Recent Advances in the Validated Integration of ODES

Kyoko Makino and Martin Berz

Department of Physics and Astronomy
Michigan State University



Integration of the Volterra eq. COSY-VI and AWA
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Definitions - Taylor Models and Operations

We begin with a review of the definitions of the basic operations.

Definition (Taylor Model) Let f : D C R’ — R be a function that is
(n+1) times continuously partially differentiable on an open set containing
the domain v-dimensional domain D. Let zy be a point in D and P the
n-th order Taylor polynomial of f around z. Let I be an interval such that

f(z) € Plx —xg) + 1 forall z € D.
Then we call the pair (P, I') an n-th order Taylor model of f around zy on D.

Definition (Addition and Multiplication) Let 715 = (P2, [12) be
n-th order Taylor models around z, over the domain . We define

Ti+T=(P+ P, + 1)
Ty - T = (P, I1.0)
where P, 5 is the part of the polynomial P, - P, up to order n and
Lo=B(P)+B(P) - I+ B(PR) -1+ I - I

where P, is the part of the polynomial P, - P, of orders (n + 1) to 2n, and
B(P) denotes a bound of P on the domain D. We demand that B(P) is at
least as sharp as direct interval evaluation of P(x — z() on D.



The Operator 0 'on Taylor Models

Let (P,, I,) be an n-th order Taylor model of f. From this we can obtain
a Taylor model for the indefinite integral 0, Lf = [ f dx} with respect to
variable x;.

Taylor polynomial part: ;" B,_1da,

Remainder Bound: (B(P,—P,-1)+1,)-B(x;), where B(P) is a polynomial
bound.

So define the operator 82-_101(1 space of Taylor models as

0, (P, 1)
([ st R Py 1) B



TM Scaling Theorem

Theorem (Scaling Theorem) Let f, g € C"*(D) and (Pfy, I1)
and (P, 1,,) be n-th order Taylor models for f and g around x; on
zp + |[—h,h]” C D. Let the remainder bounds Iy, and [, satisfy I;;=
O(h"™) and I,;,=0(h"™). Then the Taylor models (P4, Ir1,5) and
(Pf.g, Lr.41) for the sum and products of f and g obtained via addition and
multiplication of Taylor models satisfy

If+g,h — O(hn+1>, and [f-g,h — O(hn+1>

Furthermore, let s be any of the intrinsic functions defined above, then
the Taylor model (Pys), Iss),5) for s(f) obtained by the above definition
satisfies

Iy =O(R").

We say the Taylor model arithmetic has the (n+1)-st order scaling property.

Proof. The proof for the binary operations follows directly from the
definition of the remainder bounds for the binaries. Similarly, the proof for
the intrinsics follows because all intrinsics are composed of binary operations
as well as an additional interval, the width of which scales at least with the
(n+1)-st power of a bound B of a function that scales at least linearly with

h.



Important TM Algorithms

e Range Bounding (Evaluate f as TM, bound polynomial, add remain-
der bound)

e Quadrature (Evaluate f as TM, integrate polynomial and remainder
bound)

e Implicit Equations (Obtain TMs for implicit solutions of TM equa-
tions)

e Superconvergent Interval Newton Method (Application of Implicit
Equations)

¢ ODEs (Obtain TMs describing dependence of final coordinates on initial
coordinates)

e Implicit ODEs and DAEs

e Complex Arithmetic (Describe complex ranges as two-dimensional
TMs)



Implementation of TM Arithmetic

Validated Implementation of TM Arithmetic exists. The following points
are important

e Strict requirements for underlying FP arithmetic

e Taylor models require cutoff threshold (garbage collection)
e Coefficients remain FP, not intervals

e Package quite extensively tested by Corliss et al.

For practical considerations, the following is important:

e Need sparsity support
e Need efficient coefficient addressing scheme

e About 50, 000 lines of code
e Language Independent Platform, coexistence in F77, C, F90, C++



Multiplication - Weighting
Sometimes important: Carry different variables x; to different orders w;.

Can be achieved by simply "seeding" original variables as

P(z) = (7", 252, ..., T").

Then in all subsequent operations, only multiples of w; appear as powers
of x,.[Optimallteduction of Speedl by [Sparsity.



