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Abstract. Engineering analysis and design problems, either static or dynamic, frequently involve
uncertain parameters and inputs. Propagating these uncertainties through a complex model to
determine their effect on system states and outputs can be a challenging problem, especially for
dynamic models. In this work, we demonstrate the use of Taylor model methods for propagating
uncertainties through nonlinear ODE models. We concentrate on uncertainties whose distribution
is not known precisely, but can be represented by a probability box (p-box), and show how to
use p-boxes in the context of Taylor models. This allows us to obtain p-box representations of the
uncertainties in the state variables and outputs of a nonlinear ODE model. Examples are used to
demonstrate the potential of this approach for studying the effect of uncertainties with imprecise
probability distributions.
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1. Introduction

Ordinary differential equations (ODEs) are the basis for many mathematical models in the sciences
and engineering. Often a system of ODEs is formulated as an initial value problem (IVP), in which
the model is integrated through time beginning with specified initial values of the state variables.
Especially in cases where no analytical solution exists, the numerical integration of these systems
is necessary to obtain the trajectories of ODE systems.

Of particular interest here is the verified, or mathematically guaranteed, solution of systems of
ODEs, especially such systems that involve uncertainty in initial conditions or model parameters.
Traditional numerical methods, such as Euler’s method or the Runge-Kutta schemes, only approx-
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imate the trajectory of an ODE system since truncation errors from both function approximation
and machine arithmetic are present. Furthermore, if any particular parameter or initial state is
uncertain, normal use of these methods will not fully guarantee that all possible trajectories are
found.

In response to the need for guaranteed results, both with and without uncertainty, interval
methods have been proposed. Computations with intervals, as opposed to real numbers, can provide
mathematical and computational guarantees, and further, intervals are a logical way to deal with
uncertainty in any parameters or initial conditions. An excellent review of interval methods for
IVPs has been given by Nedialkov et al. (1999), and more recent work has been reviewed by Neher
et al. (2007). Much work has been done for the case in which the initial values are given by intervals,
and there are several available software packages that deal with this case, including AWA (Lohner,
1992), VNODE (Nedialkov et al., 2001), and COSY VI (Berz and Makino, 1998). These methods
can also deal with interval-valued parameters, by treating them as additional state variables with
derivative of zero. In the work described here, we will use a new validated IVP solver for parametric
ODEs (Lin and Stadtherr, 2007b) called VSPODE (Validating Solver for Parametric ODEs), which
is used to produce guaranteed bounds on the solutions of nonlinear dynamic systems with interval-
valued initial states and parameters. VSPODE treats interval-valued parameters directly without
the need to increase the number of state variables. Both COSY VI and VSPODE use Taylor
models (Makino and Berz, 1996; Makino and Berz, 1999; Makino and Berz, 2003), but in different
ways, to deal with the uncertain quantities (parameters and initial values).

Other methods exist to solve ODE systems with uncertainty, but they do not provide a mathe-
matical guarantee that all possible trajectories are enclosed. These methods are often a combination
of a Monte Carlo process with a standard integration scheme, such as Runge-Kutta. While such
methods cannot guarantee that all solutions are enclosed, they can propagate uncertainty in ways
that standard interval methods cannot. Interval methods do not use knowledge about the distribu-
tion of uncertainty in a variable or parameter, while such knowledge can be put to use in Monte
Carlo methods to discern the most probable trajectory of an ODE system.

When the concepts of intervals and probability distributions are combined, the result has been
called a probability distribution variable (PDV), and theorems and computations with this data
type have been presented by Li and Hyman (2004). Intervals and “probability boxes” (p-boxes) can
be viewed as specific enclosures of the more broadly defined PDV. If there are only upper and lower
bounds on the uncertainties but no known probability distribution, then this can be represented
by an interval. If there is some knowledge of the probability distribution, but it is uncertain, then
this can be represented by a probability box (p-box). For computations with p-boxes, we use here
the risk analysis software RAMAS Risk Calc (Ferson, 2002).

