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Abstract. Today there are many methods for solution of equation with interval parameters (Moens
and Vandepitte, 2005). Unfortunately there are very few efficient methods which can be directly
applied for solution of complex engineering problems. Sensitivity analysis method (Pownuk, 2004)
gives very good inner approximation of the exact solution set. This method was implemented in
C++ language by the author and the program can be recompiled on Windows, Linux and Solaris
operating systems. The program is able to solve 1D, 2D and 3D linear problems of electrostatics
with interval parameters.

Additionally it is possible to solve problems with uncertain functional parameters (Pownuk,
2006). In order to do that it is necessary to create special finite elements. It is possible to consider
also uncertain shapes The program is very universal and can be applied to the solution of complex
engineering problem. The program is a part web application, which is written in php language and
can be run on the web page http://andrzej.pownuk.com.
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1. Design of structures with the interval parameters

One of the simplest method of modelling of uncertain parameters is based on the intervals (Moore,
1966). In that case in order to describe values of the parameter p it is necessary to know only two
numbers i.e. upper p and lower bound p.

In civil and mechanical engineering one of the most popular method of mathematical modeling
of engineering structures is the finite element method (Zienkiewicz and Taylor, 2000). The FEM
method leads to the following system of parameter dependent system of linear or nonlinear equations

K(p)u(p) = Q(p) (1)
where K is the stiffness matrix, @) is the right hand side and p is the vector of uncertain parameters
b= [pla"'apm]T’ (2)

In this paper the following notation for the interval parameters and the interval functions will be
applied. If we have the function f(p) then

fp)={f(p):pep} (3)
f(p) =0f(p)=0{f(p) :p € P} (4)
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2 Andrzej Pownuk

where p is the interval or a vector of the interval parameters. Function f can be real valued or vector
valued. p can be an interval in R (i.e. p=[p,,p;] C R) or in R™ (i.e. p=[p,,P1] X ... X [p, ,Pp.])-
If the parameters p; belong to some know intervals p; € [Bi’pi]’ then the solution can be defined as
the smallest interval which contain the exact solution set.

u(p) = {u: K(p)u(p) = Q(p),p € p} (5)

u(p) = Uu(p) = O{u : K(p)u(p) = Q(p),p € p} (6)

2. Sensitivity analysis method

There are different methods of calculation of the set (6) (Moens and Vandepitte, 2005; Neumaier,
1990). One of the simplest and most efficient method of solution of system of equations with the
interval parameters is the sensitivity analysis method (Pownuk, 2004).

Sensitivity analysis method for general explicit function u; = u;(p).
1. Calculate the mid point solution u(pg) from the following system of equations
ug = u(po) (7)
where pp=mid(p).
Ou(po)

2. Calculate the sensitivity op; - at the mid point pyg.

3. Find the combination of parameters which corresponds to the extreme values of the solution.

Ou;(po)

If =5, 2 0 then pi* = b0}y =1, (8)
j

 ou, .

if azz()po) < 0 then pi{"* = Qj,p%m = Dj- 9)
j

Combination of endpoints which correspond to the extreme value of function u; = u;(p) will be
denoted in the following way

P = O P s D), (10)
P = (i 0" s P )- (11)

4. Create a list L of all critical endpoints combinations.
L: {pTin,pTaz,ngin,nga$7”.,pmin’pmal:} = (]‘2)

:{p17p27"‘7p2m} (13)
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General Interval FEM Program Based on Sensitivity Analysis 3
5. Now it is possible to create a new list L*, which contain only different endpoints
* * * >k
L :{plapla'”apn*}‘ (14)

6. For all elements in the list L* calculate a value of the vector u

*

u; i =wui(p;), forj=1,.,n" (15)
7. Calculate the extreme values of the solution
w; = min{ui (po), Uj 1, U7 9y ooy Ui e - Wi = Max{U;(P0), Uy 15U oy e Us s }- (16)

The results are exact if the sign of the derivative is constant.

3. Interval functional parameters

3.1. EQUATIONS WITH INTERVAL FUNCTIONAL PARAMETERS

In order to get reliable results it is possible to approximate the values of the unknown function p
by using some upper and lower bounds

p(z) € [p.p]=p (17)
Better approximation can be obtained using functional intervals
p(z) € [p(z),p(z)] = p(z) (18)

Lets assume that the behaviour of the structure with interval parameters is described by the
following equation
F(x,u,p) =0 (19)

where u is a vector of the solutions and p is a vector of parameters. The solution of the equation
(19) can be defined in the following way (Neumaier, 1990)

u(z,p) ={u: F(z,u,p) =0,p(x) € p(x)}, z €. (20)

The set u(x,p) is in general very complicated (Neumaier, 1990), because of that in applications it
is easier to use the smallest interval which contain the exact solution set.

u(z,p) = Ou(z,p) = Hu: F(z,u,p) =0,p(z) € p(z)}, = €. (21)

If the equation is not directly dependent on z then the solution set is the following
u(p) = {u: F(u,p) = 0,p(x) € p(z)}, (22)
u(p) = Ou(p) = D{u : F(u,p) = 0,p(z) € p(x)}- (23)
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4 Andrzej Pownuk
3.2. GENERAL CONCEPT OF MONOTONICITY

A map T : X — Y is monotone if (X, >) is a partially ordered set and z,y € X, 2 >y = T'(z) >
T(y). Typically, X will be a subset of a Banach space Y with a cone Y, of positive elements and
x < y is equivalent to y — x € Y4 (Hirsch and Smith, 2005).

