Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Analysis

Rafi L. Muhanna Georgia Institute of Technology

USA

Collaborative Research Center 528 German National Science Foundation (DFG) TU Dresden, Germany, June 19, 2007

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Introduction- Uncertainty

- Uncertainty is unavoidable in engineering system
 structural mechanics entails uncertainties in material, geometry and load parameters (aleatory-epistemic)
- □ Probabilistic approach is the traditional approach
 - requires sufficient information to validate the probabilistic model
 - criticism of the credibility of probabilistic approach when data is insufficient (Elishakoff, 1995; Ferson and Ginzburg, 1996; Möller and Beer, 2007)

Introduction- Interval Approach

 Nonprobabilistic approach for uncertainty modeling when only range information (tolerance) is available

$$t = t_0 \pm \delta$$

Represents an uncertain quantity by giving a range of possible values

$$t = [t_0 - \delta, t_0 + \delta]$$

How to define bounds on the possible ranges of uncertainty?
 experimental data, measurements, statistical analysis, expert knowledge

Introduction- Why Interval?

- □ Simple and elegant
- □ Conforms to practical tolerance concept
- Describes the uncertainty that can not be appropriately modeled by probabilistic approach
- Computational basis for other uncertainty approaches
 (e.g., fuzzy set, random set, imprecise probability)

Provides guaranteed enclosures

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Interval arithmetic – Background

- Archimedes (287 212 B.C.)
 - > A circle of radius one has an area equal to π

Interval arithmetic – Background

- Archimedes (287 212 B.C.)
 - A circle of radius one has an area equal to π
 - $\geq 2 < \pi < 4$

$$3\frac{10}{71} < \pi < 3\frac{1}{7}$$

 $\pi = [3.14085, 3.14286]$

Interval arithmetic – Background

- Modern interval arithmetic
 ➢ Physical constants or measurements g ∈ [9.8045, 9.8082]
 - \triangleright Representation of numbers $1/3 \approx 0.3333...$ $\sqrt{2} \approx 1.4142...$ $\pi \approx 3.1416...$ $1/3 \in [0.3333, 0.3334]$ $\sqrt{2} \in [1.4142, 1.4143]$ $\pi \in [3.1415, 3.1416]$

➢ Rounding errors

 $1/0.12345 \approx 8.1004$

 $1/0.12345 \in [8.1004, 8.1005]$

Interval arithmetic

Interval number represents a range of possible values within a closed set

$$\boldsymbol{x} \equiv [\underline{x}, \overline{x}] \coloneqq \{ x \in R \mid \underline{x} \le x \le \overline{x} \}$$

Interval Operations

Let x = [a, b] and y = [c, d] be two interval numbers

1. Addition

$$x + y = [a, b] + [c, d] = [a + c, b + d]$$

2. Subtraction

$$x - y = [a, b] - [c, d] = [a - d, b - c]$$

3. Multiplication

xy = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)]

4. Division

1/x = [1/b, 1/a]

Properties of Interval Arithmetic

Let *x*, *y* and *z* be interval numbers

1. Commutative Law

x + y = y + xxy = yx

2. Associative Law

x + (y + z) = (x + y) + zx(yz) = (xy)z

3. Distributive Law does not always hold, but

 $x(y+z) \subseteq xy+xz$

The DEPENDENCY problem arises when one or several variables occur more than once in an interval expression

 $f(\mathbf{x}) = \mathbf{x} (1-1) \qquad \Longrightarrow \qquad f(\mathbf{x}) = 0$

$$f(\mathbf{x}) = \{ f(\mathbf{x}) = \mathbf{x} - \mathbf{x} \mid \mathbf{x} \in \mathbf{x} \}$$

- If a, b and c are interval numbers, then: $a(b \pm c) \subseteq ab \pm ac$
- If we set
 a = [-2, 2]; b = [1, 2]; c = [-2, 1], we get

a (b + c) = [-2, 2]([1, 2] + [-2, 1]) = [-2, 2] [-1, 3] = [-6, 6]

