
1

NASA Pan-American Center for Earth and Environmental Studies (PACES)

Towards Combining

Probabilistic and Interval Uncertainty

in Engineering Calculations

S. A. Starks, V. Kreinovich, L. Longpré
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Statistical Analysis Is Important

• Many aspects of engineering involve statistical uncer-

tainty: metallurgy, civil engineering (material, soil),

environment.

• It is desirable to estimate statistical characteristics

such as mean, variance, etc., i.e., compute statistics

such as

E =
1

n
(x1 + . . . + xn); V =

1

n
· n∑

i=1
(xi − E)2.

• In non-destructive testing, outliers are indications of

faults; outliers are often detected as values outside

E ± k0 · σ intervals.

• In geophysics, outliers indicate possible locations of

minerals.

• In biomedical systems, statistical analysis often leads

to improvements in medical recommendations.
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Interval Uncertainty

• Traditional statistics: we know the exact sample val-

ues x1, . . . , xn.

• In practice: often, we only know xi with interval un-

certainty: xi ∈ [xi, xi].

• Measurements: values xi come from measurements.

• We often only know the upper bounds ∆i on the mea-

surement error ∆xi
def= x̃i − xi.

• So, xi ∈ [x̃i −∆i, x̃i + ∆i].

• Detection limit: if the sensor did not detect any O3,

this means that the ozone concentration is in [0, DL].

• Discretized data: if a fish is alive on Day 5 but dead

on Day 6, then its lifetime is ∈ [5, 6].

• Expert estimates: often come as intervals.

• Privacy in statistical databases: e.g., age ∈ [40, 50].
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Estimating Statistics under Interval

Uncertainty: a Problem

• We want to estimate a statistic C(x1, . . . , xn).

• Instead of the actual values x1, . . . , xn, we only know

the intervals x1 = [x1, x1], . . . ,xn = [xn, xn] that con-

tain xi.

• Different values xi ∈ xi lead to different values of C.

• It is desirable to find the range of such values:

C(x1, . . . ,xn)
def= {C(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

• Comment: this problem is a specific problem related

to a combination of interval and probabilistic uncer-

tainty.
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• Many other problems related to this combination have

been (and are being) solved.
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Simple and Hard Cases

• Mean E is monotonic, so E = [E, E], where

E =
1

n
(x1 + . . . + xn); E =

1

n
(x1 + . . . + xn).

• Variance: in general, NP-hard.

• Linearization: C ≈ Clin = C0 −
n∑

i=1
Ci · ∆xi, where

C0
def= C(x̃1, . . . , x̃n), Ci

def=
∂C

∂xi
(x̃1, . . . , x̃n), and

∆xi
def= x̃i − xi.

• Linearized estimate: C = [C0 − ∆, C0 + ∆], where

∆ def=
n∑

i=1
|Ci| ·∆i.

• Linearization is not always acceptable. Examples:

– intervals are sometimes wide, so that quadratic

terms cannot be ignored;

– sometimes, we want to guarantee that, e.g., the

variance V is ≤ V0.
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Classes of Problems

1. Narrow intervals: no two intervals xi intersect.

2. Slightly wider intervals: for some integer K, no set

of K intervals has a common intersection.

3. Single measuring instrument (MI): [xi, xi] 6⊆ (xj, xj)

(non-degenerate results are allowed).

4. Same accuracy measurement: ∆1 = . . . = ∆n.

5. Several MI: intervals are divided into several sub-

groups each of which comes from a single MI.

6. Privacy case: every two non-degenerate intervals ei-

ther coincide or do nor intersect.

7. Non-detects: every measurement result is either an

exact value or a non-detect, i.e., an interval [0, DLi]

for some real number DLi.
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class number class description

0 general case

1 narrow intervals: no intersection

2 slightly wider intervals

≤ K intervals intersect

3 single measuring instrument (MI):

subset property –

no interval is a “proper” subset of the other

4 same accuracy measurements:

all intervals have the same half-width

5 several (m) measuring instruments:

intervals form m groups,

with subset property in each group

6 privacy case:

intervals same or non-intersecting

7 non-detects case: [0, DLi]
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Main Statistics

• Mean:

E def=
1

n

n∑

i=1
xi.

• Variance:

V def=
1

n

n∑

i=1
(xi − E)2.

• Covariance:

Cxy
def=

1

n

n∑

i=1
(xi − Ex) · (yi − Ey).

• Outlier-related characteristics:

L def= E − k0 ·
√

V , U def= E + k0 ·
√

V ,

largest value k0 for which x 6∈ [L,U ]:

R def=
|x− E|√

V
.

• Central moments:

Mm
def=

1

n

n∑

i=1
|xi − E|m.
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Results

# E V Cxy L,U,R M2p

0 O(n) NP-hard NP-hard NP-hard NP-hard

1 O(n) O(n log(n)) O(n3) O(n2) O(n2)

2 O(n) O(n2) O(n3) O(n2) O(n2)

3 O(n) O(n log(n)) ? O(n2) O(n2)

4 O(n) O(n log(n)) O(n4) O(n2) O(n2)

5 O(n) O(nm+1) ? O(nm+1) O(nm+1)

6 O(n) O(n log(n)) O(n3) O(n2) O(n2)

7 O(n) O(n log(n)) ? O(n2) O(n2)

Comment: for M2p+1, we have:

• O(n3) for Classes 1 and 2, and

• ? (unknown) for all other classes.
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Case When Only d out of n

Data Points are Intervals

# E V Cxy L,U,R M2p

0 O(n) NP-hard NP-hard NP-hard NP-hard

1 O(n) O(n log(d)) O(n · d2) O(n · d) O(nd)

2 O(n) O(nd) O(n · d2) O(n · d) O(nd)

3 O(n) O(n log(d)) ? O(n · d) O(nd)

4 O(n) O(n log(d)) O(n · d3) O(n · d) O(nd)

5 O(n) O(ndm) ? O(n · dm) O(ndm)

6 O(n) O(n log(d)) O(n · d2) O(n · d) O(nd)

7 O(n) O(n log(d)) ? O(n · d) O(nd)

Comment: for M2p+1, we have:

• O(n · d2) for Classes 1 and 2, and

• ? (unknown) for all other classes.
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Other Statistics

• Weighted mean and weighted average:

n∑

i=1

(xi − E)2

σ2
→ min

E
.