3.3. SOLUTION OF THE EQUATIONS WITH THE INTERVAL FUNCTIONAL PARAMETERS - GENERAL
CASE

In general it is very hard to get the solution set (23) or (21). Fortunately in many applications
it is possible to apply the method which is based on sensitivity analysis, Taylor expansion and/or
functional derivative (Pownuk, 2006). These methods allow us to get very actuate solution and
have low computational complexity.

Let us consider a function u = u(p) where p: R" D Q — p(z) € R, X is a functional space which
contain the functions p, u is the function form the space X to the space Ri.e.u: X 3 p — u(p) € R.
Lets consider only positive variation of the function p i.e.

op(x) = p1(x) — po(z) > 0 (24)

where p1,p2 € X. If one add positive variation to the function py then the results (i.e. pg + dp) is
bigger than the function pq i.e.

po + op(x) > po(zx) (25)

If the difference u(p + dp) — p(po) has constant sign the the function u is monotone.
If the function u is differentiable then finite increment of the functions u can be approximated by
the differential

u(po + 6p) — u(po) = du(po, op) + R(po, ip) (26)
where |R( 5 )|
Po, 0P
lim =22 2 — ) 27
lspl—0  [|opl| &)

and for small variations dp we can write

u(po + 0p) — u(po) = du(po, op) (28)

If the differential du(pg, dp) is positive then the function u = u(p) is monotone around the point pg
(Hirsch and Smith, 2005).

Theorem 1
If the function u : X — R is differentiable and du(poy,dp) = 0 for all p € [p,p] C X and some 6p,
then u = u(p) is monotone in the interval [p, p].

Proof
1

w(po + 6p) — ulpy) = / Su(po + tp, 5p)dt (29)
0
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General Interval FEM Program Based on Sensitivity Analysis 5
1
if du(po + top, op) = 0 then [ du(py + top,dop)dt > 0 and then
0

u(po + 6p) = u(po) (30)

i.e. the function u is monotone. Now it is possible to calculate extreme values of the function
u = u(p) for p € p if the sign of the differential is constant.

General sensitivity analysis with functional parameters

1. if du(p,6p) = 0 then p™n = p, p"*

X — p‘
2. if du(p,dp) < 0 then p™™ =p, p™m* = p.

mzn) mam)

3. u=u(p , 0= u(p

The algorithm is not very practical because in general it is hard to verify the sign of the differential
du(po, 0p). In order to make that method a little more practical it is necessary to consider some
special cases.

3.4. EXTREME VALUES OF THE INTEGRAL IN THE FORM u(p) = [ L(z,p(z))dz
Q

Differential of the function u(p) = [ L(z, p(x))dx has the following form
Q

du(po, op) :/aL(m’p($))
Q

ou
) op(x)dz = <5p,(5p> (31)

where
ou _ OL(x,p(z))
op(x) Op(x)

is the functional derivative of the function u = u(p) and (.,.) is the scalar product.

Theorem 2

If % > 0 for p € [p,p] C X, then the function v = u(p) is monotone in the interval p.

Proof

If % > 0 and dp(z) > 0 then du(pg,op) = <‘§—Z,5p> > 0 and according to the theorem 1 the
function u = u(p) is monotone.

Now it is possible to use more efficient version of the algorithm

Sensitivity analysis based on functional derivative

1. if % > 0 then me:" =p, p"* =D.
if 5}?&) <-0 then p™" = p, p™** = p.
g — u(pmzn)’ ﬂ — u(pmax).
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6 Andrzej Pownuk

If the sign of the functional derivative is not constant, then it is possible to apply approximate
method for finding extreme values of the solutions. According to the equation (28) the finite
increment of the functions can be approximated by the differential. If the differential is positive
(i.e. du(po,dp) = 0) then for very small variations dp we can assume that u(p + dp) > u(p). The

product %5})(:5) is nonnegative if #(”x) > 0 and dp(z) > 0 or 55(1%) )< 0 and dp(x) < 0. If we
u(po

have the function pg € [p,p] and the value of functional derivative 5p(z) is not constant, then it is

possible to change the sign of the variation dp is such a way which make the differential positive.
It is possible to define the small variations in the following way

du(po)
op(x)

du(po)
op(x)

5" (@) = A(w) LU (@) = —A(a) (33)

where A(z) is an arbitrary positive function. If the variations dp',dp* are small enough then
Su(po, 5p*) = 0, du(po, dp') < 0 and according to the relation (28) we can write

u(po + 0p*) = u(po) (34)

u(po + 6p") < u(po) (35)

Above described properties can be applied to the creation of approximate algorithm for finding
upper and lower bound of the function u = u(p).

