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Uncertainties in the Solutions to Boundary Element Method: 

An Interval Approach  

 

Abstract 

By 

BARTLOMIEJ FRANCISZEK ZALEWSKI 

 

Interval boundary element method (IBEM) is developed allowing computation of 

the worst case behavior of the system due to numerical errors on the point-wise variable 

level. Three sources of error due to numerical analysis are considered; 1) errors occurring 

due to numerical integration, 2) errors occurring due to floating point number truncation, 

and 3) errors occurring due to the discretization of the integral equation resulting from 

boundary element formulation. The impact of uncertainty in the applied boundary 

conditions was also examined. 

Boundary element method is a technique used to solve partial differential 

equations. This numerical scheme obtains approximate solutions which have been shown 

to converge on the global scale. However, the accuracy of the solutions on the local level 

has not been studied and needs to be considered for reliable engineering analysis. This 

work obtains the enclosure of the boundary integral equations, which result from 

boundary element formulation, via interval methods. The interval boundary integral 

equations are then solved using the conventional boundary element procedure. The 

resulting is the enclosure of the true solution of the boundary values. Form the worst case 
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bounds on the boundary values the worst case bounds in the domain of the problem are 

computed.   

Interval analysis is used to treat errors due to numerical integration and floating 

point number truncation. An illustrative numerical scheme is considered to demonstrate 

the formulation and the rounding error is accounted for in the iterative scheme used to 

solve the resulting interval linear system of equations. The treatment of uncertainty in the 

boundary conditions is explored using interval concepts resulting in exact worst case 

bounds for the boundary values. 
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Chapter I 

Introduction 

 

 Chapter I introduces the research topic and provides a brief historical background. 

 

1.1 Background 

In engineering, partial differential equations are used to model the behavior of 

systems such as heat transfer, electric conduction, fluid flow, acoustic wave propagation, 

and stress distribution. However, most of the partial differential equations cannot be 

solved exactly due of the complexity arising from satisfying a correct set of applied 

boundary conditions for geometry of any complexity. Many methods, such as finite 

element method (FEM), finite difference method (FDM), finite volume method (FVM), 

mesh free methods such as element free Galerkin (EFG) and natural element method 

(NEM), and discrete element method (DEM) have been developed to obtain approximate 

solutions to partial differential equations. Boundary element method (BEM) is a 

technique for obtaining approximate solutions to partial differential equations, in which 

the true solution is approximated by a polynomial interpolation. Unlike the more widely 

used FEM, BEM requires that only the boundary of the system is discretized; therefore, 

the dimension of the problem is reduced by one. In general, this allows for the decrease in 

computational time necessary to mesh the system or to refine an existing mesh. The 

dimension reduction characteristic of BEM makes it a very attractive computational tool 

for design engineers who must consider many system geometries. 
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In boundary element analysis (BEA) the mesh reduction, from domain of the 

system to the boundary of the system, is performed by transforming the domain variables 

to the variables on the boundary of the domain. The variable transformation is 

constructed using fundamental solutions of the governing partial differential equation, or 

Green’s functions. Therefore, boundary element formulation is limited to partial 

differential equations for which the fundamental solution exists. Assuming that Green’s 

function is known, the boundary integral equations are transformed using point 

collocation methods, where source points are located sequentially at all boundary nodes 

that map the domain variables such that they coincide to their nodal values. The boundary 

integral equations are then discretized into boundary elements and expressed in terms of a 

linear algebra problem. As in FEM, boundary elements consist of nodes and assumed 

polynomial interpolation between them. Since, in general, the polynomial interpolation is 

not the true solution to the integral equation; errors are introduced due to discretization of 

the problem. 

 

In solving partial differential equations using any numerical method, one has to be 

aware that these techniques provide approximate solutions. The behavior of the errors in 

numerical methods has been studied (Babuška et al. 1986, Babuška and Strouboulis 

2001) for the finite element method. In FEM the domain of the system is discretized into 

elements, for which a solution is assumed to be a polynomial interpolation between 

calculated discrete values. Assuming no other errors are present besides the discretization 

error, the solutions obtained using displacement based finite element method are the most 

optimal solutions in a given error norm to the original partial differential equation; 
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therefore, the norm of the solution converges to the true solution monotonically. 

Numerous error estimates have been made for finite element solution norms and energy 

norms both on a global and local scale. Global error estimates have been made using the 

2L  norm as well as other norms showing the convergence of the solution. Element-wise 

estimates showed that the finite element solution approaches the true solution with mesh 

refinement. The convergence of the finite element solution has also been shown with 

increasing order of the polynomial approximation. In FEM, the discretization errors are 

always orthogonal to the approximate solutions; therefore, the error estimates smooth out 

the errors over the considered region and thus they do not give a good indicator of the 

point-wise behavior of the error. This is especially true for the global estimates where the 

error is estimated for the entire system and the behavior of the error within the system is 

unknown. Furthermore, the computation of there error estimates may become 

computationally expensive. In order to decrease the computational expense of computing 

error estimates for the original problem, error estimates of the dual problem have been 

made (Oden and Carey 1983, Oden and Prudhomme 2001), whose uniqueness is 

guaranteed by the Lax-Milgram Theorem (Lax and Milgram 1954). The dual problem is 

formulated by relating the error to the residual. This approach is justified since the 

residual contains all the information that is present in the numerical error. Same 

limitations of the error estimates of the dual problem as for the primal problem are 

present. 

 

Finite difference method (Pilkey and Wunderlich 1994) is another technique for 

solving partial differential equations, in which the differential operator has been 
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approximated by a difference operator. FDM is often developed by the use of Taylor 

series expansion (Taylor 1715) which allows the study of the truncation error resulting 

from the truncation of the Taylor series in finite difference formulation. In finite 

difference method, the differential equation is approximated by a difference equation 

whose accuracy depends on the order of the polynomial of the assumed solution. Since 

the polynomial series is truncated, the remainder of the Taylor series provides an order of 

the error in the solution. As in the finite element method, the behavior of the finite 

difference error on the point-wise level for the entire domain is unknown and only an 

accuracy estimate of the solution can be obtained. The estimate of the discretization error 

in boundary element method has also been shown to decrease with element size 

(Cartensen and Stephan 1995, Dehao and Longhua 2005, Jou and Liu 1999, Rencis and 

Jong 1989); however, the equivalent problems associated with error estimates, not being 

able to predict point-wise behavior, apply. 

 

Modern technology has allowed replacing the traditional verification techniques, 

i.e. experimental methods, with computational science (Babuška et al. 2007). This step is 

largely due to the continuous increase in the computational power of the modern day 

computers. As more engineering analyses are performed using numerical techniques, 

there arises a need for reliable computing methods. The traditional computational 

methods are incapable to address any perturbation of the original engineering system 

such as uncertainty in boundary conditions and/or system’s parameters, as well as the 

perturbation of the solutions due to numerical errors imbedded in machine computations 

such as rounding and integration error. Moreover, the conventional error estimates, global 
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and local, are incapable of predicting the true discretization error on a point-wise, or 

design variable, level. Although error estimates describe the global behavior of the error, 

whether it is in the solution norm or energy norm, the guaranteed bounds on the true 

discretization error have thus far not been computed. 

 

The objective of this research is to address the impact of the discretization error 

on the solution on the point-wise level. Considering the discretization error itself, and not 

its estimate, allows one to obtain the behavior of the error at every point in the domain of 

the system. Since the discretization error can only be computed if the true solution is 

known, computing the discretization error for a general problem is not possible. In this 

work interval methods are studied to guarantee the enclosure of the true solution within a 

convex closed set of real numbers or an interval number. This work, to the author’s 

knowledge, is the first to quantify the worst case discretization error on the point-wise 

level. Other aspects impacting the numerical solution on the local variable level such as 

integration error, arising from numerical integration of the kernel functions, rounding 

error, occurring due to truncation of the floating point numbers caused by limited 

machine precision, and uncertainty in boundary conditions are addressed and quantified 

using interval analysis. Interval analysis was chosen to handle the errors and uncertainties 

in the system due to its very elegant and computationally efficient nature as well as its 

versatility in considering all aspects of uncertainty in the solutions in an integrated 

fashion. The result of the research is a development of the interval boundary element 

method (IBEM) that is capable of considering the effect of the discretization error, 

integration error, rounding error, and uncertain boundary conditions on the point-wise 
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variable level. The IBEM formulation requires a development of a new method for 

enclosing integral equations, interval kernel splitting technique (IKST), and a new 

algorithm for solving interval linear system of equations. The methodology is 

computationally efficient and attractive due to its simplistic nature. 

 

1.2 Overview 

The dissertation is organized as follows. Chapter I provides historical background 

of BEA and interval analysis. Chapter II introduces the boundary element formulation for 

the Laplace equation. Chapter III demonstrates the applications of the boundary element 

method in engineering mechanics problems such as torsion problem and elasticity 

problem. Chapter IV reviews set-theoretic or interval mathematics. The author’s major 

contributions are presented starting with chapter V, which describes the developed 

algorithms for solving interval linear system of equations. Chapter VI is devoted to the 

treatment of unknown but bounded boundary conditions. Chapter VII describes the 

integration and rounding errors and their treatment through interval approach. Chapter 

VIII introduces the discretization error in BEA. Chapter IX describes the bounding of the 

boundary integral equation by a kernel splitting technique. Chapter X is devoted to the 

treatment of the discretization error through an interval approach and provides a 

parameterized algorithm used to obtain nearly sharp error bounds on the point-wise 

boundary values. Chapter XI describes the special treatment of the bounds on the 

discretization error in the presence of geometrically induced singular flux solutions. 

Chapter XII treats the enclosure of the solution in the domain of the problem. Chapter 
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XIII contains example problems demonstrating effectiveness of the proposed method. 

Chapter XIV provides concluding remarks on the work. 

 

1.3 Historical Background 

 

1.3.1 Historical Background of Boundary Element Method 

 The use of numerical techniques to solve differential equations dates back to 

Leibnitz (1646-1716) but it’s not until 1940 that the first estimate of the a-posteriori error 

was made (Babuška and Strouboulis 2001, Ostrowski 1940). Boundary element method 

is rooted to the formulation of integral equations that can be traced to Somigliana who 

derived forms of the integral solution identities based on the fundamental solutions for 

the elasticity problem (Somigliana 1885). The existence of the solutions and the 

discretization procedure for integral equations was demonstrated by Fredholm (Fredholm 

1903) resulting in Fredholm equations of the first and second kind. Kellogg obtained a 

functional constraint between boundary values and normal derivatives of the harmonic 

functions by taking the source point in the domain of the system to the boundary of the 

system (Kellogg 1929). In 1965 Kupradze introduced vector integral equations in the 

concept of elasticity problems (Kupradze 1965) and in 1967 Rizzo developed numerical 

solutions for the two-dimensional elasticity problem using boundary integral equations 

(Rizzo 1967). The name boundary integral equation (BIE) was officially given by 

Sweldow and Cruse in their work on three-dimensional elastostatics (Sweldow and Cruse 

1971). In 1977 Jaswon and Symm published the first book on integral equation methods 

for numerical solutions to boundary value problems in potentials and elasticity (Jaswon 
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and Symm 1977). The term boundary element originated in the Department of Civil 

Engineering at Southampton University and first appeared in Brebbia’s work on potential 

problems (Brebbia 1977). In 1978 the first book on boundary element method was 

published (Brebbia 1978). Mansur and Brebbia computed elastodynamic problems using 

boundary elements (Brebbia et al. 1983) and Rencis and Mullen developed a self-

adaptive mesh refinement for the elasticity problem and for the Laplace equation (Rencis 

and Mullen 1986, Rencis and Mullen 1988). Mullen and Rencis have studied iterative 

methods for solving linear system of equations resulting from boundary element 

formulation (Mullen and Rencis 1987). The integration error estimate was considered by 

Sawaga (Sawaga 1986) and the estimate of the discretization error was studied 

(Cartensen and Stephan 1995, Dehao and Longhua 2005, Jou and Liu 1999, Rencis and 

Jong 1989). 

 

1.3.2 Historical Background of Interval Analysis 

 The concept of interval analysis is dated back to Archimedes of Syracuse, 287-

212 BCE, who bounded π  by inscribing and circumscribing a circle with 12-sided, 24-

sided, 48-sided, and 96-sided polygons. Using an iterative scheme, Archimedes bounded 

π  by an interval ⎥⎦
⎤

⎢⎣
⎡

71
103,

7
13  (Archimedes translated by Sir Thomas Health 1987). In 

modern times, the theory of interval algebra had been formulated by Sunaga (Sunaga 

1958) and error analysis was first performed in digital computing (Collins 1960). Moore 

further studied interval error analysis (Moore 1962) and in 1965 the interval arithmetic in 

matrix approach was developed by Hansen (Hansen 1965). Hansen’s methods were the 

first to obtain bounds on the solution to the interval linear system of equations. The first 
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interval analysis book has been published in 1966 by Moore (Moore 1966). The iterative 

scheme for the nearly sharp enclosure of the solution to interval linear system of 

equations has been formulated by Krawczyk (Krawczyk 1969). The enclosure of real 

roots using iterative methods was studied by Hansen (Hansen 1978). Rump (Rump 1980) 

improved the convergence of the iterative methods by introducing epsilon inflation. The 

solutions to interval linear equations have been further studied by Gay (Gay 1982). 

