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Abstract. Today there are many methods for solution of equation with interval parameters (Moens
and Vandepitte, 2005). Unfortunately there are very few efficient methods which can be directly
applied for solution of complex engineering problems. Sensitivity analysis method (Pownuk, 2004)
gives very good inner approximation of the exact solution set. This method was implemented in
C++ language by the author and the program can be recompiled on Windows, Linux and Solaris
operating systems. The program is able to solve 1D, 2D and 3D linear problems of electrostatics
with interval parameters.

Additionally it is possible to solve problems with uncertain functional parameters (Pownuk,
2006). In order to do that it is necessary to create special finite elements. It is possible to consider
also uncertain shapes The program is very universal and can be applied to the solution of complex
engineering problem. The program is a part web application, which is written in php language and
can be run on the web page http://andrzej.pownuk.com.
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1. Design of structures with the interval parameters

One of the simplest method of modelling of uncertain parameters is based on the intervals (Moore,
1966). In that case in order to describe values of the parameter p it is necessary to know only two
numbers i.e. upper p and lower bound p.
In civil and mechanical engineering one of the most popular method of mathematical modeling
of engineering structures is the finite element method (Zienkiewicz and Taylor, 2000). The FEM
method leads to the following system of parameter dependent system of linear or nonlinear equations

K(p)u(p) = Q(p) (1)

where K is the stiffness matrix, Q is the right hand side and p is the vector of uncertain parameters

p = [p1, ..., pm]T . (2)

In this paper the following notation for the interval parameters and the interval functions will be
applied. If we have the function f(p) then

f(p) = {f(p) : p ∈ p} (3)

f(p) = ¤f(p) = ¤{f(p) : p ∈ p} (4)
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2 Andrzej Pownuk

where p is the interval or a vector of the interval parameters. Function f can be real valued or vector
valued. p can be an interval in R (i.e. p = [p

i
, pi] ⊂ R) or in Rm (i.e. p = [p

1
, p1]× ...× [p

m
, pm]).

If the parameters pi belong to some know intervals pi ∈ [p
i
, pi], then the solution can be defined as

the smallest interval which contain the exact solution set.

u(p) = {u : K(p)u(p) = Q(p), p ∈ p} (5)

u(p) = ¤u(p) = ¤{u : K(p)u(p) = Q(p), p ∈ p} (6)

2. Sensitivity analysis method

There are different methods of calculation of the set (6) (Moens and Vandepitte, 2005; Neumaier,
1990). One of the simplest and most efficient method of solution of system of equations with the
interval parameters is the sensitivity analysis method (Pownuk, 2004).

Sensitivity analysis method for general explicit function ui = ui(p).

1. Calculate the mid point solution u(p0) from the following system of equations

u0 = u(p0) (7)

where p0=mid(p).

2. Calculate the sensitivity ∂u(p0)
∂pi

at the mid point p0.

3. Find the combination of parameters which corresponds to the extreme values of the solution.

If
∂ui(p0)

∂pj
> 0 then pmax

i,j = pj , p
min
i,j = p

j
, (8)

if
∂ui(p0)

∂pj
< 0 then pmax

i,j = p
j
, pmin

i,j = pj . (9)

Combination of endpoints which correspond to the extreme value of function ui = ui(p) will be
denoted in the following way

pmin
i = (pmin

i,1 , pmin
i,2 , ..., pmin

i,m ), (10)

pmax
i = (pmax

i,1 , pmax
i,2 , ..., pmax

i,m ). (11)

4. Create a list L of all critical endpoints combinations.

L = {pmin
1 , pmax

1 , pmin
2 , pmax

2 , ..., pmin
m , pmax

m } = (12)

= {p1, p2, ..., p2m} (13)
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5. Now it is possible to create a new list L∗, which contain only different endpoints

L∗ = {p∗1, p∗1, ..., p∗n∗}. (14)

6. For all elements in the list L∗ calculate a value of the vector u

u∗i,j = ui(p∗j ), for j = 1, ..., n∗. (15)

7. Calculate the extreme values of the solution

ui = min{ui(p0), u∗i,1, u
∗
i,2, ..., u

∗
i,n∗}, ui = max{ui(p0), u∗i,1, u

∗
i,2, ..., u

∗
i,n∗}. (16)

The results are exact if the sign of the derivative is constant.

3. Interval functional parameters

3.1. Equations with interval functional parameters

In order to get reliable results it is possible to approximate the values of the unknown function p
by using some upper and lower bounds

p(x) ∈ [p, p] = p (17)

Better approximation can be obtained using functional intervals

p(x) ∈ [p(x), p(x)] = p(x) (18)

Lets assume that the behaviour of the structure with interval parameters is described by the
following equation

F (x, u, p) = 0 (19)

where u is a vector of the solutions and p is a vector of parameters. The solution of the equation
(19) can be defined in the following way (Neumaier, 1990)

u(x,p) = {u : F (x, u, p) = 0, p(x) ∈ p(x)}, x ∈ Ω. (20)

The set u(x,p) is in general very complicated (Neumaier, 1990), because of that in applications it
is easier to use the smallest interval which contain the exact solution set.

u(x,p) = ¤u(x,p) = ¤{u : F (x, u, p) = 0, p(x) ∈ p(x)}, x ∈ Ω. (21)

If the equation is not directly dependent on x then the solution set is the following

u(p) = {u : F (u, p) = 0, p(x) ∈ p(x)}, (22)

u(p) = ¤u(p) = ¤{u : F (u, p) = 0, p(x) ∈ p(x)}. (23)
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3.2. General concept of monotonicity

A map T : X → Y is monotone if (X, >) is a partially ordered set and x, y ∈ X, x > y ⇒ T (x) >
T (y). Typically, X will be a subset of a Banach space Y with a cone Y+ of positive elements and
x 6 y is equivalent to y − x ∈ Y+ (Hirsch and Smith, 2005).

3.3. Solution of the equations with the interval functional parameters - general
case

In general it is very hard to get the solution set (23) or (21). Fortunately in many applications
it is possible to apply the method which is based on sensitivity analysis, Taylor expansion and/or
functional derivative (Pownuk, 2006). These methods allow us to get very actuate solution and
have low computational complexity.
Let us consider a function u = u(p) where p : Rn ⊃ Ω → p(x) ∈ R, X is a functional space which
contain the functions p, u is the function form the space X to the space R i.e. u : X 3 p → u(p) ∈ R.
Lets consider only positive variation of the function p i.e.