Calculation of upper bound w

L. p(x) = po(w)

2. choose the function A\(z)

4. poia(r) = p(x)
5. p(x) := p(x) + 0p"(z)
6. if p(z) > p(z) then p(z) = p(z)
7. if p(z) < p(z) then p(z = p(z)
8. if ||poia — p|| > € then goto step 2
9. 7w = u(p)

10. stop

The lower bound can be calculated in the similar way.
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General Interval FEM Program Based on Sensitivity Analysis 7

3.5. EXTREME VALUES OF THE FUNCTIONS AND THE INTEGRALS

In more complicated cases the function u = u(p) is a superposition of algebraic function f and the
integrals in the form [ L;(z, p(z))dx
Q

u(p) = f (W1, 9q) = f(y)
v =11p) = [ (@ p(@)de, gy = 1,(p) = [ Lo(w,p(@))da (36)

Differential in this case is equal to:

o 0 81’
) 5210, 3 2000 [ 0L
i ¢ i By

op(x)dz (37)

Functional derivative can be defined in this case in the following way

Ii(p) ,p())
Z 81/ 5pfv Z 8yz p() (38)

In matrix notation

0L

su(p)  [of(y)  of(y)] | @

5p [ oy1 7 Oy ] oL, (39)
op(x)

If the sign of the functional derivative is constant, then the sign of the differential is constant (for
very small perturbations dp) and according to the theorem 77 the function u = u(p) is monotone.
In order to calculate the extreme values of the solutions by using the algorithm 3.4. If the sign of
the derivative is not constant then it is possible to apply algorithm 7?7 and ?7.

It is also interesting to study the function w in the case when it depend on many functions p; i.e.

u(p) = (yl,'-qu)zf(y)
v =11p) = [ (@ p(@)de, gy = 1(p) = [ Lo(w,p(@))da (40)

where p = (p1, ..., pm). The differential is equal to

Su(p,op) = agij) Ii(p,0p) =

% i

/ (Z ap; ) d (41)

Now it is possible to calculate the functional derivative which is in this case a vector with the
following components

Z

Z o )] (12)

ayz apl 3yz 8]9 m
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In matrix notation

8L1 e aLl
Sulp) _ [0f)  Of@)] | T o (43)
op dy1 T Oy oLy OLy

opi(z) " Opm(x)

The differential is positive if the variations dp; have the same sign as ) agg(ﬂ) 627%1) It is also possible
n 7 'j
(2

to create discrete version of these methods.

4. Sensitivity with respect to changes of the region of integration

4.1. INTRODUCTION

Lets consider a function u = u(f2) where 2 is a domain of integration.
w(Q) = / L(x)dz (44)
Q
Lets consider the following increment
w(Q + AQ) — u(Q) = / L(x)dz — / L(z)dz — / L(z)dz (45)
Q AQ

Q+AQ

The operation " + AQ” is a sum of two set i.e. 7Q U AQ”. If the set is convex then from main
value theorem

/ L(z)dz = |AQ|L(z") (46)
AQ

where z* € AQ.
u(Q+ AQ) —u(Q)

|AQ]

= L(z") (47)
In the limit case
ou im u(Q+ AQ(x)) — u()
0x)  |1AQ(z)|—0 |AQ(z)]
If Q C Q C Q then extreme values of the function u = u(p) by using sensitivity analysis method.

The inclusion C can be treat as the partial order relation >. Because of that it is possible to
take into account ”set intervals”

= L(x). (48)

Q.0 ={Q:QcQca). (49)

If the sign of the derivative 65&) is not constant then it is possible to create the sets 2% and

Q™" in the following way.

Qmax:QU{x: ou 20,:136(2—9} (50)
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General Interval FEM Program Based on Sensitivity Analysis 9
Qmm:Qu{ ou <0,z€Q— Q} (51)
- 5(2( )

Extreme values of the function u = u(f) are equal u = u(Q™"), w = u(Qm%).
The function u = u(£2) may be a superposition of algebraic function and the integral.

W@ =f@), y= [ L@ (52
Q

du  df(p) 9 _df(p) .

0Qx)  dy 092(x) Q/ Hz)de = =3 = L(z) (53)
The function v can be dependent on many integrals.
W@ = fly), = / I _ / L,(z)dx (54)
Q

du df(p)

(59(:5) i dyZ (5Q /L Z. dy; Liz) (55)

4.2. MOMENT OF INERTIA OF CROSS-SECTION WITH UNCERTAIN SHAPE

Polar moment of inertia

Iy(Q) = /r2dQ = fj(zj + y?)dzdy (56)
Q

Q

Because the limit is positive in the set O — Q

O N
g Q

v

Figure 1. Uncertain shape of cross-section
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01y

2, .2
- - @@ = >
5z.7) “+y =20 (57)
then B _
Iy =1o(@) = [[(@*+ y})dady, To=1o() = [[(@*+y?)dady (58)
Q Q
In the case of product moment of inertia
Q) = JI xydxdy (59)
Q
the limit 51
Ty
0wy (60)

is sometimes positive and sometimes negative. From the picture 2 we can see that xy > 0 in the

Q
Qz 7'y 1

v

(O8]

= T—

Figure 2. Uncertain shape

sets 1 and Q3. xy < 0 in the set 2o and 4. Because of that

L, =1y (QUQUQy) = ff 2% + y?)dady (61)
QUN2UQ,

Loy =Ly QU UQ) = [[ (2 +y?)dudy (62)
QUOIUNS
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General Interval FEM Program Based on Sensitivity Analysis 11

5. General case

In general it is possible to consider a functional which is dependent on parameters h; € p, functional
parameters p;(x) € p;(x) and integrals which are dependent on the sets €);

w=F(hi, ..., s Y1, ooy Yps 215 05 Zg) (63)

Yy = /Ll(x,pl(m),....,pk(x))dx (64)
't

Yo = /LQ(x,pl(x),....,pk(:c))d:c (65)
1)

(66)

Yy = /Lq(:c,pl(x),....,pk(x))dx (67)
Iq

= [ p1(@). i) (68)
951

2 = /\Ilg(:c,pl(:):),....,pk(x))dx (69)
Qo

(70)

