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Definitions - Taylor Models and Operations
We begin with a review of the definitions of the basic operations.

Definition (Taylor Model) Let f : D ⊂ Rv → R be a function that is
(n+1) times continuously partially differentiable on an open set containing
the domain v-dimensional domain D. Let x0 be a point in D and P the
n-th order Taylor polynomial of f around x0. Let I be an interval such that

f(x) ∈ P (x− x0) + I for all x ∈ D.

Thenwe call the pair (P, I) an n-th order Taylor model of f around x0 onD.

Definition (Addition and Multiplication) Let T1,2 = (P1,2, I1,2) be
n-th order Taylor models around x0 over the domain D. We define

T1 + T2 = (P1 + P2, I1 + I2)

T1 · T2 = (P1·2, I1·2)
where P1·2 is the part of the polynomial P1 · P2 up to order n and

I1·2 = B(Pe) +B(P1) · I2 +B(P2) · I1 + I1 · I2
where Pe is the part of the polynomial P1 · P2 of orders (n + 1) to 2n, and
B(P ) denotes a bound of P on the domain D.We demand that B(P ) is at
least as sharp as direct interval evaluation of P (x− x0) on D.



The Operator ∂−1on Taylor Models
Let (Pn, In) be an n-th order Taylor model of f. From this we can obtain
a Taylor model for the indefinite integral ∂−1i f =

R
f dx0i with respect to

variable xi.
Taylor polynomial part:

R xi
0 Pn−1dx0i,

Remainder Bound: (B(Pn−Pn−1)+In)·B(xi),whereB(P ) is a polynomial
bound.
So define the operator ∂−1i on space of Taylor models as

∂−1i (Pn, In)

=

µZ xi

0

Pn−1dx0i , (B(Pn − Pn−1) + In) ·B(xi)
¶



TM Scaling Theorem
Theorem (Scaling Theorem) Let f, g ∈ Cn+1(D) and (Pf,h, If,h)
and (Pg,h, Ig,h) be n-th order Taylor models for f and g around xh on
xh + [−h, h]v ⊂ D. Let the remainder bounds If,h and Ig,h satisfy If,h=
O(hn+1) and Ig,h=O(hn+1). Then the Taylor models (Pf+g, If+g,h) and
(Pf ·g, If ·g,h) for the sum and products of f and g obtained via addition and
multiplication of Taylor models satisfy

If+g,h = O(hn+1), and If ·g,h = O(hn+1).

Furthermore, let s be any of the intrinsic functions defined above, then
the Taylor model (Ps(f), Is(f),h) for s(f) obtained by the above definition
satisfies

Is(f),h = O(hn+1).

We say the Taylor model arithmetic has the (n+1)-st order scaling property.
Proof. The proof for the binary operations follows directly from the
definition of the remainder bounds for the binaries. Similarly, the proof for
the intrinsics follows because all intrinsics are composed of binary operations
as well as an additional interval, the width of which scales at least with the
(n+1)-st power of a bound B of a function that scales at least linearly with
h.



Important TM Algorithms

•Range Bounding (Evaluate f as TM, bound polynomial, add remain-
der bound)

•Quadrature (Evaluate f as TM, integrate polynomial and remainder
bound)

• Implicit Equations (Obtain TMs for implicit solutions of TM equa-
tions)

• Superconvergent Interval Newton Method (Application of Implicit
Equations)

•ODEs (Obtain TMs describing dependence of final coordinates on initial
coordinates)

• Implicit ODEs and DAEs
•Complex Arithmetic (Describe complex ranges as two-dimensional
TMs)



Implementation of TM Arithmetic
Validated Implementation of TM Arithmetic exists. The following points
are important

• Strict requirements for underlying FP arithmetic

• Taylor models require cutoff threshold (garbage collection)
• Coefficients remain FP, not intervals
• Package quite extensively tested by Corliss et al.
For practical considerations, the following is important:

• Need sparsity support
• Need efficient coefficient addressing scheme
• About 50, 000 lines of code
• Language Independent Platform, coexistence in F77, C, F90, C++



Multiplication - Weighting
Sometimes important: Carry different variables xi to different orders wi.

