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Abstract: Uncertain information about a system variable described by a random set or an 
equivalent Dempster-Shafer structure on a finite space of singletons determines an infinite convex 
set of probability distributions, given by the convex hull of a finite set of extreme distributions. 
Extreme distributions allow one to evaluate (through the Choquet integral) exact upper/lower 
bounds of the expectation of monotonic and non-monotonic functions of uncertain variables, for 
example in reliability evaluation of engineering systems. The paper considers the simple case of a 
single variable, and details applications to random sets with nested focal elements (consonant 
random sets or the equivalent fuzzy set) and to p-boxes. A simple direct procedure to derive 
extreme distributions from a p-box is described through simple numerical examples. 
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1 Introduction 
 
In Civil Engineering practice, the growing need for rationally including uncertainty in 
engineering modelling and calculations is witnessed by the adoption of reliability-based 
EuroCodes or Load and Resistance Factor Design codes (Level I). More sophisticated reliability-
based approaches are used in research or special practical problems (Levels II and III). This need, 
however, has been accompanied by the realization of the limitations that affect probabilistic 
modelling of uncertainty when dealing with imprecise data (Walley. 1991). 

On one hand, in the enlarged ambit of a multi-valued logic, alternative models of uncertainty 
have been propounded that attempt to capture qualitative or ambiguous aspects of engineering 
models. Particularly important models are based on the idea of fuzzy sets and relations, and  
positive applications have been reported in the fields of automatic controls in robotics and 
artificial intelligence, more generally in the field of optimal decisions and approximate reasoning. 
Less convincing and frequently charged with leading to unrealistic or unverifiable conclusions are 
the tentative applications of fuzzy models in predicting or simulating objective phenomena, for 
example to evaluate the reliability of an engineering design or to assess the reliability of an 
existing engineering system. 
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2 Alberto Bernardini and Fulvio Tonon 

On the other, new models of uncertainty have been formulated, based on a generalisation of 
the probabilistic paradigm, and in particular its objective interpretation as relative frequency of 
events. The main point is the considerations of “imprecise probabilities” of events or “imprecise 
previsions” of functions, based on the idea of bounded sets of probability distributions compatible 
with the available information or, alternatively, on the combination of a probability distribution 
(randomness) with imprecise events (set uncertainty). Because these models retain the semantics 
of probability theory, comparisons with probability theory are straightforward. 

The subjectivist formulation of this approach (Theory of evidence, (Shafer. 1976)) is 
compatible with a different interpretation based on statistics of objective but imprecise events 
(Theory of random sets). When imprecise events are nested, it includes the notion of fuzzy set as 
a particular case. 

After a quick review of the definitions and properties of imprecise probabilities and 
classification of the corresponding upper/lower bounds according to the order of Choquet 
capacities, the paper focuses on the theory of random sets, with particular emphasis on fuzzy sets 
(consonant random sets) and p-boxes (non consonant random sets that contain, as a particular 
case, the ordinary probability distributions). Both fuzzy sets and p-boxes are indexable-type 
random set, i.e the imprecise events can be ordered and univocally determined by an index 
varying from 0 to 1 (Alvarez. 2006). This property is very useful in applications involving 
numerical simulations. 

With reference to a finite probability space for a single variable, the paper continues by 
discussing the properties of the infinite convex set of probability distributions, and of the finite set 
of extreme distributions generated by random sets, fuzzy sets, and p-boxes. The finite sets of 
extreme distributions are particularly useful in evaluating exact expectation bounds for a real-
valued function of the considered variable, in the case of both monotonic and not monotonic 
functions. 

A simple and direct procedure to derive extreme distributions from a p-box is described. 
 
 

2 Imprecise probabilities and convex sets of probability distributions 
 

2.1 COHERENT UPPER AND LOWER PROBABILITIES AND PREVISIONS 
 
Le us consider a finite probability space (Ω, F, P), where F is the σ-algebra generated by a finite 
partition of Ω into elementary events (or singletons) S = {s1, s2…, sj ,… sn}. Hence the probability 
space is fully specified by the probabilities P(sj), which sum up to 1 (in the following: the 
“probability distribution”). 

