
Accurate Floating Point Product

Stef Graillat
Laboratoire LIP6, Département Calcul Scientifique

Université Pierre et Marie Curie (Paris 6)
4 place Jussieu, F-75252, Paris cedex 05, France

email:stef.graillat@lip6.fr

October 26, 2007

Abstract. Several different techniques and softwares intend to improve the accuracy of results
computed in a fixed finite precision. Here we focus on a method to improve the accuracy of the
product of floating point numbers. We show that the computed result is as accurate as if computed
in twice the working precision. The algorithm is simple since it only requires addition, subtraction
and multiplication of floating point numbers in the same working precision as the given data. Such
an algorithm can be useful for example to compute the determinant of a triangular matrix and to
evaluate a polynomial when represented by the root product form. It can also be used to compute
the power of a floating point number.

Keywords: accurate product, exponentiation, finite precision, floating point arithmetic, faithful
rounding, error-free transformations

AMS Subject Classification: 65-04, 65G20, 65G50

1. Introduction

In this paper, we present fast and accurate algorithms to compute the product of floating point
numbers. Our aim is to increase the accuracy at a fixed precision. We show that the results have the
same error estimates as if computed in twice the working precision and then rounded to working
precision. Then we address the problem on how to compute a faithfully rounded result, that is to
say one of the two adjacent floating point numbers of the exact result.

This paper was motived by papers (Ogita et al., 2005a; Rump et al., 2005; Graillat et al.,
2005; Langlois and Louvet, 2007) and (Kornerup et al., 2007) where similar approaches are used to
compute summation, dot product, polynomial evaluation and power.

The applications of our algorithms are multiple. One of the examples frequently used in Ster-
benz’s book (Sterbenz, 1974) is the computation of the product of some floating point numbers.
Our algorithms can be used to compute the determinant of a triangle matrix. Another application
is for evaluating a polynomial when represented by the root product form p(x) = an

∏n
i=1(x− xi).

We can also apply our algorithms to compute the power of a floating point number.
The rest of the paper is organized as follows. In Section 2, we recall notations and auxiliary

results that will be needed in the sequel. We present the floating point arithmetic and the so-called
error-free transformations. In Section 3, we present a classic algorithm to compute the product

c© 2008 by authors. Printed in USA.

REC 2008 - Stef Graillat

2 Stef Graillat

of floating point numbers. We give an error estimate as well as a validated error bound. We also
present a new compensated algorithm together with an error estimate and a validated error bound.
We show that under mild assumptions, our algorithm gives a faithfully rounded result.

2. Notation and auxiliary results

2.1. Floating point arithmetic

Throughout the paper, we assume to work with a floating point arithmetic adhering to IEEE 754
floating point standard in rounding to nearest (IEEE Computer Society, 1985). We assume that
no overflow nor underflow occur. The set of floating point numbers is denoted by F, the relative
rounding error by eps. For IEEE 754 double precision, we have eps = 2−53 and for single precision
eps = 2−24.

We denote by fl(·) the result of a floating point computation, where all operations inside
parentheses are done in floating point working precision. Floating point

operations in IEEE 754 satisfy (Higham, 2002)

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2) for ◦ = {+,−, ·, /} and |εν | ≤ eps.

This implies that

|a ◦ b− fl(a ◦ b)| ≤ eps|a ◦ b| and |a ◦ b− fl(a ◦ b)| ≤ eps| fl(a ◦ b)| for ◦ = {+,−, ·, /}. (1)

2.2. Error-free transformations

One can notice that a ◦ b ∈ R and fl(a ◦ b) ∈ F but in general we do not have a ◦ b ∈ F. It is known
that for the basic operations +,−, ·, the approximation error of a floating point operation is still a
floating point number (see for example (Dekker, 1971)):

x = fl(a± b) ⇒ a± b = x + y with y ∈ F,
x = fl(a · b) ⇒ a · b = x + y with y ∈ F.

