Penalty-Based Solution for the Interval Finite Element Methods

Rafi L. Muhanna Georgia Institute of Technology

Robert L. Mullen Case Western Reserve University

Hao Zhang Georgia Institute of Technology

First Scandinavian Workshop on INTERVAL METHODS AND THEIR APPLICATIONS August 14-16, 2003, Technical University of Denmark, Copenhagen, Denmark

GeorgiaInstitute of Technology

Outline

- Interval Finite Elements
- Element-By-Element
- Penalty Approach
- Examples
- Conclusions

Center for Reliable Engineering Computing (REC)

Georgialnstitute of Technology

Interval Calculator

Georgia Institute of Technology

Outline

- Interval Finite Elements
- Element-by-Element
- Penalty Approach
- Examples
- Conclusions

Interval Finite Elements

- Follows conventional FEM
- Loads, nodal geometry and element materials are expressed as interval quantities
- Element-by-element method to avoid element stiffness coupling
- Lagrange Multiplier and Penalty function to impose compatibility
- Iterative approach to get enclosure
- Non-iterative approach to get exact hull for statically determinate structure

Interval Finite Elements

Interval Finite Elements

K U = F

- $K = \int B^T C B dV$ = Interval element stiffness matrix
- \boldsymbol{B} = Interval strain-displacement matrix
- *C* = Interval elasticity matrix

 $\boldsymbol{F} = [F_1, \dots, F_n] = \text{Interval element load vector (traction)}$

- $F_i = \int N_i t \, dA$
- N_i = Shape function corresponding to the *i-th* DOF
- *t* = Surface traction

Finite Element

- 1. Load Dependency
- 2. Stiffness Dependency

Finite Element – Load Dependency

1. Load Dependency

$$P_b = \sum L^T \int_l N^T b(x) \, dx$$

The global load vector P_b can be written as

$P_b = M q$

where q is the vector of interval coefficients of the load approximating polynomial

Finite Element – Load Dependency

Sharp solution for the interval displacement can be written as:

 $U = (K^{-1} M) q$

Thus all non-interval values are multiplied first, the last multiplication involves the interval quantities

If this order is not maintained, the resulting interval solution will not be sharp

Outline

- Interval Finite Elements
- Element-by-Element
- Penalty Approach
- Examples
- Conclusions

Stiffness Dependency

Coupling (assemblage process)

Element by Element to construct global stiffness
 Element level

$$K_{1} = \begin{pmatrix} \frac{E_{1}A_{1}}{L_{1}} & -\frac{E_{1}A_{1}}{L_{1}} \\ -\frac{E_{1}A_{1}}{L_{1}} & \frac{E_{1}A_{1}}{L_{1}} \end{pmatrix} = \begin{pmatrix} E_{1} & 0 \\ 0 & E_{1} \end{pmatrix} \begin{pmatrix} \frac{A_{1}}{L_{1}} & -\frac{A_{1}}{L_{1}} \\ -\frac{A_{1}}{L_{1}} & \frac{A_{1}}{L_{1}} \end{pmatrix} = D_{1}S_{1} = S_{1}D_{1}$$

K: block-diagonal matrix

Element-by-Element

Outline

- Interval Finite Elements
- Element-by-Element
- Penalty Approach
- Examples
- Conclusions

Finite Element – Present Formulation

> In steady-state analysis-variational formulation

$$\Pi = \frac{1}{2} \boldsymbol{U}^T \boldsymbol{K} \boldsymbol{U} - \boldsymbol{U}^T \boldsymbol{P}$$

- > With the constraints t = CU = 0
- $C = \begin{pmatrix} 0 & 1 & -1 & 0 \end{pmatrix} \text{ and } U^T = \begin{pmatrix} U_1 & U_2 & U_3 & U_4 \end{pmatrix}$ > Adding the penalty function $\frac{1}{2}t^T \alpha t$ α : a diagonal matrix of penalty numbers

$$\Pi^{*} = \frac{1}{2} U^{T} K U - U^{T} P + \frac{1}{2} t^{T} \alpha t$$

GeorgiaInstitute of Technology

Finite Element – Present Formulation

> Invoking the stationarity of Π^* , that is $\delta \Pi^* = 0$ $(K + C^T \alpha C)U = P$

