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Abstract. The task of autonomous and robust design cannot be regarded as a single task, but
consists of two tasks that have to be accomplished concurrently. First, the design should be found
autonomously; this indicates the existence of a method which is able to find the optimal design
choice automatically. Second, the design should be robust; in other words: the design should be
safeguarded against uncertain perturbations.

Traditional modeling of uncertainties faces several problems. The lack of knowledge about distri-
butions of uncertain variables or about correlations between uncertain data, respectively, typically
leads to underestimation of error probabilities. Moreover, in higher dimensions the numerical com-
putation of the error probabilities is very expensive, if not impossible, even provided the knowledge
of the multivariate probability distributions.

Based on the clouds formalism we have developed new methodologies to gather all available
uncertainty information from expert engineers, process it to a reliable worst-case analysis and
finally optimize the design seeking the optimal robust design.

The new methods are applied to problems for autonomous optimization in robust spacecraft
system design at the European Space Agency (ESA).
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1. Introduction

In general terms, uncertainty handling for design optimization has the goal to safeguard reliably
against uncertain perturbations while seeking an optimal design. The achieved design can thus be
qualified as robust.

An engineer who designs a structure faces the task to develop a product which satisfies given
requirements formulated as design constraints. Output of the engineer’s work should be an optimal
design with respect to a certain design objective. In many cases this is the cost or the mass of
the designed product. An algorithmic method for design optimization functions as decision making
support for engineers. In the last years, much research has been dedicated to the achievement
of decisions support systems. Even the attempt of autonomous design has been made trying to
capture the reasoning of the system experts. For more complex kinds of structures, e.g., a spacecraft
component or a whole spacecraft, the design process involves several different engineering fields,
so the design optimization becomes multidisciplinary, and an interaction between the comprised
disciplines is necessary. The resulting overall optimization process is known as multidisciplinary
design optimization (MDO). Design related uncertainties are handled to safeguard against failures
of the design, i.e., a violation of the design requirement constraints, caused by uncertain errors.

In many cases, in particular for early design phases, it is common engineering practice to handle
uncertainties by assigning intervals, or safety margins, to the uncertain variables, usually combined
with an iterative process of refining the intervals while converging to a robust optimal design. The
refinement of the intervals is done by experts who assess whether the worst-case scenario, that has
been determined for the design at the current stage of the iteration process, is too pessimistic or
too optimistic. How to assign the intervals and how to choose the endpoint of the assigned intervals
to get the worst-case scenario is usually not computed but assessed by an expert. The goal of the
whole iteration includes both optimization of the design and safeguarding against uncertainties.
Apart from interval assignments there are further ways to handle uncertainties in design processes,
e.g., methods from probability theory or fuzzy theory like fuzzy clustering, portfolio theory, or
simulation techniques like Monte Carlo.

Real life applications of uncertainty methods disclose various problems. The dimension of many
uncertain real life scenarios is very high which causes severe computational problems, famous as the
curse of dimensionality, see, e.g., (Koch et al., 1999). Even given the knowledge of the multivariate
probability distributions the numerical computation of the error probabilities becomes very expen-
sive, if not impossible. Moreover, the available uncertainty information in early design phases is often
very limited, mostly there are only interval bounds on the uncertain variables, sometimes probability
distributions for single variables without correlation information. When the amount of uncertainty
information available is small, traditional methods face additional problems. To make use of well-
known current methods from probability or fuzzy theory more such information would be required.
Simulation techniques also require a larger amount of information to be reliable, or unjustified
assumptions on the uncertainties have to be made. The lack of information typically causes these
methods to underestimate the effects of the uncertain tails of the probability distribution, cf.
(Ferson, 1996). Similarly, a reduction of the problem to an interval analysis after assigning intervals
to the uncertain variables as described before (e.g., 3 σ boxes) entails a loss of valuable uncertainty
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information which would actually be available, maybe unformalized, but is not at all involved in
the uncertainty model.

Many previous works are dedicated to MDO or robust design. In a classical approach to MDO,
cf. (Alexandrov and Hussaini, 1997), (Roy, 1996), (Belton and Stewart, 2002), each specialist would
prepare a subsystem design rather independently, using stand-alone tools. Design iterations among
the different discipline experts would take place in meetings at certain time intervals. This well-
established approach reduces the opportunity to find interdisciplinary solutions and to create system
awareness in the specialists. A considerable step forward in MDO for early design phases has been
achieved by concurrent engineering where a sequential iterative routine is replaced by a parallel
and cooperative procedure. Facilities where these methodologies are implemented for the special
case of spacecraft design are, among others, the ESA Concurrent Design Facility (Bandecchi et al.,
1999), the NASA Goddard Integrated Mission Design Center (Karpati et al., 2003) and the Concept
Design Center at The AeroSpace Corporation (Aguilar et al., 1998). An approach to MDO via game
theory can be found, e.g., in (Lewis and Mistree, 1997). To improve the robustness in the process
of design optimization there are various approaches dealing with uncertainty modeling. In (Pate-
Cornell and Fischbeck, 1993) probability risk analysis is applied to the uncertainties in space shuttle
design; an approach from fuzzy theory can be found, e.g., in (Ross, 1995); in (Thunnissen, 2005)
a general qualitative and quantitative investigation of uncertainties in space design is given. The
work by (Amata et al., 2004) presents studies harmonizing the interests from different disciplines in
multidisciplinary design optimization. The attempt to incorporate both uncertainty and autonomy
in the design process was made, e.g., in (McCormick and Olds, 2002), using Monte-Carlo simulation
techniques, or in (Lavagna and Finzi, 2002), with a fuzzy logic approach.