However,

ab + ac = [-2, 2][1, 2] + [-2, 2][-2, 1] = [-4, 4] + [-4, 4] = [-8, 8] $\boxed{\text{GeorgiaInstitute}}$

- Interval Vectors and Matrices
- An interval matrix is such matrix that contains all real matrices whose elements are obtained from all possible values between the lower and upper bounds of its interval components

$$A = \{A \in \mathbb{R}^{m \times n} \mid A_{ij} \in A_{ij} \text{ for } i = 1, ..., m; j = 1, ..., n\}$$

Let *a*, *b*, *c* and *d* be independent variables, each with interval [1, 3]

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}, \qquad A \times B = \begin{pmatrix} [-2, 2] & [-2, 2] \\ [-2, 2] & [-2, 2] \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad B_{phys} = \begin{pmatrix} b & -b \\ -b & b \end{pmatrix}, \qquad A \times B_{phys} = \begin{pmatrix} [b-b] & [b-b] \\ [b-b] & [b-b] \end{pmatrix}$$

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Finite Elements

Finite Element Method (FEM) is a numerical method that provides approximate solutions to differential equations (ODE and PDE)

Finite Elements- Uncertainty& Errors

- □ Mathematical model (validation)
- Discretization of the mathematical model into a computational framework
- Parameter uncertainty (loading, material properties)
- □ Rounding errors

Interval Finite Elements

Interval Finite Elements

K U = F

- $K = \int B^T C B dV$ = Interval element stiffness matrix
 - \boldsymbol{B} = Interval strain-displacement matrix
 - C = Interval elasticity matrix

 $F = [F_1, \dots, F_n] =$ Interval element load vector (traction)

- $F_i = \int N_i t \, dA$
- N_i = Shape function corresponding to the *i*-th DOF
- *t* = Surface traction

Interval Finite Elements (IFEM)

- □ Follows conventional FEM
- Loads, geometry and material property are expressed as interval quantities
- System response is a function of the interval variables and therefore varies in an interval
- □ Computing the exact response range is proven NP-hard
- The problem is to estimate the bounds on the unknown exact response range based on the bounds of the parameters

IFEM- Inner-Bound Methods

- Combinatorial method (Muhanna and Mullen 1995, Rao and Berke 1997)
- □ Sensitivity analysis method (Pownuk 2004)
- □ Perturbation (Mc William 2000)
- □ Monte Carlo sampling method
- □ Need for alternative methods that achieve
 - □ Rigorousness guaranteed enclosure
 - □ Accuracy sharp enclosure
 - □ Scalability large scale problem
 - □ Efficiency

IFEM-Enclosure

□ Linear static finite element

- □ Muhanna, Mullen, 1995, 1999, 2001, and Zhang 2004
- □ Popova 2003, and Kramer 2004
- □ Neumaier and Pownuk 2004
- □ Corliss, Foley, and Kearfott 2004
- Dynamic
 - Dessombz, 2000
- □ Free vibration-Buckling
 - □ Modares, Mullen 2004, and Billini and Muhanna 2005

Interval Finite Elements

Interval Linear System of Equations

 $A \mathbf{x} = \mathbf{b}$ $\begin{pmatrix} 2 & [-1,0] \\ [-1,0] & 2 \end{pmatrix} \times \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} = \begin{pmatrix} 1.2 \\ -1.2 \end{pmatrix}$ Then $A \in A$ iff $A := \begin{pmatrix} 2 & -\alpha \\ -\beta & 2 \end{pmatrix} \quad \text{with } \alpha, \beta \in [0,1]$ REC

Interval Finite Elements

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Naïve interval FEA

$$\begin{pmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} \Rightarrow \begin{pmatrix} [2.85, 3.15] & [-2.1, -1.9] \\ [-2.1, -1.9] & [1.9, 2.1] \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 1 \end{pmatrix}$$

- exact solution: $u_2 = [1.429, 1.579], u_3 = [1.905, 2.105]$
- naïve solution: $u_2 = [-0.052, 3.052], u_3 = [0.098, 3.902]$
- interval arithmetic assumes that all coefficients are independent
- uncertainty in the response is severely overestimated (1900%)
 REC