(2)

These are error-free transformations of the pair (a, b) into the pair (x, y).
Fortunately, the quantities x and y in (2) can be computed exactly in floating point arithmetic.

For the algorithms, we use Matlab-like notations. For addition, we can use the following algorithm
by Knuth (Knuth, 1998, Thm B. p.236).

ALGORITHM 2.1 (Knuth (Knuth, 1998)). Error-free transformation of the sum of two floating
point numbers

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))

REC 2008 - Stef Graillat

Accurate Floating Point Product 3

Another algorithm to compute an error-free transformation is the following algorithm from
Dekker (Dekker, 1971). The drawback of this algorithm is that we have x+ y = a+ b provided that
|a| ≥ |b|. Generally, on modern computers, a comparison followed by a branching and 3 operations
costs more than 6 operations. As a consequence, TwoSum is generally more efficient than FastTwoSum.

ALGORITHM 2.2 (Dekker (Dekker, 1971)). Error-free transformation of the sum of two floating
point numbers with |a| ≥ |b|.
function [x, y] = FastTwoSum(a, b)

x = fl(a + b)
y = fl((a− x) + b)

For the error-free transformation of a product, we first need to split the input argument into
two parts. Let p be given by eps = 2−p and define s = dp/2e. For example, if the working precision
is IEEE 754 double precision, then p = 53 and s = 27. The following algorithm by Dekker (Dekker,
1971) splits a floating point number a ∈ F into two parts x and y such that

a = x + y and x and y nonoverlapping with |y| ≤ |x|.

ALGORITHM 2.3 (Dekker (Dekker, 1971)). Error-free split of a floating point number into two
parts

function [x, y] = Split(a, b)
factor = fl(2s + 1)
c = fl(factor · a)
x = fl(c− (c− a))
y = fl(a− x)

With this function, an algorithm from Veltkamp (see (Dekker, 1971)) makes it possible to
compute an error-free transformation for the product of two floating point numbers. This algorithm
returns two floating point numbers x and y such that

a · b = x + y with x = fl(a · b).

ALGORITHM 2.4 (Veltkamp (Dekker, 1971)). Error-free transformation of the product of two
floating point numbers

function [x, y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x− a1 · b1)− a2 · b1)− a1 · b2))

The following theorem summarizes the properties of algorithms TwoSum and TwoProduct.

REC 2008 - Stef Graillat

4 Stef Graillat

THEOREM 2.1 (Ogita, Rump and Oishi (Ogita et al., 2005a)). Let a, b ∈ F and let x, y ∈ F such
that [x, y] = TwoSum(a, b) (Algorithm 2.1). Then,

a + b = x + y, x = fl(a + b), |y| ≤ eps|x|, |y| ≤ eps|a + b|. (3)

The algorithm TwoSum requires 6 flops.
Let a, b ∈ F and let x, y ∈ F such that [x, y] = TwoProduct(a, b) (Algorithm 2.4). Then,

a · b = x + y, x = fl(a · b), |y| ≤ eps|x|, |y| ≤ eps|a · b|. (4)

The algorithm TwoProduct requires 17 flops.

3. Accurate floating point product

In this section, we present a new accurate algorithm to compute the product of floating point
numbers. In Subsection 3.1, we recall the classic method and we give a theoretical error bound
as well as a validated computable error bound. In Subsection 3.2, we present our new algorithm
based on a compensated scheme together with a theoretical error bound. In Subsection 3.3, we give
sufficient conditions on the number of floating point numbers so as to get a faithfully rounded result.
Finally, in Subsection 3.4, we give a validated computable error bound for our new algorithm.

3.1. Classic method

The classic method for evaluating a product of n numbers a = (a1, a2, . . . , an)

p =
n∏

i=1

ai

is the following algorithm.