Overestimation in the solution to the interval linear system of equations has been 

considered by Neumaier (Neumaier 1987) and the sensitivity analysis for the systems of 

linear and nonlinear equations has developed by Rump (Rump 1990). Jansson considered 

interval linear system of equations for symmetric and skew-symmetric matrices (Jansson 

1991) and obtained sharp bounds for those types of systems using a modified Krawczyk 

iteration. The interval application to mechanics was first considered in finite element 

method with the development of the fuzzy finite element method (FFEM) and the interval 

finite element method (IFEM) to treat uncertain loading conditions, material 

uncertainties, uncertain geometry, and rounding error for static problems (Muhanna and 

Mullen 1995, Muhanna and Mullen 1999, Muhanna and Mullen 2001, Mullen and 

Muhanna 1995, Mullen and Muhanna 1999, Mullen and Muhanna 2002). Interval 

treatment of system uncertainty in IFEM was extended in the dynamic analysis using 

interval response spectrum analysis (IRSA) (Modares and Mullen 2004) and structural 

system stability (Modares et al. 2005). Penalty based approach for IFEM considering 

uncertainty in material characteristics for skeletal elements was developed (Muhanna et 

al. 2005) providing sharp bounds on the solution. Global optimization techniques were 

used to obtain sharp bounds for large system uncertainties in truss structures (Neumaier 
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and Pownuk 2007, Skalna and Pownuk 2008). Neumaier also provided theoretical bounds 

for the discretization errors and parameter uncertainties for linear elliptic partial 

differential equations (Neumaier 2007). The use of interval analysis in boundary element 

method can be traced to the treatment of uncertain boundary conditions through fuzzy 

approach (Burczynski and Skrzypczyk 1997). The resulting fuzzy linear system of 

equations is solved directly resulting in unrealistic and naïve bounds on the true solution. 

The interval treatment of uncertain systems has been made (Piasecka Belkhayat 2007) 

considering a constant but bounded system parameters. Considering constant system 

properties on the entire domain of the system is unrealistic and results in trivial 

formulation. 
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Chapter II 

Boundary Element Analysis of Laplace Equation 

 

Chapter II demonstrates the boundary element formulation for a liner elliptic 

partial differential equation with both Dirichlet and Neumann boundary conditions 

applied on the boundary of the system. 

 

2.1 BEA Formulation for Laplace Equation 

The boundary element formulation is described in literature (Aliabadi 2002, 

Beskos 1989, Brebbia 1978, Brebbia and Dominguez 1992, Hall 1994, Hartmann 1989, 

Liggett and Liu 1983, Linkov 2002, Pilkey and Wunderlich 1994, and Wrobel 2002). The 

following section is a review of the boundary element formulation for a linear elliptic 

partial differential equation. The equation that is used to demonstrate the procedure is the 

Laplace equation. The Laplace equation is: 
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 (2.1) 

where Ω  is the domain of the system, Γ  is the boundary of the system, where Ω∂=Γ , 

u  is the value of the potential with a known Dirichlet, or forced, boundary condition of 

û  on the boundary 1Γ , q  is value of the flux with a known Neumann, or natural, 
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boundary condition of q̂  on the boundary 2Γ , n  is the outward unit normal vector to the 

boundary of the system, and k  is the material property such as heat conductivity in heat 

transfer. In this work a constant material property is considered. It is assumed that at 

every point on the boundary either the Dirichlet or the Neumann boundary condition is 

known and that the boundaries 1Γ  and 2Γ , which do not intersect, form a closed 

boundary Γ . The solution to Laplace equation, in general, cannot be obtained directly 

and therefore an approximate method has to be used. The first step in approximation of 

the equation is to express it in a weighted residual form, also known as the weak form: 

 12
2

12

)ˆ()ˆ( Γ
∂
∂

−−Γ−=Ω∇ ∫∫∫
ΓΓΩ

d
n
wuudwqqduw  (2.2) 

where w  is the weighted residual function or the test function. To decrease the 

smoothness requirements on the solution, Eq. (2.2) is integrated by parts. This procedure 

is performed twice to obtain a non-symmetric weak form which has weaker smoothness 

requirements than a symmetric weak from used in the finite element formulation. After 

integration by parts is performed twice, Eq. (2.2) is rewritten as: 

 1212
2

1212

ˆˆ Γ
∂
∂

+Γ
∂
∂

+Γ−Γ−=Ω∇ ∫∫∫∫∫
ΓΓΓΓΩ

d
n
wud

n
wudqwdwqdwu  (2.3) 

The integral on the left side of Eq. (2.3) is the only term in this equation which is in the 

domain of the system. In order to obtain a weak form on the boundary of the domain, the 

nontrivial Laplacian of the weighting function must be computed to sample out the 

solution from the integral. This is performed using the point collocation method. In point 

collocation method, the residual of the solution in the domain is set to zero and thus the 

residual exists only on the boundary of the domain. This condition is satisfied if the 

weighted residual function is chosen as: 
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 )(2 ξδ −−=∇ xw  (2.4) 

where ξ  is the source point or a point at which a concentrated charge such as a 

concentrated force is acting, x  is the field point at which the response of the concentrated 

charge is considered, and )( ξδ −x  is the Dirac delta function having the properties: 

 1)( =Ω∫
Ω

dxδ  (2.5) 

 )()()( ξξδ fdxfx =Ω−∫
Ω

 (2.6) 

The solution to Eq. (2.4) is called the fundamental solution to Laplace equation or the 

Green’s function and is given the symbol *u . Because of the need for reduction in the 

dimension of the approximation in the boundary element formulation, only partial 

differential equations with a known Green’s function can be used. In this chapter, 

Green’s function for an isotropic domain for the Laplace equation is known and used in 

the formulation. However, there is no loss in generality, and the same procedure can be 

performed for any linear elliptic partial differential equation whose fundamental solution 

is known. For a two-dimensional isotropic domain the solution to Eq. (2.4) is: 

 )ln(
2
1* ru
π

−=  (2.7) 
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π

 (2.8) 

where || ξ−= xr  is the distance between the source point ξ  and any point of interest x . 

Considering *uw =  and 
n
uq
∂
∂

=
*

*  in Eq. (2.3) yields: 
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1212
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dquduqdquduqduu  (2.9) 
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By substituting Eq. (2.4) into Eq. (2.9), the solution in the domain integral is sampled out 

resulting in the integral terms only on the boundary of the system: 

 Ω∈Γ+Γ=Γ+Γ+ ∫∫∫∫
ΓΓΓΓ

ξξ ,ˆˆ)( 1
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1
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1212

dquduqdquduqu  (2.10) 

Considering mixed boundary conditions on the boundary Γ , Eq. (2.10) is rewritten as: 

 Ω∈=+ ∫∫
ΓΓ

ξξξξ ,)(),()(),()( ** dxxqxudxxuxqu  (2.11) 

To obtain all terms in Eq. (2.11) on the boundary of the system, Eq. (2.11) is integrated 

such that the source point ξ  is enclosed by a circular boundary of radius ε  as 0→ε  

(Figure 2.1). 

 

Figure 2.1. Reduction of the dimension of approximation in 

boundary element formulation. 

 

By substituting Eq. (2.7) into Eq. (2.11), it is shown that the right side integral of Eq. 

(2.11) vanishes at the limit as 0→ε : 
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By substituting Eq. (2.8) into Eq. (2.11), it is shown that the left side integral of Eq. 

(2.11) results in )(
2
1 ξu− : 

 uuddundx
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where α  is an angle on the boundary with a value of πα =  for smooth boundaries. 

Thus, Eq. (2.11) can be rewritten on the boundary as: 

 Γ∈=+ ∫∫
ΓΓ

ξξξξ ,)(),()(),()(
2
1 ** dxxqxudxxuxqu  (2.14) 

Equations of the form of Eq. (2.14) are the starting point of the boundary element 

formulation. 

 

2.2 Constant Boundary Element Discretization 

The continuous Eq. (2.14) can be discretized by dividing the continuous boundary 

Γ  into boundary elements iΓ  consisting of nodes at which a value of either u  or q  is 

known with assumed polynomial interpolation functions between nodes. For 

convenience, in this work only boundary elements with constant interpolation functions 

are used. However, the methodology can be directly extended to higher order 

approximations. Constant elements contain one node per element, leading to the 

following approximation: 

 iuxxu )()( Φ=  (2.15) 

 iqxxq )()( Φ=  (2.16) 

where iu  and iq  are the vectors of nodal values of u  and q , respectively, at node i  and 

)(xΦ  is the vector of constant interpolation functions. In general )(xΦ  is the vector of 
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polynomial interpolation functions between the values of iu  and iq . The discretized form 

of Eq. (2.14) can be written in the following form: 

 i
Elements

i
Elements

i qdxxxuudxxxqu ∑ ∫∑ ∫
ΓΓ

Φ=Φ+ )(),()(),(
2
1 ** ξξ  (2.17) 

Eq. (2.17) can be written in a matrix form as: 

 GqHu =  (2.18) 

where matrix H  is singular and matrix G  is regular, therefore, the Dirichlet boundary 

condition must be known on at least one element for the solution to be unique. Eq. (2.18) 

is rearranged according to the appropriate boundary conditions and solved as a linear 

algebra problem: 

 bAx =  (2.19) 

The coefficients of H  and G  matrices can either be determined explicitly or are 

computed numerically. Chapter VII describes numerical integration by the use of Taylor 

series expansion (Taylor 1715); however, other numerical integration schemes can be 

used following the same methodology. 
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Chapter III 

Boundary Element Analysis in Engineering Mechanics 

 

Chapter III discusses the usage of boundary element method in engineering 

mechanics. Although boundary element analysis can be performed for skeletal elements, 

such as truss element and beam element, the use of the skeletal elements is limited due to 

the discontinuity in the boundary of the system. The boundary element method is more 

often used for continuum problems such as torsion problem and elasticity problem.  

 

3.1 Torsion Problem 

 Torsion of circular bars is a well known engineering problem to which a solution 

can be relatively easily obtained due to the rotational symmetry of the circular cross-

section. Due to the rotational symmetry, sections which are in some plane in the un-

deformed geometry remain in the same plane in the deformed geometry (Saada 1993). 

The torsional behavior of noncircular cross-sections is a much harder problem since 

noncircular cross-sections do not have a rotational symmetry and thus sections which are 

in some plane in the un-deformed geometry do not remain in the same plane in the 

deformed geometry. This is a direct result of the shear stress distribution which is 

nonlinear for an arbitrary cross-section (Shames and Pitarresi 2000). The torsion problem 

can be expressed in terms of a Laplacian of the warping function ψ , which describes the 

behavior of the out-of-plane behavior of the cross-section: 

 Ω=∇ in02ψ  (3.1) 
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The Laplace equation in Chapter II, Eq. (2.1), consisted of either the Dirichlet or the 

Neumann boundary conditions which were known on the boundary. However, the torsion 

problem is a Neumann problem and therefore only the Neumann boundary conditions are 

known on the boundary of the domain as: 
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For illustrative purpose, a rectangular cross-section with base of  a2  and height of b2  is 

considered (Figure 3.1). 

 

Figure 3.1. Cross-section of a rectangular beam. 

The Neumann boundary conditions on the boundary of the above rectangular section are 

given as: 
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In order to simplify the boundary conditions, a modified warping function 1ψ  can be 

introduced. There is no change in the physics of the problem and the warping function 

substitution is purely made to simplify the computation. The torsion problem can be 

restated as: 

 Ω=∇ in01
2ψ  (3.7) 

where 1ψ  is defined as: 

 ψψ −= 211 xx  (3.8) 

The Neumann boundary conditions are then expressed as (Figure 3.2): 
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Figure 3.2. Neumann boundary conditions for a torsion problem of a rectangular beam. 
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The true solution for the torsion of a rectangular bar (Saada 1993) is: 
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By substituting Eq. (3.12) into Eq. (3.8), the exact solution for the warping function can 

be obtained: 
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In general the exact solution to the torsion problem cannot be found due to the 

complications in the geometry of the cross-section and the applied Neumann boundary 

conditions. Numerical methods such as BEM are used to solve for the unknown warping 

function (Pilkey and Wunderlich 1994). From the approximate solution of the warping 

function the approximate values of stresses and strains can be computed. 

 

3.2 Boundary Element Analysis of the Torsion Problem 

 The boundary element formulation for the torsion problem is the same as 

described in Chapter II. However, the application of boundary conditions deserves a 

special consideration since only the Neumann boundary conditions are known for the 

torsion problem. The boundary element formulation requires that at least one element, 

and therefore a part of the boundary, must have a known Dirichlet boundary condition, 

which in the case of the torsion problem is the warping function. Since the warping 

function is unknown prior to solving a problem, a value at which the warping function is 

zero can be picked arbitrarily. For the rectangular cross-section the warping function 1ψ  
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is zero at the mid-point of all the sides. In this work, BEA is performed assuming that the 

exact solution for the warping function is known for one element (Figure 3.3). 

 

Figure 3.3. Boundary conditions for the boundary element analysis. 

 

Moreover, the applied boundary conditions are considered on the boundary integral 

equation level, thus, the known boundary conditions are not approximated by polynomial 

approximations. The Neumann boundary conditions are evaluated explicitly as: 
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The single Dirichlet boundary condition (Figure 3.3) is evaluated as following: 
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where )(1 ξψ  is the value of the warping function at the node. 
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3.3 Boundary Element Formulation for the Elasticity Problem 

The boundary element formulation for the behavior of an isotropic and 

homogeneous body is discussed in literature (Beskos 1989, Brebbia 1978, Brebbia and 

Dominguez 1992, Hartman 1989, Linkov 2002, Pilkey and Wunderlich 1994). The 

following section reviews the boundary element formulation for the elasticity problem. 