Can be achieved by simply "seeding" original variables as

P (x) = (xw11 , x
w2
2 , ..., x

wv
v ).

Then in all subsequent operations, only multiples of wi appear as powers
of xi. Opt i ma l r e duc t i on of s p ee d by s par s i ty.
Use weighted coding:

n1(x
i1
1 · · · · · xivv ) =

i1
w1
+

i2
w2
·
µ·

n

w1

¸
+ 1

¶
+

i3
w3
·
µ·

n

w1

¸
+ 1

¶
·
µ·

n

w2

¸
+ 1

¶
+ · · · + iv

2

wv
2

·
v
2−1Y
k=1

µ·
n

wk

¸
+ 1

¶
n2(x

i1
1 · · · · · xivv ) =

iv
2+1

wv
2+1
+ · · · + iv

wv
·

v−1Y
k=v

2+1

µ·
n

wk

¸
+ 1

¶
.

"[ ]": Gauss bracket. So, exponents are divided by their weighting factor,
and resulting quotients are "digits" in a "variable-base" representation.



TAYLOR MODEL INTEGRATORS 7

Order n Variables v Weighting w Order ni Cosy Coefs AWA Coefs
17 3 9 1 41 144
17 5 9 1 57 216
17 10 9 1 97 396
17 20 9 1 177 756
17 3 5 3 135 144
17 5 5 3 308 216
17 10 5 3 1248 396
17 20 5 3 6578 756
13 5 3 4 504 168
13 10 3 4 3094 308
15 5 3 5 882 192
15 10 3 5 7098 352

Table 1. Number of floating point numbers necessary to store all
appearing partial derivaties in COSY to order ni in initial condi-
tions, and in the first order code AWA

all interval endpoints of the ni = 1 representation used in AWA is also given. The
first four rows show the situation for the case most similar to the perfomance of
the ni = 1 case of AWA; the smaller number of COSY coefficients is due to the fact
that on the one hand, instead of interval coefficients only real numbers are stored,
and on the other hand that the expansion order in time for the dependence on
initial condtions is reduced. The other rows show the situation for other choices of
weights, which of course is more expensive; yet in the COSY scheme third order ni
at least for low dimensions can still be achieved with a similar number of coefficients
of AWA.
In the following section, we will study in detail the two fundamental questions of

validated integration, the accurate representation of flows of ODEs, and methods
to prevent growth of the remainder bound, and illustrate the behavior with a large
number of examples.

2. Faithful Representation of Flows by Taylor Models

As discussed in the previous section, the successful use of validated methods
requires on the one hand the accurate representation of the solution sets over short
time scales, and on the other hand the ability to suppress the long-term build up
of errors. In this section we study the behavior of the Taylor model method with
respect to the first question, which is directly connected to and characteristic of
the mathematical behavior of the ODE being studied. We observe that for linear
systems, this first source of errors is particularly easy to control, since the flows
of linear ODEs are merely linear transformations of the initial coordinates. How-
ever, as simple as the matter is for linear ODEs, as complicated it is for nonlinear
ODEs. In this case, except for special cases there is no simple representation of
the dependency of final conditions on initial conditions. This is the prime reason
why nonlinear ODEs represent the real challenge in the validated integration of
differential equations, and results obtained for the purely linear case are often not
characteristic for the behavior in nonlinear cases.



Taylor Models for the Flow
Goal: Determine a Taylor model, consisting of a Taylor Polynomial and
an interval bound for the remainder, for the flow of the differential equation

d

dt
�r(t) = �F (�r(t), t)

where �F is sufficiently differentiable. The Remainder Bound should be fully
rigorous for all initial conditions �r0 and times t that satisfy

�r0 ∈ [�r01, �r02] = �B

t ∈ [t0, t1].
In particular, �r0 itself may be a Taylor model, as long as its range is known
to lie in �B.