ALGORITHM 3.1. Product evaluation

function res = Prod(a)
p1 = a1

for i = 2 : n
pi = fl(pi−1 · ai)

end
res = pn

This algorithm requires n− 1 flops. Let us now analyse its accuracy.
We will use standard notations and standard results for the following error estimations (see (Higham,

2002)). The quantities γn are defined as usual (Higham, 2002) by

γn :=
neps

1− neps
for n ∈ N.

REC 2008 - Stef Graillat

Accurate Floating Point Product 5

When using γn, we implicitly assume that neps ≤ 1. A forward error bound is

|a1a2 · · · an − res| = |a1a2 · · · an − fl(a1a2 · · · an)| ≤ γn−1|a1a2 · · · an|. (5)

Indeed, by induction,

res = fl(a1a2 · · · an) = a1a2 · · · an(1 + ε2)(1 + ε3) · · · (1 + εn), (6)

with εi ≤ eps for i = 2 : n. It follows from Lemma 3.1 of (Higham, 2002, p.63) that (1 + ε2)(1 +
ε3) · · · (1 + εn) = 1 + θn where |θn−1| ≤ γn−1.

A convenient device for keeping track of power of 1 + ε term is described in (Higham, 2002,
p.68). The relative error counter 〈k〉 denotes the product

〈k〉 =
k∏

i=1

(1 + εi), |εi| ≤ eps.

A useful rule for the counter is 〈j〉〈k〉 = 〈j + k〉. Using this notation, Equation (6) can be written
res = fl(a1a2 · · · an) = a1a2 · · · an〈n− 1〉.

It is shown in (Ogita et al., 2005b) that for a ∈ F, we have

(1 + eps)n ≤ 1
(1− eps)n

≤ 1
1− neps

, (7)

|a|
1− neps

≤ fl
(|a|

1− (n + 1)eps

)
. (8)

¿From Equation (6), it follows that

|a1a2 · · · an − res| ≤ (1 + eps)n−1γn−1|res|.
If meps ≤ 1 for m ∈ N, fl(meps) = meps and fl(1−meps) = 1−meps. Therefore,

γm ≤ (1 + eps) fl(γm). (9)

Hence,

|a1a2 · · · an − res| ≤ (1 + eps)n fl(γn−1)|res|
≤ (1 + eps)n+1 fl(γn−1|res|),

and so
|a1a2 · · · an − res| ≤ fl

(
γn−1|res|

1− (n + 2)eps

)
.

The previous inequality gives us a validated error bound that can be computed in pure floating
point arithmetic in rounding to nearest.

3.2. Compensated method

We present hereafter a compensated scheme to evaluate the product of floating point numbers, i.e.
the error of individual multiplication is somehow corrected. The technique used here is based on
the paper (Ogita et al., 2005a).

REC 2008 - Stef Graillat

6 Stef Graillat

ALGORITHM 3.2. Product evaluation with a compensated scheme

function res = CompProd(a)
p1 = a1

e1 = 0
for i = 2 : n

[pi, πi] = TwoProduct(pi−1, ai)
ei = fl(ei−1ai + πi)

end
res = fl(pn + en)

This algorithm requires 19n− 18 flops. For error analysis, we note that

pn = fl(a1a2 · · · an) and en = fl

(
n∑

i=2

πiai+1 · · · an

)
.

We also have

p = a1a2 . . . an = fl(a1a2 . . . an) +
n∑

i=2

πiai+1 · · · an = pn + e, (10)

where e =
∑n

i=2 πiai+1 · · · an.
Before proving the main theorem, we will need two technical lemmas. The next lemma makes

it possible to obtain a bound on the individual error of the multiplication namely πi in function of
the inital data ai.

LEMMA 3.1. Suppose floating point numbers πi ∈ F, 2 ≤ i ≤ n are computed by the following
algorithm

p1 = a1

for i = 2 : n
[pi, πi] = TwoProduct(pi−1, ai)

end

Then,
|πi| ≤ eps(1 + γi−1)|a1 · · · ai| for i = 2 : n.

