8

1024 9.80E − 4 9.80E − 4 6.47E − 6 1.12E − 8 0.0

2048 4.89E − 4 4.89E − 4 1.61E − 6 1.40E − 9 0.0

4096 2.44E − 4 2.44E − 4 4.03E − 7 1.75E − 10 0.0

Table 5b

Quotients of the above entries of Table 5a

N k = 0 k = 1 k = 2 k = 3 k = 4

16 3.428 3.428

32 5.381 5.381

64 2.052 2.052

128 2.026 2.026

256 2.013 2.013 4.038

512 2.007 2.007 4.019 8.0 ∞

1024 2.003 2.003 4.010 8.0 ∞

2048 2.002 2.002 4.005 8.0 ∞

O
(

1
N

)
O

(
1
N

)
O

(
1

N2

)
O

(
1

N3

)

Comments: In the above Table 5a, for the uniform subdivision factor N = 4096, the
second extrapolated column (k = 2) gives a reduction in the overestimation by 606 times
(from 2.44E−4 to 4.03E−7), whereas in the 4th extrapolated column (k = 4) we obtain
the true function range. The rate of convergence of excess width is given in Table 5b.
Here, we see that the excess width obtained with the NIE (given in column 2) goes

down linearly with O
(

1
N

)
. The rate of convergence is accelerated in the subsequent

extrapolated columns from O
(

1
N

)
in column 3 to O

(
1

N3

)
in column 5.
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EXAMPLE 5. The 2-dimensional three-hump camel back function example of Asaithambi et al. (Asaithambi and
Moore, , Example 4).

f(x) = 2x2
1 − 1.05x4

1 +
1

6
x6
1 − x1x2 + x2

2, x1 ∈ [−2, 4] , x2 ∈ [−2, 4] .

Table 6.

Table 6a

Range overestimation for the function given in Example 5

N k = 0 k = 1 k = 2 k = 3 k = 4

128 13.45 13.45

256 6.581 6.581

512 3.143 3.143

1024 1.572 1.572

2048 0.787 0.787 6.19E − 3

4096 0.394 0.394 4.39E − 4 4.24E − 7

8192 0.197 0.197 1.10E − 4 5.29E − 8 4.23E − 5

16384 0.098 0.098 2.74E − 5 6.61E − 9 1.06E − 11

32768 0.049 0.049 6.86E − 6 8.26E − 10 6.97E − 13

Table 6b

Quotients of the above entries of Table 6a

N k = 0 k = 1 k = 2 k = 3 k = 4

128 2.043 2.043

256 2.094 2.094

512 1.999 1.999

1024 1.997 1.997

2048 1.998 1.998 14.13

4096 1.999 1.999 3.998 8.017

8192 1.999 1.999 3.999 8.009 3998812

16384 1.999 1.999 3.999 8.004 15.18

O
(

1
N

)
O

(
1
N

)
O

(
1

N2

)
O

(
1

N3

)
O

(
1

N4

)

Comments: In the above Table 6a, for the uniform subdivision factor N = 32768, the
second extrapolated column (k = 2) gives a reduction in the overestimation by 7143
times (from 0.049 to 6.86E − 6), whereas in the 4th extrapolated column (k = 4) the
reduction is 7.03e + 10 times (from 0.049 to 6.97E − 13). The rate of convergence of
excess width is given in Table 6b. Here, we see that the excess width obtained with

the NIE (given in column 2) goes down linearly with O
(

1
N

)
. The rate of convergence is

accelerated in the subsequent extrapolated columns from O
(

1
N

)
in column 3 to O

(
1

N4

)
in column 6.
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EXAMPLE 6. The 2-dimensional exponential function of Moore (Moore, 1979, pp. 45).

f(x) = x1 exp
(
x1 + x2

1

)
− x2

2, x1 ∈ [1, 2] , x2 ∈ [0, 1] .

Table 7.

Table7a

Range overestimation for the function given in Example 6

N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

4 0.51

8 0.25 0.25

16 0.13 0.13 0.015

32 0.06 0.06 4.29E − 3

64 0.03 0.03 1.10E − 3 1.50E − 5

128 0.02 0.02 2.78E − 4 9.34E − 7 3.25E − 7

256 7.81E − 3 7.81E − 3 6.96E − 5 5.83E − 8 2.03E − 8 1.58E − 10

512 3.91E − 3 3.91E − 3 1.74E − 5 3.64E − 9 1.27E − 9 2.46E − 12 8.34E − 13

1024 1.95E − 3 1.95E − 3 4.35E − 6 2.27E − 10 7.91E − 11 4.44E − 14 1.91E − 14

Table 7b

Quotients of the above entries of Table 7a

N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

4 2.0278

8 2.0151 2.0151

16 2.0085 2.0085 3.528

32 2.0044 2.0044 3.888

64 2.0022 2.0022 3.972 16.112

128 2.0011 2.0011 3.993 16.028 16.037

256 2.0005 2.0005 3.998 16.007 16.009 64.14

512 2.0002 2.0002 3.999 16.001 16.001 55.37 ∗

O
(

1
N

)
O

(
1
N

)
O

(
1

N2

)
O

(
1

N3

)
O

(
1

N4

)
O

(
1

N5

)

Comments: In the above Table 7a, for the uniform subdivision factor N = 1024, the
second extrapolated column (k = 2) gives a reduction in the overestimation by 448
times (from 1.95E − 3 to 4.35E − 6), whereas in the 6th extrapolated column (k = 6)
the reduction is1.02e + 11 times (from 1.95E− 3 to 1.91e− 14). The rate of convergence
of excess width is given in Table 7b. Here, we see that the excess width obtained with

the NIE (given in column 2) goes down linearly with O
(

1
N

)
. The rate of convergence is

accelerated in the subsequent extrapolated columns from O
(

1
N

)
in column 3 to O

(
1

N5

)
in column 7.
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EXAMPLE 7. The 3-dimensional function of Makino (Makino and Berz, 2003, pp. 403).

f(x, y, z) =
4 tan(3y)

3x + x

√
6x

−7(x−8)

− 120− 2x− 7z(1 + 2y)− sinh(0.5 +
6y

8y + 7
) +

(3y + 13)2

3z

−20z(2z − 5) +
5x tanh(0.9z)√

5y
− 20y sin(3z),

x1 ∈ [1.75, 2.25] , x2 ∈ [0.75, 1.25] , x3 ∈ [0.75, 1.25] .

Table 8.

Table 8a

Range overestimation for the function given in Example 7

N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

8 16.5 16.5

16 8.16 8.16

32 4.06 4.06

64 2.03 2.03 8.71e− 3 7.54e− 4

128 1.01 1.01 2.43e− 3 9.32e− 5 5.68e− 7 1.06e− 7

256 0.51 0.51 6.39e− 4 1.16e− 5 3.63e− 8 3.32e− 9 2.07e− 11

512 0.25 0.25 1.64e− 4 1.44e− 6 2.29e− 9 1.04e− 10 4.67e− 13

Table 8b

Quotients of the above entries of Table 8a

N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

8 2.035

16 2.024

32 2.017 2.017

64 2.009 2.009

128 2.005 2.005 3.580 8.092

256 2.003 2.003 3.802 8.061 15.647 31.9162

512 2.0007 2.0007 3.903 8.034 15.851 31.9161 44.202

O
(

1
N

)
O

(
1
N

)
O

(
1

N2

)
O

(
1

N3

)
O

(
1

N4

)
O

(
1

N5

)
O

(
1

N6

)

Comments: In the above Table 8a, for the uniform subdivision factor N = 512, the
second extrapolated column (k = 2) gives a reduction in the overestimation by 1524.4
times (from 0.25 to 1.64e − 4), whereas in the 6th extrapolated column (k = 6) the
reduction is 5.35e + 11 times (from 0.25 to 4.67e − 13). The rate of convergence of
excess width is given in Table 8b. Here, we see that the excess width obtained with

the NIE (given in column 2) goes down linearly with O
(

1
N

)
. The rate of convergence is

accelerated in the subsequent extrapolated columns from O
(

1
N

)
in column 3 to O

(
1

N6

)
in column 8.

REC2004



347

EXAMPLE 8. The 4-dimensional trigonometric function of More et al. (More and Hillstrom, , Example 26).

f(x) =

4∑
i=1

fi (x)2 , fi (x) = 4−
4∑

j=1

cos xj + i (1− cos xi)− sin xi, xi ∈ [0.75, 2.75]4 .

Table 9.

Table 9a

Range overestimation for the function given in Example 8

N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

16 0.70 0.15

32 0.37 0.37 0.04 2.17E − 3

64 0.19 0.19 9.66E − 3 2.56E − 4

128 0.10 0.10 2.44E − 3 3.08E − 5

256 0.05 0.05 6.12E − 4 3.76E − 6 7.75E − 8 1.35E − 8

512 0.02 0.02 1.53E − 4 4.63E − 7 6.08E − 9 4.22E − 10

1024 0.01 0.01 3.84E − 5 5.75E − 8 4.19E − 10 1.34E − 11

2048 6.07E − 3 6.07E − 3 9.60E − 6 7.17E − 9 2.76E − 11 6.42E − 13

4096 3.04E − 3 3.04E − 3 2.40E − 6 8.95E − 10 1.98E − 12 2.50E − 13

Table 9b

Quotients of the above entries of Table 9a

N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

16 1.897 3.827

32 1.949 1.949 3.920 8.465

64 1.974 1.974 3.962 8.334

128 1.987 1.987 3.981 8.195

256 1.993 1.993 3.990 8.105 12.75 31.92

512 1.996 1.996 3.995 8.054 14.52 31.59

1024 1.998 1.998 3.997 8.027 15.18 ∗

2048 1.999 1.999 3.998 8.012 13.91 ∗

O
(

1
N

)
O

(
1
N

)
O

(
1

N2

)
O

(
1

N3

)
O

(
1

N4

)
O

(
1

N5

)

Comments: In the above Table 9a, for the uniform subdivision factor N = 4096, the
second extrapolated column (k = 2) gives a reduction in the overestimation by 1266
times (from 3.04E−3 to 2.40E−6), whereas in the 5th extrapolated column (k = 5) the
reduction is 1.22e + 10 times (from 3.04E − 3 to 2.50E − 13). The rate of convergence
of excess width is given in Table 9b. Here, we see that the excess width obtained with

the NIE (given in column 2) goes down linearly with O
(

1
N

)
. The rate of convergence is

accelerated in the subsequent extrapolated columns from O
(

1
N

)
in column 3 to O

(
1

N5

)
in column 7.
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EXAMPLE 9. The 5-dimensional Griewank function of Ratz and Csendes (Ratz and Csendes, 1995, pp. 205).

f(x) =

5∑
i=1

x2
i

400
−

5∏
i=1

cos

(
xi√

i

)
+ 1, xi ∈ [−601,−599]5 .

Table 10.

Table 10a

Range overestimation for the function given in Example 9

N k = 0 k = 1 k = 2 k = 3 k = 4

4 0.14

8 0.08

16 0.04 0.04

32 0.02 0.02

64 9.72E − 3 9.72E − 3 4.31E − 5

128 4.86E − 3 4.86E − 3 7.68E − 6 4.103E − 6 5.06E − 8

256 2.43E − 3 2.43E − 3 1.53E − 6 5.16E − 7 1.47E − 9

512 1.22E − 3 1.22E − 3 3.35E − 7 6.46E − 8 4.64E − 11

Table 10b

Quotients of the above entries of Table 10a

N k = 0 k = 1 k = 2 k = 3 k = 4

4 1.926

8 1.952

16 1.986 1.986

32 1.995 1.995

64 1.998 1.998 5.61

128 1.999 1.999 5.01 7.95 34.33

256 1.999 1.999 4.58 7.99 31.76

O
(

1
N

)
O

(
1
N

)
O

(
1

N2

)
O

(
1

N3

)
O

(
1

N4

)

Comments: In the above Table 10a, for the uniform subdivision factor N = 512, the
second extrapolated column (k = 2) gives a reduction in the overestimation by 3642
times (from 1.22E − 3 to 3.35E − 7), whereas in the 4th extrapolated column (k = 4)
he reduction is 2.63e + 7 times (from 1.22E − 3 to 4.64E − 11). The rate of convergence
of excess width is given in Table 10b. Here, we see that the excess width obtained with

the NIE (given in column 2) goes down linearly with O
(

1
N

)
. The rate of convergence is

accelerated in the subsequent extrapolated columns from O
(

1
N

)
in column 3 to O

(
1

N4

)
in column 6.
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EXAMPLE 10. The 6-dimensional trigonometric function of More et al. (More and Hillstrom, , Example 26).

f(x) =

6∑
i=1

fi (x)2 , fi (x) = 6−
6∑

j=1

cos xj + i (1− cos xi)− sin xi, xi ∈ [0.75, 2.75]6 .

Table 11.

Table 11a

Range overestimation for the function given in Example 10

N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

4 5.56

8 3.43

16 1.88 0.33

32 0.98 0.98 0.08 1.21E − 3

64 0.50 0.50 0.02 1.12E − 4 6.53E − 6

128 0.25 0.25 5.29E − 3 1.11E − 5 2.11E − 6

256 0.13 0.13 1.32E − 3 1.20E − 6 1.87E − 7 1.87E − 8

512 0.06 0.06 3.31E − 4 1.37E − 7 1.34E − 8 5.82E − 10

1024 0.03 0.03 8.28E − 5 1.63E − 8 8.90E − 10 1.92E − 11

Table 11b

Quotients of the above entries of Table 11a

N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

4 1.622

8 1.822

16 1.914 3.957

32 1.957 1.957 3.984 10.74

64 1.979 1.979 3.994 10.07 03.09

128 1.989 1.989 3.997 09.31 11.32

256 1.994 1.994 3.999 08.74 13.96 32.06

512 1.997 1.997 3.999 08.40 15.03 30.32

O
(

1
N

)
O

(
1
N

)
O

(
1

N2

)
O

(
1

N3

)
O

(
1

N4

)
O

(
1

N5

)

Comments: In the above Table 11a, for the uniform subdivision factor N = 1024, the
second extrapolated column (k = 2) gives a reduction in the overestimation by 362 times
(from 0.03 to 8.28E − 5), whereas in the 5th extrapolated column (k = 5) the reduction
is 1.56e + 9 times (from 0.03 to 1.92E − 11). The rate of convergence of excess width is
given in Table 11b. Here, we see that the excess width obtained with the NIE (given in

column 2) goes down linearly with O
(

1
N

)
. The rate of convergence is accelerated in the

subsequent extrapolated columns from O
(

1
N

)
in column 3 to O

(
1

N5

)
in column 7.
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EXAMPLE 11. The 3-dimensional non-rational example of Horowitz (Horowitz, 1993, pp. 129). The magnitude
function for the non-rational system is

f(x) = −10 log10 {1 + x2 (x2 + 2 cos 2x1)} , x1 ∈ [1, 2] , x2 ∈ [0.4, 0.6] , x3 ∈ [0.01, 0.02] .

Table 12.

