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Abstract.  A structure is subjected to numerous alterations and modifications during its 

lifetime. The entirety of the modifications of structures constitutes the process of 

modifications. Numerical monitoring of a structure during its lifetime close to reality 

requires considering the complete load and modification processes simultaneously. Both 

processes run discontinuously. They cause time dependent, discontinuous result values. 

The parameters of the load and modification process are usually uncertain parameters. 

Due to their predominantly informal and lexical uncertainty, they are described as fuzzy 

processes, respectively fuzzy functions. Taking account of this uncertainty in the nume-

rical simulation of the load and modification process requires a fuzzy structural analysis in 

the time domain. The fuzzy variables and the fuzzy functions are mapped on the fuzzy 

result variables with the aid of a crisp or uncertain analysis algorithm. The numerical 

simulation is based on an optimization procedure. This procedure searches for special 

points in the input space of the fuzzy variables. Each point of the input space represents a 

deterministic parameter data set, which is introduced in a deterministic fundamental 

solution. In this paper the geometrically and physically nonlinear analysis of plane rein-

forced concrete, prestressed concrete, textile concrete, and steel bar structures is chosen as 

deterministic fundamental solution. The algorithms are demonstrated by way of examples. 
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1.  Numerical Monitoring of Structures – Conceptual Idea 

 

Numerical monitoring of structures is the numerical simulation of the behaviour of structures 

during the lifetime. A structure is subject to numerous alterations during its lifetime. These 

modifications may result from: 

 

C Sequence of different states during construction 

C Changes in material, e.g., the change of material behavior due to physical or chemical 

processes 

C Structural alteration resulting from, e.g., refurbishing, bonding of prestressing elements, 

strengthening 

C Changes in load, described by a loading process 
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   For structural alterations and the sequence of different states during construction the term 

"system modification" is adopted. The system modification comprises cross section modifi-

cation, modification of structural members, and modification of support conditions [Bartzsch, 

Graf, Möller & Sickert 2004]. The change of prestressing forces may also be understood as 

system modification. The entirety of the system modifications constitutes the modification 

process. Analyzing a structure during the lifetime close to reality requires considering the 

complete load and modification processes simultaneously. Both processes run discontinuous-

ly. These processes must be described by means of suitable mechanical models. They cause 

time dependent, discontinuous result values z(t): 

 

pz( t ) f (g( t ), p( t ), F ( t ),T( t ),A( t ), I ( t ),E( t ))=           (1) 

 

with 

 

 z  vector of structural responses (e.g., displacements and internal forces) 

 g(t) dead load 

 p(t) statically and dynamic external loads 

 Fp(t)      prestressing forces (internal and external prestressing) 

 T(t) parameters of temperature 

 A(t), I(t)           parameters of geometry representing time dependent values in the modi- 

  fication process (e.g., cross sections, dimensions of the system, location 

   of the reinforcement, and the prestressing elements) 

 E(t) material parameters 

 t = (θ, τ, φ)  spatial coordinates θ = θ1, θ2, θ3, time τ,  

  further parameters φ, e.g. temperature 

 

   The parameters of the load and modification process are usually uncertain parameters. The 

following mathematical models are available to describe uncertainty (see also Figure 1): 
 

C Randomness  

C Fuzziness 

C Fuzzy randomness 
 

whereas fuzziness and randomness are considered as special cases of the general model fuzzy 

randomness [Möller & Beer 2004]. The choice of the model depends on the available data. 

 

 

 

 

 

 

 

 
Figure 1.   Mathematical models of uncertainty 

 

   If sufficient statistical data exist for a parameter the parameter may be described stochasti-

cally. Thereby the choice of the type of the probability distribution function affects the result 

considerably. Often statistically not ensured samples exist for a parameter. Then the 

description by the uncertainty model fuzziness is recommended. The model comprehends 

both objective and subjective information. The uncertain parameters are characterized by aid 

of a membership function µ(x), see eq. (1). The membership function assesses the gradual 

membership of elements to a set [Möller & Beer 2004]. 
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x xx={(x; µ (x)) | x }; µ (x) 0 xX X∈ ≥ ∀ ∈ɶ                 (2) 

 

The uncertainty model fuzzy randomness is a superordinate model that both stochastic and 

non-stochastic properties of parameters enclose. Fuzzy random variables are used if, e.g., 

reproduction conditions vary during the period of observation, or if expert knowledge 

complements the statistical material. A fuzzy random variable is the fuzzy set of their 

originals, see eq. (3). The originals are probability functions of random variables. 