The ESA Advanced Concepts Team in cooperation with the University of Vienna performed
an Ariadna study on the application of the clouds theory in space design optimization, cf. (Neu-
maier et al., 2007). This study presented an initial step on how clouds could be applied to handle
uncertainties in spacecraft design. A significant further step is given in (Fuchs et al., 2007).

Deepening the understanding of the latter studies, we here focus on the theory of clouds and
emphasize the capability of an adaptive processing of unformalized uncertainty information with
clouds. Clouds allow the representation of incomplete stochastic information in a clearly under-
standable and computationally attractive way, mediating between aspects of fuzzy set theory and
probability distributions, cf. (Dubois and Prade, 2005). The use of clouds permits an adaptive
worst-case analysis without losing track of important probabilistic information. At the same time,
all computed probabilities, and hence the resulting designs, are reasonably safeguarded against
perturbations due to unmodeled and possibly unavailable information. For given confidence levels,
the clouds provide regions of relevant scenarios affecting the worst-case for a given design. We have
the ambitious goal to achieve a quantification of reliability close to classical probability theory
methods, but in higher dimensional spaces of uncertain scenarios so that we can deal with real-life
design problems. To find a reliable robust and optimal design autonomously, we have additionally
developed heuristic optimization methods.

Figure 1 illustrates the basic concept of our approach. The expert provides the underlying model,
given as a black-box model, and all currently available uncertainty information on the model inputs.
The information is processed to generate a cloud that provides a nested collection of regions of
relevant scenarios parameterized by a confidence level α, and thus produces safety constraints for
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the optimization. The optimization minimizes a certain objective function (e.g., cost, mass) subject
to the safety constraints and to the functional constraints which are represented by the underlying
model. The results of the optimization are returned to the expert, who is given an interactive
possibility to provide additional uncertainty information afterwards and rerun the procedure.

Expert opinion

Uncertainty

Cloud

Underlying model

Optimization

Design point

Design
objective

information

Figure 1. Basic concept.

Focussing on application examples from early phase spacecraft design, we will deal with a limited
amount of uncertainty information, provided on the one hand as bounds or marginal probability
distributions on the uncertain variables, without any formal correlation information. On the other
hand, the engineers can adaptively improve the uncertainty model, even if their expert knowledge
is only little formalized, by adding correlation constraints to exclude scenarios deemed irrelevant.
The information can also be provided as real sample data, if available.

This paper is organized as follows. In Section 2 we present a more detailed study of uncertainty
modeling with clouds. This is used to investigate robust design optimization, cf. Section 3. The
techniques are applied to an example from spacecraft system design, described in Section 4. In
Section 5 we discuss general and detailed aspects of our approach and conclude with a summary of
our results.
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2. Uncertainty modeling with clouds

The clouds formalism will serve as the central theoretical background for our uncertainty handling.
Clouds will allow us an interpretation of uncertainties in terms of safety constraints. An impor-
tant additional aspect of clouds is the ability to deal with high dimensional and non-formalized
uncertainties.

This section starts with the definition of clouds in Section 2.1. The special case of potential clouds
will be introduced as particularly interesting in Section 2.2, Section 2.3 will give an introduction
about potential cloud generation.

2.1. Theoretical background

We start with the formal definition of clouds and introduce the notations. Let ε ∈ M ⊆ R
n be

an n-dimensional vector of uncertainties, we call ε an uncertain scenario. A cloud is a mapping
χ(ε) = [χ(ε), χ(ε)], where χ(ε) is a nonempty, closed and bounded interval ∈ [0, 1] for all ε ∈ M,
and ]0, 1[⊆ ⋃

ε∈M
χ(ε) ⊆ [0, 1]. We call χ(ε) − χ(ε) the width of the cloud χ. A cloud is called thin

if it has width 0, and continuous if the lower level χ and the upper level χ are continuous functions
of ε.

There exists a close relationship between thin continuous 1-dimensional clouds and cumulative
distribution functions (CDFs) of real univariate random variables ε which is stated in Proposition
4.1 in (Neumaier, 2004): Let Fε(x) = Pr(ε ≤ x) be the CDF of ε, then χ(x) := Fε(x) defines a
thin cloud and Pr(χ(ε) ≤ y) = y, y ∈ M. The latter refers just to the fact that Fε(x) is uniformly
distributed.

CDFs are well known from probability theory. Especially the 1-dimensional case is computa-
tionally unproblematic and intuitively understandable. However, we want to deal with significantly
higher dimensions than 1. This leads to the idea to construct continuous clouds from user-defined
potential functions V : M → R.

2.2. Potential clouds

As we learned in the last section potential function based clouds, in short potential clouds, are a
special class of continuous clouds supposed to help to cope with high dimensional uncertainties. The
idea is to construct a cloud from an interval-valued function χ of a user-defined potential function
V , i.e., χ ◦ V : M → [a, b], where [a, b] is an interval in [0, 1].