Table 12a

Range overestimation for the function given in Example 11

N k = 0 k = 1 k = 2 k = 3 k = 4

4 0.959

8 0.457 0.457

16 0.223 0.223 0.014

32 0.110 0.110 2.85E − 3 1.69E − 4

64 0.055 0.055 6.53E − 4 1.98E − 5 2.06E − 6

128 0.027 0.027 1.56E − 4 2.40E − 6 1.02E − 7

256 0.013 0.013 3.83E − 5 2.96E − 7 5.72E − 9

512 6.824 6.824 9.47E − 6 3.67E − 8 3.38E − 10

1024 3.41E − 3 3.41E − 3 2.35E − 6 4.57E − 9 2.08E − 11

Table 12b

Quotients of the above entries of Table 12a

N k = 0 k = 1 k = 2 k = 3 k = 4

4 2.1019

8 2.0469 2.0469

16 2.0226 2.0226 4.792

32 2.0111 2.0111 4.366 8.534

64 2.0055 2.0055 4.177 8.256 20.11

128 2.0027 2.0027 4.087 8.125 17.89

256 2.0013 2.0013 4.043 8.062 16.90

512 2.0006 2.0006 4.021 8.031 16.27

O
(

1
N

)
O

(
1
N

)
O

(
1

N2

)
O

(
1

N3

)
O

(
1

N4

)

Comments: In the above Table 12a, for the uniform subdivision factor N = 1024, the
second extrapolated column (k = 2) gives a reduction in the overestimation by 1451
times (from 3.41E − 3 to 2.35E − 6), whereas in the 4th extrapolated column (k = 4)
the reduction is 1.64e +8 times (from 3.41E− 3 to 2.08E− 11). The rate of convergence
of excess width is given in Table 12b. Here, we see that the excess width obtained with

the NIE (given in column 2) goes down linearly with O
(

1
N

)
. The rate of convergence is

accelerated in the subsequent extrapolated columns from O
(

1
N

)
in column 3 to O

(
1

N4

)
in column 6.
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Table 13. Comparison of the number of uniform subdivisions
required to achieve a range accuracy of 1e− 11 with the existing
and proposed methods

Example Named l No. of Subdivisions Required

Existing method Proposed method

1 1 37 7

2 1 37 8

3 1 37 7

4 2 37 10

5 2 51 14

6 2 41 9

7 3 46 8

8 4 44 10

9 5 41 9

10 6 51 10

11 3 41 10

Table 14. Comparison of the number of boxes processed to
achieve a range accuracy of 1e−11 with the existing and proposed
methods

Example Named l No. of Subboxes Generated

Existing method Proposed method

1 1 1.37e + 11 128

2 1 1.37e + 11 256

3 1 1.37e + 11 128

4 2 2.75e + 11 2048

5 2 4.50e + 15 32768

6 2 4.40e + 12 1024

7 3 2.11e + 14 768

8 4 7.04e + 13 4096

9 5 1.10e + 13 2560

10 6 1.35e + 16 6144

11 3 6.60e + 12 3072

REC2004



REC2004



353

Interval Finite Element as a Basis for Generalized Models of Uncertainty

in Engineering Mechanics

Rafi L. Muhanna
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA,
e-mail: rafi.muhanna@gtrep.gatech.edu

Robert L. Mullen
Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH
44106, USA, e-mail: rlm@po.cwru.edu

Hao Zhang
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA,
e-mail: hao.zhang@ce.gatech.edu

Abstract. Latest scientific and engineering advances have started to recognize the need of defining multiple
types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on
which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting [46, 11, 43].
Many interval-based models of uncertainty have been developed to treat such situations.

This paper presents an interval approach for the treatment of parameter uncertainty for linear static
problems of mechanics. Uncertain parameters are introduced in the form of unknown but bounded quantities
(intervals). Interval analysis is applied to Finite Element Method to analyze the system response due to
uncertain stiffness and loading. To avoid overestimation, the formulation is based on an element-by-element
(EBE) technique. Element matrices are formulated, based on the physics of materials, and the Lagrange
multiplier method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier
EBE formulation provided sharp bounds only on displacements [29]. Based on the developed formulation,
the bounds on the system’s displacement and forces are obtained simultaneously and have the same level
of accuracy. Very sharp enclosures for the exact system responses are obtained. A number of numerical
examples are introduced and scalability is illustrated.

1. Introduction

An important issue faced by real life engineering practice is how to deal with variables and
parameters of uncertain values. For a proper performance assessment, these uncertainties
must be accounted for appropriately. There are various ways in which the types of uncer-
tainty might be classified. One is distinguish between “aleatory” (or stochastic) uncertainty
and “epistemic” uncertainty. The first refers to underlying, intrinsic variabilities of physical
quantities and the latter refers to uncertainty which might be reduced with additional data
or information, or better modeling and better parameter estimation [23]. Probability theory
is the traditional approach to handle uncertainty. This approach requires sufficient statistical
data to justify the assumed statistical distributions. Analysts agree that, given sufficient
statistical data, the probability theory describes the stochastic uncertainty well. However,
probabilistic modeling cannot handle situations with incomplete or little information on
which to evaluate a probability, or when that information is nonspecific, ambiguous, or
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conflicting [46, 11, 43]. Many generalized models of uncertainty have been developed to
treat such situations, which includes imprecise probabilities [46], Dempster-Shafer theory
of evidence [9, 44] and random set [19], fuzzy sets [47], possibility theory [8], probability
bounds [12], convex model [5], and others.

These set-based uncertainty models have a variety of mathematical descriptions, however,
they are all closely connected with interval arithmetic [25]. For example, a fuzzy number
[47] can be viewed as a set of valued intervals with different confidence of given level of
presumptions (α cuts). Thus fuzzy arithmetic can be performed as interval arithmetic on α
cuts. A Dempster-Shafer structure [9, 44] with interval focal elements can be viewed as a set
of intervals with probability mass assignments, where the computation is carried out using
the interval focal sets. Probability bounds analysis [12] is a combination of the methods of
standard interval analysis and probability theory. Uncertain variables are decomposed into
a list of pairs of the form (interval, probability). In this sense, interval arithmetic serves as
the calculation tool for the generalized models of uncertainty.

Recently, various generalized models of uncertainty have been applied to finite element
method (FEM) to solve a partial differential equation with uncertain parameters. Regardless
what model is adopted, the proper interval solution will represent the first requirement for
any further rigorous formulation. Finite element method with interval valued parameters
results in Interval Finite Element Method (IFEM). The numerical solution of IFEM is the
focus of this paper. Different formulations of IFEM have been developed. However, the
used solution techniques can be reduced to two main approaches; optimization-based and
anti-optimization. In the optimization approaches [20, 38, 1, 24], optimization algorithm is
employed to search for the extrema (max/min) of the system response in the interval pa-
rameter domain. This optimization approach often encounters practical difficulties. Firstly
it requires sophisticated optimization algorithm, where the objective function is implicit and
complicated in most structural engineering problems, thus often only approximate solution
is achievable. Secondly, this approach is computationally expensive. For each response quan-
tity, two optimization problems must be solved to find the extreme lower and the extreme
upper bounds. This will be a huge computational effort, especially in the case of practical
engineering problems.

More recently, anti-optimization approaches for the interval finite element analysis have
been developed in a number of works. For linear elastic problems, this approach leads to
a system of linear interval equations, then the solution is sought using interval methods
developed for this purpose. The major difficulty associated with this approach is the so-
called “dependency problem” [26, 34, 17, 29]. The dependency in interval arithmetic leads
to an overestimation of the system response. A straightforward replacement of the system
parameters with interval ones without taking care of the dependency problem is known as
a näıve application of interval arithmetic in finite element method (näıve interval FEM),
and usually such a use results in meaningless wide and even catastrophic results [29].

In the anti-optimization category, a number of developments can be presented. A combi-
natorial approach (based on an exhaustive combination of the extreme values of the interval
parameters) was used in [37]. This approach gives exact solution in linear elastic problems.
However, it is computationally tedious and expensive, and is limited to the solutions of

REC2004



355

small-scale problems only. Convex modeling and superposition approach was proposed to
analyze load uncertainty in [35], and exact solution was obtained. However, the super-
position is only applicable to load uncertainty. Combinatorial approach was used in [14]
to treat interval modulus of elasticity. Chen et al. [6] have developed static displacement
bounds analysis using matrix perturbation theory. The first-order perturbation was used
and second-order term had been neglected. The result is approximate and not guaranteed
to contain the exact bounds. McWilliam [22] proposed two methods for determining the
static displacement bounds of structures with interval parameters. The first method is a
modified version of perturbation analysis. The second method is based on the assumption
that the displacement surface is monotonic. However, for the general case, the validity
of monotonicity is difficult to verify. Dessombz [10] have introduced an interval FEM in
which the interval parameters were factorized during the assemblage process of the stiffness
matrix, then Rump’s iterative algorithm [40] was employed for solving the linear interval
equation. In this work, the overestimation control becomes more difficult with the increase
of the number of the interval parameters, which does not lead to useful results for practical
problems. In the works of Muhanna and Mullen [27], Mullen and Muhanna [30, 31], an
interval-based fuzzy finite element has been developed for treating uncertain loads in static
structural problems. Load dependency was eliminated and the exact solution was obtained.
Also, Muhanna and Mullen [29] have developed an interval finite element method based
on element-by-element technique and Lagrange multiplier. Uncertain modulus of elasticity
was considered. Most sources of overestimation were eliminated, and a sharp result for
displacement was obtained.

In this paper a new formulation for interval finite element analysis of linear elastic
structures will be introduced. Material and load uncertainties are handled simultaneously
and sharp enclosures on the system’s displacement and forces are obtained efficiently. A
brief review of interval arithmetic is presented, the formulation is described, and numerical
examples are given.

2. Short review of interval arithmetic

For simplicity and better clarity, all interval quantities will be introduced in bold face. De-
tailed information about interval arithmetic can be found in series of books and publications
such as [16, 25, 2, 34, 42, 45].

2.1. Basic Definition

An interval number is a closed set in R that includes the possible range of an unknown real
number, where R denotes the set of real numbers. Therefore, a real interval is a set of the
form

x = [x, x] (1)
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where x and x are the lower and upper bounds (endpoints) of the interval number x
respectively. The midpoint x̌ of x is introduced as

x̌ ≡ mid(x) :=
x + x

2
(2)

Sometimes it is convenient to write the interval in the midpoint form

x = x̌(1 + α) (3)

in which α is a 0-midpoint interval. For example, when we say x has 4% uncertainty, it
means α = [−0.02, 0.02], and x = x̌(1 + [−0.02, 0.02]).

The set of real intervals will be denoted by IR. Operations with at least one interval
operand are by definition interval operations. It is easy to see that the set of all possible
results for x ∈ x and y ∈ y forms a closed interval (for 0 not in a denominator interval),
and the endpoints can be calculated by

x ◦ y = [min (xi ◦ yi), max (xi ◦ yi)] for ◦ ∈ {+,−, ·, /} (4)

2.2. Dependency Problem in Interval Arithmetic

The interval-system quality is measured by the width of the interval results, and a sharp
enclosure for the exact solution is desirable. However, the width of results may be unneces-
sarily wide in some occasions due to dependency effect. For example, if the interval function
f(x) = x−x is evaluated with x = [a, b] = [1, 2], the interval subtraction rule (Appendix A)
gives the result: f(x) = [a− b, b− a] = [−1, 1], which is containing the exact solution [0, 0],
but much wider. The interval arithmetic implicitly made the assumption that all intervals
are independent, namely it treats x−x as if evaluating the intervals x−y, and x,y are two
independent interval quantities that happen to have the same bounds. This phenomenon is
referred as overestimation due to “dependency” of the variables [26, 34, 17, 29]. Reducing
the overestimation is a central issue to a successful interval analysis. In general, sharp
results are obtained with the proper understanding of the physical nature of the problem
and reduction of the dependence. In the above example, the exact solution could be achieved
in evaluating x− x as x(1− 1) = 0.

2.3. Interval Vectors and Matrices

An interval matrix A ∈ IRn×k is interpreted as a set of real n×k matrices by the convention
A = {A ∈ Rn×k | Aij ∈ Aij for i = 1, . . . , n; j = 1, . . . , k}. The set of n × k interval
matrices is denoted by IRn×k. An n × 1 interval matrix is an interval vector, denoted
by IRn. Operations on interval matrices are extended naturally from the corresponding
deterministic matrices operations. Algebraic properties of interval matrix operations are
provided in [34, 3, 21].
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2.4. Linear Interval Equations

A linear interval equation with coefficient matrix A ∈ IRn×n and right-hand side b ∈ IRn

is defined as the family of linear equations

Ax = b (A ∈ A, b ∈ b) (5)

Therefore, a linear interval equation represents systems of equations in which the coefficients
are unknown numbers ranging in certain intervals. The solution set of (5) is given by:

Σ(A, b) = {x ∈ Rn | ∃A ∈ A, ∃b ∈ b : Ax = b} (6)

The solution set Σ(A, b) usually is not an interval vector, and does not need even to be
convex; in general, Σ(A, b) has a very complicated structure. In order to guarantee that
the solution set Σ(A, b) is bounded, it is required that the matrix A be regular, i.e. that
every matrix A ∈ A is nonsingular. The hull of the solution set Σ(A, b) is an interval vector
which has the narrowest possible interval components, denoted as

AHb := ♦Σ(A,b) (7)

where
AHb = ♦{A−1b|A ∈ A, b ∈ b} for b ∈ IRn (8)

In fact, computing the hull of the solution set for the general case is NP-Hard problem [39].
The solution of interest is seeking an enclosure, i.e., an interval vector x containing AHb,
while narrow enough to be practically useful:

AHb ⊆ x (9)

A number of methods have been developed to find x for the general linear interval equations
such as Interval Gauss elimination, Interval Gauss-Seidel iteration, Krawczyk’s iteration,
and fixed-point iteration [15, 32, 34, 18, 40, 41]. These algorithms usually involve a precon-
ditioning of the coefficient matrix, and then iterations are performed to get the enclosure.
The present work is using Brouwer’s fixed point theorem and Krawczyk’s operator. This
method has been discussed in the works of [15, 32, 33, 18, 40, 41].

One typical approach to find the solution of a linear system Ax = b, is to transform it
into a fixed point equation g(x) = x, in which

g(x) = x−R(Ax− b) = Rb + (I −RA)x (10)

and R is a nonsingular matrix. From Brouwer’s fixed point theorem, it follows that for some
interval vector x ∈ IRn

Rb + (I −RA)x ∈ x ∀x ∈ x (11)

implies
∃x ∈ x : Ax = b (12)
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To verify condition (11) is a range determination problem, and can be reduced to interval
arithmetic:

Rb + (I −RA)x ⊆ x (13)

If an interval vector x satisfying (13) can be found, then x contains the solution of Ax = b.
The result can be extended to find the enclosure of the solution set of linear interval equation
Ax = b [34, 42]. The following theorem can be presented:

THEOREM 1 (Rump 2001). Let A ∈ IRn×n, R ∈ Rn×n,b,x ∈ IRn be given, if

Rb + (I −RA)x ⊆ int(x) (14)

then R and every matrix A ∈ A is nonsingular, and

Σ(A, b) = {x ∈ Rn | ∃A ∈ A, ∃b ∈ b : Ax = b} ⊆ x (15)

where int(x) denotes the interior of x. Expression (15) provides a guaranteed enclosure to
the solution set of the linear interval equation Ax = b. The residual form of (14) can be
given in the form [34]:

Rb−RAx0 + (I −RA)x∗ ⊆ int(x∗) (16)

where x = x0 + x∗ and x0 is a deterministic vector, in particular, Ǎ−1 is a good choice for
R, and x0 = Rb̌. Assigning z = Rb−RAx0, C = (I −RA), iteration could be constructed
[40] in the following form

x∗n+1 = z + C(εx∗n) (for n = 0, 1, 2, . . .) (17)

and the stopping criteria (16) becomes

x∗n+1 ⊆ int(x∗n) (18)

In Eq. (17) ε is a constant interval number, and it serves as an “inflation parameter” to
enforce finite termination of the algorithm. If the condition (18) is satisfied after n iterations,
then x∗n+1 + x0 is an enclosure of the solution set of Ax = b. The quality (how sharp the
enclosure is) of the enclosure provided in (17) depends mainly on the width of the iterative
matrix C and is crucial for the solution convergence the condition that the spectral radius
ρ(|C|) < 1 [41].