δp(x) = p1(x)− p0(x) > 0 (24)

where p1, p2 ∈ X. If one add positive variation to the function p0 then the results (i.e. p0 + δp) is
bigger than the function p0 i.e.

p0 + δp(x) > p0(x) (25)

If the difference u(p + δp)− p(p0) has constant sign the the function u is monotone.
If the function u is differentiable then finite increment of the functions u can be approximated by
the differential

u(p0 + δp)− u(p0) = δu(p0, δp) + R(p0, δp) (26)

where
lim

‖δp‖→0

|R(p0, δp)|
‖δp‖ = 0, (27)

and for small variations δp we can write

u(p0 + δp)− u(p0) ≈ δu(p0, δp) (28)

If the differential δu(p0, δp) is positive then the function u = u(p) is monotone around the point p0

(Hirsch and Smith, 2005).

Theorem 1
If the function u : X → R is differentiable and δu(p0, δp) > 0 for all p ∈ [p, p] ⊂ X and some δp,
then u = u(p) is monotone in the interval [p, p].

Proof

u(p0 + δp)− u(p0) =
1∫

0

δu(p0 + tδp, δp)dt (29)
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if δu(p0 + tδp, δp) > 0 then
1∫
0

δu(p0 + tδp, δp)dt > 0 and then

u(p0 + δp) > u(p0) (30)

i.e. the function u is monotone. Now it is possible to calculate extreme values of the function
u = u(p) for p ∈ p if the sign of the differential is constant.

General sensitivity analysis with functional parameters

1. if δu(p, δp) > 0 then pmin = p, pmax = p.

2. if δu(p, δp) < 0 then pmin = p, pmax = p.

3. u = u(pmin), u = u(pmax).

The algorithm is not very practical because in general it is hard to verify the sign of the differential
δu(p0, δp). In order to make that method a little more practical it is necessary to consider some
special cases.

3.4. Extreme values of the integral in the form u(p) =
∫
Ω

L(x, p(x))dx

Differential of the function u(p) =
∫
Ω

L(x, p(x))dx has the following form

δu(p0, δp) =
∫

Ω

∂L(x, p(x))
∂p(x)

δp(x)dx =
〈

δu

δp
, δp

〉
(31)

where
δu

δp(x)
=

∂L(x, p(x))
∂p(x)

(32)

is the functional derivative of the function u = u(p) and 〈., .〉 is the scalar product.

Theorem 2
If δu

δp(x) > 0 for p ∈ [p, p] ⊂ X, then the function u = u(p) is monotone in the interval p.
Proof
If δu

δp(x) > 0 and δp(x) > 0 then δu(p0, δp) =
〈

δu
δp , δp

〉
> 0 and according to the theorem 1 the

function u = u(p) is monotone.

Now it is possible to use more efficient version of the algorithm

Sensitivity analysis based on functional derivative

1. if δu
δp(x) > 0 then pmin = p, pmax = p.

if δu
δp(x) < 0 then pmin = p, pmax = p.

u = u(pmin), u = u(pmax).
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If the sign of the functional derivative is not constant, then it is possible to apply approximate
method for finding extreme values of the solutions. According to the equation (28) the finite
increment of the functions can be approximated by the differential. If the differential is positive
(i.e. δu(p0, δp) > 0) then for very small variations δp we can assume that u(p + δp) > u(p). The
product δu

δp(x)δp(x) is nonnegative if δu
δp(x) > 0 and δp(x) > 0 or δu

δp(x) 6 0 and δp(x) 6 0. If we

have the function p0 ∈ [p, p] and the value of functional derivative δu(p0)
δp(x) is not constant, then it is

possible to change the sign of the variation δp is such a way which make the differential positive.
It is possible to define the small variations in the following way

δpu(x) = λ(x)
δu(p0)
δp(x)

, δpl(x) = −λ(x)
δu(p0)
δp(x)

(33)

where λ(x) is an arbitrary positive function. If the variations δpl, δpu are small enough then
δu(p0, δp

u) > 0, δu(p0, δp
l) 6 0 and according to the relation (28) we can write

u(p0 + δpu) > u(p0) (34)

u(p0 + δpl) 6 u(p0) (35)

Above described properties can be applied to the creation of approximate algorithm for finding
upper and lower bound of the function u = u(p).

Calculation of upper bound u

1. p(x) = p0(x)

2. choose the function λ(x)

3. δpu(x) = λ(x) δu(p)
δp(x)

4. pold(x) = p(x)

5. p(x) := p(x) + δpu(x)

6. if p(x) > p(x) then p(x) = p(x)

7. if p(x) < p(x) then p(x = p(x)

8. if ‖pold − p‖ > ε then goto step 2

9. u = u(p)

10. stop

The lower bound can be calculated in the similar way.
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3.5. Extreme values of the functions and the integrals

In more complicated cases the function u = u(p) is a superposition of algebraic function f and the
integrals in the form

∫
Ω

Li(x, p(x))dx

u(p) = f (y1, ..., yq) = f(y)
y1 = I1(p) =

∫
Ω

L1(x, p(x))dx, ..., yq = Iq(p) =
∫
Ω

Lq(x, p(x))dx (36)

Differential in this case is equal to:

δu(p, δp) =
∑

i

∂f(y)
∂yi

Ii(p, δp) =
∑

i

∂f(y)
∂yi

∫

Ω

∂Li

∂p(x)
δp(x)dx (37)

Functional derivative can be defined in this case in the following way

δu

δp(x)
=

∑

i

∂f(y)
∂yi

δIi(p)
δp(x)

=
∑

i

∂f(y)
∂yi

∂Li(x, p(x))
∂p(x)

(38)

In matrix notation

δu(p)
δp

=

[
∂f(y)
∂y1

, ...,
∂f(y)
∂yp

] 


∂L1
∂p(x)

...
∂Lp

∂p(x)


 (39)

If the sign of the functional derivative is constant, then the sign of the differential is constant (for
very small perturbations δp) and according to the theorem ?? the function u = u(p) is monotone.
In order to calculate the extreme values of the solutions by using the algorithm 3.4. If the sign of
the derivative is not constant then it is possible to apply algorithm ?? and ??.
It is also interesting to study the function u in the case when it depend on many functions pi i.e.