Define the mapping

χ(x) := [α(V (x)), α(V (x))], (1)

where α(y) := Pr(V (ε) < y), α(y) := Pr(V (ε) ≤ y), ε ∈ M a random variable. Then we get from
Theorem 4.3 in (Neumaier, 2004) that we thus constructed a cloud χ that gives us an important
interpretation in terms of confidence regions for ε.

Let α ∈ [0, 1] be a given confidence level. The remarks to Theorem 4.3 in (Neumaier, 2004)
tell us that if we choose α(y) as a lower bound for Pr(V (ε) < y) and α(y) as an upper bound for
Pr(V (ε) ≤ y), α, α smooth and monotone, then χ as defined above is still a cloud. An appropriate
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bounding α, α can be found, e.g., by Kolmogoroff-Smirnov (KS) statistics (Kolmogoroff, 1941).
Then we define

Cα := {ε|V (ε)) ≤ V α}, (2)

if a solution V α of α(V α) = α exists and Cα := ∅ otherwise; analogously

Cα := {ε|V (ε)) ≤ V α}, (3)

if a solution V α of α(V α) = α exists and Cα := M otherwise. These are nested families of confidence
regions parameterized by α: The region Cα contains at most a fraction of α of all scenarios in M,
since Pr(ε ∈ Cα) ≤ Pr(α(V (ε)) ≤ α) ≤ Pr(F (V (ε)) ≤ α) = α; analogously Cα contains at least a
fraction of α of all scenarios in M.

2.3. Potential cloud generation

Let’s summarize what is needed to generate a potential cloud: a potential function V has to be
chosen, then appropriate bounds on the CDF F of V (M) must be found. We will investigate how to
find these bounds. But first we consider the question how to choose the potential function. There
are endless possibilities (see, e.g., Figure 2) to make the choice.

−1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

   α=20%

  α=40%

 α=60%

 α=80%

α=100%

ε1

ε2

Figure 2. Nested confidence regions for the example of a 2-dimensional potential cloud, α = 0.2, 0.4, 0.6, 0.8, 1.

Two special cases for choices of the potential function are

V (ε) := max
k

|εk − μk|
rk

, (4)
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where ε, μ, r ∈ R
n, εk, μk, rk are the kth components of the vectors, defines a box-shaped potential.

V (ε) := ‖Aε − b‖2
2, (5)

where ε, b ∈ R
n, A ∈ R

n×n, defines an ellipsoid-shaped potential.
A good choice of the potential should allow for a simple computational realization of the confi-

dence regions, e.g., by linear constraints represented by Aε ≤ b. This leads us to the investigation
of polyhedron-shaped potentials, a generalization of box-shaped potentials. A polyhedron potential
can be defined as:

V (ε) := max
k

(Aε)k

bk
, (6)

where (Aε)k, bk are the kth components of the vectors (Aε)k and bk, respectively.
But how to achieve a polyhedron that reflects the given uncertainty information in the best

way? As mentioned we assume the uncertainty information to consist of given samples, boxes or
marginal distributions, and unformalized correlation constraints. After generation of a sample S as
described later we define a box b0 containing all sample points, and we define our potential V0(ε)
box-shaped taking the value 1 on the margin of b0.

Based on expert knowledge, a user-defined variation of V0 can be performed by cutting off
sample points deemed irrelevant for the worst-case. The exclusion of sample points is given by
linear constraints Aε ≤ b. Thus an expert can specify the uncertainty information in the form of
linear correlation bounds adaptively resulting in a polyhedron shaped potential (6), even if the
expert knowledge is only little formalized.

The adaptive exclusion of irrelevant scenarios, cf. Figure 3, can be realized in a graphical user
interface (GUI). This procedure imitates iterative improvement in common real life MDO.

Figure 3. Exclusion of irrelevant scenarios by correlation bounds.

Now we turn to the investigation on how to find appropriate bounds on the CDF F (V (ε)). As
we do not have the knowledge of F we have to approximate it before we can assign bounds on it.
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To this end we will make use of KS statistics as suggested before. That means we approximate F
by an empirical distribution F̃ . The generation of an empirical distribution requires the existence
of a sample S representing our uncertainties.

It depends on the given uncertainty information whether a sample already exists. In case there is
no sample provided or the given sample is very small, a sample has to be generated. For these cases
we first use a Latin hypercube sampling, cf. (McKay et al., 1979), inspired method to generate the
sample S = {x1, . . . , xNS

} of NS sample points. The sample points are chosen from a grid fulfilling
the well-known Latin hypercube condition. If only boxes are given, then the grid is equidistant, if
marginal distributions are given the grid is transformed with respect to them to ensure that each
grid interval has the same marginal probability. Thus the generated sample represents the marginal
distributions. However after a modification of S, e.g., by cutting off sample points as described, an
assignment of weights to the sample is necessary to preserve the marginal CDFs.