In this paper, we demonstrate the use of Taylor model methods for propagating uncertainties
through nonlinear ODE models. We concentrate here on uncertainties represented by p-boxes, and
show how to use p-boxes in the context of Taylor models. This allows us to obtain p-box represen-
tations of the uncertainties in the state variables. Examples are used to demonstrate the potential
of this approach for studying the effect of uncertainties with imprecise probability distributions.

This paper is divided as follows. The next section will provide a general statement of the problem
to be addressed. Section 3 gives background on interval analysis, Taylor models, and p-boxes. In
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Section 4 we outline the specific method that is used, and in Section 5 we show the results of
applying this method to some specific examples.

2. Problem Statement

Here we introduce the notation used in the paper as we describe the problems to be solved. We
will consider the verified solution of the parametric autonomous IVP

y′(t) = f(y, θ), y(t0) = y0 ∈ Y0, θ ∈ Θ, (1)

where t ∈ [t0, tm] for some tm > t0. Here y is the n-dimensional vector of state variables with initial
value y0, and θ is a p-dimensional vector of time-invariant parameters. The vectors Y0 and Θ are
intervals that enclose uncertainties in the initial states and parameters, respectively. Additional
information about these uncertainties is available in the form of p-boxes, as described in the next
section, for at least one component of Y0 or Θ. We assume that f maps the variable and parameter
space back to the variable space and that f is (k−1) times continuously differentiable with respect
to y and (q + 1) times continuously differentiable with respect to θ. Here k is the order of the
truncation error in the interval Taylor series (ITS) method used by VSPODE, and q is the order
of the Taylor model in VSPODE used to represent dependence on parameters and initial values.
We also assume that f can be represented by a finite number of standard functions. Our goal is to
obtain a guaranteed enclosure of the state variables y at time tm and a probability distribution, in
the form of a p-box, for the values of y within the enclosure.

3. Background

3.1. Interval Analysis

A real interval X is the set of real numbers between and inclusive of its lower bound (denoted X)
and upper bound (denoted X). The width of an interval, denoted w(X), is equal to X − X , while
the midpoint m(X) is (X + X)/2. A real interval vector X = (X1,X2, ...,Xn)T has n real interval
components and can be interpreted as an n-dimensional rectangle or box. Interval matrices are
similarly defined.

Basic arithmetic operations are defined on intervals according to

X op Y = {x op y | x ∈ X, y ∈ Y }, op ∈ {+,−,×,÷}. (2)

Division in the case of Y containing zero is only allowed in extensions of interval arithmetic (Hansen
and Walster, 2004). Addition and multiplication are commutative and associative but only subdis-
tributive. Interval versions of the elementary functions can also be defined.

For a real function f(x), the interval extension F (X) encloses the range of f(x) for x ∈ X.
When f(x) can be written as a series of arithmetic operations and elementary functions, the natural
interval extension is obtained by substituting the given interval X into f(x) and evaluating using
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interval arithmetic. Computing the interval extension in this way often results in overestimation
of the function range due to the “dependency” problem. While a variable may take on any value
within its interval, it must take on the same value each time it occurs in an expression. However,
this type of dependency is not recognized when the natural interval extension is computed. In effect,
when the natural interval extension is used, the range computed for the function is the range that
would occur if each instance of a particular variable was allowed to take on a different value in its
interval range.

Another source of overestimation that may arise in the use of interval methods is the “wrapping”
effect. This occurs when an interval is used to enclose (wrap) a set of results that is not an interval.
If this overestimation is propagated from step to step in an integration procedure for ODEs, it can
quickly lead to the loss of a meaningful enclosure.

Several good introductions to interval analysis, as well as interval arithmetic and other aspects
of computing with intervals, are available (Hansen and Walster, 2004; Jaulin et al., 2001; Kearfott,
1996; Neumaier, 1990). Implementations of interval arithmetic and elementary functions are also
readily available, and recent compilers from Sun Microsystems directly support interval arithmetic
and an interval data type.

3.2. Taylor Models

Makino and Berz (1996) have described a remainder differential algebra (RDA) approach for
bounding function ranges and control of the dependency problem of interval arithmetic (Makino
and Berz, 1999). In this method, a function is represented using a model consisting of a Taylor
polynomial and an interval remainder bound. Such a model is called a Taylor model.