2 = /\I’q(az,pl(x),....7pk(az))dﬂz (71)
Qq

If the sign of each derivative is constant then it is possible to apply sensitivity analysis
to each uncertain parameters separately.
6. Direct method of calculation of sensitivity from differential equation

6.1. SENSITIVITY WITH RESPECT TO REAL VALUED PARAMETERS

Lets us consider tension-compression differential equation

d du
= (mdx) =0 (72)
with the following boundary condition
du(0)
" — P w0)=0 (73)
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After integration we will get

du | B du(0)
0
EAd—u + /xndx =P (75)
dx N
0
du P 1
()_(OH/de_/x 1]d§d (77)
wEy=u EAY EAJ" 1
0 0 0
T z n
P 1
u(z) —/ﬂdn—/ (EA/nd§> dn (78)
0 0 0
For constant values of F, A and n we will get
Px na?
U*) =54~ 254 (79)
Partial derivative of the solution is equal to
ou(z) Pz na?
dE(y) ~  E2A T or2aA (80)
Functional derivative of the differential equation with respect to the uncertain parameter p;
0 [d du
— (EA— = 1
Opi {dw ( dw) +n} ! (1)
d (O(EA)du d d (0u on
i o) (P () * a3 = 52
For example if p; = E then
d (O(FA)du d d (0u on
il o S pal (22 on
dz ( oF dx) + dz < dz <8E>> + oF 0 (83)
d du d d (0Ou
— | A— —|(FA—|=— ) = 4
dm( da:>+d:1;( dx (8E>) 0 (84)
After integration
du d (Ju
A+ BA—- (M) = (85)
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Derivative of boundary conditions

d (OU(O)) _ P ou(0) 0
de \ OF )  E2A° OFE
then P p

From boundary conditions we will get

du d [ 0Ou
A—+FA—|(— ) =0
dx + dx ( >

(o)L
dr \ 0 - Edz

d(m)_P+1jnd
dz \OE) ~ ~E?A " E?A "

After integration

x T £
ou  9u(0) P 1
o9F — 0F _/E2Ad5+/ E?A/”d77 4
0 0 0
ou i P i
OF /E2A £+/(E2 /ndn dt
0 0 0
For constant values
ou Pz nx?

9E ~  EPA ' 2E?A
Using this method it is possible to avoid approximation errors.

6.2. SENSITIVITY WITH RESPECT TO FUNCTIONAL PARAMETERS

13

(92)

(93)

(94)

The solution of the equation (72) is given by the formula (78). The functional derivative with the

respect the the values of Young modulus E(y) is equal to

Su(w) & [P s {1 ]
5E(y) ~ OE(y) 0/ A" 5E() 0/ (EAO/ "d§> @

(95)
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)

du(z) P 1 .
5B~ F)AG) E2<y>A<y>o/ * %0)

It is possible to calculate the functional derivative of the solution of the equation (72) with respect
of the functional parameter F = E(y)

% (E(@A(@W) + (@) =0 (97)

d du(z, E+F) B

e <(E(x) + 5E(x))A(a:)dx> +n(z)=0 (98)
The last equation for a small perturbation can be written in the following way

w(z, B+ 0F) ~ u(z, E) + dugp(z,0F) (99)

After neglecting quadratic terms we will get

L (B@)A@) L) + L (6B () A(z) 52 +

100
—I—% (E(l’)A(:E)%(SUE(ZL‘,(SE)) +n(x)=0 (100)
If we subtract the equations (97) and (100) the result is
£ (0B(2)A@@) ™E2)) + 4 (E(@)A(e) £ oup(e, 0B)) =0 (101)
After integration we will get
B A) ™M E) | ey Aw) Lsup(e, 58) = ¢ (102)
dz dz
The functional derivative of the boundary conditions is given by the following formulas
u(0, E) = 0, (103)
u(0, E+d0FE) =0, (104)
w0, E) + 6ug(0,6E) = 0 (105)
then
§u(0,6E) = 0 (106)
d P
el Ey= 1
d P
—u(0,E+0F) = 108
O+ O08) = o S B0 A) (108)
d d P PSE(0)
il E) + — E) = — 1
4z U0 B) 4 52 0un(0.08) = 5y ~ B2 (0)A(0) (109)
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then
d _ PSE(0)
%5uE(O,5E) = T E0)A(0)
For x = 0 we have
SE(0)A(0) d“(;g;E ) 4 E(O)A(O)%auE(o, SE) = C
From boundary conditions
P POE(O
5E(0)A(O)W — E(0)A( )E?w)ﬁl()()) =C
0=C

Now the equation has the following form

du(z, F) d

SE(x)A(x) . + E(x)A(m)%éuE(m, 0E)=0
d _ 0E(z) du(z, E)
%(5UE($,(5E) =~ TEw)  dr

From the equation (76)

i wnlz :_5E() P _ 1 n(x)dx
gz v (@, 0B) = =5 (E(x)A(:v) E(z)A(m)O/ )

d _ PSE(x) SE(zx) [
g0 0B) =~ pr e B A 0/ n(i)dn

dx

After integration

Sup(z,0B) = up(0,6E) — | b Qe de+
0

¢
+f <E2(§)A bfn(ﬁ)d77> d§

for x = 0 we know that du(0,0E) = 0, then

Sup(x, 5E) = f;;fgﬁ dg + | (Ef(? i(g)f n(n)d )