In order to do so the weights ω1, . . . , ωNS
∈ [0, 1] are required to satisfy the following conditions:

Let πj be a sorting permutation of {1, . . . , NS}, such that xj
πk(1) ≤ . . . ≤ xj

πk(NS). Let I be the
index set of those entries of the uncertainty vector ε where a marginal CDF Fi, i ∈ I ⊆ {1, . . . , n}
is given. Then the weights should satisfy (7) ∀i ∈ I, k = 1, . . . , NS

k∑
j=1

ωπi(j) ∈ [Fi(xi
πi(k)) − d, Fi(xi

πi(k)) + d],
NS∑
k=1

ωk = 1. (7)

The function

F̃i(ξ) :=
∑

{j|xi
j≤ξ} ωj (8)

is a weighted marginal empirical distribution. For trivial weights, ω1 = . . . = ωNS
= 1

NS
, F̃i is a

standard empirical distribution. The constraints (7) require the weights to represent the marginal
CDFs with some reasonable margin d. In other words, the weighted marginal empirical distributions
F̃i, i ∈ I should not differ from the given marginal CDF Fi by more than d. In practice, one chooses
d = dKS with KS statistics:

dKS =
φ−1(αKS)√

NS + 0.12 + 0.11√
NS

, (9)

where φ is the Kolmogoroff function, αKS the confidence in the KS theorem, cf. (Kolmogoroff,
1941), (Press et al., 1992).

Assume we have achieved weights satisfying (7), this yields a weighted empirical distribution

F̃ (ξ) :=
∑

{j|V (xj)≤ξ} ωj (10)

approximating the CDF of V (ε). If weights satisfying (7) can only be achieved with d > dKS, the
relaxation d gives us an indicator for the quality of the approximation which will be useful to
construct bounds on the CDF F (V (ε)).

After the approximation of F (V (ε)) with F̃ we are just one step away from generating a potential
cloud. Remember that we seek an appropriate bounding on F (V (ε)). We define F := min(F̃ +D, 1)
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and F := max(F̃ −D, 0), where D is computed with help of the KS approach (9), and fit these two
step functions to smooth, monotone lower bounds α(V (ε)) and upper bounds α(V (ε)). If the the
quality of our approximation with F̃ or the sample size NS is decreased, the width of the bounds
is increased correspondingly.

Thus we have found an appropriate bounding of the CDF F (V (ε)) and according to the remarks
to Theorem 4.3. in (Neumaier, 2004) mentioned we have generated a potential cloud that fulfills
the conditions that define a cloud via the mapping χ : ε → [α(V (ε)), α(V (ε))].

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V (ε)

Figure 4. The smooth lower bounds α(V (ε)) and upper bounds α(V (ε)) for a potential cloud.

The cloud represents the given uncertainty information and now enables us to interpret the
potential level maps {ε|V (ε) = Vα} = Cα as confidence regions for our uncertain vector ε. They
are the worst-case relevant regions.

Hence the clouds give an intuition and guideline how to construct confidence regions for safety
constraints. To this end we have combined several different theoretical means: potential func-
tions, CDF approximations with empirical distributions, KS statistics to estimate bounds, sample
generation methods, and weighting techniques.

3. Robust design optimization

A classic approach to design optimization, without taking uncertainties into account, leads to
decision support for engineers, but to a design which completely lacks robustness. We want to safe-
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guard the design against uncertain errors. That will involve the methods for uncertainty modeling
we introduced in the last section.

First we give a formal statement of the optimization problem in Section 3.1. Afterwards we point
out the difficulties related in Section 3.2 and finally present a solution approach in Section 3.3.

3.1. Problem formulation

Provided an underlying model of a given structure like a spacecraft component, with several inputs
and outputs, we denote as x the vector containing all output variables, and as z the vector containing
all input variables.

The inputs contained in z can be divided into global input variables u and design variables v.
The design variables are determined by the so called design choice variables. A choice variable is
a univariate variable controllable for the design. The choice variables can be continuous, e.g., the
diameter of an antenna, or discrete, e.g., the choice of a thruster from a set of different thruster
types. Let θ be the vector of design choice variables θ1, . . . , θno . Let Id be the index set of choice
variables which are discrete and Ic be the index set of choice variables which are continuous,
Id ∪ Ic = {1, . . . , no}, Id ∩ Ic = ∅. In the discrete case, i ∈ Id, the choice variable θi determines the
value of ni design variables. For example, if θi was the choice of a thruster, each choice could be
specified by the thrust and specific impulse of the thruster. Thrust and specific impulse would be
design variables vi

1 and vi
2, and ni = 2 in this example. Let 1, . . . , Ni be the possible choices for θi,

i ∈ Id, then the discrete choice variable θi corresponds to a finite set of Ni points (vi
1, . . . , v

i
ni

) ∈ R
ni .

Usually this set is provided in a Ni×ni table (see, e.g., Table II, Ni = 30, ni = 3). In the continuous
case, i ∈ Ic, the choice variable θi can be regarded as a design variable in a given interval [θi, θi].
A global input variable is an external input with a nominal value that cannot be controlled for the
underlying model, this could be, e.g., a specific temperature. Let Z(θ) be a mapping assigning an
input vector z to the design choice θ. We call Z a table mapping as the nontrivial parts of Z consist
of tables.