It is noticeable, however, that the above algorithm is designed for the non-parametric
linear interval equations, i.e., the coefficients in the system are assumed to vary indepen-
dently between their bounds. For many engineering problems, the coefficients have complex
dependency relations. For example, the stiffness matrix in FEM is symmetric and positive
definite. To account for the dependency effect, one approach is to adapt the solver for non-
parametric interval equation. This approach usually involves reformulation of the coefficient
matrix and right hand side vector. It has been shown a sharp or even exact enclosure could
be obtained in some cases [28, 29, 10].
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3. Interval finite element analysis

3.1. Overestimation in IFEM

A näıve use of interval arithmetic in FEM (näıve IFEM), i.e., replacing deterministic num-
bers in conventional FEM with interval numbers and solving the system as non-parametric
interval equation will result in meaningless wide results [29, 10]. Let us consider the two step
bar shown in Fig. 1. The structure is subjected to a unit load at node 3. The conventional
FEM gives the equilibrium equations:

Ku = p (19)

or (
k1 + k2 −k2

−k2 k2

) (
u1

u2

)
=

(
0
1

)
(20)

Figure 1. Original two-step bar

If the stiffness terms k1 and k2 are introduced as the interval parameters k1 and k2, and
the interval numbers of [0.99, 1.01] and [1.98, 2.02] are assigned for k1 and k2 respectively,
the näıve IFEM takes the following form:

(
[2.97, 3.03] [−2.02,−1.98]

[−2.02,−1.98] [1.98, 2.02]

) (
u1

u2

)
=

(
0
1

)
(21)

Solving (21) using theorem 1, the value of u1 and u2 are obtained as:

u1 = [0.876, 1.123]

and
u2 = [1.349, 1.651] (22)

On the other hand, the exact solution can be achieved by solving (20) symbolically

u1 =
1
k1

=
1

[0.99, 1.01]
= [0.990, 1.010]

and

u2 =
k1 + k2

k1k2
=

1
k1

+
1
k2

=
1

[0.99, 1.01]
+

1
[1.98, 2.02]

= [1.485, 1.515] (23)
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The above-presented results for the interval solution of a simple two-step bar problem
provide an insight about some aspects of the interval finite element formulation and re-
veal the most important sources of overestimation. The main two factors that lead for
overestimation are the element coupling and multiple occurrences of the interval variables.
The four parametric coefficients k2 in (20) represent the same physical quantity. In the
computational process, interval arithmetic treats this physical quantity as four independent
interval variables of equal endpoints. Evidently, the same physical quantity cannot have two
different values at the same time. It is critical to the formulation of interval finite element
analysis, the way the sources of overestimation are handled.

3.2. Present Formulation

In order to reduce the overestimation in the interval finite element solutions, the issues of
coupling and multiple occurrences of interval variables have to be handled properly.

Figure 2. EBE two-step bar model

In this work, an element-by-element technique (EBE) is used to circumvent the element
coupling problem [29]. The EBE technique can be illustrated by the two-step bar problem
in Fig. 1. The elements are disjointed as shown in Fig. 2, thus the system stiffness matrix
K takes a block-diagonal structure with dimension of a × a, and a = degrees of freedom
per element × number of elements in the structure. EBE approach adds to the number
of degree of freedom (DOF) in the system but avoids the element coupling. The system
stiffness matrix K in EBE approach is singular, and Lagrange multiplier method will be
used to ensure the compatibility conditions and eliminate the singularity of K.

In steady-state analysis, the variational formulation for a deterministic case of a discrete
structural model is given in the following form [13, 4]

Π =
1
2
uT Ku− uT p (24)

with the conditions
∂Π
∂ui

= 0 for all i (25)

where Π,K, u, and p are total potential energy, stiffness matrix, displacement vector, and
load vector respectively. Assume that we want to impose onto the solution the m linearly
independent discrete constraints Cu − t = 0 where C and t contain constants. To impose
constraints by Lagrange multipliers, we premultiply Cu− t by a row vector λ that contains
as many Lagrange multipliers λi as there are constraint equations, and add this to the
potential energy (24) [7]. Thus

Π∗ =
1
2
uT Ku− uT p + λT (Cu− t) (26)
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Invoking the stationarity of Π∗, i.e., ∂Π∗/∂u = 0 and ∂Π∗/∂λ = 0 we obtain
(

K CT

C 0

) (
u
λ

)
=

(
p
t

)
(27)

Considering the compatibility conditions in the present case takes the form Cu = t = 0,
(27) reduces to (

K CT

C 0

) (
u
λ

)
=

(
p
0

)
(28)

Equation (28) stands for the deterministic FEM formulation. In the interval case, where
the material and the load are considered to be interval numbers, the deterministic linear
equation (28) becomes the interval linear equation

(
K CT

C 0

) (
u
λ

)
=

(
p
0

)
(29)

The coefficient matrix in (29) represents the combination of two parts: the interval
element-by-element stiffness matrix K and the constant deterministic Lagrange multipliers
matrix C.

The linear interval equation (29) can be solved by theorem 1. However, theorem 1 is used
with the implicit assumption that the coefficients of A are independent among themselves
and as well as the components of b vary independently. Special treatment has to be applied
to reduce the dependency effect.

For an element with interval parameters of modulus of elasticity E, the interval parameter
could be factorized out from the element stiffness matrix. Consider the ith finite element in
the structure, assume the uncertainty in the modulus of elasticity is αi, i.e., Ei = Ěi(1+αi),
the element stiffness matrix Ki can be expressed in the form Ki = Ǩi(I + di). Ǩi is the
midpoint of Ki, I is identity matrix, and di is an interval diagonal matrix containing the
interval quantity αi. Let us take a truss element for example, its element stiffness matrix
can be written as (

ĚA
L − ĚA

L

− ĚA
L

ĚA
L

) ((
1 0
0 1

)
+

(
α 0
0 α

))
(30)

Later in the formulation, care will be taken of the multiple occurrence of α in (30).
Following the same procedure for each element, the system stiffness matrix K constructed

by EBE model can be expressed as:

K = Ǩ(I + d) (31)

Ǩ is the midpoint of K, and d is an interval diagonal matrix; their submatrices are Ǩi and
di, respectively, i = 1, 2, . . . , m, where m is the number of elements in the structure.

Applying this factorization, the system equation (29) can be written as
((

Ǩ CT

C 0

)
+

(
Ǩd 0
0 0

)) (
u
λ

)
=

(
p
0

)
(32)

REC2004



362

To utilize the theorem 1 in the present formulation, (32) is introduced as

Ax = b (33)

with

A =
((

Ǩ CT

C 0

)
+

(
Ǩd 0
0 0

))
, x =

(
u
λ

)
, b =

(
p
0

)
(34)

A can be decomposed furthermore

A =
(

Ǩ CT

C 0

)
+

(
Ǩ 0
0 0

) (
d 0
0 0

)

A = Ǎ + SD (35)

Using the residual form (16) to construct fixed point iteration (17)

x∗n+1 = z + C(εx∗n) (for n = 0, 1, 2, . . .) (36)

in which z = Rb−RAx0, C = (I −RA), R = Ǎ−1, x0 = Rb̌. By substituting z and C, the
iteration (36) becomes

x∗n+1 = (Rb−R(Ǎ + SD)x0) + (I −R(Ǎ + SD))(εx∗n)
x∗n+1 = Rb− x0 −RSDx0 −RSD(εx∗n)
x∗n+1 = Rb− x0 −RSD(x0 + εx∗n)
x∗n+1 = Rb− x0 −RSMnδ (37)

In the problems with deterministic right hand side, we have b = b̌, and (37) reduces to a
even simpler form

x∗n+1 = −RSMnδ (38)

A key point in the formulation (37) is that D(x0 + εx∗n) has been introduced as Mnδ
using the M matrix concept [31, 29] to handle the dependency problem in D(x0 + εx∗n).
M is an interval matrix with the dimensions (n ×m), and n = dimensions of the system.
It contains the components from (x0 + εx∗n), it will be update with each iteration. δ is an
constant interval vector with the dimensions of m, and the components are the uncertainties
αi of the modulus of elasticity of each element, i = 1, . . . , m. Every interval parameter αi

associated with element i occurs only once in δ. The following example shows how generally
Dx could be rewritten as Mδ. Suppose there are two interval parameters α1 and α2




α1 0 0 0
0 α1 0 0
0 0 α2 0
0 0 0 α2







x1

x2

x3

x4


 =




x1 0
x2 0
0 x3

0 x4




(
α1

α2

)
(39)

This treatment eliminates the multiple occurrences of αi in D, thus reduces the overesti-
mation due to dependency problem. If the condition (18) is satisfied after n iterations, the
enclosure x is given by

x = x∗n+1 + x0 (40)
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The obtained interval vector x contains two parts: x = [u λ]. The first part, u, is the
enclosure for the system’s displacement response.

In conventional deterministic FEM, element forces in global coordinate can be calculated
by

Fi = Kiui (41)

in which Ki, ui are element stiffness matrix and element nodal displacement in global coordi-
nate. The element forces in local coordinate can be obtained by premultiply a transformation
matrix Ti. In the interval FEM, however, following the same procedure to calculate element
force will bring in overestimation, making the bounds of the element forces unnecessarily
wide. The reason is that both Ki and ui are functions of the same interval parameter αi,
this multiple occurrences of αi should be eliminated. In the present IFEM formulation,
element forces are calculated from Lagrange multipliers. From (29), it follows

Ku = p− CT λ (42)

Because of its element-by-element structure, (42) produces the element forces directly (in
global coordinate). Instead of calculating the left hand side of (42), we will calculate its
right hand side to handle dependence problem. Suppose the enclosure x has been achieved
after n iterations, then λ can be obtained from x by a boolean matrix L, i.e.,

λ = Lx (43)

The interval load p can be rewritten as

p = Nb (44)

in which N is a boolean matrix for p. Substitute (37), (43) and (44) into p− CT λ

p− CT λ = p− CT L(x∗n+1 + x0)
p− CT λ = Nb− CT L(Rb−RSMnδ)
p− CT λ = (N − CT LR)b + CT LRSMnδ (45)

Equation (45) may be premultiplied by a transformation matrix T to get the element forces
in local coordinate, i.e.,

F = T (p− CT λ) = T (N − CT LR)b + TCT LRSMnδ (46)

In (46), the multiple occurrences of the interval load b and interval material parameter δ
has been minimized, and a very sharp results for element force response are obtained.

4. Examples

The present interval-based finite element method is illustrated by numerical solutions for
three problems with stiffness and load uncertainty.

REC2004



364

Table I. Solutions for displacements of two-bay truss

v2(m) v2(m) u4(m) u4(m) v4(m) v4(m)

Comb×10−5 −21.0342 −18.8416 3.7029 4.2043 −1.04833 −0.92828

Present×10−5 −21.0429 −18.822 3.6942 4.2075 −1.04886 −0.92657

Näıve×10−5 −22.7616 −17.1033 3.2221 4.6796 −1.16246 −0.81297

Present error 0.04% 0.10% 0.23% 0.08% 0.05% 0.18%

Näıve error 8.21% 9.23% 12.98% 11.30% 10.89% 12.42%

Table II. Solutions for axial forces of two-bay truss [compression(−)]

N2(kN) N2(kN) N4(kN) N4(kN) N4(kN) N4(kN)

Comb −8.3470 −7.4613 11.4479 12.7533 −14.2587 −12.7992

Present −8.3513 −7.4522 11.4390 12.7576 −14.2635 −12.7891

Näıve −9.691 −6.127 −10.336 34.542 −15.910 −11.164

Present error 0.05% 0.12% 0.08% 0.03% 0.03% 0.08%

Näıve error 16.10% 17.88% 190.29% 170.85% 11.58% 12.78%
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Figure 3. Two-bay truss

The first example is a two-bay truss as shown in Fig. 3. The truss is subjected to a
concentrated load, applied at the middle lower joint. The variation in the loading is 10%
of the midpoint value, and the used interval value is [19, 21]kN. Each element has a cross-
sectional area Ai = 0.01 m2, and an uncertain modulus of elasticity Ei = [199, 201] GPa, i =
1, . . . , 11. The modulus of elasticity of each element are assumed to be varied independently.

The results for displacements and element forces are given in Table I and Table II,
respectively. The present approach captured the bounds of the system response with errors
within a range of 0.03% to 0.23%. However, the näıve IFEM overestimated the bounds of
displacements by a range of 8.21% to 12.98%, and the errors escalated to as big as 190% in
element force calculation.
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Table III. Solutions for displacements of two-bay two-floor frame

v4(m) v4(m) v9(m) v9(m) θ9(rad) θ9(rad)

Comb×10−6 −6.7640 −6.1548 −13.0697 −11.9207 5.6331 6.2691

Present×10−6 −6.7660 −6.1485 −13.0760 −11.9076 5.6219 6.2767

Näıve×10−6 −8.7042 −4.2104 −15.3237 −9.6599 3.7305 8.1681

Present error 0.03% 0.10% 0.05% 0.11% 0.20% 0.12%

Näıve error 28.68% 31.59% 17.25% 18.97% 33.78% 30.29%

Table IV. Solutions for axial forces (N), shear forces (V) and bending moment (M) of
column 1 in two-bay two-floor frame

N1(kN) N1(kN) V1(kN) V1(kN) M1(kN·m) M1(kN·m)

Comb −149.676 −137.3503 5.2608 5.8790 −14.1977 −12.5250

Present −149.721 −137.2694 5.2408 5.8941 −14.2345 −12.4775

Näıve −194.393 −93.097 −30.381 41.572 −83.892 57.047

Present error 0.03% 0.06% 0.38% 0.26% 0.26% 0.38%

Näıve error 29.88% 32.22% 677.50% 607.13% 490.89% 555.47%

Figure 4. Two-bay two-floor frame

The second example is a two-bay two-floor frame as shown in Fig. 4. The columns
have cross-sectional area Ai = 0.4m2, moment of inertia Ii = 0.036m4, interval modulus
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Figure 5. Large scale truss

Table V. Solutions for displacement (corner D) of twenty-bay truss

u(m) u(m) v(m) v(m)

Pownuk solution×10−5 7.54868 7.84538 -5.82393 -5.65726

Present solution×10−5 7.50621 7.88574 -5.84312 -5.63686

of elasticity Ei = [199, 201]GPa, i = 1, . . . , 6. The beams have cross-sectional area Ai =
0.6m2, moment of inertia Ii = 0.08m4, interval modulus of elasticity Ei = [199, 201]GPa,
i = 7, . . . , 10. The frame is loaded by uniform loads wi (i = 1, 2, 3, 4). Each load has 8% un-
certainty, and the following data were used: w1 = [24, 26]kN/m, w2 = [24, 26]kN/m, w3 =
[48, 52]kN/m, w4 = [48, 52] kN/m. All the uncertain quantities are varied independently.

The results for displacements of selected nodes are given in Table III. The shear force,
axial force and bending moment (at node 4) of column 1 is listed in Table IV. The present
algorithm leads to sharp bounds of the exact solution of displacements and element forces,
with errors within a range of 0.03% to 0.38%. Whereas, the näıve IFEM solution overesti-
mates the bounds of element forces by 30% to 677%, it could not even get the correct sign
for some terms.

To investigate problem size effect on the present formulation, a series of large-scale truss
problems were analyzed. The configuration of the structures is shown in Fig. 5. Each element
has 1% uncertain modulus of elasticity Ei = [2.0895, 2.1105]GPa, and 1% uncertain cross-
sectional area Ai = [0.0024875, 0.0025125]m2. Assume all interval parameters are varied
independently. Table V lists the displacement results for a 20 bay truss (648 interval
parameters). In this example the näıve method failed to converge and the combinatorial
method is computationally prohibitive due to the large number of interval parameters.
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Table VI. Truss problems with interval parameters

number of iteration iteration total computation variation in typical

interval parameters number time (sec) time (sec) displacement∗

246 5 0.172 1.04 2.24%

392 5 0.453 3.97 2.47%

648 6 1.484 15.05 2.67%

890 7 3.704 40.69 2.92%

1192 7 8.031 95.8 3.23%

1452 8 14.329 171.7 3.38%

1932 8 26.078 381.5 3.79%

∗defined as ratio of radius to midpoint value

(horizontal displacement at corner D of the truss)
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Figure 6. Computation time vs problem scale

Pownuk sensitivity analysis method [36] was used as an approximate solution to compare
our results with. However, this sensitivity approach is based on the monotonicity assumption
and does not provide a solution enclosure, but a good narrower estimate can be obtained
when uncertainty is small enough.