Imprecise probabilities arise when the available information does not allow one to uniquely 
determine a unique probability distribution. In this case, the information could be given by means 
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of upper and/or lower probabilities, μLOW(Ti), μUPP(Ti), of some events  Ti ∈ F, or directly through 
a set  of probability distributions, Ψ. 

The foundation of a theory of imprecise probabilities is mainly due to the work of Peter 
Walley in the 1980s/90s on a new theory of probabilistic reasoning, statistical inference and 
decision, under uncertainty, partial information or ignorance ((Walley. 1991), or for a concise 
introduction (Walley. 2000)). In his work, the basic idea of upper/lower probabilities is enlarged 
to the more general concept of upper/lower previsions for a family of bounded and point-valued 
functions fi: S→Y=ℜ. For a specific precise probability distribution P(sj), the prevision is 
equivalent to the linear expectation: 
 

[ ] ( ) ( )      
j

P i i j j
s S

E f f s P s
∈

= ∑  ( 2.1) 

 
Since the probability of an event Ti is equal to the expectation of its indicator function (equal to: 1 
if sj∈Ti, 0 if sj∉Ti), upper/lower previsions generalize and hold upper/lower probabilities as a 
particular case. 

Let us now focus on the information about the space of events in S given by upper and/or 
lower previsions, ELOW[fi] and EUPP[fi], for a family of bounded and point-valued functions fi, K . 
This is accomplished by the set, ΨE, of probability distributions P(sj) compatible with ELOW[fi] and 
EUPP[fi]:  

[ ] [ ] [ ]{ }:   E
LOW i P i UPP i iP E f E f E f fΨ = ≤ ≤ ∀ ∈K   ( 2.2) 

 
ΨE is convex and closed. One is interested in checking two basic conditions of the suggested 
bounds:  

1. A preliminary, strong condition requires that set ΨE should be non-empty. If set ΨE is 
empty, it means there is something basically irrational in the suggested bounds. For 
example, the set ΨE is empty if ELOW[fi] > maxj fi(sj) or EUPP[fi] < minj fi(sj) (for 
upper/lower probabilities: μLOW(Ti) > 1 or  μUPP(Ti) < 0). In the behavioural 
interpretation adopted by Walley, the functions fi are called gambles, and this basic 
condition is said to avoid sure loss. 

2. A second, weaker but reasonable condition requires that the given bounds should be 
the same as the naturally extended expectation bounds that can be derived from ΨE 
(coherence according to Walley’s nomenclature) 
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In this case, one says that ELOW[fi] and EUPP[fi] are (lower and upper, respectively) 
envelopes of ΨE.  

 
If the given bounds are not coherent, i.e. envelopes to ΨE, because they do not satisfy Eq. 

( 2.3), the given bounds can be restricted without changing the probabilistic content of the original 
information, i.e. set ΨE. These restricted bounds, calculated by using Eq. ( 2.3), are called “natural 
extension” of the given bounds ELOW[fi] and EUPP[fi]. For example if bounds are given for both 
function fi and the opposite -fi coherence requires the “duality condition”: EUPP[fi] = - ELOW[-fi] 
(equivalently for upper/lower probabilities of complementary sets  Ti and Ti

c : μUPP(Ti) = 1- 
μLOW(Ti

c)).  
The applications that follow are restricted to the special case when K is a set of indicator 

functions, i.e. previsions coincide with probabilities. In this special case, there is no one-to-one 
correspondence between imprecise probabilities and closed convex sets of probability 
distributions because several closed convex sets of probability distributions could give the same 
imprecise probabilities. This one-to-one correspondence only holds between previsions and 
convex sets of probability distributions when K is the set of all functions. In other terms, 
imprecise probabilities are less informative than previsions.  