Both design and global input variables contained in z can be uncertain, ε denotes the related
vector of uncertainties. We assume that the optimization problem can be formulated as a mixed-
integer, bi-level problem of the following form:

min
θ

max
x,z,ε

g(x) (objective functions)

s.t. z = Z(θ) + ε (table constraints)
G(x, z) = 0 (functional constraints) (11)
θ ∈ T (selection constraints)
V (ε) ≤ V α (cloud constraint)

where the design objective g(x) is a function of the output variables of the underlying model. The
table constraints assign to each choice θ a vector z of input variables whose value is the nominal
entry from Z(θ) plus its error ε with uncertainty specified by the cloud. The functional constraints
express the functional relationships defined in the underlying model. It is assumed that the number
of equations and the number of output variables is the same (i.e., dimG = dim x), and that the
equations are (at least locally) uniquely solvable for x. The selection constraints specify which
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choices are allowed for each choice variable, i.e., θi ∈ {1, . . . , Ni} if i ∈ Id and θi ∈ [θi, θi] if i ∈ Ic.
The cloud constraint involves the potential function V as described in the Section 2 and models
the worst-case relevant region {ε|V (ε) ≤ V α} = Cα.

3.2. Difficulties

The problem formulated in the last section features several difficulties of most complex nature.
The variable types can be both continuous and integer, so the problem comes as a mixed integer
nonlinear program (MINLP). MINLP is still a recent research direction which has not yet matured.
Profound difficulties arise from the fact that the functional constraints, represented by G, can have
strong nonlinearities and can contain branching decisions such as case differentiation (implemented
as, e.g., if-structures in the code) which leads to discontinuities. Additionally we face a bi-level
structure imposed by the uncertainties, which is already a nontrivial complication in the traditional
situation where all variables are continuous. The current methods for handling such problems require
at least that the objective and the functional constraints are continuously differentiable. Standard
optimization tools cannot be used to tackle problem (11).

In view of these difficulties we are limited to the use of heuristic methods, i.e., we treat the
functional constraints of the underlying model as a black-box function x = Gbb(z) and make use
of specific strategies to sample from the set of allowed inputs z = Z(θ), θ ∈ T .

3.3. Solution approach

We will first reformulate the problem incorporating the objective function and functional constraints
for the underlying model in the black-box function Gbb(z).

min
θ

max
z,ε

Gbb(z)

s.t. z = Z(θ) + ε (12)
θ ∈ T

V (ε) ≤ V α

We start with a look at the inner level of the problem, i.e., for a fixed θ ∈ T

max
z,ε

Gbb(z) (13)

s.t. z = Z(θ) + ε

V (ε) ≤ V α

Because of the polyhedral structure of our clouds, the cloud constraint V (ε) ≤ V α can be written
as a collection of linear inequalities parameterized by the confidence level α. We approximate Gbb

in a small box containing the region {ε|V (ε) ≤ V α} linearly. Thus problem (13) becomes an LP
solved by an LP solver, cf. (Grant and Boyd, 2007). The maximizer ε̂, ẑ = Z(θ) + ε̂ for the fixed
design choice θ corresponds to the worst-case objective function value Ĝbb(θ) := Gbb(Z(θ) + ε̂).
The function θ → Ĝbb(θ) implicated by the solution of problem (13) is now used to get rid of the
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bi-level structure in problem (12):

min
θ

Ĝbb(θ) (14)

s.t. θ ∈ T

The method we develop to solve this 1-level problem, and to seek the robust, optimal design, is
based on separable underestimation. It exploits the characteristics of the problem, takes advantage
of the discrete nature of many of the choice variables involved in real life design, supporting, at
the same time, continuous choice variables. Remember θ is the vector of design choice variables
θ1, . . . , θno. We look for a separable underestimator q(θ) for the objective function of the form:

q(θ) :=
no∑
i=1

qi(θi). (15)

Let θ ∈ T , z = Z(θ). Assume the black-box Gbb has been evaluated No times resulting in the
function evaluations Gbb1 , . . . , GbbNo

for the design choices θ1, . . . , θN0 . Let l ∈ {1, . . . , No}. For a
discrete choice θi

l , i ∈ Id, we define qi(θi
l) := qi,θi

l
, θi

l ∈ {1, . . . , Ni}, simply as a constant. For a
continuous choice θi

l , i ∈ Ic, we define qi(θi
l) := θi

l · qi1 + θi
l · q2

i2 by a quadratic expression with the
two constants qi1 and qi2. If Id = ∅ we add an integer choice θi with Ni = 1 artificially to represent
the constant part which is missing in the definition of qi, i ∈ Ic. The vectors qi of constants have
the length Ni for i ∈ Id, and 2 for i ∈ Ic. They are treated as variables qi in a linear optimization
program (LP) satisfying the constraints

no∑
i=1

qi(θi
l) ≤ Gbbl

l = 1, . . . , No (16)

and ensuring that many constraints in (16) will be active. The underestimator q(θ) is separable
and can be easily minimized.

Apart from the method of separable underestimation we also make use of further strategies to
find a solution of the optimization problem (14). The first one fits a quadratic model for the Gbb

which is minimized afterwards, cf. (Huyer and Neumaier, 2006). Integers are treated as continuous
variables and rounded to a grid with step width 1. Another method is based on evolution strategy
with covariance matrix adaptation, cf. (Hansen and Ostermeier, 2001). It is a stochastic method
to sample the search space. Integers are also treated as continuous variables rounded to the next
integer value.