Table VI lists the problem size, required number of iterations, iteration CPU time and
total computational CPU time. The ratio of the radius of a typical displacement (the
horizontal displacement at corner D) to its midpoint value is also listed in Table VI.
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The computations were carried out on a PC with Intel Pentium4 2.4GHz CPU with 1GB
RAM. The calculations show that the sharpness of the results maintains the same level
despite of the increase of the problem size. Fig. 6 shows the relationship of problem size vs
iteration CPU time, and problem size vs total computational CPU time. It can be seen the
computational time does not increase exponentially with the increase of the problem size.
In the current stage, most computation time is spent on calculating the preconditioning
matrix R. It is important to note that system (29) is very sparse, and we expect a major
computation time reduction when the sparsity is fully exploited. This will be a future work.

5. Conclusion

In this paper a new interval finite element formulation is presented. Uncertain loads and
stiffness are introduced as interval numbers. The major difficulty associated with the IFEM
is the overestimation due to dependency effect: the computed range of the response is much
wider than the actual range. For engineering application, the physical nature of the problem
must be considered to control the overestimation. In the present approach an element-by-
element technique is used and the compatibility conditions are ensured by the Lagrange
multiplier method. The resulting linear interval equation is solved using the Brouwer’s fixed
point theory with Krawczyk’s operator and a newly developed overestimation control. The
numerical examples show the näıve interval FEM produces meaningless wide results. The
present approach, however, eliminates most sources of overestimation and a very sharp
enclosure for the system’s displacement and forces are obtained simultaneously and have
the same level of accuracy. The numerical examples also illustrated the present formulation’s
scalability.
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Abstract. Uncertainty assessment in basin modeling and reservoir characterization is traditionally 
treated by geostatistical methods which are normally based on stochastic probabilistic 
approaches. In this talk, an alternative interval-based approach will be present. A solution for the 
transient heat conduction in sedimentary basins will be introduced using an interval finite element 
approach. For this purpose, a novel formulation is developed to deal with both the special interval 
arithmetic properties and the transient term in the differential equation governing heat transfer. In 
this formulation, the “stiffness” matrix resulting from the discretization of the heat conduction 
equation is assembled using an element-by-element technique in which the finite elements are 
globally independent and lagrange multipliers are used to enforce continuity. This formulation is 
suggested as an alternative to traditional Monte Carlo method, where repetitive simulations are 
required to handle uncertainty and worst case system response is underestimated. The newly 
developed technique is applied to a one-dimensional thermal basin simulation to assess its 
potential and limitations. Numerical results will be introduced and their quality assessed. 
 
 

1 - Introduction 
 
Determinist numerical simulations are normally used to predict the behavior of geological systems. 
The predicted behavior or performance is normally used for risk assessment. A well known 
limitation of determinist simulations is that they provide a single set of results that do not convey 
information about the uncertainty associated with input parameters or coefficients. To overcome 
this limitation, uncertainty assessment is typically coupled with stochastic probabilistic approaches 
in which the input simulation parameter set is stochastically defined and multiple simulations are 
executed to estimate the uncertainty associated with a probabilistic distribution of the input 
parameter set space. While effective, this approach is rather expensive computationally. In addition, 
in deterministic numerical simulations, such as the traditional finite element approach, all the 
parameters are assumed to be precisely known. However, frequently in basin modeling this is not 
the case, since imprecise or fuzzy information may be present in the geometry, age, and material 
properties of the basin. Stochastic or probabilistic approaches have been developed to account for 
this kind of uncertainties. However, in these approaches material properties are normally treated as 
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random variables despite the fact that geological processes are not controlled by random 
phenomena. These considerations have led us to the consideration of possibility rather than 
probability and in this work, we present an alternative to the stochastic probabilistic approaches 
which is based on the interval mathematics to assess uncertainty. Here, we have applied the newly 
developed techniques to a one-dimensional thermal basin simulation to assess their potential and 
limitations.  

Interval mathematics is a generalization in which interval numbers replace real, or crisp, 
numbers, interval arithmetic replaces real arithmetic and interval analysis replace real analysis 
(Hansen, 2000). Fuzzy numbers can be represented by confidence intervals and its calculations can 
be performed through interval mathematics. For a introduction to interval and fuzzy arithmetic we 
recommend reading Moore (1962), Neumaier (1990) and Kaufman & Gupta (1991). The Appendix 
A summarizes the most common interval operations and its properties.  The numerical solution of 
partial differential equations (PDEs), governing the heat and fluid transfer in porous media, to be 
unconditionally stable normally requires that its time discretization is implicit. This stable solution 
leads to a set of simultaneous linear system of equations. When fuzzy numbers are used to represent 
material properties such as thermal conductivity, the description of the resulting linear system is no 
longer crisp, but is ambiguous or imprecise. This requires the linear system to be solved using a 
non-classic approach and unfortunately, there are few and efficient methods described in the 
literature to solve these systems. It is noteworthy that the solution of interval linear system is 
combinatorial in nature and the result is a convex hull bounding all possible solutions for the 
imprecise input system. The combinatorial method is the most accurate method for solving interval 
systems of equations. In this method, the system of Equation is solved for all combinations of 
interval numbers using their upper and lower bounds. Needless to say, that the combinatorial 
method is extremely expensive and cannot solve large systems. However, it can be used to evaluate 
the accuracy of the other methods for small systems. A method is said to overestimate the results 
when they are larger than hull estimated by the combinatorial method. 

The classic approaches to solve interval linear systems, such as Gaussian elimination, fails to 
solve interval systems because of some special properties of interval arithmetic, such as the 
subcancel property, in which one number minus itself is not zero, and one number divided by itself 
is not the unit. These properties require extensive modifications in the algorithms to solve the 
systems. In addition, the overestimation induced by variable repetition in a mathematical expression 
makes especially difficult to deal with interval numbers. In the literature, several papers have 
described methods to solve interval linear systems of Equations. For example, Neumaier (1990) 
proposed a preconditioning technique to Gauss Elimination and Gauss Seidel Method. 
Unfortunately, these techniques generate overestimation in the solution and they also fail to solve 
both large problems and systems with large interval widths. Rao (1995) discussed an optimization 
method using the Powell algorithm to solve interval linear systems. This method is very expensive 
and frequently generates results in which the range is too tight, underestimating the results. 
Recently Muhanna (2001) presented an interval-based finite element formulation which makes use 
of an Element-by-Element (EBE) technique to calculate the solution of steady-state problems in 
mechanics which avoids most sources of overestimations and computes a very sharp solution hull. 
In this paper, we extend the EBE technique to handle time dependent problems. In addition, we 
briefly describe a C++ library that we implemented with the combinatorial, preconditioned Gauss 
elimination, Gauss Seidel, and the Powel methods to solve interval linear systems of Equations. 
 

2 - Heat transfer in sedimentary basins 

To illustrate the interval-based uncertainty analysis to basin modeling, we discuss the effect of 
uncertainty in thermal conductivity of rocks on the predicted temperature evolution of a given basin. 
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The thermal conductivity of sedimentary rocks is a material property which is well know to vary 
largely in nature and the impact of its variation can be evaluated with interval mathematics. The 
thermal conductivity is key parameter in the partial differential equation that governs the heat 
transfer in compacting porous sediments (Mello, 1994): 
 

( ) ( ) ( )
h

f f s s f f f
QT T Tc c k 1 c q

1 t Z Z Z 1
φ ρ ρ φ ρ
φ φ

  ∂ ∂ ∂ ∂ + = − − +   − ∂ ∂ ∂ ∂ −   
  ,   (2.1)  

 
where: 
=φ Sediment porosity; 

=fρ Pore fluid density, ( )3kg m ; 

=fc Pore fluid specific heat, ( )J kg ; 

=sρ Solid grain density, ( )3kg m ; 

=sc Solid grain specific heat, ( )J kg ; 

=T Temperature, ( )oC ; 
=t Time, ( )m ; 

=k Bulk thermal conductivity of sediments, ( )oW m C ; 

=Z
z2

z1

( 1 )dzφ−∫  = Fully compacted depth (m); 

fq = Darcian fluid velocity, ( )m s  ; 

hQ = Heat source/sink, ( )J m . 
 
Equation (2.1) describes the transfer of heat within the sediments via diffusion and advection 
processes. The bracketed term in the left-hand side of Equation (2.1) is the sediment bulk heat 
capacity. The first term in the right hand side describes the conduction of heat, the second term 
represents the advection due to fluid carriage of heat and the final term accounts for the heat gained 
or lost sources or sinks. The respective essential and natural boundary conditions used to solve 
Equation (2.1) are: 
 

z surfT( S ) T ( t )=   , (2.2)  
  

( )
z 0

Tk 1 Q( t )
Z

φ
=

∂
− =

∂
  ,  (2.3)  

 
where surfT  is the temperature at interface water-sediment ( zS ) and Q( t )  is the basal heat flux 
entering the basin. This heat flux can be calculated by the degree of crustal and lithospheric mantle 
thinning as described by McKenzie (1978): 
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where: 
ak = Lithosphere thermal conductivity (W/moC); 
=mT Mantle temperature (oC); 

=a Lithosphere thickness (m); 
=k a( k c )ρ  =Thermal diffusivity (m2/s);  

=τ ( )2 2a kπ =Thermal decline (s); 

=β Lithospheric extension factor.  
 
For deterministic solutions, we have used the data displayed in Table 1 and 2. In Table 1 shows the 
physical properties for typical sediments are listed and Table 2 presents typical lithospheric 
parameters.  

 
Lithology 

0φ  b  ρ  k  C  
      
Shale 63.0 0.58 2.68 1.5 950.0 
Silt 56.0 0.39 2.68 2.0 860.0 
Sandstone 50.0 0.50 2.65 3.0 750.0 
Limestone 60.0 0.44 2.72 2.5 860.0 
Chalk 70.0 0.71 2.67 3.5 800.0 
Salt 0.05 0.005 2.20 5.5 854.0 
Basalt 5.00 0.0 2.85 2.0 775.0 

Table 1 - Physical properties of selected lithologies. 
 
where: 

=0φ Surface porosity;  
b = Porosity decay coefficient  (1/km); 
=ρ Density (g/cm3);  
=k Thermal conductivity  (W/moC);    

C =Heat capacity (J/kgoC). 
 

Thermal diffusivity   0.008  (m2/s)
Thermal expansion coefficient  0.000034 (1/oC)
Crustal thickness 31200.0 (m)
Lithosphere thickness 125000.0 (m)
Temperature at the lithosphere base 1333.0 (oC)
Mantle density   3330 (kg/m3)
Crustal density  2800 (kg/m3)
Steady-state heat flow   41.84 (mW/m2)

Table 2 – Lithosphere properties 
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3 – Traditional finite element formulation for the transient heat conduction 

Before we discuss the interval finite element formulation, we briefly review the traditional 
deterministic Galerkin finite element formulation for solving Equation (2.1). By neglecting the 
advection term in (2.1), this equation then describes a general diffusion problem which can be stated 
as an initial-boundary value problem (IBV). It can be expressed in a general form by the following 
differential equation (Burnett, 1987): 

U( x,t ) U( x,t )( x ) ( x ) f ( x, t )
t x x

µ α∂ ∂ ∂ − = ∂ ∂ ∂ 
. (3.1) 

When Equation (3.1) is applied to heat conduction, its symbols represent: 

)t,x(T)t,x(U =  = Temperature; 
)x(c)x()x( ρµ =  = Heat storage; 

)x(k)x( =α  = Thermal conductivity; 
( ) ( )txQtxf ,, =  = Heat source; 

=)x(ρ Density; 

=)x(c Specific heat. 

 
IBV problems consists of finding U U( x )=  satisfying (3.1) x∀ ∈Ω  and the prescribed 
boundary conditions (BCs)  which are assumed take the form: 

gU( x ) g( x ) x Γ= ∀ ∈  (3.2) 

h
U h( x ) x
x

α Γ∂
= ∀ ∈

∂
 (3.3) 

where Ω  is the domain and Γ  the boundary, g  and h  are given functions, g is the essential, or 
Dirichlet BC, and h  is the natural, or Newman BC. 
 
Approximating U Na= and solving (3.1) by the Galerkin method using the implicit time method 
results into the following element equations: 
 

{ } { }eff effn
k a f  =     (3.4)  

where: 

[ ] [ ]eff
n

1k c k
∆t

  = +  ; (3.5) 

{ } { } [ ] { }eff n n 1
n

1f f c a
t∆ −

 
= + +  

 
; (3.6) 

nt∆  = time step n;  
{ } =−1na solution for the time-step n-1; 
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N = shape functions. 
 
The coefficients of the element “stiffness” ( k ) and accumulation ( c ) matrices are given by: 

1 1L L
3 6L Lk c
1 1L L

L L 6 3

α α µ µ

α α µ µ

  −   
= =   

  −
      

 (3.7)  

where L  is the length of 1D finite element. In the steady-state heat conduction problem, the 
element ‘stiffness” is only composed by the k  matrix. In a transient heat conduction problem, an 
additional accumulation matrix c  is added to form the effective element “stiffness” effk . The 
accumulation matrix represents the element heat storage capacity, µ . For the global solution of the 
IBV problem, the elements are assembled in a global stiffness effK  and in a global effF  vector.  
Then a linear system of equations is solved for the primary variable a : 
 

{ } { }eff effn
K a F  =    , (3.8) 

 
nel

eff effe 1
K kΑ

=
  =  , { }

nel

eff effe 1
F fΑ

=
= , 

 
symbol A  represents the assembly operation.  
 

4 – The Element-by-Element (EBE) Formulation with Element Overlap 
 

A straightforward way to transform the traditional finite element formulation into a interval finite 
element formulation is to replace the real “stiffness” matrix by an interval, or fuzzy, stiffness matrix 
and solve the resulting interval linear system. Unfortunately, the direct solution of this linear system 
of Equations can produce overestimated results and arithmetic operations problems (Kulpa, 1998). 
This occurs due to the large number of arithmetic operations and the width of the intervals numbers 
during the solution process. Muhanna (2001) proposed an EBE finite element method for steady-
state problems that avoids a great number of these operations. In his method, the assembly 
operation is modified by keeping the elements effectively disconnected and enforcing continuity in 
the mesh by using Lagrangian constraints. Using this approach, the stiffness matrix can be factored 
in two matrices: one interval diagonal matrix and another real banded matrix. The inversion of these 
matrices is done separately and involves very few interval arithmetic operations because the 
inversion of the diagonal matrix requires a single interval division per row. In spite of this advance, 
this method is not directly applied to transient problems in which the stiffness matrix has the 
contribution of the heat capacity term (C matrix). In this case, the resulting stiffness matrix cannot 
be factored using the same algorithm that was described for steady-state case. 

In the sequence, we discuss a new formulation to extent the EBE formulation to solve interval 
transient heat conduction problems. The goal of this formulation is the same of the steady-state 
formulation described previously, that is, to factor the global stiffness matrix into two matrices, one 
interval diagonal and another banded real to reduce the number of arithmetic operations involving 
interval numbers during the solution of the linear system.  

Figure 1 illustrates the EBE formulation using a one-dimensional thermal basin modeling 
example. In this example, there are three stratigraphic horizons ( iH ,i i 3= L ) and two layers 
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( iC ,i 2=L ) represented by the traditional finite element mesh with three nodes (horizons) and 
two elements (layers). The heat flux is specified (natural condition) at bottom ( )t(Q ) and the 
surface temperature specified (essential boundary) at the top ( surfT ). Each layer i, has its physical 

properties: conductivity ( iα ), heat capacity ( iµ ) and its thickness ( iL ). 

 

Figure 1 – EBE scheme for a mesh with 2 elements. The nodes are split and renumbered producing 
4 overlaps elements. 