– Formula: Ew =
n∑

i=1
pi · xi, where pi

def=
σ−2

i
n∑

j=1
σ−2

j

.

– Results: mean monotonic, hence O(n);

weighted variance O(n2) for narrow intervals.

• Robust estimates for the mean:

– L-estimates:
n∑

i=1
wi · x(i) (including median).

– M-estimates:
n∑

i=1
ψ(|xi − a|) → max

a
.

– Algorithm: monotonic so O(n).

• Robust estimates for the generalized central mo-

ments: M rob
ψ = min

E



1

n
· n∑

i=1
ψ(xi − E)


.

• Algorithm: O(n2) for single MI, O(nm+1) for m MI.

• Correlation: we only know that it is NP-hard.
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Additional Issue:

On-Line Data Processing

• Traditional estimates for mean and variance can be

easily modified with the arrival of the new measure-

ment result xn+1:

E ′ =
n · E + xn+1

n + 1
; V ′ = M ′ − (E ′)2,

where

M ′ =
n ·M + x2

n+1

n + 1
; M = V + E2.

• Interval mean: for E, we can have a similar adjust-

ment.

• Problem: for other statistics, known algorithms for

processing interval data require that we start compu-

tation from scratch.

• What is known: for variance, we need O(n) steps to

incorporate a new interval data point.
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Parallelization

• Motivation: often, computing the range C requires

too much computation time.

• Parallel computers speed up computations.

• Potentially unlimited number of processors:

– polynomial-time algorithms can be reduced to time

O(log(n));

– exponential-time algorithms can be, in principle,

reduced to linear time.

• Realistically: for exponential-time algorithms:

– computation time is linear, but

– communication time grows exponentially.

• Limited number of processors p ¿ n: ?

• Quantum algorithms: can also speed up computa-

tion of C.
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What If We Have Partial Information

about Probabilities?

• We have considered the case when xi ∈ xi and we

have no information about probabilities.

• In many real-life situations, we have a partial infor-

mation about the corresponding probabilities.

• A natural way to describe probabilities is to use cdf

F (t) def= Prob(∆x ≤ t).

• In practice, we store quantiles, i.e., values ti for which

F (ti) = i/n.

• Partial info means we do not know F (t); we know an

interval F(t) = [F (t), F (t)] 3 F (t) (p-box).

• Quantiles are then also known with interval uncer-

tainty: ti ∈ [ti, ti] s.t. F (ti) = i/n and F (ti) = i/n.
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Processing p-Boxes and How the

Above Algorithms Can Help

• Statistical characteristics can be described in terms of

quantiles: e.g., V =
∫
(t(α)− E)2 dα.

• If we only know the quantiles t1 = t(1/n), . . . , tn =

t(n/n), then we can use an integral sum:

V ≈ Vapprox =
1

n

n∑

i=1
(ti − E)2.

• When ti ∈ ti, we have a problem similar to the above

estimates, with an extra constraint ti ≤ ti+1.

• This problem corresponds to single MI.

• For variance and single MI, both min and max are

attained on monotonic xi.

• So, the above algorithms apply for Vapprox.

• To get guaranteed bounds (not just heuristic integral

sum), we replace ti with t′i = [ti−1, ti].
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Multi-Dimensional Case

• Traditional approach:

F (t1, . . . , tp) = Prob(x1 ≤ t1 & . . . & xp ≤ tp).

• Problem:

– often, multi-D data represent vectors;

– the components depend on the coordinates;

– so often:

∗ the distribution is symmetric – e.g., a rotation-

invariant Gaussian distribution,

∗ but the description in terms of a multi-D cdf is

not rotation-invariant.

• Solution: store, for each ~e and t, the probability

F (~e, t) def= Prob(~x · ~e ≤ t),

where ~x · ~e = x1 · e1 + . . . + xn · en is a scalar (dot)

product of the two vectors.
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p-Boxes: Problem

• Known fact: a p-box does not fully describe all kinds

of possible partial information about the probability

distribution.

• Example: the same p-box corresponds:

– to the class of all distributions located on an inter-

val [0, 1] and

– to the class of all distributions located at two points

0 and 1.

• Multi-D case: cdfs cannot distinguish between:

– a set S (= the class of all probability distributions

localized on the set S with probability 1) and

– its convex hull.
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Beyond p-Boxes

• Idea:

– in addition to the bounds on the probabilities

Prob(f (x) ≤ t)

for all linear functions f (x),

– to also keep the bounds on the similar probabilities

corresponding to all quadratic functions f (x).

• Result: we can distinguish between different closed

sets.

• 1-D case: in addition to cdf, we also store the bounds

on the probabilities of x being within different inter-

vals.

• Comment: this is exactly Berleant’s approach.
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