u(p) = f (y1, ..., yq) = f(y)
y1 = I1(p) =

∫
Ω

L1(x, p(x))dx, ..., yq = Iq(p) =
∫
Ω

Lq(x, p(x))dx (40)

where p = (p1, ..., pm). The differential is equal to

δu(p, δp) =
∑

i

∂f(y)
∂yi

Ii(p, δp) =
∑

i

∂f(y)
∂yi

∫

Ω


∑

j

∂Li

∂pj(x)
δpj(x)


 dx (41)

Now it is possible to calculate the functional derivative which is in this case a vector with the
following components

δu(p)
δp

=

[∑

i

∂f(y)
∂yi

∂Li

∂p1(x)
, ...,

∑

i

∂f(y)
∂yi

∂Li

∂pm(x)

]
(42)
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In matrix notation

δu(p)
δp

=

[
∂f(y)
∂y1

, ...,
∂f(y)
∂yp

] 


∂L1
∂p1(x) ... ∂L1

∂pm(x)

... ... ...
∂Lp

∂p1(x) ...
∂Lp

∂pm(x)


 (43)

The differential is positive if the variations δpj have the same sign as
∑
i

∂f(y)
∂yi

∂Li
∂pj(x) . It is also possible

to create discrete version of these methods.

4. Sensitivity with respect to changes of the region of integration

4.1. Introduction

Lets consider a function u = u(Ω) where Ω is a domain of integration.

u(Ω) =
∫

Ω

L(x)dx (44)

Lets consider the following increment

u(Ω + ∆Ω)− u(Ω) =
∫

Ω+∆Ω

L(x)dx−
∫

Ω

L(x)dx =
∫

∆Ω

L(x)dx (45)

The operation ”Ω + ∆Ω” is a sum of two set i.e. ”Ω ∪ ∆Ω”. If the set is convex then from main
value theorem ∫

∆Ω

L(x)dx = |∆Ω|L(x∗) (46)

where x∗ ∈ ∆Ω.
u(Ω + ∆Ω)− u(Ω)

|∆Ω| = L(x∗) (47)

In the limit case
δu

δΩ(x)
= lim
|∆Ω(x)|→0

u(Ω + ∆Ω(x))− u(Ω)
|∆Ω(x)| = L(x). (48)

If Ω ⊂ Ω ⊂ Ω then extreme values of the function u = u(p) by using sensitivity analysis method.
The inclusion ⊂ can be treat as the partial order relation >. Because of that it is possible to

take into account ”set intervals”

[Ω, Ω] = {Ω : Ω ⊂ Ω ⊂ Ω}. (49)

If the sign of the derivative δu
δΩ(x) is not constant then it is possible to create the sets Ωmax and

Ωmin in the following way.

Ωmax = Ω ∪
{

x :
δu

δΩ(x)
> 0, x ∈ Ω− Ω

}
(50)
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Ωmin = Ω ∪
{

x :
δu

δΩ(x)
< 0, x ∈ Ω− Ω

}
(51)

Extreme values of the function u = u(Ω) are equal u = u(Ωmin), u = u(Ωmax).
The function u = u(Ω) may be a superposition of algebraic function and the integral.

u(Ω) = f (y) , y =
∫

Ω

L(x)dx (52)

δu

δΩ(x)
=

df(p)
dy

δ

δΩ(x)

∫

Ω

L(x)dx =
df(p)
dy

L(x) (53)

The function u can be dependent on many integrals.

u(Ω) = f (y) , y1 =
∫

Ω

L1(x)dx, ..., yn =
∫

Ω

Lp(x)dx (54)

δu

δΩ(x)
=

∑

i

df(p)
dyi

δ

δΩ(x)

∫

Ω

Li(x)dx =
∑

i

df(p)
dyi

Li(x) (55)

4.2. Moment of inertia of cross-section with uncertain shape

Polar moment of inertia
I0(Ω) =

∫

Ω

r2dΩ =
x

Ω

(x2 + y2)dxdy (56)

Because the limit is positive in the set Ω− Ω

Figure 1. Uncertain shape of cross-section
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δI0

δΩ(x, y)
= x2 + y2 > 0 (57)

then
I0 = I0(Ω) =

x

Ω

(x2 + y2)dxdy, I0 = I0(Ω) =
x

Ω

(x2 + y2)dxdy (58)

In the case of product moment of inertia

Ixy(Ω) =
x

Ω

xydxdy (59)

the limit
δIxy

δΩ(x, y)
= xy (60)

is sometimes positive and sometimes negative. From the picture 2 we can see that xy > 0 in the

Figure 2. Uncertain shape

sets Ω1 and Ω3. xy 6 0 in the set Ω2 and Ω4. Because of that

Ixy = Ixy(Ω ∪ Ω2 ∪ Ω4) =
x

Ω∪Ω2∪Ω4

(x2 + y2)dxdy (61)

Ixy = Ixy(Ω ∪ Ω1 ∪ Ω3) =
x

Ω∪Ω1∪Ω3

(x2 + y2)dxdy (62)
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5. General case

In general it is possible to consider a functional which is dependent on parameters hi ∈ p, functional
parameters pi(x) ∈ pi(x) and integrals which are dependent on the sets Ωi

u = F (h1, ..., hm, y1, ..., yp, z1, ..., zq) (63)

y1 =
∫

Γ1

L1(x, p1(x), ...., pk(x))dx (64)

y2 =
∫

Γ2

L2(x, p1(x), ...., pk(x))dx (65)

... (66)

yq =
∫

Γq

Lq(x, p1(x), ...., pk(x))dx (67)

z1 =
∫

Ω1

Ψ1(x, p1(x), ...., pk(x))dx (68)

z2 =
∫

Ω2

Ψ2(x, p1(x), ...., pk(x))dx (69)

... (70)

zq =
∫

Ωq

Ψq(x, p1(x), ...., pk(x))dx (71)

If the sign of each derivative is constant then it is possible to apply sensitivity analysis
to each uncertain parameters separately.

