NSF workshop on Reliable Engineering Computing, September 15-17, 2004 Center for Reliable Engineering Computing, Georgia Tech Savannah, GA

Structural Design under Fuzzy Randomness

Michael Beer¹⁾ Martin Liebscher²⁾ Bernd Möller²⁾

¹⁾Department of Mechanical Engineering and Materials Science Rice University, Houston, TX

²⁾Institute for Statics and Dynamics of Structures Dresden University of Technology, Dresden, Germany

Program

- **1** Introduction
- **2** Uncertainty models
- **3** Quantification of uncertainty
- 4 Fuzzy structural analysis
- 5 Fuzzy probabilistic safety assessment
- 6 Structural design based on clustering
- 7 Examples
- 8 Conclusions

Introduction (1)

the engineer's endeavor

realistic structural analysis and safety assessment

prerequisites:

- suitably matched computational models
 - geometrically and physically nonlinear algorithms for numerical simulation of structural behavior
- appropriate description of structural parameters
 - uncertainty has to be accounted for in its natural form

1 Introduction

Introduction (2)

modeling structural parameters

1 Introduction

Introduction (3)

- changing reproduction conditions
- uncertain measured values
- linguistic assessments
- experience, expert knowledge

random variable

alternative uncertainty models

- fuzzy variable
 - fuzzy random variable

Fuzzy sets

Fuzzy random variables (1)

fuzzy random variable $\underline{\widetilde{X}}$

- fuzzy result of the uncertain mapping $\Omega \rightarrow F(\mathbb{R}^n)$
- Ω ... space of the random elementary events ω
- $F(\mathbb{R}^n)$... set of all fuzzy numbers $\underline{\widetilde{x}}$ in \mathbb{R}^n

Fuzzy random variables (2)

Fuzzy random variables (3)

3 Quantification of uncertainty

Quantification of fuzzy variables (fuzzification)

objective and subjective information, expert knowledge

linguistic assessment

• limited data

3 Quantification of uncertainty

Quantification of fuzzy random variables

statistical information comprising partially non-stochastic uncertainty

- small sample size
 - fuzzification of the uncertainty of statistical estimations and tests
- non-constant reproduction conditions that are known in detail
 separation of fuzziness and randomness by constructing groups
- non-constant, unknown reproduction conditions; uncertain measure values
 fuzzification of the sample elements followed by statistical evaluation

 $\widetilde{F}(\underline{x})$ with fuzzy parameters and fuzzy functional type

4 Fuzzy structural analysis

Basic numerical solution procedure

4 Fuzzy structural analysis

Modified evolution strategy

5 Fuzzy probabilistic safety assessment **Fuzzy First Order Reliability Method (1)** original space of the basic variables fuzzy randomness $\Rightarrow \tilde{f}(x)$ fuzziness $\Rightarrow \widetilde{g}(\underline{x}) = 0$ joint fuzzy \mathbf{X}_{2} probability density function $f(\underline{x})$ fuzzy $\mu = 1$ $\mu = 0$ limit state surface $\widetilde{g}(\underline{x}) = 0$ fuzzy $\mu = 0$ survival region fuzzy $\mu = 1$ $\underline{X}_{s}: \widetilde{g}(\underline{x}) > 0$ failure region $\underline{\widetilde{X}}_{f}: \ \widetilde{g}(\underline{x}) < 0$ **X**₁

5 Fuzzy probabilistic safety assessment

Fuzzy First Order Reliability Method (1)

5 Fuzzy probabilistic safety assessment

Fuzzy First Order Reliability Method (3)

numerical solution – α -level optimization

- selection of an α-level
- determination of an original of each basic variable
 - determination of one trajectory of f(<u>x</u>)
 - computation of one element β_i of β_α
 - comparison of β_i with $\beta_{\alpha l}$ and $\beta_{\alpha r}$
 - number of α-levels sufficient ?

- determination of a single point in the space of the fuzzy structural parameters
- determination of one element of g̃(x) = 0

Structural design based on clustering – concept

fuzzy structural analysis and fuzzy probabilistic safety assessment

set $M(\underline{x})$ of discrete points \underline{x}_i in the input subspace, set $M(\underline{z})$ of the assigned discrete points \underline{z}_i in the result subspace

- design constraints CT_h subdividing M(<u>z</u>) into permissible and non-permissible points
- assigned permissible and non-permissible points within M(x)
- separate clustering of the permissible and non-permissible points from M(<u>x</u>)
- elimination of all non-permissible clusters including intersections with permissible clusters

permissible clusters of design parameters representing alternative design variants

6 Structural design based on clustering

Design constraint

permissible structural design variants, assessment of alternatives

Cluster analysis

• determination of representative objects

 assignment of remaining objects to the most similar representative objects fuzzy cluster method

minimization of the functional

$$c = \sum_{V=1}^{k} \frac{\sum_{i,j=1}^{n} \mu_{iv}^{r} \mu_{jv}^{r} d(i,j)}{2 \sum_{j=1}^{n} \mu_{jv}^{r}}$$

6 Structural design based on clustering

Design variants – modified fuzzy input variables

Assessment of alternative design variants (1)