Finally the minimizers that result from all methods used are starting points for a limited global
search that consists of an integer line search for the discrete choice variables and multilevel coordi-
nate search (Huyer and Neumaier, 1999) for the continuous choice variables. Thus we hope to find
the global optimal solution, but as we are using heuristics there is no guarantee.

Remark. For the implementation of our methods we formulated them as Matlab code. The
following is a summary of all external routines we use in our methods: we make use of the Statistics
Toolbox of Matlab to evaluate probability distributions; we use CVX (Grant and Boyd, 2007)
to solve linear programs; Snobfit (Huyer and Neumaier, 2006) and MCS (Huyer and Neumaier,
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1999) as external optimization routines; NLEQ (Deuflhard, 2004), (Nowak and Weimann, 1990) to
solve systems of nonlinear equations.

4. Application example

Here we apply our methods for robust and autonomous design to a case study of early phase
spacecraft engineering, i.e., the Attitude Determination and Control Subystem (ADCS) for the
NASA’s Mars Exploration Rover (MER) mission cf. (MER, 2003), (Erickson, 2004) whose scientific
goal is to investigate the history of water on Mars. The ADCS is composed by eight thrusters aligned
in two clusters. Onboard the spacecraft there is no main propulsion subsystem. The mission sequence
after orbit injection includes a number of spin maneuvers and slew maneuvers. Spin maneuvers
are required for keeping the gyroscopic stability of the spacecraft, whereas slew maneuvers serve
to control the direction of the spacecraft and to fight effects of solar torque. Fault protection is
considered to correct possible errors made when performing nominal maneuvers.

Our goal is to select the type of thrusters (from a set of possible candidates as listed in Table
II) considering both minimization of the total mass mtot, and assessment of the worst possible
performance of a thruster with respect to mtot. That corresponds to finding the thruster with
the minimal worst-case scenario. The total mass consists of the fuel needed for attitude control
(computed as the sum of the fuel needed for each maneuver) plus the mass of the eight thrusters
that need to be mounted on the spacecraft. According to the notations introduced, the choice
variable θ, i.e., the type of thruster, can be selected as an integer between 1 and 30.

Uncertainty specifications, variable structure, the MER mission maneuver sequence, and system
model equations to compute the total mass mtot are taken from (Thunnissen, 2005). The uncertainty
specification for the model variables are reported in Table III of Appendix C. The number of
uncertain global input variables (dimension of u) in this application example is 33 plus 1 uncertain
design variable. The variable structure is summarized in Appendix A. Moreover, a survey on the
system model equations and the MER mission sequence can be found in the Appendices of (Fuchs
et al., 2007).

4.1. Results

The cloud constraints for the optimization are generated for a confidence level of α = 95% and
a generated sample size NS = 1000. The results for optimization are divided into four different
configurations of uncertainty handling and specifications:

a. The uncertainties are as specified in Table III. Here we treat them in a classical engineering
way, assigning 3 σ boxes to the uncertain variables which is supposed to correspond to a 99.7%
confidence interval for a single variable. Then the optimal design choice is θ = 9 with an
objective function value of mtot = 3.24 kg in the nominal case and mtot = 5.56 kg in the worst
case.

b. The uncertainties are again as in Table III. With our methods we find the optimal design
choice θ = 9 as in Configuration a. However, if we compare the worst-case analysis of b and a,
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it is apparent that the results for the 3 σ boxes are far too optimistic to represent a reliable
worst-case scenario, the value of mtot is now 8.08 kg instead of 5.56 kg for the 3 σ boxes.

c. In this configuration we do not take any uncertainties into account, generally assuming the
nominal case for all uncertain input variables. The optimal design choice then is θ = 3 with
a value of mtot = 2.68 kg in the nominal, but mtot = 8.75 kg in the worst case, which is
significantly worse than in Configuration b.

d. The uncertainties are obtained by taking the values from Table III and doubling the standard
deviation of the normally distributed variables. It is interesting to report that if we increase
the uncertainty in the normally distributed uncertain variables simply in this way, the optimal
design choice changes to θ = 17 with a value of mtot = 3.38 kg in the nominal and mtot = 9.49
kg in the worst case.

The results are summarized in Table I, showing the optimal design choice for each configuration
and the corresponding value of the objective function mtot for the nominal case and for the worst
case, respectively.

Table I. Nominal and worst-case values of mtot for different design choices obtained by the four
different configurations.

Configuration Design Choice θ Nominal value mtot Worst-case mtot

a 9 3.24 5.56
b 9 3.24 8.08
c 3 2.68 8.75
d 17 3.38 9.49

The results show a number of important facts related to spacecraft design. The comparison
between the configurations b and d suggests that in a preliminary stage of the spacecraft sys-
tems modeling the optimal design point θ is quite sensitive to the uncertainty description, a fact
well-known to the system engineers who see their spacecraft design changing frequently during
preliminary phases when new information becomes continuously available. Our method captures
this important dynamics and processes it in rigorous mathematical terms.

The comparison between the configurations b and c suggests that the uncertainties need to be
accounted for in order not to critically overestimate the spacecraft performances.