6. Direct method of calculation of sensitivity from differential equation

6.1. Sensitivity with respect to real valued parameters

Lets us consider tension-compression differential equation

d

dx

(
EA

du

dx

)
+ n = 0 (72)

with the following boundary condition

EA
du(0)
dx

= P, u(0) = 0 (73)
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After integration we will get

EA
du

dx
+

x∫

0

ndx = EA
du(0)
dx

(74)

EA
du

dx
+

x∫

0

ndx = P (75)

du

dx
=

P

EA
− 1

EA

x∫

0

ndx (76)

u(x) = u(0) +
x∫

0

P

EA
dη −

x∫

0


 1

EA

η∫

0

ndξ


 dη (77)

u(x) =
x∫

0

P

EA
dη −

x∫

0


 1

EA

η∫

0

ndξ


 dη (78)

For constant values of E,A and n we will get

u(x) =
Px

EA
− nx2

2EA
(79)

Partial derivative of the solution is equal to

∂u(x)
∂E(y)

= − Px

E2A
+

nx2

2E2A
(80)

Functional derivative of the differential equation with respect to the uncertain parameter pi

∂

∂pi

[
d

dx

(
EA

du

dx

)
+ n

]
= 0 (81)

d

dx

(
∂(EA)

∂pi

du

dx

)
+

d

dx

(
EA

d

dx

(
∂u

∂pi

))
+

∂n

∂pi
= 0 (82)

For example if pi = E then

d

dx

(
∂(EA)

∂E

du

dx

)
+

d

dx

(
EA

d

dx

(
∂u

∂E

))
+

∂n

∂E
= 0 (83)

d

dx

(
A

du

dx

)
+

d

dx

(
EA

d

dx

(
∂u

∂E

))
= 0 (84)

After integration

A
du

dx
+ EA

d

dx

(
∂u

∂E

)
= C (85)
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Derivative of boundary conditions

d

dx

(
∂u(0)
∂E

)
= − P

E2A
,

∂u(0)
∂E

= 0 (86)

then
P

E
−EA

P

E2A
= C ⇒ 0 = C (87)

From boundary conditions we will get

A
du

dx
+ EA

d

dx

(
∂u

∂E

)
= 0 (88)

d

dx

(
∂u

∂E

)
= − 1

E

du

dx
(89)

d

dx

(
∂u

∂E

)
= − 1

E


 P

EA
− 1

EA

x∫

0

ndη


 (90)

d

dx

(
∂u

∂E

)
= − P

E2A
+

1
E2A

x∫

0

ndη (91)

After integration

∂u

∂E
=

∂u(0)
∂E

−
x∫

0

P

E2A
dξ +

x∫

0


 1

E2A

ξ∫

0

ndη


 dξ (92)

∂u

∂E
= −

x∫

0

P

E2A
dξ +

x∫

0


 1

E2A

ξ∫

0

ndη


 dξ (93)

For constant values
∂u

∂E
= − Px

E2A
+

nx2

2E2A
(94)

Using this method it is possible to avoid approximation errors.

6.2. Sensitivity with respect to functional parameters

The solution of the equation (72) is given by the formula (78). The functional derivative with the
respect the the values of Young modulus E(y) is equal to

δu(x)
δE(y)

=
δ

δE(y)

x∫

0

P

EA
dη − δ

δE(y)

x∫

0


 1

EA

η∫

0

ndξ


 dη (95)
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δu(x)
δE(y)

= − P

E2(y)A(y)
+

1
E2(y)A(y)

y∫

0

ndξ (96)

It is possible to calculate the functional derivative of the solution of the equation (72) with respect
of the functional parameter E = E(y)

d

dx

(
E(x)A(x)

du(x,E)
dx

)
+ n(x) = 0 (97)

d

dx

(
(E(x) + δE(x))A(x)

du(x,E + δE)
dx

)
+ n(x) = 0 (98)

The last equation for a small perturbation can be written in the following way

u(x,E + δE) ≈ u(x,E) + δuE(x, δE) (99)

After neglecting quadratic terms we will get

d
dx

(
E(x)A(x)du(x,E)

dx

)
+ d

dx

(
δE(x)A(x)du(x,E)

dx

)
+

+ d
dx

(
E(x)A(x) d

dxδuE(x, δE)
)

+ n(x) = 0
(100)

If we subtract the equations (97) and (100) the result is

d
dx

(
δE(x)A(x)du(x,E)

dx

)
+ d

dx

(
E(x)A(x) d

dxδuE(x, δE)
)

= 0 (101)

After integration we will get

δE(x)A(x)
du(x,E)

dx
+ E(x)A(x)

d

dx
δuE(x, δE) = C (102)

The functional derivative of the boundary conditions is given by the following formulas

u(0, E) = 0, (103)

u(0, E + δE) = 0, (104)

u(0, E) + δuE(0, δE) = 0 (105)

then
δu(0, δE) = 0 (106)

d

dx
u(0, E) =

P

E(0)A(0)
, (107)

d

dx
u(0, E + δE) =

P

(E(0) + δE(0))A(0)
, (108)

d

dx
u(0, E) +

d

dx
δuE(0, δE) =

P

E(0)A(0)
− PδE(0)

E2(0)A(0)
(109)
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then
d

dx
δuE(0, δE) = − PδE(0)

E2(0)A(0)
(110)

For x = 0 we have
δE(0)A(0)

du(0, E)
dx

+ E(0)A(0)
d

dx
δuE(0, δE) = C (111)

From boundary conditions

δE(0)A(0)
P

E(0)A(0)
− E(0)A(0)

PδE(0)
E2(0)A(0)

= C (112)

0 = C (113)

Now the equation has the following form

δE(x)A(x)
du(x,E)

dx
+ E(x)A(x)

d

dx
δuE(x, δE) = 0 (114)

d

dx
δuE(x, δE) = −δE(x)

E(x)
du(x,E)

dx
(115)

From the equation (76)

d

dx
δuE(x, δE) = −δE(x)

E(x)


 P

E(x)A(x)
− 1

E(x)A(x)

x∫

0

n(x)dx


 (116)

d

dx
δuE(x, δE) = − PδE(x)

E2(x)A(x)
+

δE(x)
E2(x)A(x)

x∫

0

n(η)dη (117)

After integration

δuE(x, δE) = δuE(0, δE)−
x∫
0

PδE(ξ)
E2(ξ)A(ξ)

dξ+

+
x∫
0

(
δE(ξ)

E2(ξ)A(ξ)