 
The overlapping elements are in the right (Fig. 1), there is essentially one mesh for the 
conductivity (α mesh) overlapping with another one for the heat capacity (µ  mesh). The 
thermal conductivity and the heat capacity are intervals numbers represented by [ ],α α α=  and 

the ,µ µ µ =   . In the interval notation, the underscore and overscore symbols represent the 

interval lower bound and upper bound respectively. After the mesh split, the nodes are 
duplicated, node 1 becomes 1 and 5;  node 2 becomes 2, 3, 6, 7; and node 3 becomes 4, 8. The 
mesh compatibility, or the result continuity, has to be enforced and thus constraining equations 
must be satisfied: 1 5 2 3 6 7 4 8T T ; T T T T ; T T= = = = = , where T  is temperature. 

The global linear system of equations with the node compatibilities using the EBE formulation 
with overlap for this mesh is: 
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 (4.1) 

or more compactly: 
 
 

T T PK C
0C 0 λ

     
=    

    
 (4.2) 

 
 
where K is the stiffness matrix , C  is the compatibility node matrix, T  the unknown temperature 
λ  the vector of Lagrange multipliers, and P  is the heat source. The first two blocks in the 
diagonal of the stiffness matrix in Equation (4.1) are from to the thermal conductivity mesh. Third 
and fourth bocks are from to heat capacity elements. The 0, 1 and –1 coefficients are from the 
constraining equations used to enforce the nodes compatibilities. The linear system of equation 
above can be written as: 
 

FCKT T =+ λ  (4.3)  
0CT =  (4.4) 

   
The stiffness matrix (K ) can be written as the product of two matrices: 
 

DSK = , (4.5)  
 
where D  is an interval diagonal matrix and S  is a banded real matrix: 
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Since the diagonal matrix D  has the interval numbers (α  and µ ), its inverse is obtained trivially. 
The S matrix is block diagonal and singular (the second line equals to the first multiplied by –1) 
and, thus, cannot be directly inverted.  
 
Substituting (4.5) in (4.3) results into: 
 

λTCPDST −=  (4.8)  
Multiplying (4.4) by TDC , and adding the result to (4.8), after some algebraic operations we 
obtain: 
 
( ) λTT CPCTCSTD −=+  (4.9)  

 
If we define CCQ T=  and QSR +=  we have: 
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λTCPDRT −=  (4.10)  

   
Finally, the temperature solution vector can be obtained from (4.10) by: 

 
( )λT11 CPDRT −= −−  (4.11)  

 
This Equation can be further simplified by defining the vector:  
 

{ }TT
1 2 3 4 5 6 7 8p ( P C ) p , p , p , p , p , p , p , pλ= − = ,  (4.12) 

 
then Equation (4.11) becomes: 
 

δMRT 1−=  , (4.13)  
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































=

8

7

6

5

4

3

2

1

p000
p000
0p00
0p00
00p0
00p0
000p
000p

M            and      

































=

22

11

2

2

1

1

L
t
L
t

L

L

µ
∆
µ
∆
α

α

δ  (4.14)  

 
 
The matrix M  has dimensions ( ×4 number of elements) ×  ( ×2 number of elements) and the 
vector δ  has dimensions ×2 number of elements.  The rows of the vector δ  are essentially the 
diagonal values of 1D− .  Because the interval numbers occur only once in this vector, we avoid 
interval operation repetition with the same number. The matrix sizes are twice as large as the EBE 
for steady-state formulation because of the mesh duplication and this is the cost to reduce the 
number of interval operations.  
 

5 - Details of the Implementation 
 
Because no library was readily available to us to solve interval linear systems of equations, we have 
implemented one using Object-Oriented (OO) technologies in C++. By making use o templates and 
traits techniques we have been able to develop a library that can solve a linear systems of equations 
for distinct types of numbers such as real, interval and fuzzy using the same implementation. This 
library also can handle different matrix storage structures such as dense, banded, and tridiagonal. In 
this library, we have implemented the following methods: (1) preconditioned Gauss-Seidel (Kulpa, 
1998); (2) Preconditioned Gaussian elimination (Kulpa, 1998); (3) Optimization using Powell’s 
method (Rao, 1998) ; and (4) the combinatorial method (Muhanna,2000).  Figure 2, a graphical 
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representation of a fuzzy linear system of equations with triangle numbers, shows that a fuzzy 
system can be solved by α -cuts planes of interval linear system of equations. 

 

Figure 2 – Fuzzy linear system of equations. 

 

In Figure 3, we display the class derivation scheme for numbers and matrices, as well as the 
main algorithm classes for solution of linear systems. Following the OO approach, each class 
number is responsible by its operations (addition, subtraction, multiplication, division, absolute 
value, etc).  This data encapsulation approach is also applied to each matrix class which is 
responsible by its own matrix operations (LU decomposition, multiply by vector, inverse, 
determinant, rank etc).  We used the classes implemented by Deodato (1995) for interval and fuzzy 
number operations.  In his implementation, the fuzzy number is subdivided in α -cuts confidence 
intervals. We made extensive use of operator overload, inlining, and templates  in our 
implementation.  

 
Figura 3 – Derivation class for number types. 

 
Using templates and the generic programming approach (Mello & Khabibrakhmanov, 2003), 

there is a single implementation for the solution of the system ( yAx = ), independently of the 
number type and matrix structure. The matrix and number types are template parameters 
implemented by the template specialization techniques.  

This is a definitive advantage of generic programming, the algorithm does not need to know the 
details of the data structures used as long a common interface is provided for each number or matrix 
type. Then, the numbers and matrices operations are responsibility of the numbers and the matrix 
classes respectively. Consequently, the same algorithm works regardless the type of the matrix or 
number provided. 



382 

REC2004 

In order to apply the concepts discussed so far in this paper, we modified a one-dimensional basin 
modeling software denominated GEOFEM - Geological applications Of the Finite Element Method 
– (Mello, 1994) which was originally written in C language, to C++ (GEOFEM++) to perform 
interval and fuzzy operations. A specific EBE assembly operation was added to this software to 
obtain the global stiffness matrix. We have adapted GEOFEM++ to perform Monte Carlo 
simulations with uniform, triangular, normal, and exponential density distributions. 

6 - Application and Discussion 
 
In this section, we apply the techniques discussed in this paper and we compare its performance 
with more traditional methods to assess uncertainty. For this discussion, we have used a synthetic 
well, in which we consider the thermal conductivity of shale and sandstone uncertain as described 
in Table 3. The lower and upper bounds of the interval value are obtained by the medium 
subtracting and adding the standard deviation respectively. 
 

Lithology Minimum Maximum Medium Standard
Deviation

Interval Value 

Shale 1.3 1.7 1.50 0.05 [1.45, 1.55] 
Sandstone 2.90 3.10 3.00 0.10 [2.90, 3.10] 
Table 3 – Thermal conductivity values for shale and sandstone (W/mK) 

For the sake of simplicity, we discuss initially a very simple example to evaluate the 
algorithm efficiency in relation to the size of the mesh and the width of the interval numbers. In 
Figure 4, we display a one-dimensional mesh representing the present-day column of sediments 
with 4 elements (layer) and 5 nodes (horizons). 

 

 
Figure 4 – The elements in the mesh represent geological layers and the nodes the horizons. The 
respective age, million of years (My), of each horizon is shown on the right of the node numbers.  
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We calculated the evolution of this mesh over the time, the results for a single node of the 
mesh at present-day time are shown in Table 4. The value (15.86 oC) is the result of a traditional 
deterministic simulation using real numbers (Crisp solution) for the thermal conductivity (center 
value in Table 3). In the sequence, the Monte Carlo (MC) method was applied with 1000 
experiments using a uniform distribution, and the results provide a range of uncertainty to the 
temperature between 14.95 to 16.85 oC. For the uniform distribution, the average value is the 
same as the crisp solution.  Note that an uncertainty of 13 to 17% in the thermal conductivity of 
the sediments induced a lower than 7% uncertainty in the temperature. The combinatorial 
methods, which provides an accurate hull for the solution, resulted in a range, [15.43 16.50], 
close to the MC method but with a little tighter interval. The Preconditioned Gaussian 
elimination and Gauss-Seidel results are clearly overestimated, whereas the Powell method 
generated a much tighter solution. Clearly, a poor selection of the interval solution method can 
provide inaccurate solutions. The EBE method provided a good solution close to the 
combinatorial method. This shows the advantages and limitations of the interval methods. In our 
opinion, the EBE method and MC method were able to assess the uncertainty accurately in this 
simple case.  

 
Method Temperature  
  
Crisp 15.86 
Monte Carlo (MC) [14.95, 15.86, 16.85]
Preconditioned Gauss Elimination [12.38, 15.86, 21.80]
Preconditioned Gauss-Seidel  [10.77, 15.86, 27.35]
Combinatorial [15.43, 15.86, 16.50]
Powell  [15.83, 15.86, 16.01]
EBE [15.58, 15.86, 16.30]

Table 4 – Comparison among different solution methods for node 3 for the mesh displayed in 
Figure 4. 
 

In the next experiment, we doubled the number of elements in the mesh as shown in Figure 5, 
the results for the node 5 are presented in Table 5. 
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Figure 5 – Mesh with 8 elements. 

 
 

Method Temperature (oC) 
  
Crisp 15.66 
Monte Carlo (MC) [14.83, 15.66, 16.73]
Preconditioned Gauss Elimination Failed   
Preconditioned Gauss-Seidel [7.07, 15.66, 60.33] 
Combinatorial [15.22, 15.66, 16.34]
Powell [15.66, 15.66, 15.73]
EBE [15.14, 15.66, 16.22]

Table 5 – Results for the node 5 of the mesh shown in 
Figure 5. 

When the number of the elements increases, the number of operations to invert the interval 
global stiffness matrix also increases, leading to potential problems such as excessive 
overestimation. This can be verified in Table 5, especially for the Preconditioned Gauss-Seidel 
method. For this case, the preconditioned Gauss elimination failed. This failure occurred due the 
large number of operations with interval number during the pivoting phase of the Gaussian 
elimination. The large number of operation tends to increase the width of interval number. This 
width may include zero in the range, making the interval division underdetermined. Similarly to the 
previous case, the Powell method results were again too tight, and the MC and EBE methods 
provided good results. 

To evaluate the effect o wider range of uncertainty, we multiplied the standard deviation of the 
thermal conductivity by two (Table 6). The results of the application of the selected methods are 
shown in Table 7 for this experiment. We used the same four-element mesh as displayed in Figure 
4. 
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Lithology Minimum Maximum Medium Standard

Deviation
Interval Value 

Shale 1.30 1.70 1.50 0.10 [1.40, 1.60] 
Sandstone 2.90 3.10 3.00 0.20 [2.80, 3.20] 

Table 6 – Thermal conductivity for shale and sand (W/mK). 

 

Method Temperature (oC) 
  

Crisp 15.66 
Preconditioned Gauss Elimination Failed 
Preconditioned Gauss-Seidel Failed 
Combinatorial [14.58, 15.66, 17.34]
Powell  Failed 
Monte Carlo (MC) [14.95, 15.90, 16.92]
EBE [15.01, 15.66, 16.87]

Table 7 – Results increasing the thermal conductivity width of the shale and sand as shown in 
Table 6. 

The increase in the range of uncertainty caused further deterioration in the quality of some 
solution methods. In this case, the preconditioned Gauss Elimination and Gauss-Seidel failed to 
converge. The Powell method converged to an incorrect result. The EBE is the only interval method 
that provided results with good quality. It is interesting to note that the MC method resulted in slight 
tighter result when compared with the solution hull. This result could be even tighter if one included 
a density distribution with a shape different from the box distribution we selected. 

As the last evaluation case, we applied the EBE, MC and Combinatorial methods to a well 
with real data. The stratigraphy is described in Table 8. In the first line, sandstone is the lithology 
between the horizons 1 and 2. Table 9 shows the lithology conductivity uncertainty used in this 
case. 
 
 

Horizon Age 
(My)

Depth
(m) 

Lithology

1 0.0 0.0 Sandstone
2 14.4 438.0 Silt 
3 25.0 973.0 Sandstone
4 32.5 1698.0 Shale 
5 42.0 3018.0 Limestone
6 64.70 3681.0 Shale 
7 83.0 4050.0 Sandstone
8 98.8 4243.0 Silt  
9 110.8 4719.0 Shale 
10 114.0 4873.0 Silt 
11 120.0 6448.0 ------- 
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Table 8 – Stratigraphy for the well used in our analysis. 

Lithology Minimum Maximum Medium Standard
Deviation

Interval Value 

Shale 1.30 1.70 1.50 0.20 [1.30, 1.50] 
Sandstone 2.50 3.50 3.00 0.50 [2.50, 3.50] 
Limestone 2.00 2.50 3.00 0.50 [2.00, 3.00] 
Silt 1.50 2.00 2.50 0.50 [1.50, 2.50] 

Table 9 – Conductivities used in the 22 elements mesh (W/mK). 

 
For this analysis we assumed no variation in the paleobathymetry and sea-level over time. We 

built a finite element mesh with 22 elements to represent the stratigraphy listed in Table 8, with two 
elements for each layer. For this modeling, we used the approach described in Mello et al. (1994a) 
and Mello & Karner (1996), which make use of a fully compacted coordinate system, to eliminate 
mesh deformation over time. Figure 6 summarizes the temperature calculation at present-day time.  

 

Figure 6 – Temperature versus depth for the data of Table 8. 

 
In this figure, we display the results for Crisp, Combinatorial and EBE methods. The other 

methods failed for this case. The uncertainty increases with the depth due to the transient numerical 
solution. Note that, the EBE results were confined within the hull of the solution as defined by the 
combinatorial method. Although the MC result is not displayed in Figure 6, it was close to the EBE 
result (Table 10). This table shows the comparison of the MC method with the EBE and 
Combinatorial methods at the selected depth of 4146 m. For the MC simulations, it was used a 
uniform distribution of the thermal conductivity, 1000 events, 15 histogram classes, and a cut-off of 
5%.  
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Method Temperature (oC)
Crisp 150 
Combinatorial [134, 169] 
Monte Carlo [143, 156] 
EBE [143, 157] 

Tabela 10 – Temperature estimation at the depth 4146 m in Figure 6. 

The EBE simulation took approximately 6 seconds and the MC took 35 minutes in a Intel P4 
machine with 1,7GHZ and 1GB of RAM. The good quality of the EBE result was only achievable 
due to the EBE formulation which reduce the number of interval operations significantly.  
 

7- Conclusions 
 
In this work we evaluated the potential and limitations of an interval possibilistic approach to assess 
uncertainty in basin modeling. The interval arithmetic approach is an alternative to traditional 
probabilistic stochastic mehodology. We extended the interval finite element EBE formulation to 
transient heat transport Equation. This formulation proved to present good results within the hull of 
possible solutions with a quality similar to the Monte Carlo method. However, the EBE formulation 
has the advantage to perform the uncertainty analysis with a single simulation, requiring much less 
computational resources.  

Here we compared the EBE formulation with more traditional solutions for interval systems of 
Equations and the EBE has proved to be the most robust. The Preconditioned Gaussian elimination 
and Gauss-Seidel methods did not performed well with large meshes by either being excessively 
overestimated or failing to converge. In addition, these methods also had problems to deal relatively 
wide numbers. 

The optimization Powel method algorithm may produce incorrect or too tight results in basin 
modeling. The Combinatorial method, which provides the exact convex hull of the possible 
solutions, cannot be used in practical problems since it requires 2n operation and becomes rapidly 
unviable when the number of interval variables grows. 

The Monte Carlo method gives adequate results to uncertainty analysis when there is sufficient 
statistical information about the variables. The MC method has the advantage of allow analysis of 
multiple uncertain variables simultaneously without the need to change simulation applications. The 
major problem with MC method is the computational cost and the randomness assumption for 
geological processes that are in general not random. 