The Volterra Equation
Describe dynamics of two conflicting populations

dx1
dt
= 2x1(1− x2),

dx2
dt
= −x2(1− x1)

Interested in initial condition

x01 ∈ 1 + [−0.05, 0.05], x02 ∈ 3 + [−0.05, 0.05] at t = 0.

Satisfies constraint condition

C(x1, x2) = x1x
2
2e
−x1−2x2 = Constant
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Shri nk Wrappi ng I
Amethod to remove the remainder bound of a Taylor model by increasing
the polynomial part.
After the kth step of the integration, the region occupied by the final
variables is given by

A = �I0 +
[
�x0∈ �B

M0(�x0),

where �x0 are the initial variables, �B is the original box of initial conditions,
M0 is the polynomial part of the Taylor model, and �I0 is the remainder
bound interval. M0 is scaled such that the original box �B is unity, i.e.
�B = [−1, 1]v. �I0 accounts for the local approximation error of the expansion
in time carried out in the kth step as well as floating point errors and
potentially other accumulated errors from previous steps; it is usually very
small. Try to “absorb” the small remainder interval into a set very similar
to the first part via

A ⊂ A∗ = �I∗0 +
[
�x0∈ �B

M∗
0(�x0),

whereM∗
0 is a slightly modified polynomial, and �I

∗
0 is significantly reduced



Shri nk Wrappi ng
Theorem (Shrink Wrapping) Let M = I + S(�x), where I is the
identity. Let �I = d · [−1, 1]v, and

A = �I +
[
�x∈ �B

M(�x)

b e the set sum of t he i nterval �I = [−d, d]v  a nd t he r a ng e o f M over the
ori gi nal domai n b ox �B.  So A i s the r ange encl os ure of t he flow o f t h e O D E
over the interval �B provided by the Taylor model. Let q be the shrink wrap
factor ofM; then we have

A ⊂
[
�x∈ �B
(qM)(�x),

and hence multiplyingM with the number q allows to set the remainder
bound to zero.



Shri nk Wrappi ng
We d e fine q,  the so-called shrink wrap factor, as

q = 1 + d · 1

(1− (v − 1)t) · (1− s)
.

The bounds s and t for the polynomials Si and ∂Si/∂xj can be computed
by interval evaluation. The factor q will prove to be a factor by which
the Taylor polynomial I + S has to be multiplied in order to absorb the
remainder bound interval.

Remark (Typical values for q) To put the various numbers in per-
spective, in the case of the verified integration of the Asteroid 1997 XF11,
we typically have d = 10−7, s = 10−4, t = 10−4, and thus q ≈ 1 + 10−7. It
is interesting to note that the values for s and t are determined by the non-
linearity in the problem at hand, while in the absence of “noise” terms in
the ODEs described by intervals, the value of d is determined mostly by the
accuracy of the arithmetic. Rough estimates of the expected performance
in quadruple precision arithmetic indicate that with an accompanying de-
crease in step size, if desired d can be decreased below 10−12, resulting in
q ≈ 1 + 10−12.



Long-Term Behavior - Validated Case
Consider very simple two-state dynamical system:

xn+1 = xn ·
p
1 + x2n + y2n and yn+1 = yn ·

p
1 + x2n + y2n

xn+2 = xn+1 ·
s

2

1 +
p
1 + 4(x2n+1 + y2n+1)

and

yn+2 = yn+1 ·
s

2

1 +
p
1 + 4(x2n+1 + y2n+1)

.

Simple arithmetic shows that, also here we have (xn+2, yn+2) = (xn, yn).
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Shri nk Wrappi ng II
Let us consider the practical limiations of the method; apparently the
measures of the nonlinearities s and t must not become too large
Remark (Limitations of shrink wrapping) Apparently the shrink
wrap method discussed above has the following limitations

Remark 1 1. The measures of nonlinearities s and t must not become too
large

2. The application of the inverse of the linear part should not lead to large
increases in the size of remainder bounds.

Apparently the first requirement limits the domain size that can be cov-
ered by the Taylor model, and it will thus happen only in extreme cases.
Furthermore, in practice the case of s and t becoming large is connected
to also having accumulated a large remainder bound, since the remainder
bounds are calculated from the bounds of the various orders of s. In the
light of this, not much additional harm is done by removing the offending
s into the remainder bound and create a linearized Taylor model.
Definition (Blunting of an Ill-Conditioned Matrix)
Let Â be a regular matrix that is potentially ill-conditioned and �q =
(q1, ...qn) a vector with qi > 0. Arrange the column vectors �ai of Â by size.