The elasticity problem is: 
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 (3.17) 

where Ω  is the domain of the system, Γ  is the boundary of the domain, ijσ  is the stress 

tensor, ib  is the vector of body force, iu  is the displacement vector with a Dirichlet 

boundary condition iû  on 1Γ , and it  is the traction vector with a Neumann boundary 

condition it̂  on 2Γ . As for the Laplace problem, the solution to Eq. (3.17) cannot be in 

general obtained and it must be approximated by numerical techniques. The first step in 

approximating the solution to Eq. (3.17) is to express it in a weighted residual form or the 

weak form: 

 ( ) 1
*

2
**

,

12

)ˆ()ˆ( Γ−−Γ−=Ω+ ∫∫∫
ΓΓΩ

dtuuduttdub iiiiiiiijijσ  (3.18) 

where *
iu  and *

it  are the vector of weighted residual functions. In the following steps 

Betti’s reciprocal theorem is reviewed and used to formulate boundary integral equations. 

Considering the weighted equilibrium condition from Eq. (3.18) and expanding results in: 
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Applying the chain rule to the first integral in the right side expansion from Eq. (3.19): 
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dududu jiijjiijijij
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Substituting for **
, ijjiu ε=  in Eq. (3.20) results in: 

 ( ) Ω−Ω=Ω ∫∫∫
ΩΩΩ

ddudu ijijjiijijij
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, εσσσ  (3.21) 

 

where ijε  is the linear strain tensor. Applying Gauss integral theorem to the first integral 

on the right side in Eq. (3.21): 

 ( ) Γ=Γ=Γ=Ω ∫∫∫∫
ΓΓΓΩ

dutdundnudu iiijijjiijjiij
***

,
* σσσ  (3.22) 

Substituting the result of Eq. (3.22) into Eq. (3.21) and rearranging terms yields: 

 Γ=Ω+Ω ∫∫∫
ΓΩΩ

dutdud iiijijijij
**

,
* σεσ  (3.23) 

The equilibrium condition, ijij b−=,σ , is substituted into Eq. (3.23) to obtain: 

 Γ=Γ−Ω ∫∫∫
ΓΓΩ

dutdubd iiiiijij
***εσ  (3.24) 

Following the same procedure, Eq. (3.19) through Eq. (3.24), the following equation can 

be obtained: 

 Γ=Γ−Ω ∫∫∫
ΓΓΩ

dutdubd iiiiijij
***εσ  (3.25) 

It is then considered that the body follows the linear elastic constitutive model: 

 klijklij E εσ =  (3.26) 
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where ijklE  is the fourth order linear elasticity tensor. Eq. (3.26) can also be written as: 

 ( )( ) kkijijij
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Also by expansion of ijσ  tensor and symmetry of  ijklE  with respect i , j  and k , l  

indices: 

 ijijijklijklijklklijklijklijijklijklijij EEEE εσεεεεεεεεεσ ****** =====  (3.28) 

By equating the first integral terms in Eq. (3.24) and Eq. (3.25) due to Eq. (3.28), Betti’s 

reciprocal theorem can be obtained: 

 Γ+Γ=Γ+Γ ∫∫∫∫
ΓΓΓΓ

dubdutdubdut iiiiiiii
****  (3.29) 

Substituting equilibrium equation **
, ijij b−=σ  into Eq. (3.29) and rearranging terms results 

in: 

 Γ+Γ=Γ+Γ− ∫∫∫∫
ΓΓΓΓ

dtudbudutdu iiiiiiijij
****

,σ  (3.30) 

In order to decrease the dimension of the integral equation, Eq. (3.30), the weighted 

residual function is set to be the Green’s function, which is obtained by applying a point 

load in direction ia . This can be written as: 

 ijij ax )(*
, ξδσ −−=  (3.31) 

where ξ  is a source point at which a concentrated force is applied, x  is a field point at 

which the response of the system to the application of the concentrated force is observed, 

and )( ξδ −x  is the Dirac delta function. The resulting fundamental solution is: 

 jjii auu ** =  (3.32) 

 jjii att ** =  (3.33) 
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where *
jiu  and *

jit  are i  components of the displacements and tractions, respectively, due 

to a concentrated force in the j  direction, and ja  is a unit vector in the direction of the 

applied concentrated force. The kernel functions *
jiu  and *

jit  are given as: 
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Substituting Eq.(3.31), Eq. (3.32), and Eq. (3.33) into Eq. (3.30) yields: 

 Ω∈Γ+Γ=Γ+ ∫∫∫
ΓΓΓ

ξξ ,)( *** dtaudbauduatau ijjiijjiijjiii  (3.36) 

The indices are exchanged in all the integral terms in Eq. (3.36) as: 

 Ω∈Γ+Γ=Γ+ ∫∫∫
ΓΓΓ

ξξ ,)( *** dtaudbauduatau jiijjiijjiijii  (3.37) 

The ia  coefficients are constant and can be canceled out from Eq. (3.37): 

 Ω∈Γ+Γ=Γ+ ∫∫∫
ΓΓΓ

ξξ ,)( *** dtudbudutu jijjijjiji  (3.38) 

Assuming that the body force is zero, Eq. (3.38) can be simplified to: 

 Ω∈Γ=Γ+ ∫∫
ΓΓ

ξξ ,)( ** dtudutu jijjiji  (3.39) 

Eq. (3.39) is integrated such that the source point, ξ , is enclosed by the circular boundary 

of radius ε , as 0→ε  (Figure 2.1). This results in the right side integral vanishing. For 
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constant elements the left side integral results in )(
2
1 ξu− . Thus on the boundary of the 

system, Eq. (3.39) can be rewritten as: 

 Γ∈=+ ∫∫
ΓΓ

ξξξξ ,)(),()(),()(
2
1 ** dxxtxudxxuxtu jijjiji  (3.40) 

 

3.4 Boundary Element Discretization for the Elasticity Problem 

 In general the boundary integral equation, such as Eq. (3.40), cannot be solved 

analytically. To obtain approximate solutions, the boundary integral equation is 

discretized into boundary elements for which the true solution is approximated by a 

polynomial interpolation between known values of either u  or t . In this work, only 

boundary elements with constant shape functions are used to generate significant 

discretization errors. Higher order polynomials are assumed to approximate the true 

solutions better and thus have a smaller discretization error associated with them. 

Constant elements contain one node per element, leading to the following discretization: 

 kjkj uxxu )()( Φ=  (3.41) 

 kjkj txxt )()( Φ=  (3.42) 

where ku  and kt  are the vectors of nodal values of )(xu j  or )(xt j , respectively, at node 

k  and )(xjkΦ  is the matrix of constant interpolation functions. The discretized Eq. 

(3.40) is written as: 

 k
Elements

jkij
Elements

kjkiji tdxxxudxuxxtu ∑ ∫∑ ∫
ΓΓ

Φ=Φ+ )(),()(),(
2
1 ** ξξ  (3.43) 

Eq. (3.43) can be written in a matrix form: 

 GtHu =  (3.44) 
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where matrix H  is singular and therefore the system satisfies the rigid body motion. To 

obtain a unique solution to Eq. (3.44) at least one boundary condition for the 

displacement must be specified in each dimension of the problem. Eq. (3.44) is 

rearranged according to the appropriate boundary conditions and solved as a linear 

algebra problem: 

 bAx =  (3.45) 

The coefficients of H  and G  matrices can either be determined explicitly or are 

computed numerically. Chapter VII describes numerical integration by the use of Taylor 

series expansion (Taylor 1715); however, other numerical integration schemes can be 

used following the same methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 42

 

Chapter IV 

Interval Analysis 

 

 Chapter IV reviews some of the interval operations which are used throughout the 

latter chapters. 

 

4.1 Interval Operations 

Interval mathematics is described in literature (Alefeld and Herzberger 1983, 

Moore 1966, Neumaier 1990). The following chapter is a summary of the interval 

operations. An interval number ],[~ bax =  is a set of real numbers such that: 

 }|{],[ bxaxba ≤≤=  (4.1) 

where ℜ∈),( ba . Two interval numbers ],[~ bax =  and ],[~ dcy =  behave according to 

the following operations: 

Addition: 

 ],[~~ dbcayx ++=+  (4.2) 

Subtraction: 

 ],[~~ cbdayx −−=−  (4.3) 

Multiplication: 

 )],,,max(),,,,[min(~~ bdbcadacbdbcadacyx =⋅  (4.4) 

Division: 

 ⎥⎦
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Enclosure: 

 bdcayx <<<⇒⊃ ~~  (4.6) 

 bdcayx ≤≤≤⇒⊇ ~~  (4.7) 

Associative property: 

 zyxzyx ~)~~()~~(~ ++=++  (4.8) 

 zyxzyx ~)~~()~~(~ ⋅⋅=⋅⋅  (4.9) 

Commutative property: 

 xyyx ~~~~ +=+  (4.10) 

 xyyx ~~~~ ⋅=⋅  (4.11) 

Subdistributivity property: 

 zxyxzyx ~~~~)~~(~ ⋅+⋅⊆+⋅  (4.12) 

If 0~~ >⋅ zy : 

 zxyxzyx ~~~~)~~(~ ⋅+⋅=+⋅  (4.13) 

If ℜ∈x , for any y~  and z~ : 

 zxyxzyx ~~)~~( ⋅+⋅=+⋅  (4.14) 

The interval numbers exhibit identities with respect to 0  and 1  in interval addition and 

interval multiplication, respectively: 

 xxx ~0~~0 =+=+  (4.15) 

 xxx ~1~~1 =⋅=⋅  (4.16) 

 

 One of the most interesting behaviors of interval numbers is the interval 

dependency. For an interval number ],[~ bax =  and an interval number ],[~ bay =  
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multiplying xx ~~ ⋅  and yx ~~ ⋅  results in different bounds if 0<a , 0>b . In the first 

multiplication every number within the set x~  has to be multiplied by itself. This is not 

true for the second multiplication since it is assumed that the two sets x~  and y~  are 

independent sets. The resulting bounds are: 

 ( )[ ]22 ,max,0~~ baxx =⋅  (4.17) 

 )],max(,[~~ 22 baabyx =⋅  (4.18) 

Interval dependency must be considered in the calculations to obtain sharp and realistic 

results. For matrices with interval coefficients, the interval operations should be 

performed at the last stage to obtain sharp results. This procedure allows preserving 

interval dependency. The following example illustrates this consideration. Let there be 

two interval vectors xBAyxBAy ~)(~),~(~
21 ⋅⋅=⋅⋅=  where: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

2

1

2221

1211

2221

1211
~
~

~,,
a

x
x

x
bb
bb

B
aa
a

A . It is clear that the two vectors are formed by 

the same matrices and vector, however, because of the order of operations they differ. 

Computing the two vectors: 

⎥
⎦

⎤
⎢
⎣

⎡
+++
+++

=⎥
⎦

⎤
⎢
⎣

⎡
+++
+++

=
222221221121221121

222121211121121111
2

2221212221211121

2221211221211111
1 ~)(~)(

~)(~)(~,
)~~()~~(
)~~()~~(~

xbabaxbaba
xbabaxbaba

y
xbxbaxbxba
xbxbaxbxba

y  

it can be clearly seen that 2
~y  is sharper then 1

~y  due to considered dependency of 1
~x  and 

2
~x  throughout the rows of 2

~y . Special care should be given to the order of interval 

operations to obtain sharp bounds on the solution. 
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4.2 Interval Enclosure 

The following section describes the enclosure of interval sets. The enclosure has 

to be guaranteed for the interval solution to interval linear system of equations and is 

used in the latter interval solvers. Monotonic inclusion for sets x~  and y~  where wx ~~ ⊂  

and zy ~~ ⊂  is: 

 zwyx ~~~~ +⊂+  (4.19) 

 zwyx ~~~~ −⊂−  (4.20) 

 zwyx ~~~~ ⋅⊂⋅  (4.21) 

 zy
z
w

y
x ~0,~0,~

~
~
~

∉∉⊂  (4.22) 

The integral of an interval valued function )~(xf , which is the class of all possible 

functions bounded by a given interval, such that )](),([)( xfxfxf ∈ , is performed as: 

 ])(,)([)~( ∫∫∫ =
xxx

dzzfdzzfdzzf  (4.23) 

If )~()~( xgxf ⊂  then: 

 dzzgdzzf
xx
∫∫ ⊂ )~()~(  (4.24) 

 

4.3 Krawczyk Iteration for Interval Linear System of Equations 

The majority of interval systems are solved using iterative techniques. The 

following two sections describe the iterative methods for solving interval linear system of 

equations. The interval linear system of equations can be written as: 

 bxA ~~~ =  (4.25) 
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The solution to these kinds of problems has been studied since 1965 (Hansen 1965). In 

this work two iterative methods are considered, Krawczyk iteration (Krawczyk 1969, 

Neumaier 1990) and interval Gauss-Seidel iteration (Neumaier 1990). The interval linear 

system of equations Eq. (4.25) is solved using Krawczyk iteration based on Brouwer’s 

fixed point theorem (Mullen and Muhanna 1999, Muhanna and Mullen 2001, Muhanna et 

al. 2005). One approach of self-validating (SV) methods to find the zero of the function 

nnxf ℜ→ℜ= ,0)(  is to consider a fixed point function xxg =)( . The transformation 

between )(xf  and )(xg  for a non-singular preconditioning matrix C  is: 

 xxgxf =⇔= )(0)(  (4.26) 

 )()( xfCxxg ⋅−=  (4.27) 

where the function )(xg  is considered as a Newton operator. From Brouwer’s fixed point 

theorem and from: 

 nxsomeforxxg ℜ∈⊆ ~~)~(  (4.28) 

the following is true: 

 0)(:~ =∈∃ xfxx  (4.29) 

This method is used to solve linear system of equations, Eq. (4.25). The preconditioning 

matrix C  is chosen as 1−= AC . From Eq. (4.27) and Eq. (4.28) it follows that: 

 xxCAICb ~~)( ⊆−+  (4.30) 

The left hand side of Eq. (4.30) is the Krawczyk operator (Krawczyk 1969). For the 

iteration to provide finite solution, the preconditioning matrix needs to be proven regular 

(Neumaier 1990, Rump 2001). The following proves this condition. 