(K+Q)U=P

The physical meaning of Q is an addition of a large spring stiffness

Interval system of equations

(K + Q)U = P or AU = P> where

$$A = \{ \widetilde{A} \in \mathbb{R}^{n \times n} \mid \widetilde{A}_{ik} \in A_{ik} \text{ for } i, k = 1, \dots, n \}$$
$$P = \{ \widetilde{P} \in \mathbb{R}^{n \times 1} \mid \widetilde{P}_i \in P_i \text{ for } i = 1, \dots, n \}$$

> and

 $D = \{ \widetilde{D} \in \mathbb{R}^{n \times n} \mid \widetilde{D}_{ii} \in D_{ii} \text{ for } i = 1, \dots, n \}$ K = DS = SDGeorgia

> The solution will have the following form

 $RP - (I - RA)U \subseteq int(U)$

➢ where R = inverse mid (A) and $U = U^* + U_0$ ➢ or

$$RP - RAU_o + (I - RA)U^* \subseteq \operatorname{int}(U^*)$$
$$z + CU^* \subseteq \operatorname{int}(U^*)$$

$$z = RP - RAU_0 = RP - R(K + Q)U_0$$
$$z = RP - RQU_0 - RSDU_0 = RP - RQU_0 - RSM\delta$$

$$\triangleright \quad R = (S + Q)^{-1} \quad \text{and} \quad U_0 = RP$$

$$C = I - RA = I - RK - RQ = I - RQ - RSD$$

> Algorithm converges if and only if $\rho(|C|) < 1$

 \succ Rewrite $DU_0 = M\delta$

$$\begin{pmatrix} E_1 & 0 & 0 & 0 \\ 0 & E_1 & 0 & 0 \\ 0 & 0 & E_2 & 0 \\ 0 & 0 & 0 & E_2 \end{pmatrix} \begin{pmatrix} U_{01} \\ U_{02} \\ U_{03} \\ U_{04} \end{pmatrix} = \begin{pmatrix} U_{01} & 0 \\ U_{02} & 0 \\ 0 & U_{03} \\ 0 & U_{04} \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \end{pmatrix} = \begin{pmatrix} E_1 U_{01} \\ E_1 U_{02} \\ E_2 U_{03} \\ E_2 U_{04} \end{pmatrix}$$

Outline

- Interval Finite Elements
- Element-by-Element
- Penalty Approach
- Examples
- Conclusions

Examples

Statically indeterminate (general case)

- > Two-bay truss
- > Three-bay truss
- Four-bay truss
- Statically indeterminate beam
- Statically determinate
 - > Three-step bar

Examples – Stiffness Uncertainty

- > Two-bay truss
- Three-bay truss
 A = 0.01 m²
 - $A = 0.01 m^{-1}$
 - E (nominal) = 200 GPa

Examples – Stiffness Uncertainty

> Four-bay truss

Geo

Examples – Stiffness Uncertainty 1%

> Two-bay truss

Two bay truss (11 elements) with 1% uncertainty in Modulus of Elasticity, E = [199, 201] GPa

	V2(LB)(m)	V2(UB)(m)	U4(LB)(m)	U4(UB)(m)
$\text{Comb} \times 10^{-4}$	- 2.00326	- 1.98333	0.38978	0.40041
Present $\times 10^{-4}$	- 2.00338	- 1.98302	0.38965	0.40050
error	- 0.006%	0.015%	0.033%	- 0.023%

Examples – Stiffness Uncertainty 1%

> Three-bay truss

Three bay truss (16 elements) with 1% uncertainty in Modulus of Elasticity, E = [199, 201] GPa