Proof. From Equation (1), it follows that

|πi| ≤ eps|pi|.
Moreover, pi = fl(a1 · · · ai) so that from (5),

|pi| ≤ (1 + γi−1)|a1 · · · ai|.
Hence, |πi| ≤ eps(1 + γi−1)|a1 · · · ai|. 2

The following lemma enables us to bound the rounding errors during the computation of the
error during the full product.

REC 2008 - Stef Graillat

Accurate Floating Point Product 7

LEMMA 3.2. Suppose floating point numbers ei ∈ F, 1 ≤ i ≤ n are computed by the following
algorithm

e1 = 0
for i = 2 : n

[pi, πi] = TwoProduct(pi−1, ai)
ei = fl(ei−1ai + πi)

end

Then,

|en −
n∑

i=2

πiai+1 · · · an| ≤ γn−1γ2n|a1a2 · · · an|.
Proof. First, one notices that en = fl(

∑n
i=2(πiai+1 · · · an)). We will use the error counters

described above. For n floating point numbers xi, it is easy to see that (Higham, 2002, chap.4)

fl(x1 + x2 + · · ·+ xn) = x1〈n− 1〉+ x2〈n− 1〉+ x3〈n− 2〉+ · · ·+ xn〈1〉.
This implies that

en = fl(
n∑

i=2

(πiai+1 · · · an)) = fl(π2a3 · · · an)〈n− 2〉+ fl(π3a4 · · · an)〈n− 2〉+ · · ·+ fl(πn)〈1〉.

Furthermore, we have shown before that fl(a1a2 · · · an) = a1a2 · · · an〈n− 1〉. Consequently,

en = π2a3 · · · an〈n− 2〉〈n− 1〉+ π3a4 · · · an〈n− 3〉〈n− 1〉+ · · ·+ πn〈1〉.
A straightforward computation yields

|en −
n∑

i=2

πiai+1 · · · an| ≤ γ2n−3

n∑

i=2

|πiai+1 · · · an|.

¿From Lemma 3.1, we have |πi| ≤ eps(1 + γi−1)|a1 · · · ai| and hence

|en −
n∑

i=2

πiai+1 · · · an| ≤ (n− 1)eps(1 + γn−1)γ2n−3|a1a2 · · · an|.

Since eps(1 + γn−1) = γn−1/(n− 1) and γ2n−3 ≤ γ2n, we obtain the desired result. 2

One may notice that the computation of en is similar to the Horner scheme. One could have
directly applied a result on the error of the Horner scheme (Higham, 2002, Eq.(5.3),p.95).

We can finally state the main theorem.

THEOREM 3.3. Suppose Algorithm 3.2 is applied to floating point number ai ∈ F, 1 ≤ i ≤ n, and
set p =

∏n
i=1 ai. Then,

|res− p| ≤ eps|p|+ γnγ2n|p|.

REC 2008 - Stef Graillat

8 Stef Graillat

Proof. The fact that res = fl(pn + en) implies that res = (1 + ε)(pn + en) with ε ≤ eps. So it
follows

|res− p| = | fl(pn + en)− p| = |(1 + ε)(pn + en − p) + εp|

= |(1 + ε)(pn +
n∑

i=2

πiai+1 · · · an − p) + (1 + ε)(en −
n∑

i=2

πiai+1 · · · an) + εp|

= |(1 + ε)(en −
n∑

i=2

πiai+1 · · · an) + εp| by (10)

≤ eps|p|+ (1 + eps)|en −
n∑

i=2

πiai+1 · · · an|

≤ eps|p|+ (1 + eps)γn−1γ2n|a1a2 · · · an|.
Since (1 + eps)γn−1 ≤ γn, it follows that |res− p| ≤ eps|p|+ γnγ2n|p|. 2

It may be interesting to study the condition number of the product evaluation. Ones defines

cond(a) = lim
ε→0

sup
{ |(a1 + ∆a1)(a2 + ∆a2) · · · (an + ∆an)− a1a2 · · · an|

ε|a1a2 · · · an| : |∆ai| ≤ ε|ai|
}

.