ξ∫
0

n(η)dη

)
dξ

(118)

for x = 0 we know that δu(0, δE) = 0, then

δuE(x, δE) = −
x∫
0

PδE(ξ)
E2(ξ)A(ξ)

dξ +
x∫
0

(
δE(ξ)

E2(ξ)A(ξ)

ξ∫
0

n(η)dη

)
dξ (119)

δuE(x, δE) =
x∫
0

(
−P

E2(ξ)A(ξ)
+ 1

E2(ξ)A(ξ)

ξ∫
0

n(η)dη

)
δE(ξ)dξ (120)

then
δu(x)
δE(ξ)

=
−P

E2(ξ)A(ξ)
+

1
E2(ξ)A(ξ)

ξ∫

0

n(η)dη (121)
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7. FEM with uncertain functional parameters

Finite element method lead to the following parameter dependent system of equations (Zienkiewicz
and Taylor, 2000)

K(p)u(p) = Q(p) (122)

where K is the stiffness matrix, Q is the load vector and u is the vector of the solutions. The
functional derivative δu(p)

δpi(x) of the solution can be calculated from the following equation

K(p)
δu(p)
δpi(x)

=
δQ(p)
δpi(x)

− δK(p)
δpi(x)

u(p). (123)

The solution δu(p)
δpi(x) can be applied in the algorithms, which are described in the previous sections.

It is not possible to calculate the functional derivative δu(p)
δpi(x) in all points x ∈ Ω. Because of that

functional derivative should be calculated in as many grid points as possible xk. The sign of the
functional derivative δu(p)

δpi(x) is calculated by using the nearest grid points xk i.e. δu(p)
δpi(xk) .

8. Postprocessing of the interval solution
based on sensitivity analysis

8.1. 3D elasticity

In structural mechanics solution of the system of equations (122) is used for calculations of other
mechanical quantities like for example stress and strain. In linear elasticity the relation between
the strain tensor ε and displacement vector u is the following

ε(x) =
1
2

(
∇T u(x) +∇u(x)

)
(124)

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(125)

In cartesian coordinate system it is possible to approximate the displacement field ui(x) (i is a
direction of the displacement i.e. x, y, z, ϕx, ϕy, ϕz ) in the element Ωe using shape functions Nek(x)
(e is a number of element, k is a number of node) and the values of the function ui in the nodal
points xek (usually ueki = ui(xek), however ueki can be also defined using derivatives of the function
ui, e is a number of element, k is a number of node, i is a direction of the displacement)

uei(x) ≈
∑

k

Nek(x)ueki (126)

From the equation (124) and (126) we have

εeij =
1
2

(
∂

∂xj

(∑

k

Nek(x)ueki

)
+

∂

∂xi

(∑

k

Nek(x)uekj

))
= (127)
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=
1
2

(∑

k

∂Nek(x)
∂xj

ueki +
∑

k

∂Nek(x)
∂xi

ueki

)
= (128)

=
1
2

∑

k,p

(
∂Nek(x)

∂xj
δpi +

∂Nek(x)
∂xi

δpj

)
uekp = (129)

=
∑

k,p

Beijkpuekp (130)

then

Beijkp =
1
2

∑

k,p

(
∂Nek(x)

∂xj
δpi +

∂Nek(x)
∂xi

δpj

)
(131)

Relation between the global solution vector uq (q is a number of degree of freedom in the solution
vector) and the vector of local solution of the elements uekp (e is a number of element, k is a number
of node in the element e, p is a direction of the displacement) is the following

uekp =
∑
q

Uekpquq (132)

Sensitivity of the displacements
∂uekp

∂pj
=

∑
q

Uekpq
∂uq

∂pj
(133)

In the case of linear elastic materials the relation between the stress σij and strain εij is the following

σemn =
∑

i,j

Cemnijεeij =
∑

i,j,k,p

CemnijBeijkpuekp (134)

The sensitivity of the strain field can be calculated as a derivative

∂εeij

∂pl
=

∂

∂pl


∑

k,p

Beijkpuekp


 = (135)

=
∑

k,p

(
∂Beijkp

∂pl
uekp + Beijkp

∂uekp

∂pl

)
(136)

or in the case of functional parameters

δεeij

δpl(x)
=

δ

δpl(x)


∑

k,p

Beijkpuekp


 = (137)

=
∑

k,p

(
δBeijkp

δpl(x)
uekp + Beijkp

δuekp

δpl(x)

)
(138)
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The sensitivity of the stress field can be calculated from the equation (134)

∂σemn

∂pl
=

∂

∂pl


 ∑

i,j,k,p

CemnijBeijkpuekp


 = (139)

=
∑

i,j,k,p

(
∂(CemnijBeijkp)

∂pl
uekp + BeijkpCemnij

∂uekp

∂pl

)
(140)

or in the case of functional parameters

δσemn

δpl(x)
=

δ

δpl(x)


 ∑

i,j,k,p

CemnijBeijkpuekp


 (141)

=
∑

i,j,k,p

(
δ(CemnijBeijkp)

δpl(x)
uekp + BeijkpCemnij

δuekp

δpl(x)

)
(142)

If we know the derivatives of the strain and stress field then it is possible to calculate the extreme
values of the solution using the methods which are described in the previous sections.
Potential energy can be calculated as

V =
∑

e,m,n,i,j

∫

Ω

CemnijεeijεemndΩ−
∑

e,i

∫

Ω

feiueidΩ (143)

where fei are the loads. The local stiffness matrix can be calculated from the following formula

Kekplq =
∑

e,m,n,i,j

∫

Ω

CemnijBemnkpBeijlpdΩ (144)

Global stiffness matrix
Kαβ =

∑
e

Keαβ (145)

where
Keαβ =

∑

k,p,l,q

KekplqUekpαUekpβ (146)

Above relation is linear that is way it is possible to calculate sensitivity of global stiffness matrix
using linear relation

∂Kαβ

∂pγ
=

∑
e

∂Keαβ

∂pγ
(147)

∂Keαβ

∂pγ
=

∑

k,p,l,q

∂Kekplq

∂pγ
UekpαUekpβ (148)

Local load vector can be calculated using shape functions Nek(x) and load vector tei

Qeki =
∫

Ωe

teiNekdΩ (149)
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Global load vector Qp can be assembled from the local load vectors Qeki

Qp =
∑

eki

UekipQeki (150)

then the sensitivity of the global load vector can be calculated from the sensitivity of the local load
vectors