Element-By-Element

Element-By-Element (EBE) technique

- elements are detached no element coupling
- structure stiffness matrix is block-diagonal (k_1, \ldots, k_{Ne})
- the size of the system is increased

$$u = (u_1, ..., u_{Ne})^T$$

 need to impose necessary constraints for compatibility and equilibrium

Element-By-Element

Suppose the modulus of elasticity is interval:

$$\boldsymbol{E} = \hat{E}(1 + \boldsymbol{\delta})$$

 δ : zero-midpoint interval

The element stiffness matrix can be split into two parts,

$$\boldsymbol{k} = \hat{k}(I + \boldsymbol{d}) = \hat{k} + \hat{k}\boldsymbol{d}$$

 \hat{k} : deterministic part, element stiffness matrix evalued using \hat{E} , $\hat{k}d$: interval part

d: interval diagonal matrix, $diag(\delta, ..., \delta)$.

Element-By-Element

- $\Box \quad \text{Element stiffness matrix:} \quad \boldsymbol{k} = \hat{k}(I + \boldsymbol{d})$
- **Structure stiffness matrix:**

$$\boldsymbol{K} = \hat{K}(I + \boldsymbol{D}) = \hat{K} + \hat{K}\boldsymbol{D}$$

or

Constraints

Impose necessary constraints for compatibility and equilibrium

- □ Penalty method
- □ Lagrange multiplier method

Element-By-Element model

Constraints – penalty method

- Constraint conditions: $c\mathbf{u} = 0$
- Using the penalty method:

 $(\boldsymbol{K} + \boldsymbol{Q})\boldsymbol{u} = \boldsymbol{p}$

- *Q*: penalty matrix, $Q = c^T \eta c$
- η : diagonal matrix of penalty number η_i

Requires a careful choice of the penatly number

A spring of large stiffness is added to force node 2 and node 3 to have the same displacement.

Constraints – Lagrange multiplier

Constraint conditions: $c\mathbf{u} = 0$

Using the Lagrange multiplier method:

$$\begin{pmatrix} \boldsymbol{K} & \boldsymbol{c}^T \\ \boldsymbol{c} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} \boldsymbol{p} \\ \boldsymbol{0} \end{pmatrix}$$

 λ : Lagrange multiplier vector, introdued as new unknowns

Load in EBE

Nodal load \boldsymbol{p}_b $\boldsymbol{p}_b = (\boldsymbol{p}_1, ..., \boldsymbol{p}_{N_e})^T$ where $\boldsymbol{p}_i = \int N^T \boldsymbol{\varphi}(x) dx$

Suppose the surface traction $\phi(x)$ is described by

an interval function:
$$\varphi(x) = \sum_{j=0}^{m} a_{j} x^{j}$$
.

 p_b can be rewritten as

$$\boldsymbol{p}_b = W\boldsymbol{F}$$

W: deterministic matrix

F: interval vector containing the interval coefficients of

the surface tractiton

Fixed point iteration

- For the interval equation Ax = b,
 - preconditioning: RAx = Rb, R is the preconditioning matrix
 - transform it into $g(x^*) = x^*$:

 $R \boldsymbol{b} - R\boldsymbol{A} x_0 + (I - R\boldsymbol{A}) \boldsymbol{x}^* = \boldsymbol{x}^*, \qquad \boldsymbol{x} = \boldsymbol{x}^* + x_0$

• Theorem (Rump, 1990): for some interval vector x^* ,

if	$g(x^*) \subseteq \operatorname{int}(x^*)$
then	$A^H \mathbf{b} \subseteq \mathbf{x}^* + x_0$