2.2 CHOQUET CAPACITIES AND ALTERNATE CHOQUET CAPACITIES 
 
An important criterion for classifying monotonic (with respect to inclusion) measures of sets was 
introduced by Choquet in his theory of capacities (Choquet. 1954). Given a finite set S, let P (S) 
be the power set (set of all subsets) of S. A regular monotone set function μ: P (S) → [0, 1] | μ 
(∅) = 0, μ(S)= 1 is called 2-monotone (or a Choquet Capacity of order k = 2) if, given two 
subsets T1 and T2: 
 

( 2.4) 1 2 1 2 1 2( ) ( ) ( ) (T T T T T T∪ ≥ + − ∩ )μ μ μ μ  
 
The dual coherent upper probabilities (μUPP(Ti) = 1- μ(Ti

c)) are called Alternate Choquet Capacity 
of order k = 2, and satisfy the relation: 
 

( 2.5) 1 2 1 2 1 2( ) ( ) ( ) (UPP UPP UPP UPPT T T T T T∩ ≤ + − ∪ )μ μ μ μ  
 
More generally, monotone dual set functions (μ, μUPP) are k-monotone (Choquet Capacity of 
order k), and, respectively, Alternate Choquet Capacity of order k, if, given k subsets T1, T2 ….Tk: 
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( 2.6) 

 
Precise probability distributions are both an Choquet Capacity and an Alternate Choquet Capacity 
of order k= ∞, that satisfy relations (2.5) and (2.6) as equalities. 

Choquet and dual Alternating Choquet capacities of order k > 1 are coherent lower and upper 
probabilities respectively. Indeed, compare the above properties with the necessary conditions for 
coherent upper/lower probabilities: 

- Monotonicity with inclusion:  T1⊆ T2  ⇒    μLOW(T1) ≤ μLOW( T2);       μUPP(T1) ≤ μUPP( T2) 
- Super-additivity of μLOW for disjoint sets (T1∩T2 = ∅): μLOW(T1∪T2)≥ μLOW(T1)+ μLOW(T2) 
-    Sub-additivity of μUPP for any pair of sets T1, T2:          μUPP(T1∪T2)≥ μ UPP(T1)+ μ UPP (T2). 

Therefore, coherent super-additive lower probabilities are not necessarily Choquet capacities of 
order k > 1. 

 
There is a strong connection between the order k and the Möbius transform of the set function 

μ(T): 
 

( 2.7) ( )( ) 1 ( ) |A Tm A T T A−= − ⊆∑μ μ  

 
The Möbius transform of a set function μ is a one-to-one invertible set function μm:  P (S) →ℜ, 
and its inverse is precisely : 
 

(T) ( ) | T,         T S;m m A Aμ = ⊆ ∀∑ ⊂

A

 ( 2.8) 

 
For the purposes of this study, the most interesting properties (see for example (Chateauneuf and 
Jaffray. 1989, Klir. 2005) are the following: 
 

1- a set function μ is monotone if and only if:  
 

( )
( ) 0; ( ) 1;   ( ) : ( ) 0

T S A T
m m T T S m

∈ ⊆

∅ = = ∀ ∈ ≥∑ ∑μ μ

P

P  ( 2.9) 

and, therefore, ∀ j:  μm({sj}) ≥ 0. 
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2- If μ(T) is k-monotone and |T|≤ k then μm(T)≥ 0 
 
3- μ(T) is  ∞-monotone if and only if: ∀ T∈P (S) : μm(T)≥ 0. 
 

2.3 EXTREME DISTRIBUTIONS 
 
For a given regular monotone set function μ, a permutation π(j) of the indexes of the singletons in 
the set S = {s1, s2…, sj ,… sn} defines the following probability distribution: 
 

( )( ) { }( )
( )( ) { }( ) { }( )

(j)=11

(j)=1 (j)=1 11 ,... ,...

j

k kj k

P s s

P s s s s s

=

−= >

=

= −

ππ

π ππ

μ

μ μ
 

( 2.10)

 
The |S|! possible permutations define a finite set of probability distributions, EXT, together with 
its convex hull, ΨEXT. 

If the same permutation is applied to a pair (μLOW, μUPP) of dual regular monotone set 
functions, a pair of dual distinct probability distributions is generated, but (μLOW, μUPP) always 
generate the same set EXT.  

