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Abstract: A primary challenge of stochastic analysis is to discover rigorous ways to forecast the 
low probability of failure which is critical to reliability constraints. In this paper, a new 
framework is proposed for the accurate estimation of the low failure probability. Combining the 
excellent advantages of the polynomial chaos expansion, and local regression method will result 
in a new simulation-based modeling technique that enables the accuracy of the structural integrity 
prediction. The proposed procedure can allow for realistic modeling of sophisticated statistical 
variations and facilitate in order to achieve improved reliability by eliminating unnecessary 
conservative approximations. An example problem is depicted to illustrate how the method is 
used to provide a quantitative basis for developing robust designs associated with the low 
probability of failure. 
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1. Introduction 
 
In recent years, the rapid development and improvement of novel design concepts, especially 
utilizing novel material systems, is a major request of the aerospace and automobile industry. In 
addition, new digital and information science technologies are creating the potential for new high-
level design fields, such as micro-electro-mechanical systems (MEMS) and multi-scale 
engineering systems. However, introducing this state-of-the-art technology and new material 
systems is rapidly increasing the complexity of most engineered systems. There exist significant 
difficulties in anticipating, understanding, designing, and controlling both normal and abnormal 
behaviors of the complex systems. In addition, uncertainties in material properties, geometry, 
manufacturing processes, and operational environments of the complex engineered systems are 
clearly critical at all scales (nano-, micro-, meso-, and macro-scale). For example, the typical 
tolerances of geometric accuracy and surface finish are on the order of tenths of microns during 
the fabrication processes (Maluf, 2004), and the common microfabrication material (i.e. 
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polycrystalline silicon) has 9~15% variation in its Young’s modulus and tensile strength (Sharpe, 
Turner, and Edwards, 1999).  
 

To compensate the ignorance of uncertainties in input parameters, safety factors have 
traditionally been incorporated approximately in engineering designs. Generally, the factor of 
safety is understood to be the ratio of the expected strength to response to the expected load (Choi, 
Grandhi, and Canfield, 2006). In practice, both the strength and load are variables, the values of 
which are scattered about their respective mean values. When the scatter in the variables is 
considered, the factor of safety could potentially be less than unity, and the traditional factor of 
safety-based design would fail. More likely, the factor of safety is too conservative, leading to an 
overly expensive design for a given level of safety. Probabilistic methods are convenient tools to 
describe or model physical phenomena that are too complex to treat with the present level of 
scientific knowledge. The probabilistic method explicitly incorporates given statistical data into 
the design algorithms and provides safer designs at given cost, whereas conventional 
deterministic design with the safety factor discards such data. However, the probabilistic-based 
approach often requires repeated evaluations of the probability of failure and it induces the 
computational challenge associated with the large number of computer simulations when the 
system requires extremely low failure probability, such as 10-5~10-7.  
 

A common approach to the computationally-expensive procedure of the probabilistic 
methods is to approximate the system response using relatively inexpensive surrogate modeling 
techniques. In the approximation of the response function, the accuracy depends on the choice of 
the basis function and the sampling method including the choice of the sampling region and the 
position of the sampling points. An effective choice of the basis function for the uncertainty 
analysis is the direct use of stochastic expansions, i.e. Polynomial Chaos Expansion (PCE) 
(Ghanem and Spanos, 1991), since the stochastic expansions provide analytically appealing 
convergence properties based on the concept of a random process. The PCE can reduce 
computational effort of uncertainty quantification in engineering design applications where the 
system response is computed implicitly. Choi et al. (2006) recently developed an uncertainty 
analysis framework which can account for nonlinear fluctuations of large-scale system responses 
by integrating the PCE, the Karhunen-Loeve (KL) transform, and Latin Hypercube Sampling 
(LHS). This research utilized the stochastic expansion and the dimension reduction procedure to 
generate the random field and showed the applicability of the method to the complex engineered 
systems. 
 