A standard computation yields
cond(a) = n.

COROLLARY 3.4. Suppose Algorithm 3.2 is applied to floating point number ai ∈ F, 1 ≤ i ≤ n,
and set p =

∏n
i=1 ai. Then,

|res− p|
|p| ≤ eps +

γnγ2n

n
cond(a).

3.3. Faithful rounding

We define the floating point predecessor and successor of a real number r satisfying min{f : f ∈
R} < r < max{f : f ∈ F} by

pred(r) := max{f ∈ F : f < r} and succ(r) := min{f ∈ F : r < f}.
DEFINITION 3.1. A floating point number f ∈ F is called a faithful rounding of a real number
r ∈ R if

pred(f) < r < succ(f).

We denote this by f ∈ ¤(r). For r ∈ F, this implies that f = r.

A faithful rounding is then one of the two adjacent floating point numbers of the exact result.

LEMMA 3.5 (Rump, Ogita and Oishi (Rump et al., 2005, lem. 2.5)). Let r, δ ∈ R and r̃ := fl(r).
Suppose that 2|δ| < eps|r̃|. Then r̃ ∈ ¤(r + δ), that means r̃ is a faithful rounding of r + δ.

REC 2008 - Stef Graillat

Accurate Floating Point Product 9

Let res be the result of CompProd. Then we have p = pn + e and res = fl(pn + en) with
e =

∑n
i=2 πiai+1 · · · an. It follows that p = (pn + en) + (e− en). This leads to the following lemma

which gives a criterion to ensure that the result of CompProd is faithfully rounded.

LEMMA 3.6. With the previous notations, if 2|e− en| < eps|res| then res is a faithful rounding
of p.

Since we have |e − en| ≤ γnγ2n|p| and (1 − eps)|p| − γnγ2n|p| ≤ |res|, a sufficient condition to
ensure a faithful rounding is

2γnγ2n|p| < eps((1− eps)|p| − γnγ2n|p|)
that is

γnγ2n <
1− eps

2 + eps
eps.

Since γnγ2n ≤ 2(neps)2/(1− 2neps)2, a sufficient condition is

2
(neps)2

(1− 2neps)2
<

1− eps

2 + eps
eps

which is equivalent to
neps

1− 2neps
<

√
(1− eps)eps
2(2 + eps)

and then to

n <

√
1− eps√

2
√

2 + eps + 2
√

(1− eps)eps
eps−1/2.

We have just shown that if n < αeps−1/2 where α ≈ 1/2 then the result is faithfully rounded. More
precisely, in double precision where eps = 2−53, if n < 225 ≈ 5 · 107, we get a faithfully rounded
result.

3.4. Validated error bound

We present here how to compute a valid error bound in pure floating point arithmetic in rounding
to nearest. It holds that

|res− p| = | fl(pn + en)− p| = | fl(pn + en)− (pn + en) + (pn + en)− p|
≤ eps|res|+ |pn + en − p|
≤ eps|res|+ |en − e|.

Since |en − e| ≤ γn−1γ2n|p| and |p| ≤ (1 + eps)n−1 fl(|a1a2 · · · an|) we obtain

|res− p| ≤ eps|res|+ γn−1γ2n|p|
≤ eps|res|+ γn−1γ2n(1 + eps)n−1 fl(|a1a2 · · · an|).

REC 2008 - Stef Graillat

10 Stef Graillat

Using (8) and (9), we get

|res− p| ≤ fl(eps|res|) + (1 + eps)n fl(γn) fl(γ2n) fl(|a1a2 · · · an|)
≤ fl(eps|res|) + (1 + eps)n+2 fl(γnγ2n|a1a2 · · · an|)
≤ fl(eps|res|) + fl

(
γnγ2n|a1a2 · · · an|
1− (n + 3)eps

)

≤ (1 + eps) fl
(
eps|res|+ γnγ2n|a1a2 · · · an|

1− (n + 3)eps

)

≤ fl
((

eps|res|+ γnγ2n|a1a2 · · · an|
1− (n + 3)eps

)
/ (1− 2eps)

)
.