Let �ei be the familiar orthonormal vectors obtained through the Gram-
Schmidt procedure, i.e.

�ei =

�ai −
i−1P
k=1

�ek (�ai · �ek)¯̄̄̄
�ai −

i−1P
k=1

�ek (�ai · �ek)
¯̄̄̄.

We form vectors �bi via
�bi = �ai + qi�ei

and assemble them columnwise into the matrix B̂ .We call B̂ the �q-blunted
matrix belonging to Â



� ¯̄̄̄

I ntui t i vel y, t he effect of bl unt i ng i s t hat e ach vect or �bi  is b eing
"pulled away" from the space spanned by the previous vectors �b1, ...,�bi−1,
and more strongly so if qi becomes bigger and bigger. In fact, we have the
following result: .



Preconditioning the Flow
Idea: write the Taylor model of the solution as a composition of two Taylor
models (Pl + Il) and (Pr + Ir), and then choose Pl + Il in such a way that
in each step, the operations appearing on Ir are minimized. At the same
time, Il will be chosen as small as possible. Can be viewed as a coordinate
transformation.
In the f actorizati on, we i mp ose that (Pr  + Ir ) is normalized such that each
of its components has a range in [−1, 1], and even near the boundaries.
Definition (Preconditioning the Flow) Let (P + I) be a Taylor

model. We say that (Pl + Il), (Pr + Ir) is a factorization of (P + I) if
B(Pr + Ir) ∈ [−1, 1] and

(P + I) ∈ (Pl + Il  ) ◦ (Pr + Ir ) for all x ∈ D
wh e r e D  i s t he domai n o f t he Tayl or mo del (Pr + Ir).

The composition of the Taylor models is here to be understood as insertion
of the Taylor model Pr+Ir into the polynomial Pl via Taylor model addition
and multiplication and subsequent addition of the remainder bound Il. For
the study of the solutions of ODEs, the following result is important



Preconditioning the Flow II
Proposition Let (Pl,n + Il,n) ◦ (Pr.n + Ir,n) be a factored Taylor model
that encloses the flow of the ODE at time tn. Let (P ∗l,n+1, I

∗
l,n+1) be the

result of integrating (Pl,n  + Il,n  ) from tn  to tn+1. Th e n solution is in

(P ∗l,n+1, I
∗
l,n+1) ◦ (Pr.n + Ir,n)

Definition (Curvilinear Preconditioning) Let x(m) = f(x, x0, ...x(m−1), t)
be an m-th order ODE in n variables. Let xr(t) be a solution of the ODE
and x0r(t), ..., x

(k)
r (t) its first k time derivatives. Let �e1, ..., �el be the l unit

vectors not in the span of x0r(t), ..., x
(k)
r (t), sorted by distance from the

span. Then we call the Gram-Schmidt orthonormalization of the set (x0r(t),
..., x

(k)
r (t), �e1, ..., �el) the curvilinear basis of depth k.

Curvilinear coordinates have long history. Study of solar system, Beam
Physics, ... .
Example (Curvilinear Solar System and Particle Accelera-
tors) In this case, n = 3, and one usually chooses k = 2. The first basis
vector points in the direction of motion of the reference orbit. The second
vector is perpendicular to it and points approximately to the sun or the
center of the accelerator. The third vector is chosen perpendicular to the
plane of the previous two.
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Random Matrices - Discrete
Select 1000 twodimensional randommatrices with coefficients in [−1, 1].Sort
according to eigenvalues into seven sub-cases.
Perform iteration in the following ways:

• Naive Interval
• Naive Taylormodel
• Parallelepiped-preconditioned Taylormodel
• QR-preconditioned Taylormo del

• Blunted preconditioned TM, various blunting factors
• Set of four floating point corner points for volume estimation
Perform the following tasks:

• Iterations through matrix
• Sets of iterations through matrix and its inverse
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The Henon Map
Henon Map: frequently used elementary example that exhibits many of
the well-known effects of nonlinear dynamics, including chaos, periodic fixed
points, islands and symplectic motion. The dynamics is two-dimensional,
and given by

xn+1 = 1− αx2n + yn
yn+1 = βxn.