The objective of the current study is to provide the accurate estimation of the low failure 
probability of complex engineered systems by utilizing efficient probabilistic methods which can 
realistically model complicated statistical variations. To achieve a high quality surrogate model, a 
local regression method, namely Moving Least-Squares (MLS) method (Lancaster and 
Salkauskas, 1981), is integrated to a previously developed probabilistic decision support 
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framework (Choi, Canfield, and Grandhi, 2006). The main advantage of the MLS method is that 
the regression coefficients are not constant, but rather parameter dependent. This quality allows 
the data analysis to not be constrained to a specific global function in order to fit a model to the 
data. Instead, the fitting segments spawn a local-global approximation allowing the data to 
acclimate to the function over a wide range of parameters. The stochastic modeling process 
repeats and recalibrates the PCE model with the local regression scheme until sufficient model 
adequacies are achieved. This will allow for an accurate estimation of the low probability of 
failure with limited sampling points. The following sections provide a brief description and main 
ideas behind the local regression method and then focus on the technical details integrating the 
stochastic approximation procedure to provide the accuracy of the structural integrity prediction 
of complex engineered systems.  
 
 
 

2. Mathematical Basis for Solution Concept 
 
 
 
2.1.  LOCAL REGRESSION 
 
The efficacy of local regression schemes such as MLS method, lazy learning method, and locally 
weighted regression method have been successfully shown in recent engineering applications 
(Lancaster and Salkauskas, 1981; Stone, 1977; Cleveland, 1979; Katkovnik, 1979; Toropov, 
Scharamm, Sahai, Jones, and Zeguer, 2005). The basic idea of the local regression is to fit curves 
and surfaces to localized subsets of the data by a multivariate smoothing procedure with moving 
processes. The detailed steps of the MLS approximation are described in Figure 1. First, we 
define a local domain based on the domain influence factor or bandwidth, r. In the second step, 
we construct an approximation at a calculation point, xi. These procedures can be repeated to each 
different calculation point by moving the local domain. Therefore, the regression coefficients of 
the MLS are not constant but a function of the calculation position or location. The “moving” 
process is analogous to a weighted moving average method, which is a common method in a time 
series analysis. In fact, applying zero degree polynomials in the local regression yields a weighted 
moving average. The advantage of the local approximation compared to the classical global 
fitting methods is that the method does not require a global function of any form to fit a given 
model and can generate accurate and smooth fitting of nonlinear responses without significant 
distortions.  
 
Consider the linear regression model 
 
     εβββ ++++= )(...)()( 110 xpxpxy mm                          (1) 
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where )(xp j , j = 0,1,2,…,m, are the basis polynomial of order m, jβ  are the regression 
coefficients, and ε , the error of the model equation, is assumed to be normally distributed with 
mean zero and variance 2

eσ .  
 

 

Figure 1. Moving Least-Squares Approximation 
 
Equation (1) can be written in matrix notation for n sample values of x and y as 
 
     eXY += β̂               (2) 
where  
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Here, the simplest polynomial model is the monomials of xm, i.e., )(xpT  = ],...,,,1[ 2 mxxx  and 
in 2D space, ],,...,,,,,,1[),( 22 mmT zxzxzxzxzxp = . 
 
The least-squares procedure results in obtaining the regression coefficients: 
 
     YXXX TT 1)(ˆ −=β            (3) 
 
The fitted model and the residuals are 
 

β̂ˆ XY =  and YYe ˆ−=              (4) 
 
In the method of the Moving Least-Squares (MLS) approximation, the regression coefficient 
vector, b(x), can be calculated as, 
 

YxWXXxWXxb TT )(])([)( 1−=        (5) 
where X is a n x p matrix of the levels of the regressor variables, Y is a n x 1 vector of the 
responses, and W(x) is a weight matrix and it is a none zero diagonal matrix: 
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Consequently, the model Y in Eq. (2) can be approximated by MLS approximants )(xu h as 
follows 
 

)()()()()(
0

xbxpxbxpxu T
j

m

j
j

h == ∑
=

       (7) 

 
The weight matrix, Eq.(6), is a function of the location or position of x and there are several types 
of weighting functions: 
 

(a) Exponential weight function 
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(b) Conical weight function  
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(c) Spline weight function 
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where ii xxd −=  is the distance from the sample point xi to x, and the domain influence factor, 
ri, is directly related to the smoothing length; namely, the size of the support for the weight 
function. It is also called the bandwidth.  
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Figure 2. Weight Functions 
 
Figure 2 depicts the three types of the weight functions discussed in this section. It is important to 
note that the shape of the fitted curve is not critically sensitive to the precise selection of the 
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weight function. However, the careful adjustment of the domain influence factor of the weight 
function is critical so that the interval should contain enough data points to obtain the regression 
coefficients. Otherwise, the regression procedure will envisage a singular matrix. The additional 
discussion on the effects of several weighting functions and the resulting local approximation can 
be found in Ref. (Dolbow and Belytschko, 1998). 
 