Order n | Variables v | Weighting w | Order n; | Cosy Coefs | AWA Coefs
17 3 9 1 41 144
17 5 9 1 57 216
17 10 9 1 97 396
17 20 9 1 177 756
17 3 5 3 135 144
17 5 5 3 308 216
17 10 5 3 1248 396
17 20 5 3 6578 756
13 5 3 4 504 168
13 10 3 4 3094 308
15 5 3 5 882 192
15 10 3 5 7098 352

TABLE 1. Number of floating point numbers necessary to store all
appearing partial derivaties in COSY to order n; in initial condi-
tions, and in the first order code AWA




Taylor Models for the Flow

Goal: Determine a Taylor model, consisting of a Taylor Polynomial and
an interval bound for the remainder, for the flow of the differential equation

d

S7(t) = F(r(t), 0

where F is sufficiently differentiable. The Remainder Bound should be fully
rigorous for all initial conditions 7y and times ¢ that satisfy

—

o € |To1,To2] = B
t € [to, t1].

In particular, 7 itself may be a Taylor model, as long as its range is known
to lie in B.



The Volterra Equation

Describe dynamics of two conflicting populations

dx
= 2x1(1 — x3), d_t2 = —x9(1 — 1)

diy

dt

Interested in initial condition

zo1 € 1+ [—0.05,0.05], xg9 € 34 [—0.05,0.05] at t = 0.

Satisfies constraint condition

2]3’2 —

Clxy, 19) = xyxie 1~ Constant
’ 2



f(x1,x2)

0.04 ——-——---
0.02 --------
0.05 0.00821 -
0.04 + -
v}‘{\
0.03 + \\\
0"\\
0.02 0

0.01




Integration of the Volterra eq. COSY-VI and AWA
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Remainder Error Size

Volterra 18th, IC: P1, Result: Pn+{B(Pn+1 to P18)+IR}, same P
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Remainder Error Size

le-2

le-4 4.

le-6

le-8

le-10

le-12

le-14

Volterra 18th, IC: P1, Result: Pn+{B(Pn+1 to P18)+IR}, same T

| | | | |
—--B-- 2 P
- \N— P
@ 12P
....... A 1/4P
----- E-----8-----F----8----F-----E----3-----E----{]]
® ® ® ® ® ® ® g
" r.mp. [ A Y NN ’ﬁn-.-'- P B F.Qr. IARREN 2 TERNART A TS Ov.r. P B r.ﬂ\!- [N NN XA

Order n



Invariant Defect
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Shrink Wrapping |

A method to remove the remainder bound of a Taylor model by increasing
the polynomial part.

After the kth step of the integration, the region occupied by the final
variables is given by

Al=E= [Og-l— U ./\/l()(f()),
7B
where X are the initial variables, B is the original box of initial conditions,
M is the polynomial part of the Taylor model, and Iy is the remainder
bound interval. M, is scaled such that the original box B is unity, i.e.
B = —1,1]". I accounts for the local approximation error of the expansion
in time carried out in the kth step as well as floating point errors and
potentially other accumulated errors from previous steps; it is usually very

small. Try to “absorb” the small remainder interval into a set very similar
to the first part via

Ac A=TI+ | M),
f()Eé

where M is a slightly modified polynomial, and I_ék is significantly reduced



Shrink Wrapping

Theorem (Shrink Wrapping) Let M = 7 + S(&), where Z is the
identity. Let I = d-|—1,1]", and
AT+ | M(@)
7eB
bélthelset[Sumlof thelifterval I = [—d, d]’ and the rangeloflM [over[the

original domain/bok B.[So Alislthelrahgelénclosire of fheflow offhel ODE

over the interval B provided by the Taylor model. Let ¢ be the shrink wrap
factor of M; then we have

Ac | JgM)@),
7eB
and hence multiplying M with the number ¢ allows to set the remainder
bound to zero.