O%m

then

£
du(z) —P 1 .
56 - FOAe T oA | "0

15

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)
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7. FEM with uncertain functional parameters

Finite element method lead to the following parameter dependent system of equations (Zienkiewicz
and Taylor, 2000)

K(p)u(p) = Q(p) (122)
where K is the stiffness matrix, @ is the load vector and w is the vector of the solutions. The
5u_(p ) of the solution can be calculated from the following equation

opi ()
dulp) _ Q(p) _IK(p)
pi(z) — opi(z)  Opi(x) (p)- (123)
du(p)

The solution Sps(z) CA1 be applied in the algorithms, which are described in the previous sections.

du(p)

It is not possible to calculate the functional derivative 3pi(2) in all points x € ). Because of that

functional derivative

K(p)

functional derivative should be calculated in as many grid points as possible . The sign of the

functional derivative (;S;((’; )) is calculated by using the nearest grid points x}, i.e. 52?((5 i).

8. Postprocessing of the interval solution
based on sensitivity analysis

8.1. 3D ELASTICITY

In structural mechanics solution of the system of equations (122) is used for calculations of other
mechanical quantities like for example stress and strain. In linear elasticity the relation between
the strain tensor € and displacement vector w is the following

e(z) = % (V7u() + Vu(a)) (124)

1 6uz 8Uj
= — 4 125
* 2 <a$] 8371 ( )
In cartesian coordinate system it is possible to approximate the displacement field w;(x) (i is a
direction of the displacement i.e. z,y, 2, ¢z, @y, ¢. ) in the element €2, using shape functions Ne(x)
(e is a number of element, k is a number of node) and the values of the function u; in the nodal

points e (usually uer; = u;i(xer), however uep; can be also defined using derivatives of the function
u;, e is a number of element, k is a number of node, i is a direction of the displacement)

ue'i(x) ~ Z Nek(x)ueki (126)
k

From the equation (124) and (126) we have

Eeij = % <(98.’L‘] (; Nek(.T)ueki) + ail (; Nek(x)uek])) = (127)
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1 N, N,
=3z ONe (x) Ueki + ONer (x> Ueki | = (128)
2 & Ga:j & 81‘Z
8Nek 8Nek (l‘)
_ Z ( ax] pz + axz (517] Uekp = (129)
= Z Beijkpuek:p (130)
k,p
then
1 8Nek<.1‘) 6Nek($)
B€ijk‘p = 5 Z <81‘35pz + Tép‘j (131)
k,p v

Relation between the global solution vector u, (¢ is a number of degree of freedom in the solution
vector) and the vector of local solution of the elements u., (e is a number of element, k is a number
of node in the element e, p is a direction of the displacement) is the following

Uekp = Z Uekpquq (132)
q
Sensitivity of the displacements
OUelp ou
P =N Uppg = 133

In the case of linear elastic materials the relation between the stress o;; and strain ¢;; is the following

Oemn = Zcemnijeeij = Z CemnijBeijkpuekp (134)
i,j i,5,k,p

The sensitivity of the strain field can be calculated as a derivative

Oceij 0
ceij - (Z Bezjkpuekp) - (135)

op Oy

0B ou
_ Z ( ez]kp Uekp + Beijkpa;];p> (136)

or in the case of functional parameters

5<€eij )
= Beijipliep | = 137

k,p

dB.; due
— Z ( Jkp Uekp + Beijkpépl(’;f)) (138)
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The sensitivity of the stress field can be calculated from the equation (134)

OCemn 0
_ Y Coooo B = 139
opy Ipi i,%c:,p emnij DeijkpUekp (139)
NC.. . B... 0
_ Z ( emnij ewkp)uekp + Beijkpcemnij%) (140)
i.j.kp O o

or in the case of functional parameters

0T emn )
= Cemm 'Bei ikpUe 141
ople) - opu(a) (z%c:p e kp) (141)
5(CemnijBeijkp) 6uekp )
- Uekp + BeijkpCemnij =~ 142
i,%c:,p < Opu() kp Tk T opi(x) (142)

If we know the derivatives of the strain and stress field then it is possible to calculate the extreme
values of the solution using the methods which are described in the previous sections.
Potential energy can be calculated as

V = Z /Cemmj&“ezj&“emndﬁ — Z/feiueidg (143)
€,m,n,i,j ¢ et Q)
where f.; are the loads. The local stiffness matrix can be calculated from the following formula
Kekplq = Z /CemnijBemnkpBeijlde (144)
e7m7n,i7j Q

Global stiffness matrix

Kaﬁ = ZKeaﬁ (145)
e
where
Keaﬁ = Z Kekpquekanekpﬁ (146)
k.p,l,q

Above relation is linear that is way it is possible to calculate sensitivity of global stiffness matrix
using linear relation

0K 0K

af _ eaf (147)
Ipy < Opy
oK, 0K,
8eaﬁ - P UekpaUekps (148)
Py kpla P
Local load vector can be calculated using shape functions N, (z) and load vector t;

Quti = [ teiNeyd® (149)

Qe
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Global load vector ), can be assembled from the local load vectors Qi

Qp = Z Uekineki (150)

eki

then the sensitivity of the global load vector can be calculated from the sensitivity of the local load
vectors

0Qy 0Qeki
I _ S0, 151
o M oy (151)

8.2. TENSION-COMPRESSION PROBLEM

The displacement field u in the case of tension-compression problem is described by second order
differential equation

d du

—(EJ—)+n=0 152

dx ( dac) (152)
where E is Young modulus, J is a moment of inertia, n is a vector of continuous loads and u is a
displacement. After discretization in the case of constant F, A, L we will get the following stiffness
matrix

% - |:k'ell kem} _ ‘EE?E _Ezfe (153)
¢ ke21 keoo — e sze
Sensitivity with respect to the variation of Young modulus
SepAe depAe
OK. _ [ 5]1,4 y ]?46 ] (154)
aEp _ eze e eze e

in similar way it is possible to calculate sensitivity with the respect of other parameters. Global
stiffness matrix can be calculated in by using the connectivity matrix.