∂Qp

∂pl
=

∑

eki

Uekip
∂Qeki

∂pl
(151)

8.2. Tension-compression problem

The displacement field u in the case of tension-compression problem is described by second order
differential equation

d

dx

(
EJ

du

dx

)
+ n = 0 (152)

where E is Young modulus, J is a moment of inertia, n is a vector of continuous loads and u is a
displacement. After discretization in the case of constant E,A, L we will get the following stiffness
matrix

Ke =
[

ke11 ke12

ke21 ke22

]
=

[
EeAe

Le
−EeAe

Le

−EeAe
Le

EeAe
Le

]
(153)

Sensitivity with respect to the variation of Young modulus

∂Ke

∂Ep
=

[
δepAe

Le
− δepAe

Le

− δepAe

Le

δepAe

Le

]
(154)

in similar way it is possible to calculate sensitivity with the respect of other parameters. Global
stiffness matrix can be calculated in by using the connectivity matrix.

P

1
L

2
L

3
L

1 2 3 4

1
2

3

1 1
,E A

2 2
,E A

3 3
,E A

1
u

2
u

3
u

4
u

Figure 3. Tension problem
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Global stiffness matrix can be calculated in the following way

K1 =




E1A1
L1

0 0
0 0 0
0 0 0


 (155)

K2 =




E2A2
L2

−E2A2
L2

0
−E2A2

L2

E2A2
L2

0
0 0 0


 (156)

K3 =




0 0 0
0 E3A3

L3
−E3A3

L3

0 −E3A3
L3

E3A3
L3


 (157)

K = K1 + K2 + K3 =




E1A1
L1

+ E2A2
L2

−E2A2
L2

0
−E2A2

L2

E2A2
L2

+ E3A3
L3

−E3A3
L3

0 −E3A3
L3

E3A3
L3


 (158)

Global load vector after applying boundary conditions

Q =




0
0
P


 (159)

Mid point solution is a solution of the following system of equation

Ku = Q (160)

where

u =




u2

u3

u4


 (161)

Sensitivity of the displacement u with respect of value of Young modulus E2 can be calculated from
the following system of equation

K
∂u

∂E2
=

∂Q

∂E2
− ∂K

∂E2
u (162)

where

∂K

∂E2
=

∂K1

∂E2
+

∂K2

∂E2
+

∂K3

∂E2
=




A2
L2

−A2
L2

0
−A2

L2

A2
L2

0
0 0 0


 (163)

∂Q

∂E2
=

∂

∂E2




0
0
P


 =




0
0
0


 (164)
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Displacements in the first element

u1(x) = [N11(x), N12(x)]
[

u1

u2

]
(165)

Sensitivity of the displacements in the first element

∂u1(x)
∂E2

=
[
1− x

L1
,

x

L1

] [
∂u1
∂E2
∂u2
∂E2

]
(166)

Displacements in the second element

u2(x) = [N21(x), N22(x)]
[

u2

u3

]
(167)

Sensitivity of the displacements in the first element

∂u2(x)
∂E2

=
[
1− x

L2
,

x

L2

] [
∂u2
∂E2
∂u3
∂E2

]
(168)

Displacements in the third element

u3(x) = [N31(x), N32(x)]
[

u3

u4

]
(169)

Sensitivity of the displacements in the third element

∂u3(x)
∂E2

=
[
1− x

L3
,

x

L3

] [
∂u3
∂E2
∂u4
∂E2

]
(170)

Now it is possible to calculate the strain in all elements

ε1 =
du

dx
=

[
− 1

L1
,

1
L1

] [
u1

u2

]
(171)

ε2 =
du

dx
=

[
− 1

L2
,

1
L2

] [
u2

u3

]
(172)

ε2 =
du

dx
=

[
− 1

L3
,

1
L3

] [
u3

u4

]
(173)

Sensitivity of the strain field
∂ε1

∂E2
=

[
− 1

L1
,

1
L1

] [
∂u1
∂E2
∂u2
∂E2

]
(174)

∂ε2

∂E2
=

[
− 1

L2
,

1
L2

] [
∂u2
∂E2
∂u3
∂E2

]
(175)
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∂ε3

∂E2
=

[
− 1

L3
,

1
L3

] [
∂u3
∂E2
∂u4
∂E2

]
(176)

The stress in elements
σ1 = E1ε1 (177)

σ2 = E2ε2 (178)

σ3 = E3ε3 (179)

The sensitivity of the stress filed
∂σ1

∂E2
= E1

∂ε1

∂E2
(180)

∂σ2

∂E2
= 1 · ε2 + E2

∂ε2

∂E2
(181)

∂σ3

∂E2
= E3

∂ε3

∂E2
(182)

Above described formulas are true only if the Young modulus E = E(x) and the area of cross-
section A = A(x) is constant inside each element. If these functions are not constant then the
stiffness matrix have to be calculated by using the integration.

K1 =




L∫
0

E1(x)A1(x)dN12
dx

dN12
dx dx 0 0

0 0 0
0 0 0


 (183)

K2 =




L∫
0

E2(x)A2(x)dN21
dx

dN21
dx dx

L∫
0

E2(x)A2(x)dN21
dx

dN12
dx dx 0

L∫
0

E2(x)A2(x)dN22
dx

dN21
dx dx

L∫
0

E2(x)A2(x)dN22
dx

dN22
dx dx 0

0 0 0




(184)

K3 =




0 0 0

0
L∫
0

E3(x)A3(x)dN31
dx

dN31
dx dx

L∫
0

E3(x)A3(x)dN31
dx

dN32
dx dx

0
L∫
0

E3(x)A3(x)dN32
dx

dN31
dx dx

L∫
0

E3(x)A3(x)dN32
dx

dN33
dx dx




(185)

The functional derivative can be calculated without differentiation.

δK1

δE2(x)
=




0 0 0
0 0 0
0 0 0


 (186)

δK2

δE2(x)
=




A2(x)dN21
dx

dN21
dx A2(x)dN21

dx
dN12
dx 0

A2(x)dN22
dx

dN21
dx A2(x)dN22

dx
dN22
dx 0

0 0 0


 (187)
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δK3

δE2(x)
=




0 0 0
0 0 0
0 0 0


 (188)

δK

δE2(x)
=

δK1

δE2(x)
+

δK2

δE2(x)
+

δK3

δE2(x)
(189)

δQ

δE2(x)
=

δ

δE2(x)




0
0
P


 =




0
0
0


 (190)

Functional derivative of the displacements can be calculated from the following system of equations

K
δu

δE2(x)
=

δQ

δE2(x)
− δK

δE2(x)
u (191)

In the same way it is possible to calculate the functional derivative of the displacements, stress and
strain fields.