Iteration algorithm:

iterate: $\mathbf{x}^{*(l+1)} = \mathbf{z} + \mathbf{G}(\mathbf{\varepsilon} \cdot \mathbf{x}^{*(l)})$

where $z = Rb - RAx_0$, G = I - RA, $R = \hat{A}^{-1}$, $\hat{A}x_0 = \hat{b}$

No dependency handling

Fixed point iteration

Interval FEA calls for a modified method which exploits the special form of the structure equations $(\mathbf{K} + Q)\mathbf{u} = \mathbf{p}$ with $\mathbf{K} = \hat{K} + \hat{K}\mathbf{D}$ Choose $R = (\hat{K} + Q)^{-1}$, construct iterations: $\boldsymbol{u}^{*(l+1)} = R\boldsymbol{p} - R(\boldsymbol{K} + Q)\boldsymbol{u}_{0} + (I - R(\boldsymbol{K} + Q))(\boldsymbol{\varepsilon} \cdot \boldsymbol{u}^{*(l)})$ $= R\mathbf{p} - u_0 - R\hat{K}\mathbf{D}(u_0 + \boldsymbol{\varepsilon} \cdot \boldsymbol{u}^{*(l)})$ $= R\mathbf{p} - u_0 - R\hat{K}\mathbf{M}^{(l)}\Delta$ if $\boldsymbol{u}^{*(l+1)} \subseteq \operatorname{int}(\boldsymbol{u}^{*(l)})$, then $\boldsymbol{u} = \boldsymbol{u}^{*(l+1)} + u_0 = R\boldsymbol{p} - R\overset{\circ}{K}\boldsymbol{M}^{(l)}\boldsymbol{\Delta}$ Δ : interval vector, $\Delta = (\delta_1, ..., \delta_N)^T$ The interval variables $\delta_1, ..., \delta_{N_{\sigma}}$ appear only once in each iteration.

Georgialnstitute

Convergence of fixed point

- The algorithm converges if and only if $\rho(|G|) < 1$ smaller $\rho(|G|) \Rightarrow$ less iterations required, and less overestimation in results
- To minimize $\rho(|\mathbf{G}|)$:

> choose $R = \hat{A}^{-1}$ so that G = I - RA has a small spectral radius

▶ reduce the overestimation in G $G = I - RA = I - (\hat{K} + Q)^{-1}(\hat{K} + Q + \hat{K}D) = -R\hat{K}D$ FEC:
• Correction:

Stress calculation

 Conventional method: σ = CBu_e, (severe overestimation)
 C: elasticity matrix, B: strain-displacement matrix

 Present method: E = (1+δ)Ê, C = (1+δ)Ĉ σ = CBLu

$$= CBL(Rp - R\hat{C}M^{(l)}\Delta)$$
$$= (1 + \delta)(\hat{C}BLRp - \hat{C}BLR\hat{K}M^{(l)}\Delta)$$

L: Boolean matrix, $L\boldsymbol{u} = \boldsymbol{u}_e$

Element nodal force calculation

- Conventional method: $f = T_e(ku_e - p_e)$, (severe overestimation)
- Present method:
 in the EBE model, $T(\mathbf{K}\mathbf{u} \mathbf{p}_b) = \begin{pmatrix} (\mathbf{T}_e)_1(\mathbf{k}_1(\mathbf{u}_e)_1 (\mathbf{p}_e)_1) \\ \vdots \\ (\mathbf{T}_e)_{N_e}(\mathbf{k}_{N_e}(\mathbf{u}_e)_{N_e} (\mathbf{p}_e)_{N_e}) \end{pmatrix}$

from $(\mathbf{K} + Q)\mathbf{u} = \mathbf{p}_c + \mathbf{p}_b \Rightarrow T(\mathbf{K}\mathbf{u} - \mathbf{p}_b) = T(\mathbf{p}_c - Q\mathbf{u})$ Calculate $T(\mathbf{p}_c - Q\mathbf{u})$ to obtain the element nodal forces for all elements.

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Numerical example

- Examine the rigorousness, accuracy, scalability, and efficiency of the present method
- **Comparison** with the alternative methods
 - the combinatorial method, sensitivity analysis method, and Monte Carlo sampling method
 - □ these alternative methods give inner estimation

x: exact solution, x_i: inner bound, x_o: outer bound **REC**

Four-bay forty-story frame

V

Four-bay forty-story frame

Four-bay forty-story frame

Total number of floor load patterns

 $2^{160} = 1.46 \times 10^{48}$

If one were able to calculate

10,000 *patterns / s*

there has not been sufficient time since the creation of the universe (4-8) billion years? to solve all load patterns for this simple structure