We can summarize this as follows.

LEMMA 3.7. Suppose Algorithm 3.2 is applied to floating point numbers ai ∈ F, 1 ≤ i ≤ n and
set p =

∏n
i=1 ai. Then, the absolute forward error affecting the product is bounded according to

|res− p| ≤ fl
((

eps|res|+ γnγ2n|a1a2 · · · an|
1− (n + 3)eps

)
/ (1− 2eps)

)
.

3.5. Validated error bound and faithful rounding

In the previous subsection, we have shown that

|en − e| ≤ fl
(

γnγ2n|a1a2 · · · an|
1− (n + 3)eps

)
. (11)

Lemma 3.6 tells us that if 2|e − en| < eps|res| then res is a faithful rounding of p (where res is
the result of CompProd).

As a consequence, if

fl
(

2
γnγ2n|a1a2 · · · an|
1− (n + 3)eps

)
< fl(eps|res|)

then we got a faitfully rounded result. This makes it possible to check a posteriori if the result is
faithfully rounded.

4. Conclusion

In this paper, we provided an accurate algorithm for computing product of floating point numbers.
We gave some sufficient conditions to obtain a faithfully rounded result as well as validated error
bounds.

References

Dekker, T. J.: 1971, ‘A floating-point technique for extending the available precision’. Numer. Math. 18, 224–242.

REC 2008 - Stef Graillat

Accurate Floating Point Product 11

Graillat, S., N. Louvet, and P. Langlois: 2005, ‘Compensated Horner Scheme’. Research Report 04, Équipe de
recherche DALI, Laboratoire LP2A, Université de Perpignan Via Domitia, France, 52 avenue Paul Alduy, 66860
Perpignan cedex, France.

Higham, N. J.: 2002, Accuracy and stability of numerical algorithms. Philadelphia, PA: Society for Industrial and
Applied Mathematics (SIAM), second edition.

IEEE Computer Society: 1985, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-
1985. New York: Institute of Electrical and Electronics Engineers. Reprinted in SIGPLAN Notices, 22(2):9–25,
1987.

Knuth, D. E.: 1998, The Art of Computer Programming, Volume 2, Seminumerical Algorithms. Reading, MA, USA:
Addison-Wesley, third edition.

Kornerup, P., V. Lefevre, and J.-M. Muller: 2007, ‘Computing Integer Powers in Floating-Point Arithmetic’.
arXiv:0705.4369v1 [cs.NA].

Langlois, P. and N. Louvet: 2007, ‘How to Ensure a Faithful Polynomial Evaluation with the Compensated Horner
Algorithm’. In: Proceedings of the 18th IEEE Symposium on Computer Arithmetic (ARITH ’07), Montpellier,
France. pp. 141–149, IEEE Computer Society, Los Alamitos, CA, USA.

Ogita, T., S. M. Rump, and S. Oishi: 2005a, ‘Accurate Sum And Dot Product’. SIAM J. Sci. Comput. 26(6),
1955–1988.

Ogita, T., S. M. Rump, and S. Oishi: 2005b, ‘Verified solution of linear systems without directed rounding’. Technical
Report No. 2005-04, Advanced Research Institute for Science and Engineering, Waseda University.

Rump, S. M., T. Ogita, and S. Oishi: 2005, ‘Accurate Floating-Point Summation’. Technical Report 05.12, Faculty
for Information and Communication Sciences, Hamburg University of Technology.

Sterbenz, P. H.: 1974, Floating-point computation. Englewood Cliffs, N.J.: Prentice-Hall Inc. Prentice-Hall Series in
Automatic Computation.

REC 2008 - Stef Graillat

REC 2008 - Stef Graillat