Shrink Wrapping

Weldefine ¢, [thelso-called[shrink[wrapfactor,as
1

I=(w=1t)-(1-s)

The bounds s and ¢ for the polynomials S; and 0S;/0z; can be computed
by interval evaluation. The factor ¢ will prove to be a factor by which
the Taylor polynomial Z + & has to be multiplied in order to absorb the
remainder bound interval.

q=1+d-

Remark (Typical values for ¢) To put the various numbers in per-
spective, in the case of the verified integration of the Asteroid 1997 XF'11,
we typically have d = 1077, s = 107*, ¢t = 107%, and thus ¢ ~ 1 + 107", It
is interesting to note that the values for s and ¢ are determined by the non-
linearity in the problem at hand, while in the absence of “noise” terms in
the ODESs described by intervals, the value of d is determined mostly by the
accuracy of the arithmetic. Rough estimates of the expected performance
in quadruple precision arithmetic indicate that with an accompanying de-
crease in step size, if desired d can be decreased below 107!, resulting in
qg~1+10"1,



Long-Term Behavior - Validated Case

Consider very simple two-state dynamical system:

azn+1:xn\/1+x%+y% andyn+1:yn\/1+$%+y%

2
Tpyo = Tpyt - and
\/1 +/1+4(22  +92,,)

2
Yn+2 = Yn+1 - :
" " \/1 +/ 1+ 47 +Yn)

Simple arithmetic shows that, also here we have (12, Yni2) = (Tn, Yn)-






Remainder Error Size
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Shrink Wrapping/[11

Let us consider the practical limiations of the method; apparently the
measures of the nonlinearities s and ¢ must not become too large

Remark (Limitations of shrink wrapping) Apparently the shrink
wrap method discussed above has the following limitations

Remark 1 1. The measures of nonlinearities s and t must not become too
large

2. The application of the tnverse of the linear part should not lead to large
increases in the size of remainder bounds.

Apparently the first requirement limits the domain size that can be cov-
ered by the Taylor model, and it will thus happen only in extreme cases.
Furthermore, in practice the case of s and ¢ becoming large is connected
to also having accumulated a large remainder bound, since the remainder
bounds are calculated from the bounds of the various orders of s. In the
light of this, not much additional harm is done by removing the offending
s into the remainder bound and create a linearized Taylor model.

Definition (Blunting of an Ill-Conditioned Matrix)

Let A be a regular matrix that is potentially ill-conditioned and ¢ =
(q1, -.-qn) & vector with ¢; > 0. Arrange the column vectors d@; of A by size.



Let ¢; be the familiar orthonormal vectors obtained through the Gram-

Schmidt procedure, i.e.

1—1
- > & (@-&)
k=1

%= i—1
a— 3 & (@)
=1

We form vectors b; via
bi = G; + qi€;

and assemble them columnwise into the matrix B . We call B the ¢-blunted

matrix belonging to A



Intuititely] the effect(of blimtifigisthatleachvector bisbeing
"pulled away" from the space spanned by the previous vectors by, ..., b;_1,
and more strongly so if ¢; becomes bigger and bigger. In fact, we have the
following result: .



Preconditioning the Flow

Idea: write the Taylor model of the solution as a composition of two Taylor
models (P + [;) and (P, + I,.), and then choose P, + I; in such a way that
in each step, the operations appearing on I, are minimized. At the same
time, I; will be chosen as small as possible. Can be viewed as a coordinate
transformation.

In(thelfactorization, [welimposethat (P, I )lismormalized such(that(each
of its components has a range in [—1, 1], and even near the boundaries.

Definition (Preconditioning the Flow) Let (P + I) be a Taylor

model. We say that (P, + I;), (P, + I.) is a factorization of (P + I) if
B(P, +1,) € [-1,1] and

(P+ 1) € (P Ljol(P.+ I,)iforlall x € D
wheie!D [isltheldomainl of thel Taylormodel (R + 1,.).

The composition of the Taylor models is here to be understood as insertion
of the Taylor model P,.+ I, into the polynomial F; via Taylor model addition
and multiplication and subsequent addition of the remainder bound I;. For
the study of the solutions of ODEs, the following result is important



Preconditioning the Flow 1I

Proposition Let (P, + I;,) o (P.,, + I,,) be a factored Taylor model
that encloses the flow of the ODE at time ¢,. Let (P, , I, ) be the
result of integrating (P, I; ,)ifrom ¢, [to t,1.[Théhl solution is in

(f)lTn—H? ];:n—H) o (Prp+ I p)

Definition (Curvilinear Preconditioning) Let ™ = f(z, 2/, .2~ 1)
be an m-th order ODE in n variables. Let z,(¢) be a solution of the ODE
and z.(t), ..., 2 (t) its first k& time derivatives. Let €, ..., € be the [ unit
vectors not in the span of x/.(t), eyt (t), sorted by distance from the
span. Then we call the Gram-Schmidt orthonormalization of the set (x/.(t),
s ;z;?(f“)(t), €1, ..., €7) the curvilinear basis of depth k.