Material A36, Beams W24 x 55, Columns W14 x 398

Four-bay forty-story frame

Four bay forty floor frame - Interval solutions for shear force and bending moment of first floor columns

Elements		1 2		3			
Nodes	Nodes		1 6 2 7			3	8
Combinati	on solution	Total number of required combinations = 1.461501637 × 10 ⁴⁸					
Interval	Axial force (kN)	[-2034.5, 185.7]		[-2161.7, 0.0]		[-2226.7, 0.0]	
solution	Shear force (kN)	[-5.1, 0.9]		[-5.8, 5.0]		[-5.0, 5.0]	
	Moment (kN m)	[-10.3, 4.5]	[-15.3, 5.4]	[-10.6, 9.3]	[-17, 15.2]	[-8.9, 8.9]	[-16, 16]

 $F_{max} = (0.464 + 0.309 + 0.258 + 0.192 + 0.128 + 0.064) \ 20 = 28.3 \ kN$

> Three-Span Beam

Truss structure

 $A_1, A_2, A_3, A_{13}, A_{14}, A_{15}$: [9.95, 10.05] cm²(1% uncertainty) cross-sectional area

of all other elements: [5.97, 6.03] cm²(1% uncertainty) modulus of elasticity of all elements: 200,000 MPa $p_1 = [190, 210]$ kN, $p_2 = [95, 105]$ kN $p_3 = [95, 105]$ kN, $p_4 = [85.5, 94.5]$ kN (10% uncertainty)

Truss structure - results

Method	<i>u</i> ₅ (LB)	<i>u</i> ₅ (UB)	$N_7(LB)$	$N_7(\text{UB})$		
Combinatorial	0.017676	0.019756	273.562	303.584		
Naïve IFEA	- 0.011216	0.048636	- 717.152	1297.124		
δ	163.45%	146.18%	362%	327%		
Present IFEA	0.017642	0.019778	273.049	304.037		
δ	0.19%	0.11%	0.19%	0.15%		
unit: u_5 (m), N_7 (kN). LB: lower bound; UB: upper bound.						

Table: results of selected responses

Truss structure – results

- for moderate uncertainty (\leq 5%), very sharp bounds are obtained
- for relatively large uncertainty, reasonable bounds are obtained in the case of 10% uncertainty:

Comb.: $u_5 = [0.017711, 0.019811]$, IFEM: $u_5 = [0.017252, 0.020168]$ (relative difference: 2.59%, 1.80% for LB, UB, respectively)

Truss with a large number of interval variables

Scalability study

vertical displacement at right upper corner (node D): $v_D = a \frac{PL}{E_0 A_0}$ Table: displacement at node D

	Sensitivity Analysis		Present IFEA				
Story×bay	LB^*	UB *	LB	UB	δ_{LB}	δ_{UB}	wid/ d_0
3×10	2.5143	2.5756	2.5112	2.5782	0.12%	0.10%	2.64%
4×20	3.2592	3.3418	3.2532	3.3471	0.18%	0.16%	2.84%
5×30	4.0486	4.1532	4.0386	4.1624	0.25%	0.22%	3.02%
6×35	4.8482	4.9751	4.8326	4.9895	0.32%	0.29%	3.19%
7×40	5.6461	5.7954	5.6236	5.8166	0.40%	0.37%	3.37%
8×40	6.4570	6.6289	6.4259	6.6586	0.48%	0.45%	3.56%
$\delta_{IB} = LB - LB^* / LB^*, \delta_{IB} = UB - UB^* / UB^*, \delta_{IB} = (LB - LB^*) / LB^*$							

Efficiency study

Table: CPU time for the analyses with the present method (unit: seconds)

Story×bay	N_{v}	Iteratio	t_i	t_r	t	t_i/t	t_r/t
		11					
3×10	246	4	0.14	0.56	0.72	19.5%	78.4%
4×20	648	5	1.27	8.80	10.17	12.4%	80.5%
5×30	1210	6	6.09	53.17	59.70	10.2%	89.1%
6×35	1692	6	15.11	140.23	156.27	9.7%	89.7%
7×40	2254	6	32.53	323.14	358.76	9.1%	90.1%
8×40	2576	7	48.454	475.72	528.45	9.2%	90.0%

 t_i : iteration time, t_r : CPU time for matrix inversion, t: total comp. CPU time