 

ff (x) {(f (x); (f (x))) | f };f= µ ∈ɶ  

               (3) 

f (f (x)) 0 fµ ≥ ∀ ∈ f          

       

   Due to the predominantly informal and lexical fuzziness of the parameters of the load and 

modification process the uncertain parameters are described by the mathematical model 

fuzziness. As the parameters are time dependent they are considered as fuzzy functions 

x( t ) x( , , )= θ τ ϕɶɶ ɶɶ ɶ ɶ  or fuzzy processes x( )τɶ ɶ .  

 

 

2.  Formal Description of Uncertain Discontinuous Processes 

 

A fuzzy vector xɶ  describes uncertain parameters at discrete points. A fuzzy function 

x( t )ɶɶ enables the formal description of at least piecewise continuous uncertain parameters in 

ú
1
, ú

2
, or ú

3
. The following definition of fuzzy functions is introduced. Given are 

 

C the fundamental sets T f ú and X f ú 

C the set F(T) of all fuzzy variables tɶ on the fundamental set T 

C the set F(X) of all fuzzy variables xɶ  on the fundamental set X. 
 

   An uncertain mapping of F(T) to F(X) that assigns exactly one xɶ  0 F(X) to each tɶ  0 F(T), 

respectively, is referred to as a fuzzy function denoted by 
 

x( t ) :ɶɶ F(T)   F(X)             (4) 
 

fx( t ) {(x x( t ) t | t ( )}= = ∀ ∈ F Tɶ ɶ ɶ ɶɶ ɶ            (5) 
 

In system modification the fundamental set T may contain both the uncertain time 

coordinate τɶ  and the crisp spatial coordinate θ. In this case the assigned fuzzy function is 
denoted by x( t ) x( , )= θ τɶɶ ɶ ɶ  with t ( , )= θ τɶ ɶ . The fuzzy function x( , )θ τɶ ɶ  enables the modeling of 

processes with uncertain time points. This is of interest if the system is modified at non-

precise known points in time. If the time points are crisp, the special case 

 

tx( , ) x( t ) {(x x( t )) t | t )}θ τ = = = ∀ ∈Tɶ ɶ ɶ ɶ             (6) 

 

is obtained [Möller & Beer 2004]. Figure 2 shows a fuzzy process jx( , )θ τɶ  for a specific point 

with the coordinate θj. 

   For the numerical simulation of system modifications the bunch parameter representation of 

a fuzzy function is applied. 
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tx(s, t ) {(x x(s, t )) t | t ( )}= = ∀ ∈ F Tɶ ɶɶ            (7) 

 

For each crisp bunch parameter vector s s∈ ɶ with the assigned membership value µ(s) a 
crisp function x( t ) (x(s, t )) x( t )= ∈ ɶ  with (x( t )) (s )µ = µ  is obtained. The fuzzy function 

x( t )ɶɶ  may thus be represented by the fuzzy set of all real valued functions x( t ) x( t )∈ ɶ  with 

(x( t )) (x(s, t )) (s )µ = µ = µ  

 

x(s, t ) {(x( t ), (x( t ))) | x( t ) x(s, t )};= µ =ɶ           (8) 

(x( t )) (s ) s | s sµ = µ ∀ ∈ ɶ           

 

which may be generated from all possible real vectors s s∈ ɶ . For every t 0 T takes values 
which are simultaneously contained in the associated fuzzy functional values x( t )ɶ . The real 

functions x(t) of x( t )ɶ are defined for all t 0 T. These are referred to as trajectories. 

   Numerical processing of fuzzy functions x( t ) (x(s, t ))= ɶɶ  demands the discretization of 

their arguments t in space and time. 