Finally, the comparison between the configurations b and a suggests that the simple 3 σ analysis
of uncertainties, frequent in real engineering practice, produces a quite different estimation of the
spacecraft performances with respect to a more rigorous accounting of the uncertainty information.
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5. Discussion & Conclusions

The importance of robustness in design optimization has been the starting point and main moti-
vation of our research work, and our results on a case study confirm that the optimal spacecraft
design is strongly sensitive to uncertainties. At the present stage we can clearly state that neglecting
uncertainties results in a design that completely lacks robustness and a simplified uncertainty model
(like a 3 σ approach) may yield critical underestimations of worst-case scenarios.

When trying to collect the uncertainty information, it turned out to be very difficult to get
useful information directly from expert engineers. To collect the information, an interactive dialogue
between the experts and the computer can be realized by a GUI where the engineers can specify
uncertainties, provide sample data, cut off worst-case irrelevant scenarios, and adjust the quality of
the uncertainty model. We expect that this kind of interaction is an inevitable next step in design
processes, especially spacecraft design. We continue the discussion with more detailed considerations
on the study.

− In the theory of clouds, cf. Section 2 and (Neumaier, 2004), there is a distinction between the
confidence regions of α-relevant scenarios Cα, α-reasonable scenarios Cα and borderline cases
(which is the set difference of the α-reasonable and the α-relevant regions). In robust design
the possibly uncertain scenarios are required to satisfy safety constraints. With respect to our
terminology the regions above have the following interpretation: if at least one of the α-relevant
scenarios fails to satisfy the safety constraints, the design is unsafe; if all of the α-reasonable
scenarios satisfy the safety constraints, the design is safe. Between these two cases there is
the borderline region where no precise statement can be made without additional uncertainty
information. The volume of the borderline region is increasing if the width of the cloud increases
and vice versa. So widening the cloud enlarges the borderline region, corresponding to a lack
of uncertainty information. This fact is reflected in our approach as both a smaller sample size
and an increased dimension of the uncertainty result in a wider cloud.

− The width of the cloud is defined as the difference between the mappings α and α (cf. Section
2). We constructed the mappings to fulfill the conditions that define a cloud with an algorithm
which is non-rigorous, but has a high, adjustable reliability. Thus the user of the algorithm is
able to control the desired level of reliability.

− As mentioned before the reliability of our worst-case analysis with clouds is determined by user-
defined parameters, i.e., the size of the generated sample S and confidence levels for sample
generation, CDF bounding and approximation. Concerning the sample size: if we increase the
size of S we artificially refine the uncertainty model and get more reliability of the worst-
case analysis. A larger sample is computationally more expensive, in particular the weight
computation, so the reliability is also a trade-off with performance.

− The choice of the potential function is arbitrary. Different shapes of the cloud (i.e., shapes of
the potential) can make the worst-case analysis more pessimistic or optimistic. We point out
that a poor choice of the potential makes the worst-case analysis more pessimistic, but will
still result in a valid robust design. We allow a variation of the potential by switching from a
box-shaped to a polyhedron-shaped potential to enable the experts to improve the uncertainty
model iteratively.
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− A good weight computation (cf. Section 2.3) is the key to a good uncertainty representation
with clouds. In higher dimensions the weight computation is very expensive. To overcome this
problem and to allow the adjustment of the computation time, the relaxation radius d must be
increased carefully. In our algorithm we respect the relaxation property, widening the cloud by
the amount of relaxation after evaluating the quality of the weights as described in Section 2.3.

− As mentioned before, we are limited to the use of heuristic methods since the design problem
(11) is highly complex and not suitable for standard optimization methods. In our problem
formulation we seek the design with the optimal worst-case scenario. It is possible to trade off
between the worst-case scenario and the nominal case of a design, but this would lead to a
multi-objective optimization problem formulation.

− The number 34 of uncertain variables in our case study is large enough to make our problem
representative for uncertainty handling in real-life applications.

− Though global optimality for the solution in our application example is very likely, as the choice
variable is 1-dimensional and discrete, in general the heuristical methods cannot guarantee
global optimality of the problem solution.

− The approach with separable underestimation introduced in this chapter takes advantage of
inherent characteristics of spacecraft design problems, i.e., the discrete nature of many of the
variables involved, supporting, at the same time, continuous choice variables. Details on our
heuristic methods for design optimization introduced in Section 3 will be published elsewhere.

5.1. Conclusions and Future Work

In this chapter we presented a new approach to autonomous robust design optimization. Starting
from the background of the cloud theory we developed methodologies to process the uncertainty
information from expert knowledge towards a reliable worst-case analysis and an optimal and robust
design. Our approach is applicable to real-life problems such as, e.g., early phase spacecraft system
design. In the example of the community of spacecraft engineers, at present, in most instances of the
design process, reliability is only assessed qualitatively by the experts. We present a step forward
towards quantitative statements about the design reliability.

The adaptive nature is one of the key features of our uncertainty model as it imitates real-life
design strategies. The iteration steps significantly improve the uncertainty information and we are
able to process the new information to an improved uncertainty model.

The presented approach is generally applicable to problems of robust design optimization, not
only spacecraft design. In particular problems with discrete design choices can be tackled. The
advantages of achieving the optimal design autonomously is undeniable. Though we already applied
the new methods to different design problems, cf. (Neumaier et al., 2007), one future goal is to apply
them to more problem classes in order to learn from new challenges.