	V2(LB)(m)	V2(UB)(m)	U5(LB)(m)	U5(UB)(m)
$\text{Comb} \times 10^{-4}$	- 5.84628	- 5.78663	1.54129	1.56726
Present \times 10 ⁻⁴	- 5.84694	- 5.78542	1.5409	1.5675
error	- 0.011%	0.021%	0.025%	- 0.015%

Examples – Stiffness Uncertainty 1%

> Four-bay truss

Four-bay truss (21 elements) with 1% uncertainty in Modulus of Elasticity, E = [199, 201] GPa

	V2(LB)(m)	V2(UB)(m)	U6(LB)(m)	U6(UB)(m)	V6(LB)(m)	V6(UB)(m)
$\text{Comb} \times 10^{-4}$	- 17.7729	- 17.5942	3.83417	3.88972	- 0.226165	- 0.220082
Present $\times 10^{-4}$	- 17.7752	- 17.5902	3.83268	3.89085	- 0.226255	- 0.21995
error	- 0.013%	0.023%	0.039%	- 0.029%	- 0.040%	0.060%

Examples – Stiffness Uncertainty 5%

> Two-bay truss

Two bay truss (11 elements) with 5% uncertainty in Modulus of Elasticity, E = [195, 205] GPa

	V2(LB)(m)	V2(UB)(m)	U4(LB)(m)	U4(UB)(m
$\text{Comb} \times 10^{-4}$	- 2.04435	- 1.94463	0.36866	0.42188
Present \times 10 ⁻⁴	- 2.04761	- 1.93640	0.36520	0.42448
error	- 0.159%	0.423%	0.939%	- 0.616%

Examples – Stiffness Uncertainty 5%

> Three-bay truss

Three bay truss (16 elements) with 5% uncertainty in Modulus of Elasticity, E = [195, 205] GPa

	V2(LB)(m)	V2(UB)(m)	U5(LB)(m)	U5(UB)(m)
$\text{Comb} \times 10^{-4}$	- 5.9692233	- 5.6708065	1.4906613	1.6195115
Present $\times 10^{-4}$	- 5.98838	- 5.63699	1.47675	1.62978
error	- 0.321%	0.596%	0.933%	- 0.634%

Examples – Stiffness Uncertainty 10%

> Two-bay truss

Two bay truss (11 elements) with 10% uncertainty in Modulus of Elasticity, E = [190, 210] GPa

	V2(LB)(m)	V2(UB)(m)	U4(LB)(m)	U4(UB)(m)
$\text{Comb} \times 10^{-4}$	- 2.09815	- 1.89833	0.34248	0.44917
Present $\times 10^{-4}$	- 2.11418	- 1.86233	0.32704	0.46116
error	- 0.764%	1.896%	4.508%	- 2.669%

Examples – Stiffness Uncertainty 10%

> Three-bay truss

Three bay truss (16 elements) with 10% uncertainty in Modulus of Elasticity, E = [190, 210] GPa

	V2(LB)(m)	V2(UB)(m)	U5(LB)(m)	U5(UB)(m)
$\text{Comb} \times 10^{-4}$	- 6.13014	- 5.53218	1.42856	1.68687
Present $\times 10^{-4}$	- 6.22965	- 5.37385	1.36236	1.7383
error	- 1.623%	2.862%	4.634%	- 3.049%

Statically indeterminate beam

A = 0.086 m^2 I = 10⁻⁴ m^4 E (nominal) = 200 GPa

Statically indeterminate beam

Statically indeterminate beam (2 elements) with 1% uncertainty in Modulus of Elasticity, E = [199, 201] GPa, 10% uncertainty in Load, P=[9.5, 10.5]kN

	V2(LB)(m)	V2(UB)(m)	θ 2(LB)(rad)	θ 2(UB)(rad)
$\text{Comb} \times 10^{-3}$	- 4.80902	- 4.307888	1.47699	1.648869
Present $\times 10^{-3}$	- 4.80949	- 4.30487	1.47565	1.64928
error	- 0.00977%	0.07006%	0.09073%	- 0.02493%

Statically indeterminate beam

Statically indeterminate beam (2 elements) with 1% uncertainty in Modulus of Elasticity, E = [199, 201] GPa, 20% uncertainty in Load, P=[9, 11]kN