Curvilinear coordinates have long history. Study of solar system, Beam
Physics, ... .

Example (Curvilinear Solar System and Particle Accelera-
tors) In this case, n = 3, and one usually chooses k = 2. The first basis
vector points in the direction of motion of the reference orbit. The second
vector is perpendicular to it and points approximately to the sun or the
center of the accelerator. The third vector is chosen perpendicular to the

plane of the previous two.
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Volterra - Curvilinear preconditioning




needle IC(1.5,-1) - QR based preconditioning




needle IC(1.5,-1) - Curvilinear preconditioning




Random Matrices - Discrete

Select 1000 twodimensional random matrices with coefficients in |[—1, 1].Sort
according to eigenvalues into seven sub-cases.
Perform iteration in the following ways:

e Naive Interval

e Naive Taylormodel

e Parallelepiped-preconditioned Taylormodel

e QR-preconditionedTaylormodel

e Blunted preconditioned TM, various blunting factors

e Set of four floating point corner points for volume estimation
Perform the following tasks:

e [terations through matrix

e Sets of iterations through matrix and its inverse
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Random Matrices - Discrete

Select 1000 twodimensional random matrices with coefficients in |[—1, 1].Sort
according to eigenvalues into seven sub-cases.
Perform iteration in the following ways:

e Naive Interval

e Naive Taylormodel

e Parallelepiped-preconditioned Taylormodel

e QR-preconditioned Taylormodel

e Blunted preconditioned TM, various blunting factors

e Set of four floating point corner points for volume estimation
Perform the following tasks:

e [terations through matrix

e Sets of iterations through matrix and its inverse



325 Conjugate EVs Random Matrices

"

S

10

(uesiN)0T 6o

-15

-20

-25

500

400

300

200

100

Step Number



<ratio <10 ) Random Matrices
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The Henon Map

Henon Map: frequently used elementary example that exhibits many of
the well-known effects of nonlinear dynamics, including chaos, periodic fixed
points, islands and symplectic motion. The dynamics is two-dimensional,
and given by

Tpal =1 — Ozx% + Yn
Yn+1 — ﬁxn

It can easily be seen that the motion is area preserving for |G| = 1.We

consider
a=24and = —1,

and concentrate on initial boxes of the from (xg, yy) € (0.4, —0.4)+[—d, d]*.



Henon system, xn = 1-2.4*x"2+y, yn = -X, the positions at each step
-0.15 T T T T T T T

02 o n -

-0.25 -

-0.35 .

-0.45 -

_055 | | | | | | |
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55




Henon system, xn = 1-2.4*x"2+y, yn = -x, corner points (+-0.01) the first 5 steps
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Henon system, xn = 1-2.4*x"2+y, yn = -X, corner points (+-0.01) the first 120 steps
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Henon system, xn

= 1-2.4*x"2+y, yn = -X, NO=1, SW
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Henon system, xn = 1-2.4*x"2+y, yn = -x, NO=20, SW
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A Muon Cooling Ring

Example from Beam Physics: Simple model of muon cooling ring, using
curvilinear preconditioning.

Simultaneous damping via matter, and azimuthal accelerations. Equa-
tions of motion:

T = Py

y:py

. 8% n 8 y

Pz = Dy — " Pz )
/P21 Vit

Has invariant solution
(2, Y, Pz, py)1(t) = (cost, —sint, —sint, — cost),
ODE asymptotically approach circular motion of the form
(@, Y, Pr, Py)a(t) = (cos (t — @), —sin(t — @), —sin(t — @), —cos(t — ¢)),

where ¢ is a characteristic angle for each particle.
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A Muon Cooling Ring - Results

1. Need to treat a large box of [—1072, 1072

2. Because of damping action towards the invariant limit cycle, the linear
part of the motion is more and more ill-conditioned.

COSY easily integrates 10 cycles for d = 1072 with curvilinear precondi-
tioning and QR preconditioning. AWA (method 4) behaves as follows:

d | Cycles
1072]0.22
10731 1.25
107419.5

Thus, trying to simulate the system with AWA requires > (10*)* = 108
subdivisions of the box that COSY can transport in one piece.
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Remainder Error Size of x
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