It can easily be seen that the motion is area preserving for |β| = 1.We
consider

α = 2.4 and β = −1,
and concentrate on initial boxes of the from (x0, y0) ∈ (0.4, −0.4)+[−d, d]2.
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Henon system, xn = 1-2.4*x^2+y, yn = -x, corner points (+-0.01) the first 120 steps
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Henon system, xn = 1-2.4*x^2+y, yn = -x, NO=1, SW
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Henon system, xn = 1-2.4*x^2+y, yn = -x, NO=1, SW
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Henon system, xn = 1-2.4*x^2+y, yn = -x, NO=20, SW
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Henon system, xn = 1-2.4*x^2+y, yn = -x, NO=20, SW
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A Muon Cooling Ring
Example from Beam Physics: Simple model of muon cooling ring, using
curvilinear preconditioning.
Simultaneous damping via matter, and azimuthal accelerations. Equa-
tions of motion:

ẋ = px
ẏ = py

ṗx = py − αq
p2x + p2y

· px + αp
x2 + y2

· y

ṗy = −px − αq
p2x + p2y

· py − αp
x2 + y2

· x

Has invariant solution

(x, y, px, py)I(t) = (cos t,− sin t,− sin t,− cos t),
ODE asymptotically approach circular motion of the form

(x, y, px, py)a(t) = (cos (t− φ) ,− sin (t− φ) ,− sin (t− φ) ,− cos (t− φ)),

where φ is a characteristic angle for each particle.



MUON COOLING IN THE RFOFO RING∗

R.C. Fernow, J.S. Berg, J.C. Gallardo, R.B. Palmer, BNL, Upton, NY 11973, USA
Dated: April 29, 2003

Abstract

Practical muon cooling rings could lead to better perfor-
mance or lower cost designs of neutrino factories or muon
colliders. The performance of the ring described here com-
pares favorably with the linear cooling channel used in the
second U.S. Neutrino Factory Study[1]. The 6D phase
space density of an idealized ring is increased by a factor of
238, compared with the linear channel’s factor of only 15.
The simulations make use of fully realistic magnetic fields,
and include absorber and rf cavity windows, and empty lat-
tice cells for injection/extraction.

INTRODUCTION

In the present U.S. Neutrino Factory design [2] the muon
beam 6D phase space density must be reduced in order to
be able to accelerate it and inject into the storage ring point-
ing to a long distance neutrino detector. Ionization cooling
is currently the only feasible option for cooling the beam
within the muon lifetime (τ0 = 2.19µs). If muons alter-
nately pass through a material absorber, and are then reac-
celerated, and if there is sufficient focusing at the absorber,
then the muon’s transverse phase space is reduced, i.e. the
muons are cooled in the transverse dimension. A conse-
quence of the transverse cooling is an increase of the longi-
tudinal phase space caused by energy straggling in the ma-
terial. The consequent momentum spread can be reduced if
dispersion is introduced and a wedge absorber placed such
that high momentum particles pass through more material
than low momentum particles. However, in this process
the beam width is increased. The process is thus primar-
ily an exchange of emittance between the longitudinal and
transverse dimensions, but when combined with transverse
cooling in the material, all three dimensions can be cooled.