2.2.  STOCHASTIC APPROXIMATION 
 
The Polynomial Chaos Expansion (PCE) stemmed from both Wiener and Ito’s work on 
mathematical descriptions of irregularities (Wiener, 1938). A simple definition of the PCE for a 
Gaussian random response, )(θu  , as a convergent series is as follows: 
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where ∞
=1)}({ ii θξ  is a set of Gaussian random variables, ),...,( 1 piip ξξΓ  is the generic element of 

a set of multidimensional Hermite polynomials, usually called homogeneous chaos of order p, 

pii aa ,...,1  are deterministic constants, and θ  represents an outcome in the space of possible 

outcomes of a random event.  
 
Equation (9) can be written more simply as 
 

∑
=

Ψ=
P

i
iibu

0

))(()( θξθ
r

          (10) 

where ib  and ))(( θξ
r

iΨ are one-to-one correspondences between the coefficients pii aa ,......,1  

and the functions ),......,( 1 piip ξξΓ , respectively. If u is a function of a normally distributed 

random variable x, which has the known mean xµ  and variance 2
xσ , ξ  is a normalized variable: 

xxx σµξ /)( −= . For example, the two-dimensional case of Eq. (9) can be expanded as: 
 

)()()( 21211100 ξξθ Γ+Γ+Γ= aaau  
                  ),(),(),( 222221221211211 ξξξξξξ Γ+Γ+Γ+ aaa  
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                  ),,(),,(),,(),,( 2223222122322111232111113111 ξξξξξξξξξξξξ Γ+Γ+Γ+Γ+ aaaa … 
           (11) 
 
Equation (11) can be recast in terms of [.]iΨ  and ib  as follows: 
 
     ...)( 554433221100 +Ψ+Ψ+Ψ+Ψ+Ψ+Ψ= bbbbbbu θ      (12) 
 
Thus, the term ),( 11211 ξξΓa  becomes 33Ψb  for this two-dimensional case. 
 
     The general expression to obtain the multidimensional Hermite polynomials is given by 
(Ghanem, and Spanos, 1991) 
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where the vector  ξ
r

 consists of n Gaussian random variables ),......,( 1 nii ξξ . Generally, the one-
dimensional Hermite polynomials are defined by  
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where )()( ξϕ n  is the nth derivative of the normal density function, 2/2

2/1)( ξπξϕ −= e . This 
is simply the single-variable version of Eq. (13). From Eq. (14), we can readily find 
 
     ,...}1510,36,3,1,,1{}{ 352432 ξξξξξξξξξ +−+−−−=Ψi           (15) 
 
Thus, a second order, 2-D PCE is given by 
 
     )1)(()()()1)(()()()( 2

25214
2

1322110 −++−+++= θξθξθξθξθξθξθ bbbbbbu    (16) 
where )(1 θξ  and )(2 θξ are two independent random variables. 
 
PCE can be used to represent the response of an uncertain system in the non-intrusive formulation 
(Pettit, Canfield, and Ghanem, 2002; Choi, Grandhi, Canfield, and Pettit, 2004). The basic idea of 
this approach is to project the response and stochastic system operator onto the stochastic space 
spanned by PCE with the projection coefficients, ib , being evaluated through an efficient 
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sampling scheme. We first define the vector x  at a particular point ( mξξξ ,...,, 21 ) of random 
variables 
 
     )]()...()()()...()()()...()(1[ 212222111211 mpmmpp

Tx ξξξξξξξξξ ΨΨΨΨΨΨΨΨΨ=   
                                          (17) 
where p is the order of polynomial and )( ij ξΨ  are PCE. The estimated response at this point is 

     β̂)( Txxy =                                  (18) 

where β̂  is a set of undetermined coefficients of PCE and it can be obtained from Equation (5). 
 