Now, one would wonder what the relationship is between ΨEXT and the set Ψμ calculated for 
(μLOW, μUPP) by using (Eq. 2.2). It turns out that the two sets could be different, and satisfy the 
inclusion: ΨE ⊆ ΨEXT. Precisely: 

 
- For coherent monotone measures (k = 1), Eq. ( 2.10) could generate probability distributions 

in EXT that do not satisfy the bounds in (Eq. 2.2); hence Ψμ could be strongly included in 
ΨEXT; 

 
- for monotone measures with k > 1, all probability distributions in EXT (and in ΨEXT) satisfy 

the bounds in (Eq. 2.2), and thus ΨEXT = Ψμ; EXT coincides with the set of the extreme 
points (or the profile) of the closed convex set Ψμ . 

 

2.4 EXPECTATION BOUNDS AND CHOQUET INTEGRALS FOR REAL VALUED FUNCTIONS 
 
When the sets Ψμ or ΨEXT are known, or when a generic set Ψ is assigned, the upper and lower 
expectation bounds for any real function f: S→ Y= ℜ could be calculated by solving the 
optimization problems in Eqs ( 2.3) by substituting  Ψμ, ΨEXT, or Ψ for ΨE, respectively. However, 
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=

The expectation of a point valued function f: S→ Y=[yL, yR] ⊂ ℜ with CDF F(y) can be 
calculated as follows by using the Stieltjes Integral and equivalent expressions: 
 

[ ]

{ }

[ ] (1 )

( ) ( | ( ) )

R R R R
R

L
L L L L

R R

L L

y y y y
y

R Ly
y y y y

y y

L L
y y

E y f f dF yF Fdy y Fdy y F dy

y P f d y P T s S f s d

= = ⋅ = − = − = + −

= + > = + = ∈ >

∫ ∫ ∫ ∫

∫ ∫ αα α α α

 

 
 
 
( 2.11) 

 
The Choquet Integral is the direct extension of the last functional expression to a monotonic 
measure μ, for the ordered family of subsets αT , which depend on the selected function f: 
 

( , ) ( )
R

L

y

L
y

C f y T d= + ∫ αμ μ α  
 
( 2.12)

 
Indeed, the Choquet integral gives a numerical value that coincides with the expectation of the 
function f for a particular probability distribution. The latter distribution is obtained by the 
permutation leading to a monotonic (decreasing) ordering of the function values. 

The expectation bounds are therefore obtained through the dual probability distributions 
obtained by applying Eq. (2.11) to the dual upper/lower probabilities (μLOW, μUPP). The Choquet 
integral determines optimal bounds with respect to the set EXT (or ΨEXT) defined in Section  2.3: 
hence, for general monotone measures (k = 1), it can give larger bounds than the correct bounds 
calculated by using the extreme points of Ψμ; on the other hand, for k > 1, the Choquet integral 
gives exact expectation bounds. 
 
 
 

3 Random sets 
 

3.1 GENERAL PROPERTIES OF RANDOM SETS 
 
Among the different definitions of random set, we refer here to the formalism of the Theory of 
Evidence, but with no particular limitation to the subjectivist emphasis of this theory. The original 
information is described by a family of pairs of nonempty subsets Ai (“focal elements”) and 
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attached mi = m(Ai)> 0, i=1, 2, …n (“probabilistic assignment”), with the condition that the sum 
of mi is equal to 1. The (total) probability of any subset T of S can therefore be bounded by means 
of the additivity rule. Shafer suggested the words Belief (Bel) and Plausibility (Pla) for the lower 
and upper bounds, respectively. Formally: 
 

( )

( )

: ( ) |   

               ( ) |

i i
UPP

i
i i

LOW
i

T S T Pla T m A T

T Bel T m A T

∀ ⊂ = = ∩ ≠∅

= = ⊆

∑

∑

μ

μ

,
 

 
( 3.1) 

 
Comparison with Eq. ( 2.8) demonstrates that Bel is the inverse Möbius transform of the non-
negative set function m: hence Bel is a ∞-monotone set function, and Pla an Alternate Choquet 
capacity of order k = ∞. As explained in Section  2.3,  ΨBel (calculated with Eq. 2.2 for Bel) 
coincides with the set ΨEXT, where EXT (calculated with Eq. 2.11) is the set of extreme 
distributions that can be used to evaluate exact expectation bounds for a function of interest. 
 