The EBE with element overlap seems to be a viable alternative for one-dimensional basin 
modeling due to the quality of its results. However more studies are necessary to analyze its 
possible applications to multidimensional basin modeling. In higher dimensions, the size of the 
EBE global matrices may become too large to be solved efficiently.  
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APPENDIX - INTERVAL ARITHMETIC OPERATIONS 
 

An interval number x is represented by: 
[ ]x,xx =     

 
where: 
x  = lower bound 
x  = upper bound 
=x~ is a real number that belongs to the interval number [ ]x,xx =  
=x( is the real number midpoint of x  

 
xxxwid −= , is the width of interval number x  

 
-  Operations: 

[ ] [ ]yx,yxyx,yxyx ++=++=+  

[ ]yx,yxyx −−=−  

{ } { }[ ]yx,yx,yx,yxmax,yx,yx,yx,yxminyx =×  



390 

REC2004 

0xxif,
x
1,

x
1

x
1

>×







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- Properties: 
( ) IRz,y,xpara,xzxyzyx ∈±⊆±  

( ) ( )zyzxyx +−+⊆−  
( ) yzxzyx ⊆  

)xx(0,0xx −∈≠−  
xxxx ∈≠ 1,1/  

 
Note that when there is a repetition of a variable in a mathematical expression we get an 
overestimated result. 
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Abstract.  To address the need for efficient and unbiased experimental testing of methods for 
decision under uncertainty, we devise an approach for probing weaknesses of these methods by 
running numerical experiments on readily available or easily obtainable databases of real life 
data. Since the approach uses real life data, it allows us to study the effect of modeling error on 
the performance of a method.  For illustration, we apply probabilistic and possibilistic approaches 
to a database of results of a domino tower competition. The experiments yielded several surpris-
ing results. First, even though a probabilistic metric of success was used, there was no significant 
difference between the rates of success of the probabilistic and possibilistic models. Second, the 
common practice of inflating uncertainty when there is little data about the uncertain variables 
shifted the decision differently for the probabilistic and possibilistic models, with the latter being 
counter-intuitive. Finally, inflation of uncertainty proved detrimental even when very little data 
was available.  
 

1. Introduction 
 
Engineering design decisions commonly involve mathematical models, such as models for calcu-
lation of stresses in structural design, to help decision makers predict the outcomes of alternative 
courses of action.  Errors in models are usually investigated experimentally, such as in aircraft 
certification tests, and occasionally such tests reveal weaknesses in the underlying models.  An 
example of such weakness is sensitivity of failure loads to inevitable small imperfections in geo-
metric shape. 

Uncertainty affects the ability of a decision maker to make good decisions.  Increasingly, un-
certainty is taken into account in design decisions using models, such as probability distributions. 
Again, design decisions that are sensitive to errors in models of uncertainty may look good on 
paper but may be very poor in reality. However, there has been little work on using experiments 
to probe for such sensitivity or other weaknesses in methods or practices for building models of 
uncertainty. 

Examples include the Dartboard Contest, conducted by The Wall Street Journal (WSJ), (see 
Greene and Smart, 1999), which compared active and passive investing. In the contest, experts 
(analysts or fund managers) competed with the WSJ staff, which selected stocks by throwing 
darts at a printout of the WSJ stock tables.  WSJ reported that experts won 61 percent of 140 con-
tests.  Baer and Gensler (2002) re-analyzed the study, accounting for additional factors including 
dividends and risk (experts favored high-risk stocks).  With these factors included, passive invest-
ing (throwing darts) turned out to be as good as active investing.    

Walley (1991, pp. 632-638) conducted an experiment using data from the 1982 Soccer World 
Cup to compare Bayesian and imprecise (upper and lower) probabilities in making decisions 
about gambles on games.  Of 17 participants, those who used upper and lower probabilities did 
better than one participant who used Bayesian probability.  Participants whose probabilities of the 
three outcomes (win, lose, tie) of each game were uniform did better than those participants 
whose probabilities were far apart.   
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Winkler (1971) and de Finetti (1972) performed experiments to investigate how people assess 
precise probabilities.  Like Walley, Winkler observed that more uniform probabilities tend to im-
prove the degree of success. Walley's and Winkler's studies suggest that if one has low confi-
dence in the probabilities of the outcomes of an uncertain event, one should select a probability 
distribution with large variance, and consequently large Shannon's entropy. This is consistent 
with the practice of using the maximum entropy principle (Kapur and Kevasan, 1992) to model 
uncertainty.    

Unlike the game and investing examples, it is difficult to carry certification tests for engineer-
ing design decisions to probe models of uncertainty, because products are usually designed for 
low probabilities of failure, and many thousands of tests may be required to reveal weaknesses. 
Occasionally, disastrous failures reveal inadequacy of probability of failure estimates, as hap-
pened with the space shuttle. Instead of waiting for disasters, we can also use ingenuity to test 
methods for making decisions under uncertainty. This involves inventing decision problems for 
data already available in existing databases.  

Gigerenzer and Todd (2000, pp. 97-118) pioneered this approach, pitting a complex decision-
making method against a simpler, heuristic one. If the simpler method wins or draws, it reveals 
possible weakness in the more complex method. They used 20 existing available databases to 
compare methods for making binary decisions (e.g., find which of two professors has a higher 
salary, given cues such as each professor’s rank and gender).  They found that a heuristic method 
that takes into account only a single dominant cue bested the standard (and more complex) re-
gression approach that takes all the cues into account.  

We generalize Gigerenzer’s testing procedure to compare methods for making decisions un-
der uncertainty that require choice of optimum values of design (decision) variables.  We have 
two objectives. First, we want to demonstrate that it is easy to take a database and invent scenar-
ios calling for a decision (in short, decision scenarios) that lead to meaningful tests of the effec-
tiveness of decision-making methods. Our testing procedure allows us to study the effect of mod-
eling error because it uses real life data.  Second, we wish to demonstrate with a simple example 
that such tests can raise concerns about aspects of methods that may not be readily apparent by 
examining the theoretical foundations of the methods.  

As an example, we use a database (Table 1) of experiments in which one of us (Rosca), as 
well as a group of students engaged in a competition (Rosca, 2001), stacked domino blocks until 
they toppled (Fig. 1).  We invent a decision scenario for a decision maker to guarantee a height 
for a domino tower that she will build so as to best a competitor by selecting a guaranteed height 
that is both attainable and competitive (it is unlikely that Competitor’s tower will be taller by a 
given margin).  This scenario is similar to a class of decision problems where a decision maker 
guarantees a performance level, and wins if she delivers it and the competitor fails to do so.  This 
example allows us to compare the use of probability and possibility for making decisions.   

Section 2 presents the approach for probing such methods for design under uncertainty using 
existing data.  Sections 3-4 present the example with the domino towers, the results, and the les-
sons learned.  Section 5 summarizes the conclusions of the study. 

 
2. Testing approach 

 
Figure 2 is an influence diagram of a decision with imperfect information. Elements of the deci-
sion are a decision maker(s), alternative courses of action (in short, actions), uncertain event(s) 
and their outcomes, consequences of actions and information about the likelihood of the outcomes 
of the uncertain events. The consequence of an action depends on the outcomes of the uncertain 
events.  The decision maker wants to select the action with the most desirable consequence. The 
decision maker has imperfect information about the likelihood (e.g., the probabilities) of the pos-
sible outcomes of the uncertain events.  In this paper, we consider uncertain events whose out-
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comes are characterized by variables (e.g., the uncertain collapse height of a tower of domino 
blocks is a variable).   

Our approach for testing methods for decision making under uncertainty is to select a data-
base with samples of some variables, construct a decision scenario in which these variables repre-
sent the uncertainties that the decision maker faces, make repeated decisions and evaluate the 
consequences of these decisions using the database. The four steps of the testing approach are 
explained in detail in the following (Fig.3).  Note that the variables in the data base do not have to 
be random; rather, the decision maker is uncertain about the values that they assume.  

 
Table 1. Domino competition database: maximum built height (in domino units) 
 

Number of towers 
of given height 

Number of towers 
of given height 

Number of towers 
of given height 

Heigh
t 

Ro-
sca 

Competi-
tors 

Heigh
t 

Ro-
sca 

Competi-
tors 

Heigh
t 

Ro-
sca 

Competi-
tors 

20 1 0 32 3 7 44 0 1
21 1 0 33 4 7 45 2 2
22 0 1 34 4 4 46 2 4
23 2 0 35 1 7 47 0 3
24 0 0 36 3 3 48 0 0
25 2 1 37 5 9 49 0 0
26 1 0 38 1 2 50 0 0
27 1 9 39 2 3 51 0 0
28 3 2 40 2 1 52 0 0
29 3 4 41 1 3 53 0 0
30 3 6 42 0 2 54 0 0
31 3 5 43 0 3 55 0 1
 
Step A.  Select a database.  We can start with almost any database with samples of a reason-

able size (e.g., greater than or equal to 30).   



394 

REC2004 
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Figure 2. Decision under uncertainty.  Arrows show relationships between 

the elements of a decision. 

Uncertain event

Outcomes 
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tower  

 

Competitor’s 
tower  

Figure 1:  Domino towers in a competition 



395 

REC2004 

Evaluate payoff of decision 
using entire database 

Finished all replica-
tions?

Step D: Calculate probability 
of success or expected utility 
and draw conclusions 

Model uncertainties using the fitting 
subset and make a decision 

Step A: Find a database with 
samples of variables 

Step B: Create a decision scenario 
in which the variables in step A 

represent uncertain events  

    

  

 

 

 

 
  

  

 

 

Step C: Select part of the data-
base for constructing models of 

uncertainty 

NO

YES

Figure 3:  Approach for testing a method for decision under uncertainty 

fitting subset

Back to step C: take 
another part of the 
database   
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In the example of Table 1, the database contains heights of domino towers (just before they 

toppled) built by one of the authors (Rosca) in 50 trials and by 16 competitors in 90 trials (Fig. 1). 
The maximum height of a stable tower built by stacking domino blocks until the tower topples 
will be called maximum built height in this paper.  This data gives us some statistical information 
(summarized in the histograms of Figure 4) on the height of the domino towers that Rosca and the 
Competitor can build.   

 
Step B.  Create a decision scenario given the variables in the database selected in step A.  

This is an unusual way to construct a decision scenario; instead of identifying the uncertainties in 
a given decision scenario, we invent a decision in which the variables in the database represent 
the uncertainties.  A decision scenario is defined in terms of the following:  

 
• the decision maker(s)  
• the decision maker’s objective 
• the alternative courses of action (or choices)  
• the possible consequences of an action  
• the variables that affect the consequences of an action  
• an algorithm for determining the consequence of an action given the values of the 

variables 
• the information available for modeling the uncertainty associated with the vari-

ables. 
 

For the domino-tower competition, the decision scenario we created is for Rosca (decision 
maker) to compete with a randomly chosen competitor (called Competitor) and guarantee a 
minimum height that she would build. Rosca loses if she did not meet her guarantee even if her 
tower was taller than that of Competitor’s. To compensate for this disadvantage of Rosca, the 
rules of the competition stipulate that Competitor wins only if his tower height exceeds that of 
Rosca’s guarantee plus a handicap.  Both Rosca and Competitor are to build towers until they 
topple, and the maximum built height counts. If Rosca makes a high guarantee she risks not meet-
ing it. If she makes a low guarantee she risks Competitor beating her guarantee plus the handicap.  
Figure 5 shows the decision tree, while Table 2 shows the elements of the decision scenario. 
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Figure 4. Histograms of maximum built heights of domino towers 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Domino competition: decision/event tree 
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Table 2. Elements of decision scenario in example 

 
Element  Description  

Decision maker Rosca 
Objective Win contest 

Alternative courses of action Guarantee different tower heights, nguar  
Possible consequences  

of an action 
Rosca loses or wins 

Variables that affect the conse-
quences of an action  

Maximum built heights of Rosca’s tower (ndel) and Competi-
tor’s tower (ncomp) 

Algorithm for determining the 
consequence of an action given 
the values of the variables in the 

database 

3 Rosca’s tower collapses below guarantee,  (ndel < nguar) 
(Rosca loses) 

3 Rosca builds a stable tower with guaranteed height, (ndel ≥ 
nguar) and Competitor builds stable tower with height 
greater than the guaranteed height plus the handicap, 

ncomp >nguar + nhand (Rosca loses) 
3 Otherwise Rosca wins 

Information for modeling uncer-
tainty 

Data on maximum built heights of Rosca’s and Competi-
tor’s towers in database 

 
 

Step C.  Make decisions using the method(s) we want to test using part of the database.  We 
select a part of the database (called fitting dataset) to construct models of the uncertainties, which 
are used to make a decision.  This adds statistical uncertainty (uncertainty in estimating the statis-
tics of the population in the database from the fitting dataset) to the uncertainty due to variability.  
It is important to investigate the effect of statistical uncertainty since it is usually present in de-
sign decisions.  

Using a part of the database to construct models of the variables allows us to test the method 
on many decisions; each obtained using a different fitting part. We reduce the element of chance 
in the choice of the fitting part by selecting it randomly, and repeating the process many times. 
Thus we obtain a large number of decisions whose payoffs can be evaluated.  This concept of 
testing a model using multiple random fitting datasets is commonly used in validating response 
surface approximations, such as neural networks (e.g., Hush and Horne 1993). 

For the domino-tower problem, we employ probabilistic and possibilistic methods to decide 
what height to guarantee. We provide Rosca with a small random sample (the size is five for the 
results presented in this paper) of her own past performance as well as a similar sample of Com-

petitor’s past performance. We could select 







5

50
different parts of the database with values of 

the collapse heights of Rosca’s towers, where the notation 







5

50
 indicates the number of all dif-

ferent 5-tuples taken from a population of 50 objects.   
 
Step D. Evaluate the payoff of a decision by using the database as the entire universe of pos-

sible outcomes.  
For a binary consequence (success or failure), we measure the payoff of a decision by its 

probability of success evaluated from the entire universe of all possible outcomes.  If success is a 
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matter of degree, then we use the expected utility (Marston and Mistree, 1998, Hazelrigg, 1997, 
chapter 7) instead. 

 
In the domino-tower problem we have 90×50=4,500 possible combinations of maximum built 

heights of Rosca and Competitor, and we can readily calculate the ratio of successful decisions 
out of the total. 
 
Student grade data base 
To demonstrate the generality of the testing approach, we present a database with very different 
characteristics from the domino database. As faculty members we regularly create student grade 
files, such as the one shown in the table below. 
 
 

student quiz1 quiz-2 quiz-3 Exam-1 quiz-4 … 
Course 
average Grade 

1 30 26 0 73 22 … 80.91 B 
2 18 25 28 99 11 … 95.05 A 
: : : : : : : : : 

44 25 31 30 62.5 24 … 48.53 F 
45 23 21 10 68 11 … 86.13 B+ 

 
Using the student-grade database we can create the following decision scenario. A professor 

wants to identify students who are likely to get D or below (considered failure here) in order to 
call them for consultation. It is desirable to make the decision process simple and transparent. 
Therefore, the process is that if a student’s course average is below a cutoff value, ac, at the end 
of week T of the semester, the student will be called. To aid the professor identify which students 
to call for consultation, a teaching assistant (decision maker) wants to develop a model predicting 
if a student, whose course average at the end of week T is known, will fail.  The construction of a 
predictive model can be viewed as a decision in which the teaching assistant decides on the con-
sultation time and cutoff grade (decision variables).  The teaching assistant’s objectives are to 
maximize the model accuracy and minimize the waiting time to issue a warning.   

The consequences of a choice of the consultation time and the cutoff grade include the num-
ber P of false positives (students called for consultation who would have passed), and the number 
N of false negatives (students who failed but were not called for consultation). It is desirable to 
minimize P and N, which would call for waiting as long as possible. On the other hand, the longer 
the professor waits, the smaller is the chance that the student can improve much. We therefore 
define the following loss function to be minimized by the decision maker: 

 
L = kP P+kN N+kT T  
 
The coefficient kP is the weight assigned to wasted time with students who do not need the 

consultation, kN is the weight assigned to missing students who need it, and kT is the weight as-
signed to the loss of time available to the student for corrective action.  