	V2(LB)(m)	V2(UB)(m)	θ 2(LB)(rad)	θ 2(UB)(rad)
$\text{Comb} \times 10^{-3}$	- 5.03821	- 4.081157	1.399254	1.727387
Present $\times 10^{-3}$	- 5.03884	- 4.07552	1.39672	1.7282
error	- 0.01250%	0.13812%	0.18110%	- 0.04707%

Statically indeterminate beam

Statically indeterminate beam (2 elements) with 1% uncertainty in Modulus of Elasticity, E = [199, 201] GPa, 40% uncertainty in Load, P=[8, 12]kN

	V2(LB)(m)	V2(UB)(m)	θ 2(LB)(rad)	θ 2(UB)(rad)
$\text{Comb} \times 10^{-3}$	- 5.49623	- 3.62769	1.234378	1.8844221
Present $\times 10^{-3}$	- 5.49751	- 3.61684	1.23888	1.88604
error	- 0.02329%	0.29909%	- 0.36472%	- 0.08586%

> Three-bay truss

Three bay truss (16 elements) with 1% uncertainty in Modulus of Elasticity, E = [199, 201] GPa, 5% uncertainty in Load, P = [19.5,20.5]kN

	V2(LB)(m)	V2(UB)(m)	U4(LB)(m)	U4(UB)(m)
$\text{Comb} \times 10^{-4}$	- 2.05334	- 1.93374	0.38003	0.41042
Present $\times 10^{-4}$	- 2.05381	- 1.93259	0.37953	0.41062
error	- 0.023%	0.060%	0.132%	- 0.050%

> Three-bay truss

Three bay truss (16 elements) with 1% uncertainty in Modulus of Elasticity, E = [199, 201] GPa, 10% uncertainty in Load, P = [19,21]kN

	V2(LB)(m)	V2(UB)(m)	U4(LB)(m)	U4(UB)(m)
$\text{Comb} \times 10^{-4}$	- 2.10342	- 1.88416	0.37029	0.42043
Present $\times 10^{-4}$	- 2.10425	- 1.88215	0.36941	0.42074
error	- 0.039%	0.107%	0.237%	- 0.075%

> Three-bay truss

Three bay truss (16 elements) with 1% uncertainty in Modulus of Elasticity, E = [199, 201] GPa, 20% uncertainty in Load, P = [18,22]kN

	V2(LB)(m)	V2(UB)(m)	U4(LB)(m)	U4(UB)(m)
$\text{Comb} \times 10^{-4}$	- 2.20359	- 1.78499	0.35080	0.44045
Present $\times 10^{-4}$	- 2.20511	- 1.78129	0.34917	0.44098
error	- 0.069%	0.207%	0.465%	-0.121%

Examples – Statically determinate

> Three-step bar

E1 = [18.5, 21.5]MPa (15% uncertainty)

E2 = [21.875,28.125]MPa (25% uncertainty)

E3 = [24, 36]MPa (40% uncertainty)

P1 = [-9, 9]kN P2 = [-15, 15]kN P3 = [2, 18]kN

Examples – Statically determinate

Statically determinate 3-step bar

	U1(LB)(m)	U1(UB)(m)	U2(LB)(m)	U2(UB)(m)	U3(LB)(m)	U3(UB)(m)
$\text{Comb} \times 10^{-3}$	- 4.756756	9.081081	- 7.72818	16.62393	- 7.39485	21.1239
Present $\times 10^{-3}$	- 4.756756	9.081081	- 7.72818	16.62393	- 7.39485	21.1239

Conclusions

- Formulation of interval finite element methods (IFEM) is introduced
- EBE approach was used to avoid overestimation
- Penalty approach for IFEM
- Enclosure was obtained with few iterations
- Problem size does not affect results accuracy
- For small *stiffness* uncertainty, the accuracy does not deteriorate with the increase of *load* uncertainty
- In statically determinate case, exact hull was obtained by non-iterative approach