8.3. Truss structures

Using the sensitivity analysis method it is possible to calculate the interval displacements in the
truss structures with the interval Young modulus and the area of cross-section (Fig. 4). The struc-

Figure 4. Plain stress-strain problem

ture can be described in two steps. In the first step the truss structure is described by using ANSYS
FEM (http://www.ansys.com) program internal scripting language. In this case the uncertainty of
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Table I. Interval displacements of truss structure

ID Interval displacement [m] node dof

u[0] [ 2.54206368e-05, 2.88890319e-05] 5 1

u[1] [-2.41613231e-06, -5.5936232e-07] 5 2

u[2] [ 1.89488493e-05, 2.18240888e-05] 6 1

u[3] [-1.18336781e-05, -9.68801242e-06] 6 2

u[4] [ 1.74375666e-05, 2.00368684e-05] 7 1

u[5] [-1.53016570e-05, -1.28438219e-05] 7 2

u[6] [ 2.23883755e-05, 2.55322229e-05] 8 1

u[7] [-2.43184098e-05, -2.13175562e-05] 8 2

u[8] [ 4.47984203e-05, 5.07482294e-05] 9 1

u[9] [-1.25873042e-05, -9.13828295e-06] 9 2

u[10] [ 3.58319463e-05, 4.09641151e-05] 10 1

u[11] [-2.03184368e-05, -1.75638790e-05] 10 2

u[12] [ 3.30408793e-05, 3.79901925e-05] 11 1

u[13] [-2.87524495e-05, -2.54594638e-05] 11 2

u[14] [ 3.51831538e-05, 4.042328624e-05] 12 1

u[15] [-4.18322390e-05, -3.7394527e-05] 12 2

the Young modulus is 5% (MP, EX, 1, 5) and the uncertainty of the area of cross-section is also
5% (R, 1, 5). The interval displacements are shown in the Table I.
This example shows that the sensitivity analysis can be use as an extension of existing FEM code.

8.4. Plain stress

Let us consider a 2D structure which is shown on Fig. 5.
In calculation linear-elastic plain stress-strain mathematical model was used. Young nodulus

was uncertain and equal to E ∈ [210 · 109, 212 · 109] N
m2 , Poisson number ν ∈ [0.2, 0.4], thickness

h = 0.1m, width L = 1m, height h = 1m surface load ty ∈ [3, 2]kN . Numerical results are shown
in the Table II. The results are show in the following format
u[number] = [lower bound, midpoint solution, upper bound].

8.5. Interval stress in 3D elastic body

Using described theory it is possible to calculate the interval stress using the 3D brick elements
(Fig. 6). Let us consider 6 finite elements with continuous loads q ∈ [1, 3]kN

m , Young modulus
E ∈ [210, 212]109 N

m2 , Poisson number ν ∈ [0.2, 0.4] which are shown in the Fig. 7.
In each element there are 27 Gauss points. Results of calculations are shown in the table below.
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Figure 5. Plain stress-strain problem

Table II. Interval displacements in the truss structure

ID Interval displacement [m]

u[5] [7.010160e-08, 9.384325e-08, 1.175510e-07]

u[6] [-4.461538e-07, -3.479902e-07, -2.587601e-07]

u[7] [-4.600000e-07, -3.619668e-07, -2.716981e-07]

u[9] [-1.175510e-07, -9.384325e-08, -7.010160e-08]

u[10] [-4.461538e-07, -3.479902e-07, -2.587601e-07]

The program can be run from the web page http://andrzej.pownuk.com. The structure is described
using some easy to understand scripting language.

9. The computer program

Sensitivity analysis is implemented in object oriented C++ computer program. In the program
there is 11 finite elements. The program allow to use the following analysis types

1. Liner static analysis (classical FEM solution)

2. Liner static analysis with interval combinatoric

3. Liner static analysis with sensitivity analysis
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Figure 7. 3D brick elements with surface load

4. Liner static analysis with Taylor expansion method

5. Liner static analysis with functional derivative method

6. Liner static analysis with combination of functional derivative and sensitivity analysis method

The program can be run on-line from the web page http://andrzej.pownuk.com. In the first box
there is a description of the problem Fig. 8.
After clicking the button ”calculate” the results will appear in the second box.
In order to see all steps of the calculations ”debug” command can be apply (e.g. debug interval solution).
In order to see the intermediate results commands ”print” can be applied (e.g. print global stiffness matrix).
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Table III. Interval stress in the element 1

Number of Gauss point interval stress σzz

[
N

m2

]

1 [-3.000000e+03, -1.000000e+03]

2 [-3.000000e+03, -1.000000e+03]

3 [-3.000000e+03, -1.000000e+03]

4 [-3.000000e+03, -1.000000e+03]

5 [-3.000000e+03, -1.000000e+03]

6 [-3.000000e+03, -1.000000e+03]

etc. etc.

Table IV. Interval von Mises stress in the element 1

Number of Gauss point interval von Mises stress σM

[
N

m2

]

1 [1.000000e+03, 3.000000e+03]

2 [1.000000e+03, 3.000000e+03]

3 [1.000000e+03, 3.000000e+03]

4 [1.000000e+03, 3.000000e+03]

5 [1.000000e+03, 3.000000e+03]

6 [1.000000e+03, 3.000000e+03]

etc. etc.