With our approach we can process the available uncertainty information to perform a reliable
worst-case analysis linked to an adjustable confidence level. An additional value of the uncertainty
model is the fact that one can capture various forms of uncertainty information, even those less
formalized. There is no loss of valuable information, and the methods are capable of handling the
uncertainties reliably, even if the amount of information is very limited.
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Summing up, the presented methods offer an exciting novel approach to face the highly complex
problem of autonomous robust design optimization, an approach which is easily understandable,
reliable and computationally realizable.

Appendix

A. Model Variable Structure

Remark. Do not confuse the notations in these appendices with our notation of the main sections.
The 47 variables involved in the model fall into the following four categories:

− 5 constant parameters.
Input variables for the model with fixed values and no uncertainty.

Constant parameter Description Value

c0 speed of light in a vacuum 299792458 m/s

d average distance from the spacecraft to the sun in AU 1.26 AU

g0 gravity constant 9.8 m/s2

t total mission time 216 days

θi sunlight angle of incidence 0◦

− 33 Uncertain input variables.
The uncertainties are specified by probability distributions for each of these variables (cf.
Appendix C).

Variable Description

Amax maximal cross-sectional area

Jxx, Jzz moments of inertia

R engine moment arm

δ1, δ2 engine misalignment angle

gs solar constant at 1 AU

κ distance from the center of pressure to the center of mass

ωspini spin rates, i = 0...3, given in rpm

ψslewi slew angles, i = 1...19, given in ◦

q spacecraft surface reflectivity

uncfuel
additive uncertain constant that represents inaccuracies in

the equations used for the calculation of the fuel masses

− 3 Design variables.
Thruster specifications relevant for the model. There is uncertainty information given on one
of them (the thrust).
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Variable Description

F thrust

Isp specific impulse

mthrust mass of a thruster

− 6 Result variables.
Result variables containing the objective for the optimization mtot.

Variable Description

mfp fuel mass needed for fault protection maneuvers

mfuel total fuel mass needed for all maneuvers

mslew fuel mass needed for slew maneuvers

mslews fuel mass needed for slew maneuvers fighting solar torque

mspin fuel mass needed for spin maneuvers

mtot total mass of the subsystem

B. Thruster specification

Table II shows the thruster specifications and the linked choice variable θ. The table entries are
sorted by the thrust F . The difference between the so called design and choice variables can be
seen easily in this table: the table represents 30 discrete choices in R

3. The 3 design variables
are the 3 components of these points in R

3. The choice variable θ is 1-dimensional and has an
integer value between 1 and 30. The various sources for the data contained in Table II are (EADS,
2007), (Thunnissen, 2005), (Purdue School of Aeronautics and Astronautics, 1998), (Zonca, 2004),
(Personal communication, 2007).

C. Uncertainty specification

All uncertainty specifications taken from (Thunnissen, 2005) are reported in Table III. The notation
used for the probability distributions is:

Notation Distribution

U(a, b) uniform distribution in (a, b)

N(μ, σ) normal distribution with mean μ and variance σ2

Γ(α, β) gamma distribution with mean αβ and variance αβ2

L(μ, σ)
lognormal distribution, distribution parameters μ and σ (mean and standard

deviation of the associated normal distribution)

The uncertainty information on the design variable F should be interpreted as follows: The
actual thrust of a thruster is normally distributed, has the mean Ftable (:= the nominal value for
F specified in Table II) and standard deviation 7

300Ftable.
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Table II. Thruster specifications and the linked choice variable θ.

θ Thruster F/N Isp/s mthrust/kg

1 Aerojet MR-111C 0.27 210 0.2

2 EADS CHT 0.5 0.5 227.3 0.195

3 MBB Erno CHT 0.5 0.75 227 0.19

4 TRW MRE 0.1 0.8 216 0.5

5 Kaiser-Marquardt KMHS Model 10 1 226 0.33

6 EADS CHT 1 1.1 223 0.29

7 MBB Erno CHT 2.0 2 227 0.2

8 EADS CHT 2 2 227 0.2

9 EADS S4 4 284.9 0.29

10 Kaiser-Marquardt KMHS Model 17 4.5 230 0.38

11 MBB Erno CHT 5.0 6 228 0.22

12 EADS CHT 5 6 228 0.22

13 Kaiser-Marquardt R-53 10 295 0.41

14 MBB Erno CHT 10.0 10 230 0.24

15 EADS CHT 10 10 230 0.24

16 EADS S10 - 01 10 286 0.35

17 EADS S10 - 02 10 291.5 0.31

18 Aerojet MR-106E 12 220.9 0.476

19 SnM 15N 15 234 0.335

20 TRW MRE 4 18 217 0.5

21 Kaiser-Marquardt R-6D 22 295 0.45

22 Kaiser-Marquardt KMHS Model 16 22 235 0.52

23 EADS S22 - 02 22 290 0.65

24 ARC MONARC-22 22 235 0.476

25 ARC Leros 20 22 293 0.567

26 ARC Leros 20H 22 300 0.4082

27 ARC Leros 20R 22 307 0.567

28 MBB Erno CHT 20.0 24 234 0.36

29 EADS CHT 20 24.6 230 0.395

30 Daimler-Benz CHT 400 400 228.6 0.325
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