One way of forming a Taylor model of a function is by using the Taylor theorem. Consider a
real function f(x) that is (q + 1) times partially differentiable on X and let x0 ∈ X. The Taylor
theorem states that for each x ∈ X, there exists a real ζ with 0 < ζ < 1 such that

f(x) = pf (x − x0) + rf (x − x0, ζ), (3)

where pf is a q-th order polynomial (truncated Taylor series) in (x − x0), and rf is a remainder,
which can be quantitatively bounded over 0 < ζ < 1 and x ∈ X using interval arithmetic or other
methods to obtain an interval remainder bound Rf . A q-th order Taylor model Tf = pf + Rf for
f(x) over X then consists of the polynomial pf and the interval remainder bound Rf and is denoted
by Tf = (pf , Rf ). Note that f ∈ Tf for x ∈ X, and thus Tf encloses the range of f over X.

In practice, it is more useful to compute Taylor models of functions by performing Taylor model
operations. Arithmetic operations with Taylor models can be done using the RDA operations
described by Makino and Berz (1996; 1999; 2003), which include addition, multiplication, reciprocal,
and intrinsic functions. Using these, it is possible to start with simple functions such as the constant
function f(x) = k, for which Tf = (k, [0, 0]), and the identity function f(xi) = xi, for which Tf =
(xi0+(xi−xi0), [0, 0]), and then to compute Taylor models for very complicated functions. Therefore,
it is possible to compute a Taylor model for any function representable in a computer environment
by simple operator overloading through RDA operations. It has been shown that, compared to
other rigorous bounding methods, the Taylor model often yields sharper bounds for modest to
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Figure 1. A cumulative probability density function is a one-to-one function where the value of a quantity x is on
the abscissa and the corresponding cumulative probability is given by the ordinate. Here, P (x ≤ 0) = 0.48.

complicated functional dependencies (Makino and Berz, 1996; Makino and Berz, 1999; Neumaier,
2003). A discussion of the uses and limitations of Taylor models has been given by Neumaier (2003).

3.3. P-Boxes

For some quantity (variable or parameter) x, the cumulative distribution function (CDF) F (z) gives
the probability that x ≤ z. A sample CDF is shown in Figure 1. Here, for example, the probability
that x ≤ 0 is 0.48. Probability boxes, or p-boxes, are similar, but provide an interval of cumulative
probability values represented by a pair of CDFs. A sample p-box is shown in Figure 2. This
indicates, for example, that the probability of x ≤ 0 is [0.40, 0.59]. The slightly stepped appearance
of the p-box curves, here and below, is due to the discretized representation of a p-box used by
Risk Calc. This representation is used in the implementation of p-box arithmetic.

A probability box, then, is essentially a hybrid of an interval and a probability distribution. As
an interval bounds a range of real numbers, a p-box bounds a range of probability distributions.
Also, as a probability distribution gives a real-valued probability for the value of a real parameter, a
p-box provides an interval-valued probability for the value of a real parameter (Ferson, 2002). Read
in another way, for a real-valued probability, a p-box provides the interval of values corresponding
to that probability. Formally, a p-box is a pair of functions (F,G) such that the true probability
distribution H of a number satisfies F ≥ H ≥ G. The function F is called the left bound of the
p-box, while the function G is the right bound, which should be apparent from the definition. For
a given real-valued probability, the left bound provides the lower bound of the parameter, and the
right bound corresponds to the upper bound. For a given value of a parameter, the left bound
corresponds to the upper bound of its probability and the right bound to its lower bound.

When the probabilities of parameters are independent, computations with p-boxes are analogous
to those with intervals. They are defined beginning with arithmetic and standard functions, again
using Eq. (2). In this case, p-boxes encounter the same dependency issues that intervals do. However,
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Figure 2. A p-box encloses the cumulative probability distribution function for a quantity x. Now the corresponding
cumulative probability is an interval. Here, P (x ≤ 0) = [0.4, 0.59].