S LSS S
"/
Iy
S
IS
N
®_
IS
A
T

L Ll e

I e e gl

Figure 3. Tension problem
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Global stiffness matrix can be calculated in the following way

1
Ky = 0 00 (155)
0 00
EyAs ErA2
B, A
K= |-BL BL (156)
. 0 0 O
0 O 0
Ky=|0 &4 L (157)
0 —£34s  EzAs
L L3 Lg
E1A1 + E2A2 E2A2 O
K=K +K+K=| -5 &Bh, E3A3 —Eads (158)
0 _ E3A3 E3A3
Ls Ls
Global load vector after applying boundary conditions
0
Q=10 (159)
P
Mid point solution is a solution of the following system of equation
Ku=qQ (160)
where
U2
u = us (161)
Uy

Sensitivity of the displacement u with respect of value of Young modulus Fs can be calculated from

the following system of equation

X ou  0Q 6Ku
OFEy 0FEs OFs
where

A

0K 0K, 0K N OKs
OFE, OEy, 0OFEy OFy 0
o _ o o] g
OE,  OF5 P - 0

(162)
0
0 (163)
0

(164)
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Displacements in the first element

uy () = [N11(a), Nia(z)] m ]

Sensitivity of the displacements in the first element

Gul(a:):{l x x}[g}%]

0B, ' IiT | o

Displacements in the second element

us(z) = [Nos(z), Naa(a)] | 22 |

u3

Sensitivity of the displacements in the first element

auQ(:E)_{l_:n x} g—ﬁ
0B, Ly L] | 9

0F»

Displacements in the third element

Ug

us(2) = [Nos(z), Naa(a)] | 2 |
Sensitivity of the displacements in the third element

8U3(93):{1_$ fc} o
OFE- L3’ Ly 3%42

Now it is possible to calculate the strain in all elements

duv [ 1 17T
5‘1:7: —y

dx L L1 Ly | ue]

du 1 17wl
52:—: — Y, T

dr | Lo Lol | us |

du [ 1 17[us]
52:—: —y

dr | L3 Ls| | u4 |

Sensitivity of the strain field
1 1] 9w
|-t 21| 9F
OEs [ Ly’ LJ %
e 1 17[ 8%
I | T Ta | | Qus
O

21

(165)

(166)

(167)

(168)

(169)

(170)

(171)

(172)

(173)

(174)

(175)
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683

The sensitivity of the stress filed

0
:[_1 1} o,
OB Ly Ls| | 94

o1 = Frer
09 = Fheg
g3 — E3€3
60'1 _ 861
0By  '0F,
doa Oe
%2 9. B, 222
om, 2t tgg,
60’3 N 363
OB, POE,

(176)

(177)
(178)
(179)

(180)
(181)

(182)

Above described formulas are true only if the Young modulus £ = FE(z) and the area of cross-
section A = A(z) is constant inside each element. If these functions are not constant then the
stiffness matrix have to be calculated by using the integration.

L
X bel(x)Aﬂx)dg;Q dQEde 00 -
1 0 00 (183)
0 00
. . _
[ Ea(x) Ag(ar) v V21 gy [ 5y () Ag () D21 4Nz g
0 0
=17 f (184)
[ Ba(a) Ag() 2 3 dar | Ba(o) Ao(a) %22 422w 0
I 0 0 0]
[0 0 0 )
K dN31 dN: L dN=1 dN-
iy — | O ] Bo(@) Asl) S e [ By(o) Ag(a) G 42 do 185
L L
0 [ Byw)As o) 2 43 dw [ By(@) As(a) (2 A3 da
The functional derivative can be calculated without differentiation.
000
K1 _ 1900 (186)
0Bx(z) 1000
5Ky Ag(x)dfi\gl dfi\;m A2<m)d2;21 dgl}z 0
0 Ba(x) A2(x)dg§2 s A2(w)dg£2 s 8 (187)
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000
0Ks 1900 (188)

5E2(IL‘) 000

5K 0K, 6Ky 0K
SEa(z)  0Ba(z) | Ba(w) T 0Ea(a) (189)
0 0
5Q -

SEaa) 0B | p| [8 o

Functional derivative of the displacements can be calculated from the following system of equations

o Ou__6Q 5K
(5E2(33) N 6E2(a;) B 5E2(x)u

(191)

In the same way it is possible to calculate the functional derivative of the displacements, stress and
strain fields.