Theorem 1. (Rump 2001) givenbexandbCALet nnnn ℜ∈ℜ∈ℜ∈ × ~,~,, . If 



 47

 xxCAICb ~~)( ⊆−+  (4.31) 

xbAsatisfiesbAxofsolutionuniquetheandregularareAandCthen ~1 ∈= −  

)~int(x  refers to the interior of x~ . However, all terms in Eq. (4.25) are interval terms, thus 

the following is a proof for the guarantee of the solution for the equation of this form. 

Theorem 2. (Rump 2001) givenbexandbCALet nnnnnn ℜ∈ℜ∈ℜ∈ℜ∈ ×× ~,~,,~ . If 

 )~int(~)~(~ xxACIbC ⊆−+  (4.32) 

andregularisAAmatrixeveryandCthen ~∈  

 xbAxbbAAxbA n ~}:~~{)~,~( ⊆=∈∃∈∃ℜ∈=∑  (4.33) 

Eq. (4.33) guarantees the solution to the interval linear system of equations, Eq. (4.25). 

The residual form of Eq. (4.33) is (Neumaier 1990): 

 )~int(~)~(~~
0 δδ ⊆−+− ACIxACbC  (4.34) 

where δ~~
0 += xx . A good initial guess is bCx ˆ

0 = , where 1ˆ −= AC , Â  is the midpoint 

matrix of A , and b̂  is the midpoint vector of b . The Krawczyk iteration can be derived 

by considering an interval linear system of equations: 

 eee bxA ~~~ =  (4.35) 

 where AAe
~~ ∈ , bbe

~~
∈  and xxe

~~ ∈ . The exact solution can be obtained as: 

 eee bAx ~~~ 1−=  (4.36) 

Adding zero to the left side and collecting terms results in the following: 

 ( )( )eeeeeeeeeeeee bAIACbCbAbAACbCbAx ~~~~~~~~~~~~~ 1111 −−−− −−=+−==  (4.37) 
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Thus: 

 ( ) eee xIACbCbA ~~~~~ 1 −−∈−  (4.38) 

The hull inverse of a matrix is defined in terms of mapping as: 

 bbAAbAbA eeee
H ~~,~~~~~~ 1 ∈∈= −  (4.39) 

 

Eq. (4.38) is rewritten: 

 ( ) e
H xIACbCbA ~~~~~ −−⊆  (4.40) 

or: 

 ( )[ ] xxIACbCbAH ~~~~~~
I−−⊆  (4.41) 

The Krawczyk iteration follows as: 

 ( )[ ] iii xxACIbCx ~~~~~
1 I−+⊆+  (4.42) 

The convergence of Krawczyk iteration has been improved by ε -inflation (Rump 1980, 

Rump 1992). For a set x~  the ε -inflation is defined as: 

 )0(~:~
εε Uxx +=o  (4.43) 

where )0(εU  is a closed set or radius ε  around the origin of set x~ . Using ε -inflation the 

iteration is modified as: 

 ( )[ ] )0(~)0(~~~~
1 εε UxUxACIbCx iii ⋅⋅−+⊆+ I  (4.44) 

The residual Krawczyk iteration can be derived as following. First a residual is defined 

as: 

 eeee xbA ~~~~ 1 −= −δ  (4.45) 

Adding zero to the residual and collecting terms results in: 
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 ( ) ( )[ ] ( )[ ]eeeeeeeeeeeeeee AxAbxbAAxAb δδδδ ~~~~~~~~~~~~~~~ 1 −−+=−−−+= −  (4.46) 

Multiplying the zero term be a preconditioning matrix C : 

 ( )[ ]eeeeeee AxAbC δδδ ~~~~~~~
−−+=  (4.47) 

Distributing matrix C  and collecting terms: 

 ( ) ( ) ( ) eeeeeeeeeeee ACIxAbCACxAbC δδδδ ~~~~~~~~~~~~
−+−=−−+=  (4.48) 

The iteration follows as: 

 ( ) ( )[ ] iii ACIxAbC δδδ ~~~~~~~
1 I−+−⊆+  (4.49) 

and is terminated when the i th residual encloses the )1( +i th residual. The iteration using 

ε -inflation is modified as: 

 ( ) ( )[ ] )0(~)0(~~~~~~
1 εε δδδ UUACIxAbC iii ⋅⋅−+−⊆+ I  (4.50) 

 

4.4 Interval Gauss-Seidel Iteration for Interval Linear System of Equations 

 A dual method for obtaining solutions to Eq. (4.25) is the interval Gauss-Seidel 

iteration (Neumaier 1990). This method is based on writing Eq. (4.35) explicitly as: 

 ei

n

j
ejeij bxA ~~~

1

=∑
=

 (4.51) 

It is also assumed that eiiA~0∉ . Solving for the i th unknown in the i th equation results in: 

 
eii

n

ijj
ejeijei

ei A

xAb
x ~

~~~

~ ,1
∑

≠=

−
=  (4.52) 
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Also: 

 
ii

n

ijj
jiji

ei A

xAb
x ~

~~~

~ ,1
∑

≠=

−
⊆  (4.53) 

However, not all the available information coming from iterative solutions has been used 

in Eq. (4.53). Except for the solution for the first variable in the first iteration, the next 

iteration can be updated with newly computed solutions. Thus if y~  is the solution at the 

1+i th iterate and x~  is the solution at the i th iterate, Eq. (4.53) can be rewritten as: 

 
ii

n

ijj

n

ijj
jijjiji

ei A

xAyAb
y ~

~~~~~

~ ,1 ,1
∑ ∑

<= >=

−−
⊆  (4.54) 

The total solution is then found as: 

 x
A

xAyAb
y

ii

n

ijj

n

ijj
jijjiji

~~

~~~~~

~ ,1 ,1 I

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −−
⊆

∑ ∑
<= >=  (4.55) 

with the stopping criteria being the same as for Krawczyk iteration. Preconditioning 

Gauss-Seidel iteration further improves the results. 

Theorem 3. (Neumaier 1990) givenbexandbCALet nnnnnn ℜ∈ℜ∈ℜ∈ℜ∈ ×× ~,~,,~ . If 

 EAAC ~~ +=  (4.56) 

iteratesSeidelGaussonedpreconditithecontainiteratesKrawczykthethen −  

A good preconditioning matrix C  for Eq. (4.25) is A , a midpoint matrix of A~ . 
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Chapter V 

Algorithms for Solving Interval Linear Systems of Equations 

 

 Chapter V describes the developed iterative solutions to interval linear systems of 

equations. All of the iterative schemes described below are based on Krawczyk iteration 

and thus guarantee the enclosure of the true solution. Those iterative schemes are used to 

solve the interval linear systems of equations which result from the error analyses 

described in the latter chapters. 

 

5.1 Sharp Algorithm for Interval Linear System of Equations Using Krawczyk 

Iteration 

The following section presents a developed sharp interval solver used to compute 

the guaranteed enclosure for the solution to Eq. (4.25). The algorithm gives sharper 

results than the inbuilt MATLAB 6.5.1, toolbox b4m, algorithm. The initial deterministic 

guess is first computed as: 

 bAx 1
0

−=  (5.1) 

where 1−A  and b  are midpoint matrices of A~  and b~  respectively. Then, the difference 

between I  and the preconditioning matrix 1−A  post-multiplied by the interval matrix A~  

is computed: 

 AAIId
~~ 1−−=  (5.2) 

The difference between the solution and the initial guess is computed and pre-multiplied 

by the preconditioning matrix 1−A : 
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 ( )0
1 ~~~ xAbA −= −δ  (5.3) 

Also: 

 δδ ~~
1 =  (5.4) 

The iteration then follows as: 

 1
~~ δ=eld  (5.5) 

 eldId
~~~~

1 += δδ  (5.6) 

 if eld~~
1 ⊃δ  return to Eq. (5.5) (5.7) 

 if 1
~~ δ⊃eld  (5.8) 

 10
~~ δ+= xx  (5.9) 

 

5.2 Sharp Algorithm for Interval Linear System of Equations Using Krawczyk 

Iteration and Variable Epsilon Inflation 

 The enclosure of the true solution to Eq. (4.25), for large widths of interval 

coefficients of matrix A~ , is generally very wide and consist of large overestimation of 

the true solution. This is due much to the fact that each iterate is based on the previous 

iterate and therefore the size of each computed set is directly related to the previously 

computed set. Thus, the final enclosure depends on the path of iteration which in most 

cases largely overestimates the true solution. To account for the width of each iterate an 

algorithm is developed in which the ε -inflation (Rump 1980, Rump 1992) is allowed to 

vary. Many enclosures are found, using different ε -inflations for each solution, and the 

sharpest solution is found to be the final enclosure. The only change in the algorithm 

from the previous section thus occurs at the iteration step in Eq. (5.5): 



 53

 )0(~~
1 εδ Ueld +=  (5.10) 

 

5.3 Sharp Algorithm for Parametric Interval Linear System of Equations  

 The previously developed algorithms are incapable of computing sharp or nearly 

sharp bounds on the solution if the interval linear system of equations is functionally 

dependent. The above solver considers all matrix and vector coefficients to be 

independent interval numbers. However, in some cases the entire linear system of 

equations can be expressed as a function of one variable. In general this function may be 

complicated and the interval variable cannot be factored out of the system directly. This 

section describes a developed algorithm to incorporate a single interval dependency into 

the interval solver from the previous section. Let us assume that the entire system of 

interval linear equations depend on a single variable ξ~ . The coefficients of the A~  and b~  

matrices are computed for each subinterval iξ
~  such that 

 0~~~~
11

==
==
IU

n

i
ii

n

i

and ξξξ  (5.11) 

 which results in the interval linear system of equations for each iξ
~ : 

 )~(~~)~(~
ii bxA ξξ =  (5.12) 

The initial solution is considered as deterministic and found as: 

 bAx 1
0

−=  (5.13) 

where, A  and b  are the midpoint matrices of A~  and b~ , respectively. For each 

subinterval iξ
~  a preconditioning matrix is computed: 

 [ ] 1
)~(~)~(
−

= ii AmidC ξξ  (5.14) 
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The difference between the preconditioning matrix )~( iC ξ  post-multiplied by the interval 

matrix )~(~
iA ξ  and I  is computed for every iξ

~ . 

 )~(~)~()~(~
iiid ACII ξξξ −=  (5.15) 

The difference between the solution and the initial guess is computed for each iξ
~  and 

pre-multiplied by the preconditioning matrix )~( iC ξ : 

 ( )0
1

)~(~)~(~)~(~ xAbC iii

n

i

ξξξδ −=
=
U  (5.16) 

Also: 

 δδ ~~
1 =  (5.17) 

The iteration then follows as: 

 1
~~ δ=eld  (5.18) 

 ( ) eldIxAbC idiiii
~)~(~)~(~)~(~)~()~(~

01 ξξξξξδ +−=  (5.19) 

 )~(~~
1

1
1 i

n

i

ξδδ U
=

=  (5.20) 

 if eld~~
1 ⊃δ  return to Eq. (5.18) (5.21) 

 if 1
~~ δ⊃eld  (5.22) 

 10
~~ δ+= xx  (5.23) 
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5.4 Generalized Interval Linear System of Equations 

 

5.4.1 Transformation of Generalized Interval Linear System of Equations to 

Interval Linear System of Equations 

A generalized interval linear system of equations can be written as: 

 121
~~~~~ bxAxA =+  (5.24) 

The solution to Eq. (5.24) is not necessarily the same as for Eq. (4.25) due to the 

subdistributivity property of interval numbers. The solution to Eq. (4.25) can be in fact a 

subset of the solution to Eq. (5.24) as: 

 ( ) 12121
~~~~~~~~~~ bxAxAxAxAA =+⊆=+  (5.25) 

This section describes the developed transformation of Eq. (5.24) to be in the form of Eq. 

(4.25) such that the iterative methods described in the previous sections can be applied.  

Considering an equation: 

 eeeee bxAxA 121
~~~~~ =+  (5.26) 

where 11
~~ AA e ∈ , 22

~~ AA e ∈ , 11
~~ bb e ∈ , xxe

~~ ∈  and eA1  is regular eee AAA 111
~∈∀ . Pre-

multiplying Eq. (5.26) by 1
1

~−
eA  results in: 

 eeeeeeee bAxAAxAA 1
1

12
1

11
1

1
~~~~~~~~ −−− =+  (5.27) 

Letting IAA ee =−
1

1
1

~~ , eee AAA 32
1

1
~~~ =−  and eee bbA ~~~

1
1

1 =− , Eq. (5.27) can be written as: 

 eeee bxAx ~~~~
3 =+  (5.28) 

Since the first term in Eq. (5.28) is a deterministic identity matrix pre-multiplying ex~ , the 

following substitution can be made directly. Letting ee AAI ~~
3 =+  results in: 
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 eee bxA ~~~ =  (5.29) 

Eq. (5.29) is in the form of Eq. (4.25) and thus the iterative methods described previously 

can be used to obtain its guaranteed solution. 