 

 

 

 

 

 

 

 
Figure 2.   Fuzzy  process 

 

 

3  Numerical Processing of Uncertain Discontinuous Processes 

 

In deterministic structural analysis crisp structural input vectors x containing parameters, for 

example, for loads, geometrical and material properties are mapped with the aid of a 

computational model to structural responses such as stresses, internal forces, and displace-

ments. This mapping may be denoted as 
 

x z→                (9) 

 

in which the arrow indicates the computational model as the mapping model. This 

deterministic computational model is subsequently referred to as deterministic fundamental 

solution within the framework of an uncertain analysis.  

   If the structural parameters possess uncertainty in the form of fuzziness, eq. (9) may be 

rewritten as  
 

x z→ɶ ɶ                         (10) 

 

representing a fuzzy structural analysis. The input vectors xɶ  are then formed by fuzzy 

structural parameters ixɶ ; and the fuzzy structural response vectors jz (..., z , ...)=ɶ ɶ  are 

determined on the basis of fuzzy set operations. For processing fuzzy quantities through 

structural computations in a general and numerically efficient manner a global optimization 

scheme referred to as α-level optimization has been developed [Möller, Graf & Beer 2000]. 

This includes a modified evolution strategy as the kernel solution technique. 
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The concept of α-discretization is applied to numerically represent the fuzzy structural 

parameters ixɶ  as a set of α-level sets for a sufficiently high umber of α-levels. All fuzzy input 

parameters are discretized using the same number of α-levels αk, k = 1 … r. With the aid of 

the deterministic fundamental solution (mapping model) crisp elements from the fuzzy input 

vectors, x x∈ ɶ , are processed to obtain crisp elements of the fuzzy structural response vectors, 
z z∈ ɶ . In terms of α-level optimization this means the mapping of kx Xα∈ to kz Zα∈ , in 

which kXα and kZα  are crisp input and result subspaces, respectively, for each α-level. The 

mapping of all elements of kXα  yields the crisp subspace kZα . Once the largest element rj, kz α  

and the smallest element 
lj, kz α  of the dimension j of the crisp subspace kZα  have been found, 

two points of the membership function j(z )µ  of the fuzzy result zj are known. The search for 

these extreme elements 
rj, kz α  and 

lj, kz α on each α-level represents an optimization problem 

and is referred to as α-level optimization, see Figure 3. For the detection of 
rj, kz α and 

lj, kz α with a high probability in general cases with no restrictions regarding the properties of 

the mapping model, which represents the objective function in the optimization procedure, the 

modified evolution strategy according to [Möller, Graf & Beer 2000] is employed. This 

procedure possesses a simple structure, exhibits a reasonable robustness with regard to 

numerical noise in the mapping model, and can be applied very flexibly in dependence on the 

problem by adjusting several effective control parameters. The computational costs of the 

modified evolution strategy increases approximately linearly with the number of dimensions 

of the problem. For a further improvement of the performance of the procedure a post-

computation is carried out after the completion of all optimizations for all α-levels. This 

includes a recheck of all 
rj, kz α and 

lj, kz α with the aid all information gathered during all 

individual optimizations and a re-optimization of those results, which are identified as being 

not yet optimum. The features robustness, numerical efficiency, and general applicability of 

the modified evolution strategy enable an application of α-level optimization in combination 

with arbitrary nonlinear algorithms as mapping models for structural analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3a.   α-level optimization 
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Figure 3b.   α-level optimization 

 

The deterministic fundamental solution represents the respective analysis algorithm and is 

selectable. In this paper the geometrically and physically nonlinear analysis of plane 

reinforced concrete, prestressed concrete, and steel bar structures [Bartzsch 2006] is chosen as 

deterministic fundamental solution. The bars are subdivided into integration sections, the 

cross sections are subdivided into layers. On this basis an incrementally formulated system of 

second order differential equations for the straight or imperfectly straight bar is obtained. The 

slip at the bond joint is regarded as an additional degree of freedom s. 