• majority of time is spent on matrix inversion

Efficiency study

Computational time: a comparison of the sensitivity analysis method and the present method

Computational time (seconds)

N_{v}	Sens.	Present
246	1.06	0.72
648	64.05	10.17
1210	965.86	59.7
1692	4100	156.3
2254	14450	358.8
2576	32402	528.45
	9 hr	9 min

Plate with quarter-circle cutout

thickness: 0.005mPossion ratio: 0.3load: 100kN/mmodulus of elasticity: E = [199, 201]GPa

number of element: 352

element type: six-node isoparametric quadratic triangle results presented: u_A , v_E , σ_{xx} and σ_{yy} at node F

Plate with quarter-circle cutout

Case 1: the modulus of elasticity for each element varies independently in the interval [199, 201] GPa.

	Monte Carlo	o sampling*	Present IFEA			
Response	LB	UB	LB	UB		
$u_A (10^{-5} \text{ m})$	1.19094	1.20081	1.18768	1.20387		
$v_E (10^{-5} \mathrm{m})$	-0.42638	-0.42238	-0.42894	-0.41940		
σ_{xx} (MPa)	13.164	13.223	12.699	13.690		
σ_{yy} (MPa)	1.803	1.882	1.592	2.090		
*10 ⁶ samples are made.						

Table: results of selected responses

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Conclusions

Development and implementation of IFEM

- uncertain material, geometry and load parameters are described by interval variables
- interval arithmetic is used to guarantee an enclosure of response
- Enhanced dependence problem control
 - use Element-By-Element technique
 - use the penalty method or Lagrange multiplier method to impose constraints
 - modify and enhance fixed point iteration to take into account the dependence problem
 - develop special algorithms to calculate stress and element nodal force

Conclusions

- The method is generally applicable to linear static FEM, regardless of element type
- Evaluation of the present method
 - Rigorousness: in all the examples, the results obtained by the present method enclose those from the alternative methods
 - Accuracy: sharp results are obtained for moderate parameter uncertainty (no more than 5%); reasonable results are obtained for relatively large parameter uncertainty (5%~10%)

Conclusions

- Scalability: the accuracy of the method remains at the same level with increase of the problem scale
- Efficiency: the present method is significantly superior to the conventional methods such as the combinatorial, Monte Carlo sampling, and sensitivity analysis method
- The present IFEM represents an efficient method to handle uncertainty in engineering applications

Center for Reliable Engineering Computing (REC)

We handle computations with care

Frame structure

Frame structure – case 1

Case 1: load uncertainty

 $\mathbf{w}_1 = [105.8, 113.1] \text{ kN/m}, \quad \mathbf{w}_2 = [105.8, 113.1] \text{ kN/m},$

 $\mathbf{w}_3 = [49.255, 52.905] \text{ kN/m}, \ \mathbf{w}_4 = [49.255, 52.905] \text{ kN/m},$

Table: Nodal forces at the left node of member B_2

	Combir	natorial	Present IFEA		
Nodal force	LB	UB	LB	UB	
Axial (kN)	219.60	239.37	219.60	239.37	
Shear (kN)	833.61	891.90	833.61	891.90	
Moment (kN·m)	1847.21	1974.95	1847.21	1974.95	

• exact solution is obtained in the case of load uncertainty

Frame structure – case 2

Case 2: stiffness uncertainty and load uncertainty 1% uncertainty introduced to *A*, *I*, and *E* of each element. Number of interval variables: 34.

Table: Nodal forces at the left node of member B_2

	Monte Carlo	o sampling*	Present IFEA		
Nodal force	LB	UB	LB	UB	
Axial (kN)	218.23	240.98	219.35	242.67	
Shear (kN)	833.34	892.24	832.96	892.47	
Moment (kN.m)	1842.86	1979.32	1839.01	1982.63	

*10⁶ samples are made.