 

5.4.2 Solver for the Generalized Interval Linear System of Equations 

 The following section describes a developed algorithm to compute the solution to 

Eq. (5.24) using Krawczyk iteration. Considering an interval linear system of equations: 

 121
~~~~~ bxAxA =+  (5.30) 

The system is preconditioned by 1
1
−A , where 1A  is the midpoint matrix of 1

~A , as: 

 1
1

12
1

11
1

1
~~~~~ bAxAAxAA −−− =+  (5.31) 

The following substitution is performed 11
1

1
~~ IAA =− , 32

1
1

~~ AAA =−  and bbA ~~
1

1
1 =− : 

 bxAxI ~~~~~
31 =+  (5.32) 

1
~I  is replaced by I  resulting in: 

 bxAxI ~~~~
3 =+  (5.33) 

Since I  is deterministic it can be directly added to 3
~A . Substituting AAI ~~

3 =+  Eq. (5.33) 

is written as: 

 bxA ~~~ =  (5.34) 

The iteration proceeds as in the case of solving Eq. (5.34) by the described algorithm. 

The only difference is the replacement of Eq. (5.3) by: 

 ( )02011
1

1
1 ~~~~ uAuAbAA −−= −−δ  (5.35) 
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5.4.3 Parameterized Solver for the Generalized Interval Linear System of Equations 

 The previously developed algorithm is incapable of computing sharp or nearly 

sharp bounds on the solution if the interval linear system of equations is functionally 

dependent. This section describes a developed algorithm to incorporate a single interval 

dependency into the interval solver from the previous section. Again, let us assume that 

the entire system of interval linear equations depend on a single variable ξ~ . The 

coefficients of the 1
~A , 2

~A , and 1
~b  matrices are computed for each subinterval iξ

~  such 

that Eq. (5.11) holds. The parameterization results in the interval linear system of 

equations for each iξ
~ : 

 )~(~~)~(~~)~(~
121 iii bxAxA ξξξ =+  (5.36) 

Preconditioning and substitution as described in the previous section lead to: 

 )~(~~)~(~
ii bxA ξξ =  (5.37) 

The iteration proceeds as in the case of solving Eq. (5.12) by the described algorithm. Eq. 

(5.16) is replaced by: 

 ( )02011
1

1
1

)~(~)~(~)~(~)~()~(~ xAxAbAC iiiii

n

i

ξξξξξδ −−= −

=
U  (5.38) 

and Eq. (5.19) is replaced by: 

 ( ) eldIxAxAbAC idiiiiii
~)~(~)~(~)~(~)~(~)~()~()~(~

02011
1

11 ξξξξξξξδ +−−= −  (5.39) 

 

 

 

 



 58

 

Chapter VI 

Uncertainty in Boundary Conditions 

 

Chapter VI describes the treatment of the uncertain boundary conditions using an 

interval approach. A computational scheme which obtains exact solutions is also 

developed. 

 

6.1 Interval Treatment of Uncertainty Present in Boundary Conditions 

 In already existing engineering systems the boundary conditions, natural or 

forced, cannot be precisely known due to limitations in the precision of the 

measurements. However, most engineering systems which are analyzed are not in 

existence and the boundary conditions must be assumed. Moreover, the engineer has to 

predict the worst case behavior of the system with the limited resources available. One of 

the limitations is the knowledge of the boundary conditions that the system is subjected 

to. Most boundary conditions are determined either from experience, historical data, or 

from assumption and are not reliable. Due to this uncertainty, for most engineering 

systems the worst case behavior of the system cannot be determined. For engineering 

systems with relatively small amount of degrees of freedom, the exact behavior of the 

system considering bounded uncertainty in boundary conditions can be computed from 

combinatorial methods. Probabilistic approach can also be used through Monte Carlo 

simulation (Hammersley and Handscomb 1964) to obtain inner bounds of the true 

solution to the behavior of the engineering system. This approach, however, does not 



 59

guarantee the worst case behavior as only the inner bounds are obtained. Moreover, both 

the combinatorial and the probabilistic approaches are computationally very expensive 

and cannot be performed for realistic engineering systems. Despite these limitations in 

the analysis, an engineer is expected to predict the worst case behavior of the system and 

to achieve a reliable design. 

 

In this work, the uncertainty in boundary conditions is considered as an interval 

number resulting in interval vectors u~  and q~  (Zalewski et al. 2006). The interval bounds 

on u~  and q~  result from considering an unknown but bounded probability density 

function. The bounds for an unknown probability density function may come from the 

lowest and highest observed values from historical data, experimental data, or design 

criterion. The correct determination of these bounds is not a focus of this work and is to 

be treated as a separate issue. The interval approach allows to consider all the possible 

patterns of uncertain boundary conditions and thus to obtain the worst case bounds on the 

solution. Since interval numbers consider all possible values, interval operations directly 

give enclosure of the true solution without the large computational expense of performing 

combinatorial or Monte Carlo simulations. In the consideration of uncertain boundary 

conditions, the numerical errors are not accounted for and it is assumed that the H  and 

G  matrices are computed explicitly. This leads to the interval boundary element method 

(IBEM) formulation considering the uncertainty in the boundary conditions and the linear 

system of equations becomes: 

 qGuH ~~ =  (6.1) 

The system is rearranged according to the appropriate boundary conditions: 
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 yBxA ~~ =  (6.2) 

where x~  is the vector of the unknown boundary conditions and y~  is the vector of the 

applied boundary conditions. The system is then solved as: 

 yBAx ~~ 1−=  (6.3) 

resulting in wide solution due to the unconsidered dependency throughout the rows of x~ . 

To obtain sharp results, the two deterministic matrices are multiplied first and then post-

multiplied by an interval vector to preserve interval dependency: 

 ( )yBAx ~~ 1−=  (6.4) 

In case H  and G  matrices cannot be computed exactly, numerical integration must be 

used resulting in an integration error. The error is considered in the latter chapter. 
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Chapter VII 

Integration Error and Rounding Error 

 

The following chapter describes the interval treatment of integration error. The 

integration scheme which is used to demonstrate the method is the polynomial expansion 

using Taylor series. 

 

7.1 Taylor Series Expansion 

In this work, Taylor series expansion (Taylor 1715) is considered as an example 

scheme for numerical integration. The integration error, which results from the 

approximation of the function by a finite series, is treated by an interval approach to 

ensure the guaranteed enclosure of the true error. Although a specific numerical 

integration scheme is considered as an example, the methodology can be extended to any 

numerical integration procedure. The following chapter develops the treatment of 

integration error in the boundary element method using interval concepts. 

Any function can be expressed as a polynomial in terms of its derivatives at some point 

a  using Taylor series expansion: 

 m
m

ax
m

afaxafaxafafxf )(
!

)(...)(
!2

)()(
!1

)(
!0

)()( 2 −++−
′′

+−
′

+=  (7.1) 

where ∞→m . If the function has a finite amount of nonzero derivatives, it can be 

integrated exactly: 

 ∫∫ −++−
′′

+−
′

+=
x

n
n

x

dxax
n

afaxafaxafafdxxf ])(
!

)(...)(
!2

)()(
!1

)(
!0

)([)( 2  (7.2) 
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where n  corresponds to the last nonzero derivative of the function. Since a function 

)(xf  is represented by a polynomial, its integration can be performed as: 

 
x

n
n

x

ax
n

afaxafaxafxafdxxf ⎥
⎦

⎤
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⎣

⎡
−

+
++−
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6
)()(

2
)()()(  (7.3) 

However, if the function has an infinite amount of nonzero derivatives, integration of the 

Taylor series introduces integration errors, since not all terms in the series can be 

accounted for. 

 

7.2 Error Analysis on Taylor Series Expansion 

Considering a function having an infinite number of nonzero derivatives, its 

expansion can still be expressed exactly by considering Taylor series expansion with 

remainder given as: 

 n
n

n

Rax
n

afaxafaxafafxf +−
−

++−
′′

+−
′

+= −
−

1
1

2 )(
)!1(
)(...)(

!2
)()(

!1
)(

!0
)()(  (7.4) 

where n  corresponds to the thn  derivative of the function and nR  is the series remainder: 
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Thus, any function can be integrated exactly as: 
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Hence, integration error ∫
x

ndxR  can be defined: 
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Integrating Eq. (7.5) yields: 
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However, the closed form solution of ∫
x

ndxR  cannot be obtained since ζ  in general is 

unknown and therefore the minimum and the maximum values of the integration error are 

computed. 
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Having the extreme bounds on the integration error, the integration error can be 

expressed as an interval number: 
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However, for high precision numerical integration, the integration error will be small 

compared to the smallest machine number. In this case, the absolute value of the lower 

and upper bounds are numerically close to each other, and the true lower and upper error 
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bounds may be ambiguous. To ensure that the correct bounds are enclosed, the error is 

bounded using the maximum absolute value of the remainder as (Zalewski et al. 2006): 

 [ ] xa
n

axfabsE
x

x

nn

nIntegratio ≤≤−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

=
+

ζζ ,1,1
)!1(

))((max~ 2

1

1

 (7.12) 

Also, using 
2
m  point integration based on the Taylor series expansion, where m  is an 

even positive real number, results in the approximate terms of the H  and G  matrices 

computed as: 
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7.3 Interval Boundary Element Method Formulation Considering Integration Error 

 Eq. (7.12) obtains the bounds on the integration error for Taylor series expansion. 

However, the equation becomes trivial if the absolute value of the minimum or maximum 

of the remainder approaches infinity. This is the case for the diagonal matrix coefficients 

of the G  matrix and therefore they require a special treatment. Also the diagonal 

coefficients of the H  matrix require special consideration since their integral is zero and 

therefore the integration error is zero for those terms. 

 

In considering the integration error in IBEM, the approximate values of all matrix 

coefficients are first evaluated using Eq. (7.13). The integration error bounds of the non-

diagonal coefficients of the H  and G  matrices are computed using Eq. (7.12). The 

integral and therefore the integration error of the diagonal terms of the H  matrix are zero 

as described previously. The interval diagonal coefficients of the H  matrix are computed 
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such that matrix H  encloses a singular matrix and therefore it satisfies the boundary 

element formulation. This requires that at least one boundary value of the potential is 

known for the problem to have a unique solution. 

 

The diagonal coefficients of the G  matrix contain singular integrals, as the 

distance || ξ−= xr  from Eq. (2.7) vanishes at the node. This is due to the choice of the 

weighting function to be the Green’s function in the boundary element formulation. The 

approximate value of the diagonal coefficients is computed using Eq. (7.13). Since the 

function is singular at the node, [ ]{ })(max ζnfabs  becomes infinite and Eq. (7.12) cannot 

be used to meaningfully determine the error bounds. Therefore, the closed form solution 

of the improper integral of the diagonal coefficients of the G  matrix is found, which is 

not necessarily in the domain of the actual integration over an element. The integration 

domain of the closed form improper integral is found from the explicit integration tables 

and is integral dependent. The integration domain of the element is determined from the 

coordinates of its endpoints. If the domain of the improper integral is equal to that of the 

element, the difference between the closed form solution and the numerical integration is 

considered as the integration error. Due to the same numerical considerations as in the 

previous section, symmetric interval bounds are then found as: 
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If the domain of the improper integral is different than that of the element, the remaining 

domain is integrated numerically using Eq. (7.13) and the error found using Eq. (7.12). 
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The IBEM formulation results in interval non-diagonal matrix coefficients for H  and G  

matrices computed as: 
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The diagonal coefficients of the G  matrix are computed as following: 
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Eq. (7.15) and Eq. (7.16) can be rewritten as: 

 nIntegratio
x

Edxxf ~)( +∫
)

 (7.17) 

Where ∫
x

dxxf )(
)

 is the numerical integration of ∫
x

dxxf )( . The diagonal coefficient of 

the H  matrix, where nxnH ℜ∈ , are computed from the boundary element formulation as: 
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Hence, interval boundary element analysis (IBEA), using the interval bounds on the 

integration error is performed resulting in: 

 qGuH ~~~~ =  (7.19) 

Eq. (7.19) is rearranged according to the appropriate boundary conditions: 

 bxA ~~~ =  (7.20) 
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The interval linear system of equation can be solved using the iterative methods 

described in the previous chapters. The rounding error (Alefeld 1983, Gay 1982, Hansen 

1965, Jannson 1990, Neumaier 1987, Neumaier 1989, Neumaier 1990, Rump 1990, 

Rump 2001, Sunaga 1958) can be implemented into the interval solver. 
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Chapter VIII 

Discretization Error 

 

 Chapter VIII develops the boundary element formulation to account for 

discretization error using interval concepts. 

 

8.1 Interval Treatment of the Discretization Error 

The discretization error in the solutions to integral equations results from 

considering a finite number of points for which the solutions are computed. In general, 

the true solutions to integral equations are functions, not discrete values, and therefore the 

space of the approximate solutions does not cover the space of the true solutions. The 

boundary integral equations can be obtained by the use of point collocation methods 

resulting in equation of the form of Eq. (2.14). The boundary integral equations are 

satisfied exactly only if all the locations of the source point ξ  on the boundary are 

considered. However, to obtain a linear system of equations, a finite amount of source 

points is considered. Moreover, the location of the source points is unique and the 

solution is considered as a polynomial interpolation between the discrete values whose 

location corresponds to the location of the source point. This allows for the linear system 

of equations to be unique and thus the system can be solved for the unknown boundary 

values. It should be noted that if all source points are considered, the boundary values at 

all points can be computed, resulting in the true solution. The boundary integral equation 

can also be evaluated over n  sub-domains as expressed by Eq. (2.17). The unique 
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location of the source point and its correspondence to the point at which the approximate 

solution is computed must be satisfied for all sub-domains. Eq. (2.17) is satisfied exactly 

only if all the locations of the source point are considered. Thus the discretization error is 

introduced in the same manner as in Eq. (2.14). 