3.2 FUZZY SETS 
 
The conclusions in Section  3.1 also apply in the particular case of a consonant random set; i.e. 
when focal elements are nested, and hence can be ordered in such a way that: 

 
( 3.2) 1 2 .... nA A A⊆ ⊆ ⊆  

 
Consonant random sets satisfy the relation: 
 

( ) (1 2 1 2max ( ), ( )Pla T T Pla T Pla T∪ = )  ( 3.3) 

 
and hence (similar to classical Probability measures) they satisfy the following “decomposability 
property”: the measure of uncertainty of the union of any pair of disjointed sets depends solely on 
the measures of the individual sets. Therefore, in the case of a consonant random set, the point-
valued contour function (Shafer. 1976) μ: S → [0, 1]: 
 

{ }( ) ( )  j js Pla sμ =  ( 3.4) 
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ompletely defines the information on the measures of any subset T⊂S, exactly in the same way 

as the probability distribution P(sj) defines, although through a diffe le (the additivity rule), 
the probability of every subset T in the algebra generated by the singletons. Indeed: 

c
rent ru

 
( ) ( ) ( ) ( )max ;       e 1 max  

c
j j

j js T s T
Pla T s B l T sμ μ

∈ ∈
= = −  ( 3.5) 

 
Moreover, the Möbius inversion ( 2.7) of the set function Bel allows the (nested) family of focal 
elements to be determined through the set function m. 

More directly, let us assume: 
 

( )( )

( )
( )( )

( )( ) ( )( )

1

1 j

j|

1

max 1

...........................

 = max ;

..........................

max min ;           

0     

j i

j

i j
s

n j j

s

s

s s

−<

= =

=

μ α

α μ

α μ

α μ μ

 

 
 

( ) 1 jj| j ns

n

−<

+

μ α

α

= =

 
 
( 3.6) 

 
The family of focal elements and related pro c assignments ing up to 1) are given 

: 
babilisti  (summ

by
 

( ){ } 1|  ;       = -       i i
j j i i iA s S s m += ∈ ≥μ α α α  ( 3.7) 

 
Th

ther decomposable 
measures of uncertainty: fuzzy sets and possibility distributions. This connection can clearly be 
envisaged using the dual representation of a fuzzy set through their s αA. They are classical 
subsets of S defined, for any selected value of membership α, by the formula: 

e number of focal elements, n, is therefore equal to the cardinality of the range of S through μ; 
of course this cardinality is less then or equal to |S|, because some singletons could map onto the 
same value of plausibility. 

There is a narrow correspondence between consonant random sets and o

 α-cut

 
( ){ }|A s S sα μ α= ∈ ≥  ( 3.8) 
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When a fuzzy set is implicitly given through the (finite or infinite) sequence of its α-cuts αA, 
membership function can be reconstructed through the equation: 

 
its 

( ) ( )( )max   =  min ,   js sαμ α χ  
Aα

 
where ( )A sαχ  is the indicator function of the classical subset αA. 

By comparing Eq. ( 3.8) with Eq.  ( 3.7), it is clear that the α-cuts αA of any given normal 
fuzzy set are a nested sequence of subsets of set S, and theref

( 3.9) 

ore the family of focal elements of 
an 

ion of a fuzzy set was recognized by Zadeh himself in 1978 (Zadeh. 1978), as 
th

ent of the information 
ummarized by a fuzzy set and allows one to evaluate by means of the set EXT exact expectation 
ounds for real functions of a fuzzy variable. Although the discussion was restricted to finite 

ing to the set 
 

= 0.1)}. 
he permutation leading to a monotonic decreasing ordering of the function f(sj) is the following: 
π(s2) = 1, π(s3) = 2, π(s1) = 3, π(s4) = 4). Table  3—1 shows the corresponding dual extreme 

unctions Pla and Bel. 

 

—1. Dual ex e 
Pl ) T Be = 

1- Pla c) 

associated consonant random set: the membership function of normal fuzzy sets gives the 
contour function of the corresponding random sets, and the basic probabilistic assignment (for a 
finite sequence of α-cuts) is given by m(Ai = αiA ) =  αi - αi +1. 