Figure 8. Web application
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Figure 9. Results of the calculations

10. Interval eigenvalue

10.1. Sensitivity of the eigenvalues

In the dynamical problems of structural mechanics the finite element method lead to the following
system of differential equations

Mü + Ku = 0 (192)

If we assume that the solution is in the following form

u = u0 sin(ωt + φ) (193)

then
u̇ = ωu0 cos(ωt + φ), ü = −ω2u0 sin(ωt + φ) (194)

and from the equation (192) we have

−Mω2u0 sin(ωt + φ) + Ku0 sin(ωt + φ) = 0 (195)

(K − ω2
j M)uj = 0 (196)

Eigenvectors u1, ..., un are M -orthogonal

uT
i Muj = δij (197)

then from the equation (196)
uT

i Kuj = ω2
j δij (198)

Sensitivity with the respect to the parameter p
(

∂K

∂p
− ∂ω2

j

∂p
M − ω2

j

∂M

∂p

)
uj + (K − ω2

j M)
∂uj

∂p
= 0 (199)
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Lets multiply above equation by uT
i

uT
i

(
∂K

∂p
− ∂ω2

j

∂p
M − ω2

j

∂M

∂p

)
uj = 0 (200)

uT
i

(
∂K

∂p
− ω2

j

∂M

∂p

)
uj =

∂ω2
j

∂p
uT

i Muj (201)

uT
i

(
∂K

∂p
− ω2

j

∂M

∂p

)
uj =

∂ω2
j

∂p
δij (202)

Then sensitivity of the frequency of vibration ω2
j can be calculated from the following formula

(Lund, 1994; Hilbert and Courant, 1953)

∂ω2
j

∂p
= uT

j

(
∂K

∂p
− ω2

j

∂M

∂p

)
uj (203)

The interval frequency of vibration can be calculated using sensitivity analysis and derivative ∂ωj

∂p .

∂ω2
j

∂p
= 2ωj

∂ωj

∂p
(204)

∂ωj

∂p
=

1
2ωj

∂ω2
j

∂p
=

1
2ωj

uT
j

(
∂K

∂p
− ω2

j

∂M

∂p

)
uj (205)

If the derivative of stiffness matrix ∂K
∂p and the mass matrix ∂M

∂p are constant then the sign of the

derivative
∂ω2

j

∂p is constant and extreme values of ω2 can be calculated by using sensitivity analysis.
Let us consider the system of first order differential equation in the matrix form

ẋ = Ax (206)

If we assume that the solution has the following form x = x0e
λt, x = λx0e

λt then

λx0e
λt = Ax0e

λt, ⇒ (A− λI)x0 = 0 (207)

Then we have the standard eigenvalue problem. Derivative with respect of parameter p is equal to
the following (

∂A

∂p
− ∂λj

∂p
I

)
xj + (A− λjI)

∂xj

∂p
= 0 (208)

xT
i

(
∂A

∂p
− ∂λj

∂p
I

)
xj = 0, ⇒ ∂λj

∂p
xT

i xj = xT
i

∂A

∂p
xj (209)

Finally derivative of the eigenvalue can be calculated from the following formula

∂λj

∂p
= xT

j

∂A

∂p
xj (210)
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Now it is possible to apply sensitivity analysis method in order to calculate upper and lower bound
of the eigenvalue λj .
If the derivative of the matrix A i.e. ∂A

∂p is constant then the sign of the derivative ∂λ
∂p is constant

and extreme values of λ can be calculated by using sensitivity analysis.
Different method which is based on perturbation of positive definite matrices is described in the
paper (Modares, Mullen and Muhanna, 2006).

10.2. Vibration of multibody system

Dynamics of the mechanical system, which is shown in the Fig. 10 is described by the following
system of differential equation

1
x

2
x

1
m

2
m

1
k

2
k

Figure 10. Multibody system

[
m 0
0 m

] [
ẍ1

ẍ2

]
+

[
2k −k
−k k

] [
x1

x2

]
=

[
0
0

]
(211)

or shortly
Mẍ + Kx = 0 (212)

where k = k1 = k2 and m = m1 = m2. The eigenvalue problem

det
(
K − ω2M

)
= 0 (213)

has the following solution

ω1 =

√
(3−

√
5)

k

2m
, ω2 =

√
(3 +

√
5)

k

2m
(214)

The eigenvectors x1, x2 satisfy the following system of linear equations

(K − ω2
1M)x1 = 0 (215)

x1 =




√
5−1√

2(5−√5)m√
2√

(5−√5)m


 (216)
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(K − ω2
2M)x2 = 0 (217)

x2 =



−

√
5+1√

2(5+
√

5)m√
2√

(5+
√

5)m


 (218)

∂ω2
1

∂m
= xT

1

(
∂K

∂m
− ω2

1

∂M

∂m

)
x1 = −(3−

√
5)

k

2m2
< 0 (219)

∂ω2
2

∂m
= xT

2

(
∂K

∂m
− ω2

2

∂M

∂m

)
x2 = −(3 +

√
5)

k

2m2
< 0 (220)

∂ω2
1

∂k
= xT

1

(
∂K

∂k
− ω2

1

∂M

∂k

)
x1 = (3−

√
5)

1
2m

> 0 (221)

∂ω2
2

∂k
= xT

2

(
∂K

∂k
− ω2

2

∂M

∂k

)
x2 = (3 +

√
5)

1
2m

> 0 (222)

If we assume that the sign of the eigenvalue is constant, then extreme values of the eigenvalues can
be calculated in the following way

ω1 = ω1(m, k), ω1 = ω1(m, k) (223)

ω2 = ω2(m, k), ω2 = ω2(m, k) (224)

where m ∈ [m,m], k ∈ [k, k].

11. Conclusions

Using functional derivative it is possible to check monotonicity of the function with uncertain
functional parameters. If the function u = u(p) is monotone then extreme values of the results
can be calculated by using upper and lower bound of the functional intervals and sensitivity
analysis (Neumaier and Pownuk, 2004; Pownuk, 2004). Sensitivity can be use as an extension
of the existing FEM programs. Using quasi analytical method it is possible to avoid approximation
errors. Functional derivative can be sometimes calculated without integration. This property may
increase accuracy of the solution. Using the sensitivity analysis method it is possible to calculate
the interval eigenvalues. Interval eigenvalues can be calculated also in the case of structures with
uncertain shape and uncertain functional parameters.
Presented sensitivity analysis method can be applied to the solution of any problem with functional
parameters in which it is possible to calculate the functional derivative and verify monotonicity.
For non-monotone problems it is possible to apply an extension of the algorithm, which gives only
inner bounds.
The approach presented can be applied together with any numerical method for the solution of the
underlying problem, including techniques for partial differential equations e.g. FEM, FDM, BEM,
FVM etc. Extended version of this paper was published as a research report at the web page of the
University of Texas at El Paso (Pownuk, 2007).
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