 

In the analysis of the discretization error, all the locations of the source point in 

the continuous boundary integral equation: 

 Γ∈=+ ∫∫
ΓΓ

ξξξξ ,)(),()(),()(
2
1 ** dxxqxudxxuxqu  (8.1) 

are treated via interval approach. The existence and uniqueness of the solution to the 

above problem for two dimensional Laplace equation when u  or q , but not both, is 

given, is well studied (Friedman 1976). Considering interval bounds on all the possible 

locations of the source points allows obtaining interval solutions which enclose the true 

solution. From the interval bounds on the boundary values, the bounds on the true 

solution for any point in the domain can be computed. Eq. (8.1) is bounded by an interval 

boundary integral equation in which the terms ),(* ξxu  and ),(* ξxq  are enclosed by 

known interval-valued functions. The unknown functions )(xu  and )(xq  in Eq. (8.1) are 

then bounded by interval values enclosing the true solution. 

 

The integral over the domain can be expressed as the sum of the integrals over the 

elements, Eq. (2.17), and thus the boundary integral equation must be bounded on each 

element for all the locations of the source points. Hence, for the boundary Γ  is 
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subdivided into n  boundary elements and for each element j  the interval values u~  and 

q~  that bound the functions )(xu  and )(xq  are found (Figure 8.1). 

 

Figure 8.1. Interval bounds on a function. 

 

It is assumed that on all other elements except for the element in consideration the 

bounds on all boundary values are known. Also either the Dirichlet or the Neumann 

boundary condition bounds are known for the element in consideration and the remaining 

boundary value for the single element in consideration is enclosed. The process is 

repeated for the second element with the assumed bounds for all the other elements, a 

computed bound for the previously considered element, and either the Dirichlet or the 

Neumann boundary condition bounds for the second element in consideration. This 

procedure known as the interval Gauss-Seidel iteration is performed for all elements until 

the true solution is enclosed. Mathematically the above statement can be expressed as: 

 



 71

 

{ }

{ }

∑ ∫∑ ∫

∫∫

∑ ∫∫∑ ∫

∫

≠= Γ≠= Γ

ΓΓ

≠= ΓΓ≠= Γ

Γ

Γ−Γ

+Γ+=Γ

∀

≤≤≤≤

≠∀≤≤≤≤∈∀

Γ−Γ+Γ

=Γ+

∀

≤≤≤≤

≠∀≤≤≤≤∈∀

n

jii
iij

n

jii
iij

jjjjjjj

j

jjjjjj

iiiiii

n

jii
iijjjj

n

jii
iij

jjjj

j

jjjjjj

iiiiii

ii

jj

iji

j

dxqxudxuxq

dxuxqudxqxu

qqqFinduuuknownAlso

jiknownisqqquuuAssumenj

Or

dxuxqdxqxudxqxu

dxuxqu

uuuFindqqqknownAlso

jiknownisqqquuuAssumenj

,1

*

,1

*

**

,1

**

,1

*

*

)(),()(),(

)(),()(
2
1)(),(

.

.,,...,2,1

)(),()(),()(),(

)(),()(
2
1

.

.,,...,2,1

ξξ

ξξξ

ξ

ξξξ

ξξ

ξ

 (8.2) 

Each term of the summation in Eq. (8.2) is represented graphically (Figure 8.2). 

 

Figure 8.2. Integration from element B from point P on element A. 

 

If u  or q  are specified boundary conditions, the interval integration can be 

performed explicitly as described in the previous section. In this work, for computational 

purposes, the system is solved using Krawczyk iteration rather than using the interval 

Gauss-Seidel iteration. This substitution of the method for bounding the unknown 

boundary values can be made since both of these methods are iterative methods for 
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solving interval linear systems of equations and both obtain guaranteed bounds for the 

solution. Hence, the formulation of the interval boundary integral equations for the IBEM 

is performed such that the resulting interval linear system of equations is of the form of 

Eq. (4.25). 
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Chapter IX 

Kernel Splitting Technique 

 

 Chapter IX describes the development of the interval kernel splitting technique to 

enclose the interval Fredholm equation of the first kind. The enclosed interval equations 

are then solved using boundary element formulation. Since the resulting interval 

boundary integral equations enclose the continuous interval equations, their solutions 

enclose the solutions to the continuous problem. 

 

9.1 Interval Kernel Splitting Technique 

The analysis of the discretization error requires that the boundary integral 

equations for each element be enclosed for all the locations of the source point ξ . The 

integral equations in the boundary element formulation are of the form of the Fredholm 

equation of the first kind (Fredholm 1903). Kernel splitting techniques have been used to 

enclose the Fredholm equation of the first kind in which the right side is deterministic 

(Dobner 2002) as: 

 )()(),(~ ξξ bdxuxa =Γ∫
Γ

 (9.1) 

However, the interval boundary integral equations considered herein have an interval 

right side, due to the interval location of the source point ξ~ , and therefore a new interval 

kernel splitting technique (IKST) is developed (Zalewski and Mullen 2008). 
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Proof: The integral of the product of two functions is enclosed considering interval 

bounds on the unknown value as: 

 )~()()~,(~)~,( ξξξ bdxxuxadxuxa =⊇ ∫∫
ΓΓ

 (9.2) 

To separate the kernels such that the unknown u~  can be taken out of the integral on Γ , 

the left side integral from Eq. (9.2) is expressed as a sum of the integrals: 
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i  and: 

 0)~,( >ξxa    or   0)~,( <ξxa    1Γon  (9.4) 

                                                               0)~,( ∈ξxa            2Γon  (9.5) 

The interval kernel is of the same sign on 1Γ , thus u~  can be taken out of the integral on 

1Γ : 

 udxxadxuxa ~)~,(~)~,(
11
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Due to the subdistributive property of interval numbers, u~  cannot be taken out of the 

integral on 2Γ . The direct application of the subdistributive property may result in inner 

bounds on the interval integral as: 

 ∫∫
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⊆
22

~)~,(~)~,( dxuxaudxxa ξξ  (9.7) 

Hence the interval kernel is bounded by its limits on 2Γ : 
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where a~  is defined as: 
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 ],[~ εεε −=  (9.10) 

ε  is the tolerance level of the nonlinear solver used to find the zero location of )~,( ξxa . 

In order to show that enclosing the kernel function by a~  on 2Γ  allows u~  to be taken out 

from the integral on 2Γ , the integral on 2Γ  is expressed as an infinite sum: 
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where x∆  is a small part of 2Γ . Thus u~  can be taken out of both integrals on 1Γ  and on 

2Γ  and the split interval boundary integral equation becomes: 
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 (9.12) 

The kernels are bounded for all the elements resulting in interval linear system of 

equations: 
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 buAuA ~~~~~
21 ⊇+  (9.13) 

Therefore, the IKST bounds the continuous boundary integral equation for all the 

locations of the source point ξ  and Eq. (8.1) is guaranteed to be satisfied for all the 

weighted residual functions. 
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Chapter X 

Interval Boundary Element Method Formulation Considering Discretization Error 

 

 Chapter X describes the interval boundary element formulation to account for the 

discretization error using the concepts described and developed in the previous chapters. 

A correct system parameterization is considered to obtain a unique solution and realistic 

interval enclosure. 

 

10.1 Interval Treatment of Discretization Error in Boundary Element Analysis 

The previous sections described the treatment of the discretization error via 

interval methods. This section provides the IBEM formulation considering the 

discretization error (Zalewski and Mullen 2008). In order to obtain a true solution to the 

boundary integral equation, the integral equation must be satisfied for all weighted 

residual functions in the point collocation method, i.e. the integral equation must be 

satisfied for all locations of the source points ξ . Each source point must have a unique 

location on an individual element to obtain a unique linear system of equations. 

Furthermore, the source point must have the same location on any particular element 

throughout the rows of the H  and G  matrices, which are in nxnℜ . Direct interval 

approach considers the location of the source point on the entire element and thus allows 

two source points to share the same location on two adjacent elements. Naive interval 

analysis does not consider a unique location of the source point on an individual element, 

resulting in the reduction of the rank of the system of equations. Also, since the kernel 
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functions are nonlinear functions of ξ , the location of the source point cannot be directly 

taken out of the integral. Thus, the interval bounds on the location of the source point ξ~  

are subdivided to increase the dependency of their location on an individual element and 

to satisfy the uniqueness of the location of each source point to obtain n  independent 

equations. For convenience, the system is parameterized such that ]1,0[~
=ξ  is the 

location of the source point that is scaled according to the length of each element. In 

performing interval matrix products, the value of ξ~  is decomposed into subintervals such 

that: 

 0~,~~
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ii

n

i

and ξξξ  (10.1) 

The parameterized boundary integral equation is enclosed using IKST for each 

subinterval iξ
~ , resulting in the linear system of equations: 

 qGqGuHuH iiii
~)~(~)~(~)~(~)~( 2121 ξξξξ +=+  (10.2) 

where the kernel is either positive or negative for )~(1 iH ξ  and )~(1 iG ξ  and contains zero 

for )~(2 iH ξ  and )~(2 iG ξ . The system of equations is rearranged according to the boundary 

conditions yielding: 

 )~(~)~(~)~( 121 iii bxAxA ξξξ =+  (10.3) 

The resulting Eq. (10.3) is solved using a parametric interval equation solver described in 

Chapter V with a preconditioning matrix being an identity matrix I  which numerically 

gave the sharpest results. 
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Chapter XI: Discretization Error for Domains with Flux Singularities 

 

 The following chapter develops the treatment of flux singularities in interval 

boundary element formulation for the analysis of the discretization error. Interval 

enclosure of the true solution is considered on all the boundaries except for the portion at 

which a flux singularity occurs for which the strength of the singularity is bounded. 

 

11.1 Interval Boundary Element Formulation for Systems with Flux Singularities 

Enclosing the exact solution using the methods described in the previous chapters 

leads to infinite bounds for systems whose true solution is singular at some point. The 

algorithms to solve the interval linear system of equations, chapter V, consider bounds on 

all unknown variables and therefore if one of them is infinite, the resulting bounds will be 

infinite for all the unknown variables. This section describes the interval treatment of 

geometrically induced flux singularities such that meaningful discretization error bounds 

can be obtained for all the unknown variables except for the one at which the singularity 

occurs. 

 

In engineering problems, singular flux solutions are generated by the geometry of 

the system such as a reentrant corner or a slit such as crack in engineering mechanics. 

Despite the presence of the singularity, the continuous boundary integral equation is still 

satisfied. For simplicity the boundary is taken to be along the x  direction resulting in a 

boundary integral equation of the following form: 
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Let us assume that the true solution to a flux on part of boundary 1Γ  is singular. Thus, 

treating Eq. (11.1), with an interval approach described in previous chapters, results in 

infinite bounds as described above. The integral on the right side of Eq. (11.1) is 

separated to isolate the singular terms. 
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Eq. (11.2) can be discretized following the boundary element formulation as: 

 
ingularsi

Elements

i
Elements

i
Elements

i

qdxxxu

qdxxxuudxxxqu
xx

∑ ∫

∑ ∫∑ ∫

Γ

Γ−ΓΓ

Φ+

Φ=Φ+

1

1

)(),(

)(),()(),(
2
1

*

**

ξ

ξξ
 (11.3) 

To eliminate the effect of the singular flux solution on boundary 1Γ , such that meaningful 

interval bounds can be computed, the original shape function for the singular flux 

element is replaced by a new shape function consisting of the original shape function 

multiplied by the strength of the singularity. The strength of the singularity can be found 

by satisfying zero Dirichlet boundary conditions, for a solution which is singular at a 

point, for a correct geometry which induces the same singularity as encountered in the 

problem. To obtain the strength of the singularity for the Laplace problem, one needs to 

solve: 

 ( )θmru m sin=  (11.4) 

where r  is the distance from the singularity, θ  is the angle from the horizontal, and m  is 

the strength of the singularity which is obtained from satisfying the boundary conditions 
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for an appropriate geometry. Multiplying the original shape function )(xΦ  by the 

singularity strength found from Eq. (11.4) results in the singular flux ingularsq  to be 

replaced by a finite flux intensity factor q̂ . Thus Eq. (11.3) can be rewritten as (Mikhlin  

1965, Samko 2002, Zalewski and Mullen 2008): 
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 (11.5) 

where )(xr  is the distance from singularity to any field point x  and m  is the strength of 

the singularity which depends on the geometry of the system and is known prior to the 

analysis by solving Eq. (11.4). It is important to note that q̂  is not a value of the flux on 

boundary 1Γ  but rather it is the flux intensity factor, which is analogous to the stress 

intensity factor used in fracture mechanics. Eq. (11.5) is enclosed using parametric IKST 

resulting in the system of equations: 

 qGqGuHuH iiii
~)~(~)~(~)~(~)~( 2121 ξξξξ +=+  (11.6) 

where the kernel is either positive or negative for )~(1 iH ξ  and )~(1 iG ξ  and contains zero 

for )~(2 iH ξ  and )~(2 iG ξ . Vector q~  consists of the bounds on the nonsingular flux values 

as well as the bounds on flux intensity factors for the elements with singular flux value: 

 1
~~

−Γ= xii onqq  (11.7) 

 1
~̂~ Γ= onqq ii  (11.8) 

The system of equations is rearranged according to the boundary conditions yielding: 

 )~(~)~(~)~( 121 iii bxAxA ξξξ =+  (11.9) 
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Vector x~  consists of the bounds on the nonsingular boundary values as well as the 

bounds on flux intensity factors for the elements with singular flux value. Eq. (11.9) is 

then solved using the interval equation solver described in Chapter V. 
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Chapter XII: Interval Bounds on the Solutions in the Domain of the System 

 

 Chapter XII describes the enclosures of the true solution in the domain of the 

system provided that the enclosure of the boundary values is guaranteed. 