Figure 3. Sample p-box with bounds obtained from a uniform distribution with a mean of 0 and standard deviation
in [0.2, 0.3].

p-box arithmetic can vary depending on assumptions about the parameters; much more detail is
provided by Ferson et. al. (2004).

There are three types of p-boxes employed in the examples used in Section 5. The first, as
illustrated in Figure 3, is a p-box with bounds obtained from a uniform distribution with a fixed
mean and an interval-valued standard deviation. Note that such a p-box encloses both uniform
(straight line) and nonuniform CDFs. The second is a p-box with bounds obtained from a normal
distribution, again with fixed mean and an interval-valued standard deviation, as shown in Figure 4.
The third type of p-box used is shown in Figure 5 and corresponds to the case of an uncertain
distribution with a specified minimum and maximum and fixed mean and standard deviation. This
is referred to as the mmms distribution.
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Figure 4. Sample p-box with bounds obtained from a normal distribution with a mean of 0 and standard deviation
in [0.2, 0.3].

Figure 5. Sample p-box for mmms distribution. This p-box has a minimum of −0.8, maximum of 0.8, mean of 0, and
standard deviation of 0.3.

4. Solution Procedure

In this section, we outline the method used for solving the problem described in Section 2. This
involves using the VSPODE program for the verified integration of the IVP given by Eq. (1) and
the RAMAS Risk Calc software for calculations with p-boxes. More detailed descriptions of the
VSPODE program and RAMAS Risk Calc software can be found elsewhere (Lin and Stadtherr,
2007b; Ferson, 2002).

As a first step, VSPODE is used to integrate the IVP. This provides a guaranteed enclosure of
the state variables at each time step in the integration and a Taylor model representation of the
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final state ym = y(tm). This Taylor model, Tym
= Tym

(y0, θ), is a polynomial in y0 and θ with an
interval remainder bound, and is valid for all y0 ∈ Y0 and θ ∈ Θ.

Then, in the second step, information about the distribution of y0 and θ values is substituted into
the Taylor model Tym

, and the distribution of final state values is computed using Risk Calc. Each
initial state and parameter is given by either an interval (no distribution known) or by a p-box, and
Risk Calc can do the necessary arithmetic with either. To reduce the occurrence of overestimation
in these calculations, Risk Calc can employ a subinterval reconstitution (SIR) procedure. These
methods are described in more detail by Ferson and Hajagos (2004).

5. Examples

The following examples illustrate the solution procedure when applied to a model from population
ecology and to three reactor modeling problems from chemical engineering. On all of the example
problems, the order of the interval Taylor series used in VSPODE was k = 17, and the order of the
Taylor models used was q = 5. Unless specified otherwise, a constant step size of 0.2 was used in
VSPODE, though this step size may be automatically reduced during the integration procedure if
needed.

5.1. Lotka-Volterra Model

One of the most basic population ecology models is the Lotka-Volterra model of a predator-prey
system. The model equations, with parameter uncertainties, can be written as

dx1

dt
= θ1x1(1 − x2), x1(0) = 1.2, θ1 ∈ [2.99, 3.01] (4)

dx2

dt
= θ2x2(x1 − 1), x2(0) = 1.1, θ2 ∈ [0.99, 1.01]. (5)

This example has served as a test problem for comparing interval-based ODE solvers (Lin and
Stadtherr, 2007b), in which uncertainty is represented as an interval. Figure 6 reproduces the
interval trajectories computed by VSPODE for t = [0, 10]. The Taylor model describing the solution
at t = 10 can be combined with probability bound analysis when more specific information regarding
the distribution of uncertainty is known. Figures 7 and 8 show the p-box solutions if both parameters
are described by a p-box with bounds obtained from a uniform distribution with standard deviation
of [0.0050, 0.0057] and mean at the interval midpoint. If the parameters were simply intervals (no
distribution known), then only an interval enclosure of the states would be obtained, and these upper
and lower bounds would match the upper and lower bounds of the p-boxes shown in Figures 7 and 8.
If no probability bounds analysis was done, we could only say that the probability that x1 ≤ 1.14
is in [0, 1]. However, using p-boxes it can be seen from Figure 7 that the probability that x1 ≤ 1.14
is in the interval [0.05, 0.5]. We can run subinterval reconstitution to make the p-boxes tighter.
Figures 9 and 10 show that the areas of the p-boxes can be drastically reduced with this technique.
Now, the probability that x1 ≤ 1.14 is shown to be about [0.13, 0.36]. The choice of a uniform
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Figure 6. The interval bounds on the state trajectories of Lotka-Volterra model as computed by VSPODE.