 
 

 

 

                         (11) 

 

 

with 

 [k]    counter of iteration steps          

 (n)       counter of increments 

 θ1     bar coordinate 

 ∆         increment 

 z     vector of structural response,  z = {z1; z2} = {u w n s; N Q M Ns} 

 A     matrix of coefficients (constant within the increment) 

 b     "right hand side" of the system of differential equations with loads and varying 

parts resulting from geometrically nonlinearities, with physically nonlinear 

correction forces, as well as with forces from unbonded prestressing 

 d      damping matrix 

m      mass matrix 

 

   The implicit nonlinear system of differential equations for the differential bar sections is 

linearized by increments. All geometrically and physically nonlinear components in the ∆b-

vector are recalculated after every iteration step, and the A-, d-, and m-matrix are recalculated 

after the completion of the iteration within the increment. The solution of the system of 

differential equations by a Runge-Kutta integration results in the system of differential 

equations of the unknown incremental displacements ∆v, velocities v∆ɺ , and accelerations 
v∆ɺɺ  of the nodes. 

[k ]

[k ] [k 1]1
1 (n 1) 1 (n ) 1 (n )

1 (n )

[k ] [k ]

1 (n 1) 1 1 (n ) 1 (n 1) 1 1 (n )

d z( )
A( , z) z( ) b( , z)

d

... d( , z) z ( ) m( , z) z ( )

−
−

− −

 ∆ θ
= θ ⋅∆ θ + ∆ θ + θ 

+ θ ⋅∆ θ + θ ⋅∆ θɺ ɺɺ
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                  (12) 

 

   Due to the system modification components of the systems of differential equations (11) 

and (12) is changes. A special modification increment is adopted for the numerical processing 

of these changes. Layers of cross sections or structural members which are added to the 

system within a system modification are inserted stress-free and strain-free into the system. 

This is numerically processed by modifications of the corresponding components of eqs. (11) 

and (12). If additionally layers of cross sections or structural members are removed from the 

structure, the stresses of those components are transferred to the residual system.  

 

 

4.  Examples 

 

4.1   STEEL CONCRETE STRUCTURE 

 

For the steel-concrete-composite beam that is displayed in Figure 4, the process of 

manufacturing and loading is analyzed numerically.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.   Cross section, system 

 

   In the states of manufacturing first the span region of the composite beam are concreted, 

after it the support region. According this in the numerical analysis first the fresh concrete 

load is considered and afterwards the respectively concrete layers are taken into consideration 

within a specific system modification increment. Finally the traffic load of p = 400 kN/m 

(about 60% of the ultimate load) is applied. 

 

concrete C35/45  fctm= 3,2 N/mm²   

fcm,cyl = 43 N/mm² 

construction steel S355 fy = 360 N/mm
2   

  

fu = 510 N/mm
2    

 

reinforcement steel  fy = 500 N/mm
2 
   

fu = 550 N/mm
2
 

 

   Between concrete and steel a nonlinear shear stress slip dependency is regarded, see 

continuous lines in Figure 5. It is considered as fuzzy function with the likewise in Figure 5 

displayed bunch parameter. In comparison the structure is analyzed additionally with a linear 

shear stress slip dependency with the same initial stiffness (dashed lines) and with a rigid 

bond (dotted line). The linear shear stress slip dependency is also considered as fuzzy function 

with the bunch parameter in Figure 5. 

[k]o
[k] [k] [k]

(n)T(n 1) (n) (n 1) (n) (n) (n) (n 1)K v D v M v P F F− − −⋅∆ + ⋅∆ + ⋅∆ = ∆ −∆ + ∆∆ɺ ɺɺ
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Figure 5.   Fuzzy functions of shear stress slip dependency, bunch parameter s 

 

The alteration of the vertical displacement of the girder in the span region at the 

longitudinal bar coordinate 4.25 m is a selected fuzzy result. The fuzzy displacement is shown 

in Figure 6 for the three cases of shear stress slip dependencies. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.   Fuzzy vertical displacements 

 

 

4.2   NATURAL STONE ARCH BRIDGE 

 

The second example regards the Syratal bridge in Plauen (Germany) built 1903, world wide 

the widest span natural stone arch bridge at that time. The span is ninety meters, see Figure 7.  