 

12.1 Enclosure of the Internal Potential Variable 

 The methods described in chapters VIII through XI obtain guaranteed enclosure 

of the solution on the boundary of the domain. The obtained boundary values, and 

possibly the applied boundary conditions, are interval numbers and therefore a special 

consideration needs to be given when computing internal variables. This chapter 

describes the treatment of the discretization error for the internal variables. It is assumed 

that the interval bounds for the boundary variables are computed using the methods 

presented in the previous chapters and therefore they guarantee the enclosure of the true 

solution on the boundary of the system. If the bounds on the boundary values are not 

guaranteed the enclosure of the true solution in the interior of the domain is not 

guaranteed either. In conventional boundary element analysis the internal potential is 

computed as: 

 Ω∈−= ∫∫
ΓΓ

ξξξξ ,)(),()(),()( ** dxxuxqdxxqxuu  (12.1) 

where the location of the source point corresponds to the point at which the potential is to 

be calculated. If IBEM is used to compute interval bounds on all boundary values Eq. 

(12.1) is modified as: 
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 Ω∈−= ∫∫
ΓΓ

ξξξξ ,~),(~),()(~ ** dxuxqdxqxuu  (12.2) 

where u~  are the bounds on the boundary potentials, q~  are the bounds on the boundary 

fluxes, and )(~ ξu  is the bound on the internal potential. Direct integration of Eq. (12.2) 

may result in inner bounds on the true solution if the kernel functions change signs. This 

is a direct result of the subdistributive property of interval numbers, Eq. (4.12), and is 

analogous to the consideration given in developing IKST. Therefore, the domain of the 

integrals in Eq. (12.2) is separated such that the kernel functions, which are deterministic 

since the source point now has a prescribed location, are either positive or negative. 

 ∫∫∫∫
ΓΓΓΓ

−−+=
2121

~),(~),(~),(~),()(~ **** dxuxqdxuxqdxqxudxqxuu ξξξξξ   

(12.3) 

where 

 1
** 0),(0),( Γ∀≥≥ onxxqandxu ξξ  (12.4) 

 2
** 0),(0),( Γ∀≤≤ onxxqandxu ξξ  (12.5) 

Separating the integrals in such form also allows taking out the interval bounds out of the 

integrals without violating the subdistributive property as in IKST: 

 udxxqudxxqqdxxuqdxxuu ~),(~),(~),(~),()(~
2121

**** ∫∫∫∫
ΓΓΓΓ

−−+= ξξξξξ   

(12.6) 

Eq. (12.6) can be written in matrix form as: 

 uHuHqGqGu ~~~~)(~
2121 −−+=ξ  (12.7) 
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It should be noted that Eq. (12.7) does not introduce any new overestimation since the 

interval integration is performed exactly in the form of matrix multiplication. The only 

overestimation occurs due to the computed boundary values. 

 

12.2 Enclosure of the Internal Flux Variable 

 The following section describes the computation of the flux variables for a two 

dimensional Laplace equation. There is no loss of generality in the formulation and the 

Laplace equation is strictly used for illustrative purposes. The procedure can be readily 

extended to other linear elliptic problems. The conventional computation of the internal 

flux variables is performed as: 

 qGuHqx ζπζπ
ξ

∂
∂

−
∂
∂

=
2
1

2
1)(  (12.8) 

 qGuHqy ηπηπ
ξ

∂
∂

−
∂
∂

=
2
1

2
1)(  (12.9) 

where ζ  and η  are variables in the x  and y  directions, respectively. The partial 

derivative terms for the Laplace problem are given as: 
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where ζ  and η  are components of the ξ  vector determining the location of the source 

point such that ηζξ ,= , x  and y  are components of the position vector to the 

boundary of the system describing the location of the filed point for each element and are 

variables, and xn  and yn  are components of the outward normal vector to the boundary 

of the system. The boundary values computed using IBEM are interval numbers and 

therefore Eq. (12.8) and Eq. (12.9) cannot be used to directly calculate the internal flux 

values due to the subdistributive property. Thus, the domain of the integrals of the kernel 

functions is separated such that the kernel functions, Eq. (12.10) – Eq. (12.13), which are 

deterministic, are either positive or negative. This leads to the bounds on the internal 

fluxes to be expressed as: 
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where the integrated kernel functions are positive on 1Γ  and negative on 2Γ . Eq. (12.14) 

and Eq. (12.15) can be written in matrix form as: 

 qGqGuHuHq xxxxx
~'~'~'~')(~

2121 −−+=ξ  (12.16) 

 qGqGuHuHq yyyyy
~'~'~'~')(~

2121 −−+=ξ  (12.17) 

The computation of the internal variables does not require an interval equation solver but 

is performed by direct interval multiplication. The only overestimation of the internal 

solutions is due to the overestimation in the boundary values since the interval integration 

is performed exactly. 
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Chapter XIII: Example Problems 

 

 Chapter XIII presents numerical examples demonstrating the behavior of the 

interval bounds obtained using IBEM. All computations were performed using Matlab 

6.5.1 code on a DELL LATITUDE D800 1.69 GHz Intel Pentium M processor having 

512 MB of RAM and 74.4 GB of hard disk memory. 

 

13.1 Interval Boundary Element Method Considering Uncertainty in the Boundary 

Conditions 

The first example is a demonstration of the interval treatment of uncertain 

boundary conditions for the heat conduction problem expressed as a Laplace equation. 

The unit square domain of the problem as well as the boundary element mesh is shown 

(Figure 13.1). Nodes are located at the midpoint of each element. The left and right sides 

have a zero heat flux boundary condition while at the bottom the temperature is ]1,0[  and 

at the top the temperature is ]2,1[ . 

 

Figure 13.1. Boundary discretization of a unit square  

using six constant boundary elements. 
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The interval bounds are shown and compared with the combinatorial solution (Table 1) 

for the unknown boundary values. It should be noted that the interval solution is exact, 

which is attributed to the order of operation and the consideration of interval dependency. 

The two deterministic matrices are multiplied first and then post-multiplied by the 

interval vector as described in chapter VI. 

 
Node Value 

 

Lower 
Bound 

Lower 
Bound with 

Parame-
terization 

 
Combina-

torial 
Lower 
Bound 

 

Combina-
torial 
Upper 
Bound 

Upper 
Bound with 

Parame-
terization 

Upper 
Bound 

q1 -2.5770 -2.0763 -2.0763 0.0000 0.0000 0.5007 

u2 0.0922 0.2451 0.2451 1.2451 1.2451 1.3981 

u3 0.6019 0.7549 0.7549 1.7549 1.7549 1.9078 

q4 -0.5007 0.0000 0.0000 2.0763 2.0763 2.5770 

u5 0.6019 0.7549 0.7549 1.7549 1.7549 1.9078 

u6 0.0922 0.2451 0.2451 1.2451 1.2451 1.3981 

 

Table 1. Solutions to Laplace equation with uncertain boundary conditions 

for a six node mesh. 

 

13.2 Interval Boundary Element Method Considering Integration Error 

The second example considers integration error in IBEM to solve the heat transfer 

problem expressed in terms of Laplace equation of a 1:2 rectangular domain using six 

constant boundary elements with a node located at the mid-point (Figure 13.2). The sides 

of the domain have zero heat flux while the bottom is at zero temperature and a 

temperature of 50 is applied at the top.  In this example, four point integration method 
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based on a Taylor series is used to develop interval terms in the H  and G  matrices. The 

interval system of equations is then solved using the developed solver from chapter V. 

 

Figure 13.2. Boundary discretization of a rectangular domain  

using six constant boundary elements. 

 

The solution obtained by exact integration is shown and compared to the bounds of the 

solution using the proposed method (Table 2). 

Node Value Lower Bound Solution with exact 
integration Upper Bound 

q1 -33.6109 -28.1967 -24.0111 

u2 11.1738 11.9357 12.4237 

u3 37.5237 38.0643 38.8788 

q4 23.5010 28.1967 34.1209 

u5 37.5237 38.0643 38.8788 

u6 11. 1738 11.9357 12.4237 

 

Table 2. Solutions to Laplace in presence of integration error for a six node mesh. 
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13.3 Interval Boundary Element Method Considering Discretization Error 

The third example obtains the bounds on the discretization error for the IBEA of 

the Laplace equation for the heat transfer within a unit square. The domain with zero heat 

flux on each side is considered as well as a zero temperature on the bottom and a unit 

temperature on the top. Five different meshes (Figure 13.3) are considered and the 

solutions in presence of the discretization error are compared. Ten subintervals are used 

in the computation since higher subdivision did not yield much improvement in the 

interval bounds. 

  

Figure 13.3. Constant boundary element discretization of a unit cube. 

 

The bounds of the IBEA solution are shown and compared with an exact solution in the 

right lower corner for nodes 2, 3, 4, 5, 6 for the five respective meshes (Table 3) and the 

behavior of the effectivity index is shown for these nodes (Figure 13.4). Behavior of the 

interval bounds of the internal temperature for the middle segment of the cube located at 

5.0=x  and stretching from 0=y  until 1=y  is shown, solid line, and compared with 

the true solution, dashed line, (Figure 13.5) for the 4, 8, and 12 element meshes as well as 

the behavior of the solution width of the internal temperature for these meshes (Figure 

13.6). The behavior of the bounds on the internal heat flux in the x  and y  directions is 

shown for the same segment, solid line, and compared with the true solution, dashed line, 

(Figure 13.7, Figure 13.8). 
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Node 
Value 

 
Lower 
Bound 

 

Exact 
Lower 
Bound 

 

Exact 
Upper 
Bound 

 

 
Upper 
Bound 

 
Middle 
Value 

 

 
Width 

 
Effective 

Width 

 

Mid-point 
Node 

Solution 

u2 -0.0221 0 1 1.0515 0.5147 1.0736 1.0736 0.5000 

u3 -0.0244 0 0.5 0.5140 0.2448 0.5384 1.0769 0.2414 

u4 -0.0213 0 1/3 0.3351 0.1569 0.3564 1.0693 0.1591 

u5 -0.0232 0 0.25 0.2571 0.1170 0.2803 1.1210 0.1188 

u6 -0.0233 0 0.2 0.2076 0.0921 0.2310 1.1548 0.0948 

 

Table 3. Solutions to the Laplace equation in presence of dicretization error 

for a unit cube. 
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Figure 13.4. Behavior of the effectivity index with problem size. 
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Figure 13.5. Behavior of the interval bounds for the  

interior temperature with mesh refinement. 
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Figure 13.6. Behavior of the solution width for the interior temperature 

with problem size. 
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Figure 13.7. Behavior of the interval bounds for the interior 

x-direction heat flux with mesh refinement. 

 

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4 Element Mesh

S
ol

ut
io

n

0 0.2 0.4 0.6 0.8 1
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

8 Element Mesh

S
ol

ut
io

n

0 0.2 0.4 0.6 0.8 1

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

12 Element Mesh

S
ol

ut
io

n

 

Figure 13.8. Behavior of the interval bounds for the interior 

y-direction heat flux with mesh refinement. 
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The fourth example demonstrates the convergence of the method with problem 

size by obtaining the bounds on the discretization error for the IBEA of the Laplace 

equation. A 1:2 ratio rectangular domain with zero heat flux on each side is considered as 

well as a zero temperature on the bottom and a unit temperature on the top. Five different 

meshes are considered (Figure 13.9) and the solutions in presence of the discretization 

error are compared. Ten subintervals were considered since further subdivision did not 

produce a significant improvement in the results. 

 
Figure 13.9. Boundary discretization using constant boundary elements 

for a rectangular domain. 

 

The bounds of the IBEA solution are shown and compared with an exact solution in the 

right lower corner for nodes 2, 3, 4, 5, 6 for the five respective meshes (Table 4) and the 

behavior of the effectivity index is shown for these nodes (Figure 13.10). 
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Node 
Value 

 
Lower 
Bound 

 

Exact 
Lower 
Bound 

 

Exact 
Upper 
Bound 

 

 
Upper 
Bound 

 
Middle 
Value 

 

 
Width 

 
Effective 

Width 

 

Mid-point 
Node 

Solution 

u2 -1.3943 0 1 2.7286 0.6671 4.1229 4.1229 0.5000 

u3 -0.4278 0 0.5 0.8254 0.1988 1.2532 2.5064 0.2337 

u4 -0.2561 0 1/3 0.5130 0.1285 0.7691 2.3073 0.1538 

u5 -0.1849 0 0.25 0.3815 0.0983 0.5664 2.2655 0.1148 

u6 -0.1433 0 0.2 0.3011 0.0789 0.4444 2.2222 0.0916 

 

Table 4. Solutions to the Laplace equation in presence of dicretization error 

for a rectangular domain. 
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Figure 13.10. Convergence of the effectivity index with problem size 

for a rectangular domain. 

 

13.4 Discretization Error Analysis Using Interval Boundary Element Method for a 

Torsion Problem 

The fifth example illustrates the treatment of the discretization error for a torsion 

problem expressed in terms of the Laplace equation. A unit square domain with 
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appropriate Neumann boundary conditions, see Chapter III, applied on all boundaries is 

considered (Figure 13.11). The appropriate boundary conditions for the warping function, 

see Chapter III, are applied on the bottom boundary middle element: elements 2, 4, 6, 8 

for the five respective meshes (Figure 13.11). Ten subintervals are considered in the 

simulations unless stated otherwise. 

 

Figure 13.11. Boundary discretization using constant boundary elements for a torsion 

problem of a beam with a unit square cross section. 