Figure 7. The p-box enclosure of x1 at time t = 10 in the Lotka-Volterra model as computed by Risk Calc.

distribution for the p-box bounds in this problem was an arbitrary one. Other types of p-boxes
could also be used.

5.2. Microbial Growth Model with Monod Kinetics

The system of equations for a simple bioreactor model (Lin and Stadtherr, 2007a) is

dX

dt
= (µ − αD)X (6)

dS

dt
= D(Sf − S) − kµX, (7)
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Figure 8. The p-box enclosure of x2 at time t = 10 in the Lotka-Volterra model as computed by Risk Calc.

Figure 9. The inner curves show the p-box enclosure of x1 at time t = 10 in the Lotka-Volterra model as computed
by Risk Calc, now using the subinterval reconstitution technique. The outer box corresponds to the solution shown
in Figure 7 for comparison.

where X represents the concentration of cells in the system, and S represents the concentration
of substrate. The parameters α, D, Sf , and k represent the heterogeneity parameter, the dilution
rate of substrate, the feed concentration of substrate, and the yield coefficient, respectively. The
growth rate of cells, µ, is dependent on the concentration of substrate, S. This term may take a
variety of forms. For a simple initial example, we consider Monod kinetics (Bastin and Douchain,
1990; Bequette, 2003), where

µ =
µmaxS

KS + S
. (8)

In the above expression, µmax is the maximum growth rate, and KS is the saturation parameter.
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Figure 10. The inner curves show the p-box enclosure of x2 at time t = 10 in the Lotka-Volterra model as computed
by Risk Calc, now using the subinterval reconstitution technique. The outer box corresponds to the solution shown
in Figure 8 for comparison.

We explore a subset of the uncertain conditions and parameters used by Lin and Stadtherr
(2007a): X0 ∈ [0.794, 0.864] g/L, µmax ∈ [1.15, 1.25] day−1, and KS ∈ [6.8, 7.2] g/L. We assume an
mmms distribution for these parameters, with the mean being the midpoint of the interval, and the
standard deviation being one tenth of the width of the interval (these are arbitrary choices). Other
initial conditions and parameters are expressed as real numbers: S0 = 0.8 g/L, α = 0.5, D = 0.36
day−1, Sf = 5.7 g/L, and k = 10.53 g substrate/ g cells. We employ VSPODE to integrate the
equation from t = 0 to t = 10 days. The biomass trajectory produced by VSPODE is shown in
Figure 11. The resulting Taylor model that describes X and S at t = 10 is used with Risk Calc,
and the p-box calculations give bounds on the probability distributions for the state variables as
shown in Figures 12 and 13. This shows, for example, that the probability that the biomass of cells
is less than or equal to 0.85 g is in the interval [0.9, 1.0].

5.3. Microbial Growth Model with Haldane Kinetics

The same bioreactor model described by Eqs. (6)-(7) can be solved using the slightly more compli-
cated Haldane kinetics (Bastin and Douchain, 1990; Lin and Stadtherr, 2007a), also called substrate
inhibition kinetics (Bequette, 2003). Here we replace the growth rate equation previously given as
Eq. (8) with

µ =
µmaxS

KS + S + KIS2
. (9)

The new parameter, KI , is called the inhibition parameter. Following Lin and Stadtherr (2007a),
we will treat this new parameter as uncertain, with its value lying in the interval [0.0025, 0.01] and
its uncertainty described again using the mmms p-box as discussed above.