In this problem the decision maker is uncertain if a given student will pass or fail.  The 
grades in the database provide information that the teaching assistant can use to model this uncer-
tainty.  Figure 6 explains the decision of the teaching assistant.  Using the information in the da-
tabase the teaching assistant builds a model of the random variables.  Then he/she chooses the 
waiting time and the cutoff grade so as to minimize the loss function of the model for predicting 
if a student will fail.   
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This problem may be particularly useful for testing Bayesian approaches against more tradi-
tional probabilistic approaches, because data from other courses and previous experience with the 
same course may be used to create prior probability distributions of failure as functions of the two 
decision variables. We can update the prior probability distributions using the grades in the data-
base.   

The testing procedure involves providing information on the entire semester history for a 
few students, using it to select the two decision variables, and then testing the consequences on 
the remaining students. That is, once the week T and cutoff ac have been chosen, we can use the 
final grade information to obtain the number of false positive P and number of false negative N, 
and calculate the loss function. The procedure can be repeated for many random subsets of the 
students. 

The loss function implicitly assumes that a consultation with the student will increase the 
chances of the student to pass. While this is not obvious, we note that this issue does not lessen 
the value of this example for testing methods for making decisions, as the loss function involves 
diagnosis rather than corrective effects. 

 
3. Comparing Possibilistic and Probabilistic Formulations for Domino Problem 

 
A common option for modeling the uncertainty in the maximum built height in the domino deci-
sion problem of Table 2 is to fit probability distributions to data on past performance (data from 
Table 1 or Figure 4). Our previous investigation into the mechanics of the domino problem re-
vealed that the probability distribution of stack heights for a single builder or for a group of 
builders can be approximated well by a shifted Gamma distribution but is approximated almost as 
well by a normal distribution (Rosca, 2001).  

In order to demonstrate the utility of our testing approach we compare a probabilistic and a 
possibilistic method for making the decision. The latter is based on a simpler representation of the 
uncertainty via a triangular possibility distribution function and may be therefore less sensitive to 
the lack of available data. Possibility theory is presented in several books and papers including 
Dubois and Prade (1988), Joslyn (1994, 1995), and Nikolaidis et al. (2004). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Decision about consultation time and cutoff grade when constructing a model 
for predicting a student’s performance 

Consultation  
time, and cut off 
grade 

 
 

Model performance 
 Decision

Incomplete data 
base with student 
grades 
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Problem formulation 
In possibility theory, the possibility of an event and the possibility of its complement do not nec-
essarily add up to 1 (as is the case for probability theory).  Therefore, we can maximize the possi-
bility of success or minimize the possibility of failure without necessarily obtaining the same 
guarantee.  We assume that the maximum built heights of Rosca’s and Competitor’s towers are 
independent.  Then the possibility of Rosca winning is equal to the minimum of the possibility of 
Rosca building a stable tower (Rosca delivers) with guaranteed height n and the possibility of 
Competitor failing to build a tower taller than the guaranteed height plus the handicap (Competi-
tor fails):  

Pos (winning (nguar)) = Pos (Rosca delivers and Competitor fails) =  

                                                        min [Pos (ndel ≥ nguar), Pos (ncomp< nguar +nhand+1 )] (1a) 
 
Similarly, the possibility of Rosca losing is: 

 
Pos (losing (nguar)) = max [Pos (ndel < nguar), Pos (ncom ≥ nguar +nhand+1)].         (1b) 

 
Both formulations can provide multiple optima.  For our data, the sets of optima given by 

these two possibilistic approaches were not disjoint.  We call the intersection of these two sets the 
possibilistic optimum.  There might be cases where the intersection contains more than one ele-
ment.  

Since Rosca built her towers without interaction with the other builders and at a different 
time, Rosca's and Competitor's maximum built heights are assumed statistically independent.  
Therefore, the probability of Rosca winning a contest when she guaranteed a stack of height 
n=nguar is equal to the product of probability that Rosca delivers and the Competitor fails: 

 
Pro (winning (nguar))= Pro(ndel ≥ nguar)⋅ Pro(ncomp <nguar +nhand+1)= [ 1-FRosca(nguar)] 
FComp(nguar+nhand+1)  (2) 
 
where FRosca(n) and FComp (n) denote the cumulative distribution functions of the maximum built 
heights of Rosca's and Competitor's towers, respectively.  The probability that Rosca delivers de-
creases with nguar, whereas the probability of Competitor’s failure increases with nguar.  In the 
probabilistic formulation, we want to find the guaranteed stack height, nguar, that maximizes the 
probability of winning.  

We will compare the optima obtained by the two formulations when using data from the 
domino experiments to model uncertainty.  We analyze two cases: (1) all data are used to find the 
optimum, and (2) only a sample of the data is used. When little data is available a designer can 
use a standard probability distribution that it is known to describe the uncertain variable (in our 
case the maximum built height) or employ the maximum entropy principle if such a standard dis-
tribution is not known.  In this study, we consider that both the probabilistic and possibilistic de-
signers know that the Gamma and the normal distributions fit well the maximum built height of a 
tower. In case (1), there is only uncertainty due to the error in approximating the actual discrete 
distribution as Gamma or normal probability distributions (called here fitting error).  The true 
values of the parameters of these distributions are computed from the entire database of the 
maximum built heights, which in this study is considered the universe of the values of the maxi-
mum built heights.  In case (2), there is additional uncertainty in the values of the parameters of 
the distributions besides the uncertainty due to fitting error.   

In the decision scenario considered in this study, the probabilistic approach has two advan-
tages compared to the possibilistic approach:  a) the probabilistic approach seeks to maximize the 
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right objective (the probability of Rosca winning), and b) even when a small sample of data is 
available, Rosca knows that the Gamma and the normal probability distributions fit well the data 
for the maximum built heights.  The information on the type of probability distribution is one that 
the possibilistic designer cannot directly utilize, so the probabilistic designer has an advantage. 

Definition and evaluation of the likelihood of winning 
Generally, for a given sample, the possibilistic and probabilistic formulations yield different op-
tima, because they maximize different objective functions.  We compare the two optima in terms 
of their relative frequency of winning (also called likelihood of winning), considering all possible 
Rosca-Competitor competitions obtained by combining all the data for the collapse heights of the 
towers built by Rosca and Competitor.  With 50 experiments available for Rosca and 90 experi-
ments available for Competitor, the likelihood is calculated by counting the number of pairs for 
which Rosca won as a fraction of the universe of possible pairs of Rosca and Competitor data, 
that is, 4,500 pairs. Consider a competition in which the maximum built height of Rosca is 
ndel=N1 blocks and the maximum built height of the competitor’s tower is ncomp=N2 blocks.  Rosca 
won if          

  
N1≥ nguar and N2 <nguar + nhand+1.             

 
The likelihood of winning of nguar is the total number of pairs (N1, N2) for which Rosca won, 

divided by 4,500.  This likelihood of winning may be viewed as an approximation to the actual 
probability based on the limited database. We prefer to view it as an exact calculation for a prob-
lem with a limited discrete universe. 

Using the likelihood of winning as a metric of the quality of a decision and with all of the 
data and no fitting errors, the probabilistic formulation should be superior. The possibilistic ap-
proach can prevail only if the fitting errors and the errors due to incomplete data overcome the 
natural advantage of the probabilistic approach.   

 
Splitting the data into fitting and testing sets 
If we use all the data for selecting the optimal nguar, we have a single example from which it is 
difficult to draw conclusions. However, the relatively large amount of data allows us to use sub-
sets for making the decision and evaluating the payoff, and then to repeat the process for different 
subsets. This reduces the element of chance in the results. Here, we perform the comparison for 
80 randomly chosen subsets. 

We draw samples of size nsample from both the data sets of Rosca and Competitor.  Based on 
these samples, we fit a shifted Gamma or a normal probability density and a possibility distribu-
tion.  The fitting processes for the probability and possibility distributions of the collapse heights 
are described in Appendix 1.  Based on the fitted functions and using a probabilistic or a possi-
bilistic formulation, we solve the guaranteed height problem, obtaining one (or more) optimum 
guarantees.   

Step D of our testing approach calls for evaluating the payoffs of the decisions. We compare 
the guarantees selected by each method in terms of their likelihood of Rosca winning on all pos-
sible combinations of the available data. 

4. Results 
 
We studied the likelihood of winning of the two methods first when all measurements in the data-
base are known, and then when only five measurements are given.  We also investigated the ef-
fectiveness of the common practice of inflating the variance of a variable to account for statistical 
uncertainty (uncertainty in estimating the statistics of a population from those of a sample).  This 



403 

REC2004 

second study revealed an unexpected difference between probability- and possibility-based de-
signs. 

All data known  
 In this case, we do not have multiple samples, and we can make a single decision. However, we 
vary the handicap through the set of values {2, 5, 8, 11, 15}. Figure 7 shows the likelihood of Ro-
sca winning for the probabilistic (with Gamma distribution) and possibilistic designs versus the 
handicap.  As expected, the likelihood of winning increases with the handicap.  One cannot tell 
which method does better from Fig. 7, as the probabilistic design wins for a handicap of 2, 5 and 
15, while the possibilistic design wins for a handicap of 8 or 11.  Figure 7 also shows the maxi-
mum achievable likelihood of winning in the ideal case where the probability distributions of the 
populations of the maximum built heights of the two players are known.  These are the true prob-
ability distributions of the maximum built heights and they are equal to those in the histograms in 
Fig. 4.  The difference between the maximum achievable probability of winning and the likeli-
hood of winning of the probabilistic approach is due to the fitting error of the Gamma distribution 
to the data.  It is observed that the effect of the fitting error is small. 

Table 3 shows the optimum guarantee selected by the two probabilistic models and the possi-
bilistic approach. The optimum guarantee decreases with the handicap increasing.  This is be-
cause the increased handicap makes it harder for Competitor to build a tall enough stable tower 
and a low guarantee will reduce the risk of Rosca’s failure to deliver the guarantee. The average 
likelihoods of winning of the three methods over the five values of the handicap are: 0.5289 for 
the probabilistic design method using the Gamma distribution, 0.5258 for the probabilistic design 
method using the normal distribution and 0.5234 for the possibilistic design approach, which are 
very close.  These results may indicate that when all the data is available to the decision maker, 
the errors incurred by fitting the data to a probability distribution offset the advantage of the 
probabilistic approach over the possibilistic one (that it maximizes the same objective as the one 
used to score the results). 
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Figure 7. Comparison of the likelihood of success of probabilistic and possibilistic de-
signs versus the handicap for the case where the decision maker has all the data in the 
database and the case where the decision maker knows the true probability distribution 

of the population of maximum heights 
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Table 3: Variation of optimum guarantee and its likelihood of winning with handicap val-
ues when all data are known; cases where the optimum guarantee was found are 
marked in bold. The optimum guarantee for a handicap of 11 is 28, corresponding to a 
likelihood of winning of 0.6533. 

 
Probabilistic optimum 
(shifted Gamma fit) 

Probabilistic optimum 
(normal fit) 

Possibilistic optimum 
(triangular fit) 

Handicap 
 

Optimum Likelihood 
of winning 

Optimum Likelihood 
of winning 

Optimum Likelihood 
of winning 

2 32 0.3067 33 0.3180 33 0.3180 
5 31 0.4107 32 0.4333 32 0.4333 
8 29 0.5633 30 0.5360 31 0.5133 

11 27 0.6402 29 0.6153 29 0.6153 
15 26 0.7236 27 0.7262 28 0.7373 

 
When only few experimental data are available to fit a probability distribution, a standard 

practice (Fox and Safie, 1992) is to inflate the variance of a distribution, keeping the mean value 
the same.  Considering the parameters of a probability distribution to be random variables in or-
der to account for statistical uncertainty also increases the variance of the distribution.  We inflate 
the variance by adding to it an inflation factor multiplied by the standard deviation of the variance 
(see Appendix 2).  When all the data is known, the effect of inflation is small because the stan-
dard deviation of the variance is small (see for example Table A1).  Therefore, in order to under-
stand the effect of inflation, we consider also the extreme case of an inflation factor of 15.  

For a possibility distribution, there is no standard way to inflate the uncertainty.  We use the 
simple approach of keeping fixed the mode of the distribution, which is equal to the sample mean, 
and inflating the support by the inflation factor. That is, if the mean is 32, and the support of the 
possibility distribution function is the interval (30, 35), then an inflation factor of 1 will inflate the 
interval to (28, 38), and an inflation factor of 2 to (26, 41). Here we use an inflation factor of 2, 
which corresponds to extreme inflation, similar in magnitude to an inflation factor of 15 for the 
probabilistic data. 

From Table 4 we observe that when the uncertainty in Competitor’s performance increases 
(inflation of 15), the probabilistic optimum guarantee decreases.  On the other hand, when the 
uncertainty in Rosca’s performance increases, the probabilistic optimum guarantee increases. The 
possibilistic optimum guarantee exhibits the opposite trend. 

 
Table 4:  Effect of inflating the uncertainty Rosca’s and the Competitor’s performance on 
the optimum guarantee and its likelihood of winning; handicap value, nhand is 5, all-data 
case.  The true optimum height is 32. The probabilistic optimum decreases when the 
variability in Competitor’s performance increases, and increases when the variability in 
Rosca’s performance increases; the possibilistic optimum exhibits the opposite trend. 
 

Rosca  Com-
petitor  

Probabilistic optimum 
(shifted Gamma fit) 

Probabilistic opti-
mum (normal fit) 

Possibilistic optimum 
(triangular fit) 

Inflation factor  Opti-
mum 

Likelihood of 
winning 

Opti-
mum 

Likelihood of 
winning 

Opti-
mum 

Likelihood of 
winning 

0 0 31 0.4107 32 0.4333 32 0.4333 
0 15 28 0.3920 29 0.3987 33 0.4020 

15 0 33 0.4020 34 0.3578 31 0.4107 
15 15 30 0.4240 32 0.4333 32 0.4333 
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When the variance of the Competitor’s performance is inflated by a very large amount then 
the probabilistic optimum guaranteed height always decreases. The reason is that when the vari-
ance becomes very large, the probability of the Competitors’ failure becomes insensitive to the 
guaranteed height. Therefore, for increasing the probability of winning given by (Eq. 2)  Pro 
(winning (n)) = [ 1-FRosca(n)] FComp(n+nhand+1) it is more important to increase the probability of 
Rosca’s delivering the guarantee than to increase the probability of Competitor’s failure. 

The effect of inflating uncertainty on the optimum can be understood by examining the con-
dition that the optimum must satisfy.  At the optimum, the derivative of the logarithm of the 
probability of success is zero, 
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The two terms on the right hand side of the above equation are the sensitivities of the logarithms 
of the probabilities that Rosca delivers and Competitor fails.  Extreme inflation of the uncertainty 
in the Competitor’s performance makes the sensitivity of the derivative of the probability that the 
Competitor fails almost zero. The optimum guaranteed height decreases in order to maintain 
equality of the two terms in Eq. (3) (Fig. 8).  Rosca (2001) provided a similar explanation as to 
why the optimum guarantee increases when the probability density function of the decision maker 
(Rosca) is inflated. 

So in this probabilistic guarantee-setting problem, when the decision maker is highly uncer-
tain about the capability of the competition, she should set conservative goals. On the other hand, 
when the decision maker is very uncertain in her own capability, she should set aggressive goals 
because it is more important to prevent the Competition from succeeding than to help the decision 
maker deliver the guaranteed performance. This fits the common sense notion that given two 
dangers, one should pay more attention to the danger which one can manage more easily. 

In possibility, we can minimize the possibility of Rosca losing the contest or maximize the 
possibility of her winning.  We minimize the possibility of losing because the possibility of win-
ning is equal to one for heights between 30 and 33.  The height for which the possibilities that 
Rosca delivers and the Competitor fails become equal (nopt in Fig. 9), minimizes the possibility of 
losing. Indeed, any deviation from nopt increases the possibility of Rosca losing.  Smaller heights 
than nopt have higher possibility of Competitor success, while larger heights have higher possibil-
ity of Rosca failure.  In both cases, the possibility of Rosca losing the contest (Eq. 1b) is higher 
than that for nopt.  In Table 4, the possibilistic optimum displays the opposite trend than the prob-
abilistic optimum, increasing when we inflate Competitor’s possibility distribution and decreas-
ing when we inflate Rosca’s possibility distribution.  This can be explained by observing Fig. 9; 
inflating the Competitor’s possibility distribution will increase the optimum (which is the inter-
section of the possibility distributions of the two players).  Thus, in contrast to probabilistic de-
sign, inflation increases the importance of a failure mode in the possibilistic approach. 