By considering Eq. ( 3.5) from this point of view, the membership function of a fuzzy subset A 
allows measures of Plausibility and Belief to be attached to every classical subset T ⊆ S; this very 
different interpretat

e basis of a theory of Possibilities defined by a possibility distribution numerically equal to 
μA(s), and later extensively developed by other authors, in particular Dubois and Prade (Dubois 
and Prade. 1988).  

This comparison suggests a probabilistic (objective or subjective) cont
s
b
discrete variables, the conclusion can be extended to continuous variables. 
 
 
Example  3—1. Consider S ={s1, s2, s3, s4}, and the point-valued function f(sj) mapp
Y= {5, 20, 10, 0}. The fuzzy set of S is measured by the set of membership values (0, 0.1, 1, 0.1). 
Eqs. ( 3.6) give: α1 =1;   α2 = 0.1;  α3 = 0. The associated consonant random set is defined by the 
set of pairs { (A1 = {s3}, m1 = 1 – 0.1 =  0.9), (A2 = { s2, s3, s4}, m2 = 0.1 – 0 
T
( 
distribution according to Eq. ( 2.10) and the dual set f
 

Tab 3le  trem distributions for Example  3—1 
c T a(T PEXT,UPP(s) l(T) 

(T
PEXT,LOW(s) 

1 2} s3, s4}  ={s 0.1 P(s2) = Pla(T1) = 0.1 {s1, 0 P(s2)= Bel(T1) = 0 T

T2 ={s2, s3} 1 P(s3)= Pla(T2) - Pla(T1) = 0.9 {s1,  s4} 0.9 P(s3)= Bel(T2) - Bel(T1) = 0.9 
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1} 1 P(s1)= Pla(T3) - Pla(T2) = 0  0.9 P(s1)= Bel(T3) - Bel(T2)= 0 T3 ={s2, s3, s
T4 =  P(s4)= Pla(T4) - Pla(T3)  = 0 ∅ (s4)= Bel(T4) - Bel(T3)=0.1 S 1 1 P

 
Hence:  

[ ]EUPP[f]  = ,EXT UPPP LOWE f = 20x 0.1 + 10 x 0.9 = 11 ;    E [f]  = [ ]
,EXT LOWP = 10x

The same results can be obtained through the Choquet integral (Eq. ( 2.12)). For example: 
 

E f  0.9 + 0 x 0.1 = 9.    

OW

f, μUPP = Pla) =  0 + Pla({s2, s3, s1}) x (Δα= f(s1)- f(s4))+ Pla({s2, s3}) x (Δα= f(s3)- f(s1))+ 
f(s2)- f(s3)) = 0 + 1 x (5-0) + 1 x (10 – 5) + 0.1 x (20 – 10)= 11 

 
Given a finite space S, a set ΨF of probability distributions is i  defined by lower and 
upper bounds, F (s ) and FUPP(s ), of the cumulative distribution functions F(sj): 

C(f, μL  = Bel) =  0 + Bel({s2, s3, s1}) x (Δα= f(s1)- f(s4))+ Bel({s2, s3}) x (Δα= f(s3)- f(s1))+ 
Bel({s2}) x (Δα= f(s2)- f(s3)) = 0 + 0.9 x (5-0) + 0.9 x (10 – 5) + 0 x (20 – 10)= 9 
 
C(
Pla({s2}) x (Δα= 
 

3.3 P-BOXES 

mplicitly
LOW j j

 

{ }( ){ }1: ( ) ( ) ,..., ( ), 1  to | |F
LOW j j j UPP jP F s F s P s s F s j SΨ = ≤ = ≤ =  ( 3.10)

The set ΨF is non-empty if FLOW(sk)≤ FUPP(sj) for any k ≤ j. 

ing in j, and both must be equal to 1 for j = |S| (Walley. 1991, 
 4.6.6). 