Integrating this equation the same way as before, we obtain the transient biomass trajectory
shown in Figure 14 and a Taylor model describing the variables at time t = 10. The p-box enclosures
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Figure 11. Interval bounds on trajectory of cell biomass X under Monod kinetics as computed by VSPODE.

Figure 12. P-box enclosure of cell biomass X at t = 10 for Monod kinetics as computed by Risk Calc.

computed by Risk Calc for the state variables are shown in Figures 15 and 16. These enclosures
are larger than the enclosures determined in the previous example, which is expected because there
is an additional uncertain parameter. Now the probability that the biomass of cells is less than or
equal to 0.85 g is in the interval [0.86, 1.0].

5.4. Three-State Bioreactor Model

A second bioreactor model explored by Lin and Stadtherr (2007a) is a three-state biochemical
reactor. Here, we model the growth of cells x1 that consume substrate x2, but which also form a
product x3. The model is

dx1

dt
= (µ − D)x1 (10)

REC 2008 - Enszer et al.



Propagating Uncertainties in Modeling Nonlinear Dynamic Systems 13

Figure 13. P-box enclosure of substrate S at t = 10 for Monod kinetics as computed by Risk Calc.
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Figure 14. Interval bounds on trajectory of biomass X under Haldane kinetics as computed by VSPODE.

dx2

dt
= D(x2f − x2) −

µx1

Y
(11)

dx3

dt
= −Dx3 + (αµ + β)x1, (12)

with the growth rate as a function of both substrate and product concentrations,

µ =
µmax [1 − (x3/x3m)] x2

ks + x2

. (13)

In the above equations, the initial concentration of cells is unknown but within [6.4549, 6.5676],
and is represented by a p-box with bounds obtained from a uniform distribution with standard
deviation of [0.028170, 0.032533]. Two parameters are uncertain; the maximum growth rate µmax ∈
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Figure 15. P-box enclosure of cell biomass X at t = 10 for Haldane kinetics as computed by Risk Calc.

Figure 16. P-box enclosure of substrate S at t = 10 for Haldane kinetics as computed by Risk Calc.

[0.46, 0.47] is represented by a p-box with bounds obtained from a normal distribution with standard
deviation of [0.0282, 0.0325], and the saturation parameter ks ∈ [1.03, 1.1] is represented by a p-box
corresponding to the mmms distribution with standard deviation equal to 0.007. All p-box means
are at the interval midpoint. All other initial conditions and parameters are known exactly: x20 = 5
g/L, x30 = 15 g/L, Y = 0.4 g/g, β = 0.2 hour−1, D = 0.202 hour−1, α = 2.2 g/g, x3m = 50 g/L,
and x2f = 20 g/L.

VSPODE provides the biomass trajectory shown in Figure 17 and the Taylor model used in Risk
Calc to create Figures 18, 19, and 20, which give the probability distribution for the state variables
as p-boxes at time t = 10. One purpose for this example is to show the ability to have uncertain
conditions under a variety of probability distributions. Such an ability is essential in complicated
biological models where a variety of distributions is likely.
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Figure 17. Interval bounds on trajectory of biomass x1 in three-state reactor as computed by VSPODE.

Figure 18. P-box enclosure of biomass x1 at t = 10 in three-state reactor as computed by Risk Calc.

6. Concluding Remarks

The verified ODE solver VSPODE (Lin and Stadtherr, 2007b) provides a powerful tool for bounding
the solutions of parametric nonlinear ODEs. Because it provides output in the form of Taylor
models, VSPODE is also useful in situations in which uncertainties in parameters and initial states
are represented by p-boxes. In this case, the Taylor models from VSPODE can be combined with
the p-box uncertainties in initial states and parameters using RAMAS Risk Calc, resulting in a
propagation of these uncertainties into the final values of the state variables. In this way, probability
distributions (p-boxes) for the final state values can be obtained, as demonstrated in several example
problems.
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Figure 19. P-box enclosure of substrate mass x2 at t = 10 in three-state reactor as computed by Risk Calc.

Figure 20. P-box enclosure of product mass x3 at t = 10 in three-state reactor as computed by Risk Calc.
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