Seven years ago (in 2000) the bridge was reconstructed and the masonry was grouted. The 

main parts of the bridge are the arch and the lateral masonry.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.   System, see [Schmiedel & Setzpfand 1999] 
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   The system takes into consideration the interaction between the arch and the masonry on the 

right and left side of the arch. The horizontal displacements of the arch activate the stiffness 

of the lateral masonry. This effect is modeled by nonlinear node springs, see Figure 8. 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.   Computational model 

 

   In Figure 9 is shown the nonlinear force displacement dependency for the nodes springs and 

the fuzzy stiffness factor fKF.  

displacement
u   [mm]

4 8 12 16 20 24

force PF [kN]

1000

2000

3000

K  f 1 = 5@10
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K  f 2 = 10
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K  f 3 = 10
 4 kN/m

 :

fK F

0.9 1.0 1.3

1

a) b)

 
 

Figure 9.   Uncertain force displacement dependency as fuzzy function 

 

   The system modification is caused by grouting of masonry. The modification process has a 

discontinuity as consequence of the rehabilitation. A representative load process is shown in 

Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure10.   Load and modification process 
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   The masonry rehabilitation causes a modification of the constitutive relationship. The curve 

I in Figure 11 stands for the original constitutive law. The curve III shows the modified 

constitutive law, and the curve II is a specific sigma-epsilon-path for the modification. 

 

 

 

 

 

 

 

 

 

 
Figure 11.   Trend functions of constitutive laws 

 

    The failure load factor is computed. That characterizes the ultimate traffic load, and leads 

to   system failure. The ultimate traffic load is equal given live load multiplied by failure load 

factor η. In Figure 12 is given the fuzzy failure load factor η. Case I investigates the arch 

without system modification, case II with the unrehabilitated and rehabilitated masonry 

strength for the system modification process. Case III leads to overestimation of the load 

bearing capacity. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 12.   Fuzzy failure factor 

 

In Figure 13 are results of the numerical monitoring, the fuzzy results for the vertical 

displacement of the crown of the arch (node 33) at the internal time points A, B, and C. 

 

 

 

 

 

 

 

 
 

 
 

 
 

Figure 13.   Fuzzy vertical displacements 
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Conclusions 

 

Analyzing a structure close to reality requires consider the complete load and modification 

process. The parameters of the load and modification process are generally uncertain. They 

may be described by fuzzy processes for a numerical monitoring. 

 

 

Acknowledgement 

 

The authors gratefully acknowledge the support of the German Research Foundation (DFG).   

 

 

References  

 

Bartzsch, M. 2006. Tragwerksmodifikation als unstetiger und unscharfer Prozeß. Technische Universität 

Dresden, Institut für Statik und Dynamik der Tragwerke, H. 12          
 

Bartzsch, M., Graf, W., Möller, B. & Sickert, J.-U. 2004. Modification of structures with uncertain parameters. 

In ECCOMAS, Jyväskylä, CD-ROM          
 

Möller, B. & Beer, M. 2004. Fuzzy Randomness - Uncertainty in Civil Engineering and Computational 

Mechanics. Springer, Berlin, Heidelberg   
 

Möller, B. & Graf, W. 2005. Tragwerksprozesse in der Baustatik. In Baustatik-Baupraxis 9, TU Dresden, 

Bericht, S. 381-393 
 

Möller, B., Graf, W. & Beer, M. 2000. Fuzzy structural analysis using α-level optimization. Computational 

Mechanics, 26(2000), pp. 547-565  
 

Möller, B., Graf, W. & Beer, M. 2003. Safety assessment of structures in view of Fuzzy randomness. Computers 

& Structures, 81(2003), pp. 1567-1582 
 

Möller, B., Graf, W., Liebscher, M., Pannier, S. & Sickert, J.-U. 2007. An inverse solution of the lifetime-

oriented design problem. In 3th ICLODC, Ruhr-Universität Bochum          
 

Möller, B., Graf, W. & Nguyen S. H. 2004. Modeling the life-cycle of a structure using fuzzy processes. 

International Journal of Computer-Aided Civil and Infrastructure Engineering 19(2004), pp. 157-169, 

Blackwell Publ., Malden, Cambridge, Oxford 
 

Schmiedel, J. & Setzpfandt, G. 1999. Syratalbrücke Plauen (Friedensbrücke). In Bundesministerium für Verkehr, 

Bau- und Wohnungswesen (Hrsg.), Steinbrücken in Deutschland, Teil 2: Berlin, Brandenburg, Mecklenburg-

Vorpommern, Sachsen-Anhalt, Sachsen, Thüringen. Verl. Bau + Technik, Düsseldorf, S. 335-338  