2.3.  SOLUTION STRATEGIES 
 
For the utilization of the local regression method in practice, the selection of its basic components, 
such as the basis function, the weighting function, and the domain influence factor, r, is critical to 
provide the reliable model adequacy of the approximation. For instance, the domain influence 
factor has a significant effect on the fitted shape. Depending upon the size of the domain 
influence factor or the bandwidth, the user can adjust the closeness of fit, and this flexibility can 
also enable the user to achieve the same result of the interpolation and the global regression as 
shown in Figure 3b. Further discussions on the fixed bandwidth and nearest-neighbor bandwidth 
selection in the local regression are available in Refs. (Cleveland, 1979; Katkovnik, 1979). Figure 
3a shows the fitted model for the same data by using the global regression method. In the case of 
the global regression, the data analysis is constrained to a specific global function to fit a model 
data. It is clear that the local regression method provides sufficient flexibility to achieve good 
model adequacy. However, when the size of the domain influence factor is small, the obtained 
response approximation can be unstable against the effects of random fluctuations, or noise 
phenomena. Therefore, it is important to develop criterions for the selection of the basic 
components of the local regression method.  
 
     In this study, the PCE is employed as a basis function. More satisfactory solutions can be 
expected because of the orthogonal property of the PCE. For the common polynomial regression 
model of the monomials of xm, the columns of X in Eq. (2) can sometimes be nearly collinear, 
which causes an ill-conditioned problem, because negative values of x produce negative values 
for all odd powers, and positive values of x produce large positive values for all of the function. 
Hence, small changes in the basis function lead to relatively large changes in the regression 
coefficients. Another important issue with the polynomial regression is in determining an 
appropriate order of polynomials. By using a linear basis function (first-order polynomial) in the 
local regression often induces rapid changes in the slope. In the local regression method, 
increasing the degree of polynomials can typically enlarge the bandwidth without introducing 
intolerable bias; it eventually produces smoother fitting shapes compared to the linear basis 
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(Lancaster and Salkauskas, 1981; Stone, 1977; Cleveland, 1979). In order to determine the 
appropriate degree of the polynomials and the size of the domain influence factor, several 
possible criterions, which involve R2, Cp statistics (Montgomery, 1997), and the graphical 
diagnostics, can be considered. The graphical diagnostics, such as the plot of residuals ε versus ŷ , 
or y  versus ŷ , can provide a visual assessment of model effectiveness. The visual inspections of 
residuals are preferable to understand certain characteristics of the regression results because 
analysts can easily construct the plots and reveal useful information from the unorganized data. 
However, the visual inspection is a labor intensive process and it is difficult to automate. An 
advantage of the R2 and Cp statistics is that the procedure can be automated. It does not require 
labor intensive processes. Since the automated procedure can underestimate a peak in a surface 
and sometimes produces a poor solution, an ideal criterion can be a cross-validation by using both 
the graphical diagnostics and R2 or Cp statistics. 
 

 

 

 

 

 

 

(a) Global Regression                   (b) Local Regression with r = 0.2, r = 5.0, and r = 1.0 
 

Figure 3. Effect of Local Regression and Domain Influence Factor 
 
Figure 4 shows the flowchart of the solution strategies for determining the appropriate parameters 
of the basic components in the MLS approximation. In this procedure, the utilization of the 
stratified sampling technique known as LHS is expected to decrease the number of simulations 
needed. To determine the parameters for the MLS approximation, the R2 value has been checked 
along with the graphical diagnostics of the regression result as shown in Figure 4. The formula for 
R is defined by  
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21
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),( 21
,

XX
XX

XXCov
R

σσ
=         (19) 

where Cov(·) is the measure of correlation of the fluctuations of the two different quantities; 
namely, covariance and 

1Xσ  represents the standard deviations for X1.  
 

 
 

Figure 4. Solution Strategies for Local Regression 
 
R2 can vary from 0.0 to 1.0, where a R2 value of 1.0 indicates the regression perfectly fits the data. 
R2 is a good measure to automate the determining procedure of the basic components for the MLS 
approximation using nonlinear optimization. However, when R2 is misused, the user can produce 
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an undesirable interpolation with very high order polynomial models. The introduction of the 
graphical diagnostics step, such as the residual analysis, can detect this undesirable and 
uncontrollable result with little additional effort. For instance, the abnormality of the residual 
plots indicates that the selected model is inadequate or that an error exists in the analysis. There 
are no significant computational costs to obtain statistical properties of the responses after 
constructing the PCE representation of stochastic responses.  
 