8.3. TRUSS STRUCTURES

Using the sensitivity analysis method it is possible to calculate the interval displacements in the
truss structures with the interval Young modulus and the area of cross-section (Fig. 4). The struc-

—

- lP lP &
P
T {

v
>Q

>

4

NN RN NN NN
m

X "

Figure 4. Plain stress-strain problem

ture can be described in two steps. In the first step the truss structure is described by using ANSY'S
FEM (http://www.ansys.com) program internal scripting language. In this case the uncertainty of
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Table I. Interval displacements of truss structure

‘ ID ‘ Interval displacement [m] ‘ node ‘ dof ‘
u[0] | [ 2.54206368¢-05, 2.88890319¢-05] | 5 1
u[l] | [-2.41613231e-06, -5.5936232¢-07] | 5 2
u[2] | [ 1.89488493¢-05, 2.18240888¢-05] | 6 1
u[3] | [-1.18336781e-05, -9.68801242¢-06] | 6 2
u[4] | [ 1.74375666e-05, 2.00368684e-05] | 7 1
uf5] [-1.53016570e-05, -1.28438219e-05] | 7 2
u[6] [ 2.23883755e-05, 2.55322229¢-05] 8 1
u[7] [-2.43184098e-05, -2.13175562e-05] | 8 2
u[8] [ 4.47984203e-05, 5.07482294¢e-05] 9 1
uf9) [-1.25873042e-05, -9.13828295e-06] | 9 2
u[10] | [ 3.58319463e-05, 4.09641151e-05] 10 1
u[11] | [-2.03184368¢-05, -1.75638790e-05] | 10 | 2
u[12] | [ 3.30408793e-05, 3.79901925¢-05] 11 1
u[13] | [-2.87524495¢-05, -2.54594638¢-05] | 11 | 2
u[14] | [ 3.51831538e-05, 4.042328624¢-05] | 12 1
u[15] | [-4.18322390e-05, -3.7394527¢-05] | 12 | 2

the Young modulus is 5% (MP, EX, 1, 5) and the uncertainty of the area of cross-section is also
5% (R, 1, 5). The interval displacements are shown in the Table I.
This example shows that the sensitivity analysis can be use as an extension of existing FEM code.

8.4. PLAIN STRESS

Let us consider a 2D structure which is shown on Fig. 5.

In calculation linear-elastic plain stress-strain mathematical model was used. Young nodulus
was uncertain and equal to E € [210 - 109,212 - 109}%, Poisson number v € [0.2,0.4], thickness
h = 0.1m, width L = 1m, height h = 1m surface load ¢, € [3,2]kN. Numerical results are shown
in the Table II. The results are show in the following format
u[number| = [lower bound, midpoint solution, upper bound).

8.5. INTERVAL STRESS IN 3D ELASTIC BODY

Using described theory it is possible to calculate the interval stress using the 3D brick elements
(Fig. 6). Let us consider 6 finite elements with continuous loads ¢ € [1,3]%, Young modulus

E € 210, 212]109%, Poisson number v € [0.2,0.4] which are shown in the Fig. 7.
In each element there are 27 Gauss points. Results of calculations are shown in the table below.
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Figure 5. Plain stress-strain problem

Table II. Interval displacements in the truss structure

‘ ID ‘ Interval displacement [m] ‘
uf5] | [7.010160e-08, 9.384325¢-08, 1.175510e-07]
uf6] [-4.461538e-07, -3.479902e-07, -2.587601e-07]
u[7] | [-4.600000-07, -3.619668¢-07, -2.716981e-07]
uf9] [-1.175510e-07, -9.384325e-08, -7.010160e-08]
u[10] | [-4.461538e-07, -3.479902¢-07, -2.587601e-07]

The program can be run from the web page http://andrzej.pownuk.com. The structure is described
using some easy to understand scripting language.

9. The computer program

Sensitivity analysis is implemented in object oriented C++ computer program. In the program
there is 11 finite elements. The program allow to use the following analysis types

1. Liner static analysis (classical FEM solution)
2. Liner static analysis with interval combinatoric

3. Liner static analysis with sensitivity analysis
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Figure 6. 3D brick element

e

T

/ L

x

Figure 7. 3D brick elements with surface load

4. Liner static analysis with Taylor expansion method
5. Liner static analysis with functional derivative method

6. Liner static analysis with combination of functional derivative and sensitivity analysis method

The program can be run on-line from the web page http://andrzej.pownuk.com. In the first box

there is a description of the problem Fig. 8.

After clicking the button ”calculate” the results will appear in the second box.

In order to see all steps of the calculations ”debug” command can be apply (e.g. debug_interval_solution).

In order to see the intermediate results commands ”print” can be applied (e.g. print_global stiffness_matrix).
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Table III. Interval stress in the element 1

Number of Gauss point ‘ interval stress 0., [%] ‘

[-3.000000e+03, -1.000000e+03]
[-3.000000e+03, -1.000000e+03]
[-3.000000e+03, -1.000000e+03]
[-3.000000e+03, -1.000000e+03]
[-3.000000e+03, -1.000000e+03]
[-3.000000e+03, -1.000000e+03]
etc. etc.

S O W N~

Table IV. Interval von Mises stress in the element 1

Number of Gauss point ‘ interval von Mises stress o [%] ‘

[1.000000e+-03, 3.000000e+03]
[1.000000e+4-03, 3.000000e+03]
[1.000000e+-03, 3.000000e+03]
[1.000000e+4-03, 3.000000e+03]
[1.000000e+-03, 3.000000e+03]
[1.000000e+4-03, 3.000000e+03]
etc. etc.