The philosophies of the probability and possibility can be further understood by examining a 
scenario that accentuates the difference of the optima of the two approaches.  Consider the ex-
treme case where the uncertainty in the Competitor’s performance is very large and the uncer-
tainty in Rosca’s performance very small (that is, Rosca predicts quite accurately the maximum 
height of a tower that she can build but she does not know much about Competitor’s perform-
ance). Figure 10 shows the probability densities and possibility distributions of the maximum 
built heights of the two players.  The optimum guarantee that maximizes the probability of suc-
cess is on the left tail of Rosca’s probability density function where there is a small probability 
that she will not deliver.   Then, the probability of winning is approximately equal to the probabil-
ity of Competitor’s failure for this height, which is 0.5.  On the other hand, the possibilistic opti-



406 

REC2004 

mum is very close to the mean value of the Rosca’s distribution and has a probability of success 
0.256, which is approximately equal to one half of the probability of success of the probabilistic 
optimum.  It is also interesting that the possibilistic optimum is less robust to errors in the mean 
value of Rosca’s maximum built height than the probabilistic optimum.  For example, even a 
small reduction in the true mean value of Rosca’s probability distribution will reduce greatly the 
probability of success of the possibilistic optimum. Even though we have been comparing prob-
ability and possibility for the past few years, we needed this experimental result to discern the 
important differences between probability and possibility identified in this study. 

It is not difficult to check that the effect of inflation of the possibilistic optimum depends on 
the relative positions of the peaks for the two possibility distributions. That is, when the two are 
reversed, probability and possibility will behave in the same way. However, for probability distri-
butions, the relative positions of the peaks do not affect the result that the inflated mode loses im-
portance.   
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Figure 8.  Extreme inflation of the uncertainty in Competitor’s performance reduces the sensi-
tivity of the probability of Competitor’s failure to the guaranteed height, thereby reducing the 
optimum guaranteed height.   
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Figure 9.  Inflation of the uncertainty in Competitor’s performance increases importance of 
competitor’s failure, thereby increasing the optimum guaranteed height.   
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Figure 10. Probabilistic and possibilistic optima when there is high uncertainty in Com-
petitor’s performance and little uncertainty in Rosca’s performance.  The difference be-
tween the ways probabilistic and possibilistic design find the optimum guaranteed height 
is accentuated in this case.  The probability density of Competitor’s maximum built 
height is almost zero over the entire range of heights in the figure.   
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The contrast between the effect of inflation on probability and possibility is clearly due to the 
non-additivity of possibilities. Consider in Fig. 8 the optimum guarantee when the probability 
distributions of the players are not inflated. Reducing the optimum guarantee by 1 increases the 
chance that Rosca delivers more than reducing the chance that the Competitor fails. In probabil-
ity, inflating the probability distribution of Competitor automatically reduces the probability of 
any one outcome. Thus, it allows us to reduce the guarantee by 1 with a smaller reduction of the 
chance of Competitor’s failure. In the possibility model we can increase the possibility of one 
event without reducing the possibility of another. Thus inflating Competitor’s possibility distribu-
tion increases the possibility of all the outcomes.  

Finally, Table 4 shows that inflating only one of the uncertain variables reduces the likeli-
hood of success of both methods.  The reason is that increasing the uncertainty in the perform-
ance of a player introduces bias in the probabilistic model, which reduces the quality of a deci-
sion.  Also, inflation affects probabilistic design more that the possibilistic design.  

Scarce data – small sample size   
For the scarce data case, we use only a randomly selected small subset of the data for fitting a 
distribution and selecting a guarantee.  The process is repeated 80 times to average out the effect 
of chance in the selection of the sample.  Rather than presenting all 80 examples of optima, we 
present their average (over the 80 samples) likelihood of success.  We tested the models of uncer-
tainty for five handicap values.  Thus, we were able to test the models on 5×80 = 400 different 
decisions using the same pair of datasets for Rosca’s and Competitor’s collapse heights.  Each 
decision was evaluated using 4,500 pairs of maximum built heights. 

Figure 11 shows the average likelihoods of success of the probabilistic method that uses the 
Gamma distribution to model uncertainty in the maximum built heights of the towers and the pos-
sibilistic design for different handicaps.  Since only five data points are available to the decision 
maker instead of 50 or 90, the likelihood of success of the optimum guarantee deteriorates com-
pared to the all-data case.  The likelihood of success of the probabilistic design is slightly higher 
than that of the possibilistic design but the difference is small. Table 5 presents the average and 
standard deviation of the likelihood of success when a sample of five values is used. When a 
Gamma probability distribution is fitted to the data, the reduction of the likelihood of success 
ranges from 2% to 6%, compared to the all-data case.  The reduction in the likelihood of success 
ranges between 2% to 4% when a normal distribution is fitted to the data.  Finally, when a possi-
bilistic approach is used, the reduction in the likelihood of success ranges between 2% and 4%.    

For both possibilistic and probabilistic methods, increasing the handicap value increases the 
mean of the likelihood of success.  The average likelihoods of winning of the three methods over 
the 400 cases are 0.4947 for the probabilistic design method using the Gamma distribution, 
0.4968 for the probabilistic design method using the normal distribution and 0.4909 for the possi-
bilistic design method, which are very close, with a small advantage to the probabilistic models. 
This result surprised us, because, generally, we expected the possibilistic approach to do better 
relative to the probabilistic approach for the scarce data than for the full data case.  But in the de-
cision problem considered, probabilistic design has the advantage over the possibilistic design 
that the type of the probability distribution of the maximum built height is known even in the 
scarce data-case.  Possibility does not permit the designer to account directly for this information 
even if she knows the type of the possibility distribution.   

The poorer results of the possibilistic approach could also be due to the way we constructed a 
possibility distribution function based on the available data or the inability of the approach to 
properly account for the independence of the built heights of the towers of the two players.  The 
possibility of the intersection of two events is equal to the minimum of the possibilities of these 
events (Eq. 1).  This yields counterintuitive results when the events are known to be statistically 
independent.  For example, the possibility of Rosca building a tower with height that has high 
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possibility (e.g., 30) and the competitor building a very tall tower (e.g. 55) is equal to the possibil-
ity of both players building very tall towers as long as Rosca’s tower has higher possibility than 
Competitor’s tower.  This is clearly wrong because it is very unlikely that both players will build 
high towers simultaneously (Eq. 2). A hybrid probabilistic/possibilistic approach, that character-
izes uncertainty in the maximum built height using probability distributions and uncertainty in the 
distribution parameters using a possibility distribution would avoid the above pitfalls and could 
do better than the approach that we considered in this study. 

Table 5: Mean and standard deviation (computed over the 80 cases) of the likeli-
hood of success for probabilistic optimum (shifted Gamma and normal fit) and pos-
sibilistic optimum (triangular fit); sample size of 5. 

Likelihood of success for 
probabilistic optimum 
(shifted Gamma fit) 

Likelihood of success for 
probabilistic 

optimum (normal fit) 

Likelihood of success for 
possibilistic 

optimum (triangular fit) 

sample 
size=5 

 
nhand Mean (of 

80 runs) 
Standard 
deviation 

Mean (of 
80 runs) 

Standard 
deviation 

Mean (of 
80 runs) 

Standard 
deviation 

2 0.2850 0.0361 0.2822 0.0398 0.2896 0.0290 
5 0.3924 0.0441 0.3924 0.0451 0.3917 0.0478 
8 0.4995 0.0552 0.5031 0.0496 0.4921 0.0576 

11 0.5967 0.0622 0.5993 0.0513 0.5875 0.0656 
15 0.6997 0.0559 0.7069 0.0412 0.6937 0.0586 
 
We repeated the fitting and optimization procedure for the case of the sample size of 5, but 

this time we inflated the standard deviation of the maximum built height and the support of the 
possibility distribution of this height. We present in Table 6 only the results for symmetric infla-
tion.  
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Figure 11. Comparison of the likelihood of success of probabilistic and possibilistic de-
signs versus the handicap for the case where the decision maker has five data points 
and the case where the decision maker knows the true probability distribution of the 

population of maximum heights 
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Table 6: Mean and standard deviation (computed over the 80 cases) of the likelihood of success 
for probabilistic optimum (shifted Gamma and normal fit) and possibilistic optimum (triangular 
fit); sample size is 5. Both Rosca’s and Competitor’s inflation factors are 2. 

 
Likelihood of success for 

probabilistic optimum 
(shifted Gamma fit) 

Likelihood of success for 
probabilistic 

optimum (normal fit) 

Likelihood of success for 
possibilistic optimum 

(triangular fit) 

sample 
size=5 

 
nhand Mean (of 

80 runs) 
Standard de-

viation 
Mean (of 
80 runs) 

Standard 
deviation 

Mean (of 
80 runs) 

Standard 
deviation 

2 0.2687 0.0520 0.2797 0.0466 0.2896 0.0290 
5 0.3662 0.0591 0.3899 0.0496 0.3917 0.0478 
8 0.4732 0.0758 0.4980 0.0554 0.4917 0.0575 

11 0.5717 0.0849 0.6017 0.0481 0.5879 0.0645 
15 0.6922 0.0637 0.7075 0.0360 0.6920 0.0606 
 
Comparing Tables 5 and 6, we see that inflation had a detrimental effect on the probabilistic 

optimum.  Indeed, for all but the handicap value of 2, the mean likelihood of success of the opti-
mum given by the inflated shifted Gamma distribution is smaller than the corresponding non-
inflated one. The same effect is observed for the normal distribution for all but the handicap of 
11.  For symmetric inflation, little or no effect is observed on the likelihood of success of the pos-
sibilistic optimum, because the possibilistic optimum does not change with symmetrical inflation. 
We also repeated the study with sample sizes of 3 and 10 and obtained similar results (Rosca, 
2001).  

The observation that inflation of uncertainty is counterproductive is at odds with Walley’s 
observation in his World Cup experiment where those participants whose probabilities of the out-
comes of a game were uniform made more money than those whose probabilities differed a lot.  
We think that Walley’s experiment does not necessarily show that inflating uncertainty is an ef-
fective practice; it possibly shows that those participants who estimated uniform probabilities be-
cause they were aware of their ignorance did better than overconfident participants whose prob-
abilities were asymmetric.    

 
5. Conclusions 

 
An approach for using existing data for probing weaknesses in models for making decisions un-
der uncertainty has been developed. The approach may expose problems associated with errors in 
predictive models or in models of uncertainty because it uses real-life data.  The approach re-
quires two sets of data on one property (here, domino tower height) for two groups.  It then cre-
ates a decision problem that involves finding an optimum in terms of one or more decision vari-
ables. The same dataset can be used to test methods on hundreds or thousands of different deci-
sions within a short period at low cost.  An example employing data on a domino tower competi-
tion was used for demonstration.  

The utility of the experimental testing of methodologies for decisions under uncertainty was 
evidenced by several results that surprised us, even though we have been exploring the methods 
we evaluated for several years. These include the following: 

 
1. Small fitting errors in the probability distributions were sufficient to give an advantage to 

possibilistic decision-making, even though the metric of success was probabilistic. This 
may indicate that these fitting errors deserve further study.  

2. In contrast, the probabilistic approach suffered less than the possibilistic approach from 
small sample size. This may indicate that a better way of selecting possibility distribution 
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functions based on small samples may be needed, or that a hybrid probabilis-
tic/possibilistic approach should be used in which possibility is only used only for those 
uncertainties for which it is difficult to estimate probabilistic models.  

3. The process of magnification of the standard deviation of a probability distribution, 
which is commonly used when data are scarce, proved to be counterproductive. 

4. The effect of magnifying uncertainty had an opposite effect on probability and possibil-
ity. Inflating uncertainty reduced the effect of a failure mode on the probabilistic deci-
sion, and it increased the effect of the mode on the possibilistic decision. This result was 
shown to be due to the fact that probability, unlike possibility, is additive.  In the extreme 
case where uncertainty in one player’s performance is much greater than in the other 
player’s, the difference between the optimum decisions of the two methods is very large. 
In this case, possibility yielded a decision with much poorer performance than probabil-
ity. 

 
We note that there is a wealth of other data readily available for testing methods using the 

proposed approach, including records of student projects, insurance claims, stock market prices, 
and medical tests.  As educators, we can readily see that universities have useful student data-
bases. For example, records of the performance characteristics (e.g. the stroke and time ratio) of 
slider-crank mechanisms constructed in a class on design and analysis of mechanical systems can 
be used instead of domino heights.    
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Appendix 1: Description of the fitting process (fit of probability/possibility distri-
bution functions) 
In the possibilistic formulation, to each sample we fit an asymmetric triangular membership func-
tion, such that the mean of the sample corresponds to the peak of the membership function.  The 
minimum and the maximum values in the sample are the minimum and the maximum values of 
the support of the triangular membership function. An example is shown in Fig. A1. 

In the probabilistic formulation, we fit a probability density function (PDF, rather than CDF) 
to each sample.  When all data are available, the best PDF fit is given by normal and shifted 
Gamma density functions.  Therefore, even for small data samples (3, 5), we use the normal PDF 
and the shifted Gamma PDF to fit the data. 

To find the shifted Gamma function, we choose the scale and shape parameters such that the 
mean and standard deviation are the same for the sample and the fitted PDF.  We choose the third 
parameter (shift) as an integer that minimizes the sum of the squares of the differences between 
sample points and fit at the points of the sample. We choose the two parameters (mean and stan-
dard deviation) of the fitted normal PDF to be the mean and standard deviation for the sample. 

Figure A2 shows the CDF of experimental data and of the fit for the same Competitor sample 
as in Fig. A1. Like for scarce data, the comparison of CDFs is more meaningful than the compari-
son of PDFs.   

Appendix 2: Definition of inflation factor 
Consider {x1,…xn}, a sample of values of a random variable X.  Use of small sample sizes 

(say 5) for estimating the variance of X, may lead to large statistical errors.  It is important to es-
timate the error in the variance and adjust the variance to account for the error.   

If the mean value of the population is unknown, then an unbiased estimator of the variance of 
the variable is:  
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The variance of the above estimator is (see Freund and Williams, 1966, pp. 151 (F.7a)): 
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4σ is the square of the variance of the population. 
The following equation is used to inflate the unbiased estimate of the variance obtained from 

equation (1): 
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where r is called the inflation factor. 
When both the mean and standard deviation of the population are unknown, we use the corre-

sponding estimates of these values in Eq. (2).  Then the variance of the estimated variance be-
comes: 
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The inflated estimate of the variance becomes:  

2
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Table A1 presents the standard deviation of the data to be fitted, before and after we inflate 
the standard deviation.  An inflation factor of 0 corresponds to no inflation.  In Table A1, the in-
crease in inflated standard deviation does not vary linearly with the inflation factor, but the in-
crease in inflated variance does.  

 

 

Table A1: Inflated standard deviation for 
Rosca’s and Competitor’s data; the mean of 
Rosca’s data is 33.10 while the mean for 
Competitor’s data is 35.08. 

 
Inflated standard deviation  Inflation 

factor Rosca Data Competitor Data 
0 6.21 6.30 
1 6.76 6.75 
2 7.26 7.17 

15         12.02           11.30 
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 Figure A1: Triangular membership function (solid line) fitted to the sample of 5 from the 
Competitor's experiments [ 27  37  37  27  31] and sample cumulative histogram.   
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Figure A2: Experimental data CDF (bars), fitted shifted gamma CDF (circles) and fitted 
normal CDF (asterisks) for the same data as in Fig. A1. 
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