 
 

3. Structural Integrity Prediction 
 
 
 
3.1. THREE-BAR TRUSS EXAMPLE 
 
Reliability analysis evaluates various statistical properties and the probability of system failure by 
determining whether the limit-state functions are exceeded. Generally, the limit state indicates the 
margin of safety between the resistance and the load of structures. The limit state function, )(⋅g , 
and probability of failure, fP , can be defined as 
 
     )()()( XSXRXg −=                                                             

     ]0)([ ≤⋅= gPPf                                              (20) 
where R  is the resistance and S is the loading of the system. Both R(.) and S(.) are functions of 
the random variable X. The notation g(.) < 0 denotes the failure region. Likewise, g(.) = 0 and g(.) 
> 0 indicate the failure surface and safe region, respectively.  
 

In this section, the estimation of the low failure probability will be discussed by 
comparisons of a sampling method and the proposed method. An indeterminate, asymmetric 
system of a three pin-connected truss structure is illustrated in Figure 5. The unloaded length, Lm, 
and orientation, mα , of each member are deterministic. Young’s modulus, Em, of each member is 
also assumed to be deterministic. The load has a random magnitude, P, and direction, θ . The 
cross-sectional area A for all members is also random. The random quantities are initially 
considered normally distributed and uncorrelated: 
 
     A~N(1 in2, 0.1 in2) 
     P~N(1000 lb, 250 lb) 
     θ ~N(45o, 7.5o) 
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where the symbol x ~ N( xµ , xσ ) denotes that the random variable x is treated as a normal 
distribution and has the mean of xµ  and standard deviation of xσ .  
 

 

 

 

 

 

 

psiE 6
321 109.2,110,90,45 ×==== ooo ααα  

Figure 5. Pin-connected Three-bar Truss 
 
The principle of virtual work is used to calculate the displacement vector Tvu ],[  of the joint at 
which the load is applied and is given by the solution of the following system of equations: 
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The horizontal deflection of the structure should be u  < 0.0015 in. This restriction is considered 
as a limit state. To obtain the probability of failure, fP , one million simulations were conducted to 
obtain a converged result in MCS. 200 samples of LHS were used to obtain the surrogate model 
of the limit state by using the third-order PCE model with the exponential weight function of Eq. 
(8a). The plots of y versus ŷ  (Figure 6a) or residuals versus ŷ  (Figure 6b) provide a visual 
assessment of model effectiveness in regression analysis. Since the residual plot of Figure 6b 
exhibits white noise behavior which means there is no abnormality and the residual plot in Figure 
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6a yields points around the 45o line, the estimated regression function shows accurate predictions 
of the values that are actually observed. Therefore, the selected PCE and the weight function 
model of MLS are sufficient for fitting the given data. After conducting the local regression, fP  
is calculated using one million MCS simulations with the obtained PCE model.  
 

 
(a) Residual Plot: y versus ŷ    (b) Residual Plot: ŷ  versus Residual 

 
Figure 6. Residual Analysis 

 
 

 Table 1. Comparison of Methods for Reliability Analysis 
 

 fP  95% Confidence Interval 

MCS 4.70×10-6 [3.64×10-6, 5.76×10-6] 
PCE+MLS 4.34×10-6 [4.01×10-6, 4.67×10-6] 

 
 
The corresponding results of the current example are summarized in Table 1. The PCE result 
converged to fP = 4.34×10-6 and 95% confidence interval is also obtained. The confidence 
interval indicates a range of values that likely contains the analysis results. For this case, the user 
can be 95% confident that the true mean of fP  will be between 4.01×10-6 and 4.67×10-6. The 
confidence interval of MCS is larger than the result of PCE, but it has an overlapping region with 
the PCE’s. The interval can be reduces as the sampling size increases in the case of MCS. The 
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obtained result exhibits that the use of PCE along with MLS is applicable to the estimation of the 
low failure probability.  
 
 

4. Summary 
 
A new framework is proposed for the accurate estimation of the low failure probability of 
common engineering problems by utilizing efficient probabilistic methods which can realistically 
model complicated statistical variations. A local regression method, MLS, is integrated to a 
previously developed probabilistic decision support framework which combines the PCE and 
LHS. The stochastic modeling process repeats and recalibrates the PCE model with the local 
regression scheme until sufficient model adequacies are achieved. This allows for an accurate 
estimation of the low probability of failure with limited sampling sets. This increased capability 
has the potential to provide significant robust designs with a minimal amount of computational 
cost. 
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