S T W N

s and Webcasts:.. | @ Pttpificakui s mat.. % T - B - [2reese~ ook -

n of FEM model and press "Calculate” button. [ USER'S MANUAL ]

Done @ internet “00% -

Figure 8. Web application
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G~ Enmikois nathutp et oreatepo [P [EE3 £~

Events nd Webcass, | @R skl mat.. % B B & Sy G
[Trectangie 2 points 5 14 6 parameters 1

boundary condition fixed

The result is:

Dene @ et w00% -

Figure 9. Results of the calculations

10. Interval eigenvalue

10.1. SENSITIVITY OF THE EIGENVALUES

In the dynamical problems of structural mechanics the finite element method lead to the following

system of differential equations
Mi+ Ku=0

If we assume that the solution is in the following form

u = ug sin(wt + ¢)
then

i = wug cos(wt + @), il = —w?ug sin(wt + ¢)
and from the equation (192) we have
—Mw?ug sin(wt + ¢) + Kug sin(wt + ¢) = 0

(K —wiM)u; =0

Eigenvectors uq, ..., u, are M-orthogonal
ul Mu; =
then from the equation (196)
ul Kuj = w?éij

Sensitivity with the respect to the parameter p

0K 0w’ oy OM )
- M- uj+ (K —w?M
Op Op i Op uj+ wj M)

(192)

(193)

(194)

(195)
(196)

(197)

(198)

(199)
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Lets multiply above equation by u}

K O0w? M
Ow?
o (G ety )= o
0K OM dw?
o (G iy ) u = 202

Then sensitivity of the frequency of vibration w? can be calculated from the following formula

J
(Lund, 1994; Hilbert and Courant, 1953)
Ow? 0K oM
J T 2
i R (S L T 203
9p u]((?p w]8p>u] (208)

The interval frequency of vibration can be calculated using sensitivity analysis and derivative aaipj

Ow? Ow;
R R, TS Y] 204
op Wi dp (204)

| 0
Qwj _ 1 25 1 T<0K 2W>uj (205)

= — = ——Uu — — W~

Op 2wj Op 2w; 7 \ Op 7 Op

If the derivative of stiffness matrix %—Ig and the mass matrix %—]\; are constant then the sign of the
Ow?

derivative % is constant and extreme values of w? can be calculated by using sensitivity analysis.

Let us consider the system of first order differential equation in the matrix form

i = Ax (206)

M or = AzgeM then

If we assume that the solution has the following form z = xge
A\zge™ = Azge™, = (A= X)xg =0 (207)

Then we have the standard eigenvalue problem. Derivative with respect of parameter p is equal to
the following

0A 0\ ox;
— =z +(A-NI) =L =0 208
(ap 8]) )x1+( ])ap ( )
0A 0\ O\, 0A
Finally derivative of the eigenvalue can be calculated from the following formula
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Now it is possible to apply sensitivity analysis method in order to calculate upper and lower bound
of the eigenvalue A;.

If the derivative of the matrix A i.e. % is constant then the sign of the derivative g—; is constant
and extreme values of A can be calculated by using sensitivity analysis.

Different method which is based on perturbation of positive definite matrices is described in the
paper (Modares, Mullen and Muhanna, 2006).

10.2. VIBRATION OF MULTIBODY SYSTEM

Dynamics of the mechanical system, which is shown in the Fig. 10 is described by the following
system of differential equation

NN NN NN

m m,

AT RN

Figure 10. Multibody system

////////‘

5wl [B] 155 1]

Mi+ Kz =0 (212)

{8] (211)

or shortly

where k = k1 = k2 and m = m1 = ms. The eigenvalue problem

det (K —w*M) =0 (213)

w1:“(3—\/5)%, WQ:“(3+\/5)% (214)

The eigenvectors 1, xo satisfy the following system of linear equations

has the following solution

(K —wiM)z; =0 (215)
V51
£, = 2<5&§\/5>m (216)
G—VB)m
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(K —wiM)zy =0 (217)
__ B+l
ry= | VALY (218)
(5+V5)m
dw? g (0K ,0MY k
ows 5 (0 o OM B k
dwi (0K  ,0MY 1
ows (0K 9 OM B 1

If we assume that the sign of the eigenvalue is constant, then extreme values of the eigenvalues can
be calculated in the following way

w; =wi(m, k), @ =wi(m,k) (223)

wy = wa(m, k), W2 = wa(m, k) (224)

where m € [m,m|, k € [k, k].

11. Conclusions

Using functional derivative it is possible to check monotonicity of the function with uncertain
functional parameters. If the function v = wu(p) is monotone then extreme values of the results
can be calculated by using upper and lower bound of the functional intervals and sensitivity
analysis (Neumaier and Pownuk, 2004; Pownuk, 2004). Sensitivity can be use as an extension
of the existing FEM programs. Using quasi analytical method it is possible to avoid approximation
errors. Functional derivative can be sometimes calculated without integration. This property may
increase accuracy of the solution. Using the sensitivity analysis method it is possible to calculate
the interval eigenvalues. Interval eigenvalues can be calculated also in the case of structures with
uncertain shape and uncertain functional parameters.

Presented sensitivity analysis method can be applied to the solution of any problem with functional
parameters in which it is possible to calculate the functional derivative and verify monotonicity.
For non-monotone problems it is possible to apply an extension of the algorithm, which gives only
inner bounds.

The approach presented can be applied together with any numerical method for the solution of the
underlying problem, including techniques for partial differential equations e.g. FEM, FDM, BEM,
FVM etc. Extended version of this paper was published as a research report at the web page of the
University of Texas at El Paso (Pownuk, 2007).
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