Recently there has been considerable progress in the
design of cooling rings for neutrino factories and muon
colliders[3]. The ring described here is based on an ear-
lier design that used a simplified model of the magnetic
field[4]. The ring consists of twelve 2.75 m long cells,
each of which provide transverse cooling and emittance
exchange. The focusing comes from a so-called RFOFO
lattice of alternating direction solenoids, giving large angu-
lar and momentum acceptances. The axial magnetic field
changes direction in the center of the cell. Ionization cool-
ing is provided in 6D by sending the muon beam through
wedge-shaped absorbers containing liquid H2. The energy

∗MUC-NOTE-COOL-THEORY-273

Injection/Extraction

Vertical kicker

200 MHz rf 12 MV/m

Alternating Solenoid

Tilted for Bending By

Hydrogen Absorbers

Figure 1: Layout of the RFOFO cooling ring.

lost in the absorbers is replaced using 201.25 MHz rf cavi-
ties in each lattice cell.

Figure 1 shows the layout of the cooling ring drawn to
scale. The RFOFO lattice was chosen because, apart from
questions of injection/extraction, all cells are strictly iden-
tical, and the presence of an integer betatron resonance
within the momentum acceptance is eliminated. The ring
design parameters are given in Tb. 1.

Table 1: RFOFO Basic Ring Parameters
Circumference (m) 33
Cells 12
Max Bz (T) 2.77
Coil Tilts (deg.) 3.0
Ave Momentum (MeV/c) 220
Min Trans. Beta (cm) 38
Max. Dispersion (cm) 8
Momentum Compaction 0.0037
Wedge Absorber Material H2

Wedge Thickness on axis (cm) 25.4
Wedge Angle (◦) 90
Wedge Vertex position (cm) 12.7
Wedge Azimuthal angle (◦) 230
Frequency (MHz) 201.25
Gradient (MV/m) 12
Phase (◦) from 0-crossing 25



Figure 2 shows a detailed view of three cells of the lat-
tice, in plan (a) and side (b) views. The solenoids are not

a)

b)
Tilted Solenoids

RF Cavities H2 Absorber

Figure 2: Three cells of the RFOFO lattice; a) plan view; b)
side view. Notice that the coils have been displaced radially
by 10 cm.

evenly spaced; those on either side of the absorbers are
closer in order to increase the focusing at the absorber. The
longitudinal field on-axis has an approximately sinusoidal
dependence on position, as shown in Fig. 3. The beam axis
is displaced laterally with respect to the coil centers (as
shown in Fig. 2a) to minimize horizontal fields that cause
vertical beam deviations.

Figure 4a) shows the beta function along a cell; the min-
imum value at the center of the absorber and at the central
momentum is about 38 cm. Figure 4b) plots the beta func-
tion as a function of the muon beam momentum showing
that the lattice transmits particles in the momentum band
160 - 260 MeV/c.

The bending field for the ring, and the required disper-
sion, are provided by alternately tilting the solenoids by
3.0◦ (as shown in Fig. 2b).

It is found that the acceptance is reduced as the bend-
ing field is increased. We thus use a wedge with maximum
possible angle (giving zero thickness on one side), and the
lowest bending field consistent with adequate emittance ex-
change. The dispersion at the absorber is approximately
8 cm in a direction 26◦ from the y axis. The dispersion at
the center of the rf cavity region has the opposite sign, and
is mostly in the y direction ( see Fig. 5).

The rf cavities have a frequency of 201.25 MHz and an
accelerating gradient of 12 MV/m.

MODELING THE RING

The RFOFO ring was modeled using the ICOOL
code[5]. The magnetic field from the tipped solenoids was
calculated in an independent code that found the resul-

Figure 3: Magnetic field on axis for one cell. The upper
panel is Bx; the second one is By with average value of
0.125 T and the lower panel is Bs vs. distance.

a)

b)

Figure 4: a) Beta function vs. position in the cell; b) beta
function as function of the muon momentum.
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A Muon Cooling Ring - Results

1. Need to treat a large box of [−10−2, 10−2]4
2. Because of damping action towards the invariant limit cycle, the linear
part of the motion is more and more ill-conditioned.

COSY easily integrates 10 cycles for d = 10−2 with curvilinear precondi-
tioning and QR preconditioning. AWA (method 4) behaves as follows:

d Cycles
10−2 0.22
10−3 1.25
10−4 9.5

Thus, trying to simulate the system with AWA requires > (102)4 = 108

subdivisions of the box that COSY can transport in one piece.
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