 

The widths of the solution (Figure 13.12), effectivity indices (Figure 13.13), and solution 

bounds, solid line, compared with the true solution, dashed line, (Figure 13.14) are 

compared for the right side bottom corner elements 4, 6, 8, and 10 (Figure 13.11) for the 

different meshes. Figure 13.15 shows the solution bounds of the right edge, solid line, 

compared with the true solution, dashed line. Figure 13.16 illustrates the convergence of 

the interval solution solid line, compared with the true solution, dashed line, with 

increased number of subintervals for node 4 in the 12 element mesh. Figure 13.17 shows 

the computational expense with increasing number of subintervals for the 36 element 

mesh. The computational cost of IBEM is depicted with increasing number of elements 

(Figure 13.18) and compared with the cubic regression (Figure 13.19). The ratio of the 

computational time necessary to perform IBEM versus the conventional BEM is 

compared with mesh size (Figure 13.20). 
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Figure 13.12. Behavior of the solution width with problem size. 
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Figure 13.13. Behavior of the effectivity index with problem size. 
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Figure 13.14. Behavior of the solution bounds with problem size. 
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Figure 13.15. Behavior of the interval bounds for the different meshes on the right edge. 
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Figure 13.16. Behavior of the solution bounds with the number of subintervals 

for node 4 in the 12 element mesh. 

 

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of Subintervals

C
om

pu
ta

tio
na

l T
im

e 
(s

ec
)

 

Figure 13.17. Computational cost with the number of subintervals 

for the 36 element mesh. 
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Figure 13.18. Computational cost of IBEM with mesh refinement using 10 subintervals. 
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Figure 13.19. Computational cost with mesh refinement and cubic regression. 
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Figure 13.20. Ratio of the IBEM computational time, using 10 subintervals, to the 

conventional BEM computational time. 

 

The sixth example demonstrates the behavior of the solution bounds to the 

Laplace equation for the the L-shaped domain (Figure 13.21). The temperature boundary 

conditions that are applied at all edges satisfy the Laplace equation as: 

⎪
⎭

⎪
⎬

⎫

Γ=

Ω=∇

onyxu

inu

)sin()sinh(

02

 

Four different uniformly spaced meshes consisting of 6, 12, 18, and 24 elements with the 

node numbering starting in the bottom left corner and increasing counter clockwise 

(Figure 13.21) are considered. 
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Figure 13.21. Boundary discretization of the L-shaped domain 

using constant boundary elements. 

 

Ten equally spaced subintervals were chosen for parameterization since parameterization 

in terms of more subintervals did not yield much improvement in the solution. The results 

for the different meshes are compared at the left bottom elements 6, 12, 18, and 24 

(Figure 13.21) for the respective meshes. Figure 13.22, Figure 13.23, and Figure 13.24 

show the behavior of the solution width, effectivity index, and solution bounds, 

respectively, for these elements with decreasing element size. The interval solution is 

depicted with a solid line and the true solution is depicted with a dashed line. Figure 

13.25 illustrates the behavior of the solution bounds for the left edge for the different 

meshes considered, solid line, and is compared with the true solution, dashed line. The 

behavior of the discretization error width with number of subintervals is shown (Figure 

13.26) where number of subintervals increases from left to right and from top to bottom. 

The system is analyzed for 2, 5, 10, and 20 subintervals. 
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Figure 13.22. Behavior of the solution width with problem size. 
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Figure 13.23. Behavior of the effectivity index with problem size. 
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Figure 13.24. Behavior of the solution bounds with problem size. 
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Figure 13.25. Behavior of the interval bounds for the different meshes on the left edge. 
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Figure 13.26. Behavior of the discretization error for different number of subintervals. 

 

13.5 Discretization Error Analysis Using Interval Boundary Element Method for an 

Elasticity Problem 

The seventh example obtains the bounds on the discretization error for the BEA 

of the elasticity problem. A unit square domain with zero traction on each side is 

considered as well as a zero displacement on the bottom, a zero displacement in the x  

direction on the top, and a unit displacement in the y  direction on the top. Four different 

meshes (Figure 13.26) are considered and analyzed using 10 subintervals. 

  

Figure 13.27. Constant boundary element discretization. 
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The behavior of the solution width, effectivity index, and the interval bounds on the true 

solution for nodes 2, 3, 4, 5, for the five respective meshes, is shown (Figure 13.27, 

Figure 13.28, Figure 13.29). The interval solution is shown by solid lines and the true 

solution by a dashed line. The behavior of the interval bounds for the right edge with 

mesh refinement is shown, solid line, and compared with the true solution, dashed line 

(Figure 13.30). 

 

Figure 13.28. Behavior of the solution width with problem size. 
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Figure 13.29. Behavior of the effectivity index with problem size. 

10
0

10
-0.2

10
-0.1

10
0

10
0.1

10
0.2

Element Size

D
isc

re
tiz

at
io

n 
Er

ro
r W

id
th



 106

4 6 8 10 12 14 16
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Elements

S
ol

ut
io

n

 

Figure 13.30. Behavior of the solution bounds with problem size. 
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Figure 13.31. Behavior of the solution bounds for the different meshes for the right edge. 
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The eighth example solves the problem of hexagonal plate in tension (Figure 

13.31). A positive unit displacement in the y  direction is applied at the top of the plate 

and a negative unit displacement in the y  direction is applied at the bottom of the plate. 

 

Figure 13.32. Hexagonal plate in tension. 

 

A symmetry model is considered with a unit displacement at the top, to decrease the 

computational time, and is discretized using constant boundary elements (Figure 13.32, 

Figure 13.33). Ten subintervals are used in the computation. 

 

Figure 13.33. Symmetry model of the hexagonal plate. 

 

Figure 13.34. Boundary discretization using constant elements. 
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The behavior of the solution width, effectivity index, and solution bounds is depicted 

(Figure 13.34, Figure 13.35, Figure 13.36) for the displacement in the y  direction for 

nodes 4, 8, 12, and 16 for the four respective meshes (Figure 13.33). The interval bounds, 

depicted by a solid line bounding the dashed true solution for the left edge displacement 

in the y  direction are shown (Figure 13.37). 

 

Figure 13.35. Behavior of the solution width with problem size. 
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Figure 13.36. Behavior of the effectivity index with problem size. 
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Figure 13.37. Behavior of the solution bounds with problem size. 
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Figure 13.38. Behavior of the solution bounds for the different meshes for the left edge. 
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13.6 Discretization Error Analysis Using Interval Boundary Element Method for a 

Laplace Equation with Flux Singularities 

The ninth example demonstrates the treatment of the discretization error for a 

Laplace equation with a geometrically induced flux singularity. A unit square domain 

with boundary conditions satisfying Laplace equation is considered (Figure 13.38). In 

order to compute effectivity indices the exact solution to the Laplace equation was 

chosen as: 

 

 

with a singularity located at 0
,2

1
== yx  which is depicted by a symbol  (Figure 

13.38). The temperature boundary conditions were applied on elements 2 and 4 for the 

five element mesh and the heat flux boundary conditions were applied on elements 1, 3, 

and 5 for the five element mesh. For the remaining meshes the temperature and heat flux 

boundary conditions were applied on the same boundaries as for the five element mesh. 

 

Figure 13.39. Boundary discretization using constant boundary elements. 
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solution. The solution width and the effectivity indices are compared for the different 

meshes at the right bottom elements 3, 5, 7, and 9 (Figure 13.39, Figure 13.40) for the 

respective meshes. Figure 13.41 shows the behavior of the solution bounds for these 

elements with decreasing element size, solid line, compared with the true solution, 

dashed line. Figure 13.42 depicts the interval bounds, solid line, of the heat flux intensity 

factor, dashed line, for elements 2, 3, 4, and 5 for the four respective meshes. Figure 

13.43 and Figure 13.44 illustrate the behavior of the interval bounds, solid line, compared 

with the true solution, dashed line, for right bottom elements 3, 5, 7, 9, for the four 

respective meshes and the behavior of the effectivity index with increased 

parameterization. Figure 13.45 depicts the interval bounds, solid line, compared with the 

true solution, dashed line, for the potential solution for the right edge with increasing 

number of elements. 

 

Figure 13.40. Behavior of the solution width with problem size. 
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Figure 13.41. Behavior of the effectivity index with problem size. 
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Figure 13.42. Behavior of the solution bounds with problem size. 
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Figure 13.43. Behavior of the bounds on the heat flux intensity factor 

for the different meshes. 
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Figure 13.44. Behavior of the solution bounds with the number of subintervals. 
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Figure 13.45. Behavior of the effectivity index with the number of subintervals. 
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Figure 13.46. Behavior of the interval bounds for the different meshes for the right edge. 
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Chapter XIV: Research Conclusions 

 

 Chapter XIV provides conclusions on the present work and behavior of IBEM. 

 

14.1 Concluding Remarks on the Interval Boundary Element Method 

 The objective in the development of the interval boundary element method 

(IBEM) was to provide a reliable engineering computing method that is capable of 

treating errors and uncertainties in an integrated and elegant fashion while being 

computationally efficient. IBEM is capable of treating the uncertainty in boundary 

conditions as well as errors occurring from numerical integration, floating point number 

truncation, and discretization of the integral equation. Moreover, IBEM enables 

computations of guaranteed solutions on the design variable level, a characteristic 

especially important in design engineering. The developed method is general and can be 

used to solve any linear elliptic partial differential equation, whose Green’s function is 

known, for geometry of any complexity. Although, only two dimensional problems were 

analyzed for illustrative purposes, the extension of the work to three dimensions can be 

made following the presented methodology. The numerical examples have shown the 

efficiency of the method in terms of its convergence and computational time. From the 

examples presented, it can be noted that the interval solutions converge to the true 

solution with mesh refinement. The interval bounds are also decreased by increasing 

parameterization, which is essential in solving the discretization error problem. The 

computational cost of parameterization is roughly linear and therefore very efficient. In 
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general, besides the fourth example in chapter XIII, the effectivity index of the 

discretization error was shown to increase with mesh refinement, which is 

uncharacteristic for the discretization error. The overestimation in the discretization error 

bounds occurs due to several aspects inherent in interval computations. The first one is 

the interval enclosure of the boundary integral equation using the developed interval 

kernel splitting technique (IKST). Using IKST, one of the kernel functions is enclosed by 

its minimum and maximum bounds such that the subdistributive property is not violated. 

Unless the function is a constant, enclosing the kernel in such a way overestimates the 

enclosure and the resulting integral of the bounded kernel. The second reason for the 

overestimation of the discretization error is the incapability of the correct 

parameterization of the system. The kernel functions are nonlinear functions of the 

location of the source point, and therefore, subdivision of the entire interval, which 

encloses all possible locations of the source point, into subintervals is performed. This 

subdivision, does not allow for the perfect dependency of the location of the source point 

on any individual element unless infinite number of subintervals is considered, which of 

course is not possible. The third reason for the discretization error overestimation is the 

incomplete consideration of the subinterval parameterization within the developed solver. 

The interval solution, by problem definition, must be found on the entire element. 

Therefore, the subinterval bounds cannot be viewed entirely independent and must be 

considered as a union in interval operations. The fourth reason for the overestimation is 

inherent in solving an interval linear system of equations. The iterative schemes solve the 

problem in an orthogonal coordinate system defined by the user. In general, the interval 
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bounds are not orthogonal but rather hyper-ellipsoidal in multi-dimensions and the 

overestimation occurs in the corners of the enclosure (Figure 14.1). 

 

Figure 14.1. Interval bounds on the solution. 

 

Also, in general, the true set is not aligned with the prescribed coordinate system. Large 

overestimations can occur especially if the true solution is longer in one direction, which 

is not aligned with the chosen coordinate system. Because there are many variables to 

consider, it is impossible to consider all the coordinate systems to achieve a better 

enclosure (Figure 14.2). 

 

Figure 14.2. Rotated interval bounds on the solution. 
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For very small systems, where this optimal coordinate system can be found (Figure 14.2), 

and therefore sharper bounds can be obtained in that coordinate system, this preferred 

coordinate system is of little use since the transformation of the interval bounds to a more 

useful, original, coordinate system would impose the same, if not worse, overestimation 

(Figure 14.3).  

 

Figure 14.3. Transformed interval bounds on the solution. 

 

Hence, the interval solution has a slower convergence rate than the true solution, which is 

the cumulative reason for the increasing effectivity index. The discretization error bounds 

for the variables in the interior of the domain are shown to decrease with mesh 

refinement. The interior error bounds assume correct error bounds on the boundary of the 

system and their computation itself does not provide any additional overestimation. For 

problems with geometrically induced flux singularities, IBEM is capable of not only 

computing the discretization error bounds for all elements except the element on which 

the singularity is present, but also the bounds on the flux intensity factor for the singular 

flux element. The cost of the computation varies cubically with the number of elements 
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and is roughly equal to ( ) ( )3

5.2
ntconsta

elementsofnumbertervalssubinofnumber ⋅⋅ . Therefore 

it is directly proportional, by ( )ntervalssubiofnumber⋅5.2 , to the cost of the 

conventional BEA for a particular mesh. IBEM is also capable of enclosing the true 

solution in presence of integration and rounding errors. The rounding error bounds can be 

easily incorporated into the solver of interval linear system of equations. The solutions in 

presence of integration error have been enclosed and although the procedure was 

demonstrated on the Taylor series expansion, other numerical integration schemes can be 

used following the same methodology. The behavior of the solution bounds will depend 

on the method of numerical integration. The uncertainty in boundary conditions has been 

treated using an interval approach. The solutions of IBEM with interval uncertainty in the 

applied boundary conditions only, are exact and therefore independent of the problem 

size. As the uncertainty in the boundary conditions most likely produces the largest level 

of uncertainty in the solutions, IBEM is a very attractive tool for these types of 

computations. 
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