Assessment of alternative design variants (2)

constraint distance

$$d_s \longrightarrow max$$

robustness

• modified SHANNON's entropy

$$H(\tilde{z}) = -k \cdot \int_{z \in \tilde{z}} \left[\mu(z) \cdot \ln(\mu(z)) + (1 - \mu(z)) \cdot \ln(1 - \mu(z)) \right] dz$$

relative sensitivity measure

uncertainty of the fuzzy result variables in relation to the uncertainty of the fuzzy input variables

$$B(\tilde{z}_{j}) = \sum_{i} \frac{H(\tilde{z}_{j})}{H(\tilde{x}_{j})} \longrightarrow \min$$

Deterministic computational model

geometrically and physically nonlinear numerical analysis of plane (prestressed) reinforced concrete bar structures

- imperfect straight bars with layered cross sections
- numerical integration of a system of 1st order ODE for the bars
- interaction between internal forces
- incremental-iterative solution technique to take account of complex loading processes
- consideration of all essential geometrical and physical nonlinearities:
 - large displacements and moderate rotations
 - realistic material description of reinforced concrete including cyclic and damage effects

Reinforced concrete frame

Fuzzy structural analysis (1) fuzziness • fuzzy rotational spring stiffness fuzzy load factor $\tilde{k}_{\omega} = <5; 9; 13 > MNm/rad$ $\tilde{v} = < 5.5; 5.9; 6.7 >$ $\mu(\mathbf{k}_{\varphi})$ μ(ν) deterministic values 1.0 1.0 0.0 0.0 5.5 5.9 6.7 ν 13 9 k_o [MNm/rad]

Fuzzy structural analysis (3)

FFORM – analysis I (1)

fuzzy randomness

• load factor v: \mathbf{X}_1

extreme value distribution Ex-Max Type I (GUMBEL)

$$\widetilde{\sigma}_{x_1} = < 5.7; 5.9; 6.0 >$$

 $\widetilde{\sigma}_{x_1} = < 0.08; 0.11; 0.12 >$

rotational spring stiffness k_{ϕ} : \widetilde{X}_2 logarithmic normal distribution

$$\begin{array}{l} x_{0,2} &= 0 \ \text{MNm/rad} \\ \widetilde{m}_{x_2} &= < 8.5; \ 9.0; \ 10.0 > \text{MNm/rad} \\ \widetilde{\sigma}_{x_2} &= < 1.00; \ 1.35; \ 1.50 > \text{MNm/rad} \end{array}$$

FFORM – analysis I (2)

original space of the fuzzy probabilistic basic variables

- joint fuzzy probability density function
- crisp limit state surface
- fuzzy design point

FFORM – analysis II (1)

fuzziness and fuzzy randomness

 fuzzy probabilistic basic variable X
₁: load factor ν extreme value distribution Ex-Max Type I (GUMBEL)

$$\widetilde{\sigma}_{x_1} = < 5.7; 5.9; 6.0 >$$

 $\widetilde{\sigma}_{x_1} = < 0.08; 0.11; 0.12 >$

fuzzy structural parameter: rotational spring stiffness \tilde{k}_{ϕ} fuzzy triangular number

$$\widetilde{\mathbf{k}}_{\varphi} = <5; 9; 13 > MNm/rad$$

FFORM – analysis II (3)

Structural design based on clustering (1)

• load factor v: \widetilde{X}_1

extreme value distribution Ex-Max Type I (GUMBEL)

 $\widetilde{\sigma}_{x_1} = < 5.7; 5.9; 6.0 > \\ \widetilde{\sigma}_{x_1} = < 0.08; 0.11; 0.12 >$

• rotational spring stiffness k_{φ} : X_2 logarithmic normal distribution

$$x_{0,2} = 0$$
 MNm/rad
 $\widetilde{m}_{x_2} = < 8.5; 9.0; 10.0 > MNm/rad$
 $\widetilde{\sigma}_{x_2} = < 1.00; 1.35; 1.50 > MNm/rad$

Structural design based on clustering (2)

design variant	load factor v		rotational spring stiffness k _@ [MNm/rad]	
	$\widetilde{\mathbf{m}}_{\mathbf{x}_1}$	$\tilde{\sigma}_{x_1}$	$\widetilde{\mathbf{m}}_{\mathbf{x_2}}$	$\widetilde{\sigma}_{x_2}$
1	< 5.85; 5.90; 6.0 >	< 0.08; 0.10; 0.12 >	< 8.5; 9.0; 9.6 >	< 1.30; 1.40; 1.50>
2	< 5.70; 5.85; 6.0 >	< 0.08; 0.10; 0.11 >	< 8.9; 9.5; 10.0 >	< 1.02; 1.14; 1.26 >

FFORM-analysis with the modified fuzzy probabilistic basic variables

design variant 2

design variant 1

defuzzification after CHEN $z_{01} = 4.60$

 $z_{02} = 5.12$

relative sensitivity

 $B_1 = 92.67$

 $B_2 = 77.48$

Conclusions

- consideration of non-stochastic uncertainty in structural analysis, design, and safety assessment
- enhanced quality of prognoses regarding structural behavior and safety
- direct design of structures by means of nonlinear analysis

Advertisement

A detailed explanation of all concepts presented and much more may be found in the book:

> Bernd Möller Michael Beer

Fuzzy Randomness

Uncertainty Models in Civil Engineering and Computational Mechanics

Springer-Verlag, 2004