Explicit evaluation of set ΨF can be obtained by solving t straints ( 3.10) for the 
probabilities of the singletons P(sj): 
 

However, coherence clearly requires stronger conditions: the bounds FLOW(sj) and FUPP(sj) 
should be non-negative, non-decreas
§

he con
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( ) ( )
( ) ( ) ( )

1 1 1 1

2 1 2 2 2

( ) ( );                   0     

( ) ( );      0  
LOW UPP

LOW UPP

F s P s F s P s

F s P s P s F s P s

≤ ≤ ≥

≤ + ≤ ≥

( 3.11)

( ) ( ) ( )

( ) ( )

1

1

| |

| |
1

...................

( ) ( ); 0

...................

                 

j

LOW j j i UPP j j
i

S

j S i
i

F s P s P s F s P s

P s P s

−

=

−

=
=

≤ + ≤ ≥

+

∑

( )
1

| |1;      0j SP s == ≥∑

 

 
A simple iterative procedure can be used. For example, the explicit solution of the first two 
constraints is shown in Figure  3—1: observe that the p-box defines 4 (case a)) or 5 (case b)) 
extreme points of the projection of set ΨF on the two-dimensional space (P(s1), P(s2)). 
 

  

Fig  case b: 
FLOW(s2) -FUPP(s1)<0. Projection of set Ψ  is shown hatched. 

 
The interval bounds for the probability of the singletons are given by the intervals: 

ure  3—1.  Explicit solution of the first 2 constraints in Eq. ( 3.11): case a): FLOW(s2) -FUPP(s1)>0; 
F

[l1, u1] = [FLOW(s1), FUPP(s1)],  
[l2, u2] = [max(0, FLOW(s2) –FUPP(s1)), FUPP(s2) –FLOW(s1)] 

 
How F*ever, the set Ψ  generated by the same interval probabilities thought of as being non-
interactive could be much larger. Indeed, provided that the last constraint in ( 3.11) is satisfied, the 
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13 Extreme probability distributions of random/fuzzy sets and p-boxes 
 

 
j

( ) ( )( ) ( ) ( )1 1[ , ] max 0, ,j j LOW j UPP j UPP j LOW jl u F s F s F s F s− −
⎡ ⎤= − −⎣ ⎦

 ( 3.12)

 
The extreme points of the projection of set ΨF on the j-dimensional space (P(s1), …, P(sj)) can be 
derived from each extreme point on the j–1-dimensional space, by considering that the sum 
P(s1)+ …+P(sj) must be bounded by FLOW(sj) and FUPP(sj). 

A constructive algorithm to evaluate the extreme distributions compatible with the 
ation given by a p-box can be obtained by selecting the set, EXT, corresponding to the 

cumulative (non-decreasing) distribution functions jumping from FLOW(sj) to FUPP(sj) at some 
points sj and from FUPP(sk) to FLOW(sk) at other points sk (or at least non-decreasing values of F, 
case b) in Figure  3—1). Of course, the set EXT contains the distribution functions corresponding 
to the bounds of the p-box: PEXT,LOW(sj)= FLOW(sj) –FLOW(sj-1); PEXT,UPP(sj)= FUP sj) –FUPP(sj-1). 

The same set EXT (and therefore the same set ΨR=ΨF of probability distributions) can be 
given by an equivalent random set, R, with focal elements and probabilistic assignment derived 
from the p-box by using a rule quite similar to the algorithm for deriving an ndom 
set from a normal fuzzy set (when the membership function is m ant as a possi  distribution; 
see § 3.2). 

Define : 

inform

P(

 equivalent ra
e bility

( ) ( ) ( ) ( )
0

: limj LOW j LOW j LOW j LOW js F s F s F s P s
ε

ε
+

− −

→
= − = −  

Let: 
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( )( ) ( )( )
( )( ) ( )( )

11
2 | ( )| ( )

max max , max ;
UPP jLOW j

LOW j UPP jj F sj F s
F s F s

− <<

⎞= ⎜ ⎟
⎝ ⎠αα

α

( )( ) ( )( )

( )( )

11

1

| ( )| ( )

| ( )

max max , max

.........

max max , ma

UPP j iLOW j i

LOW j n

i LOW j UPP jj F sj F s

n LOW j
j F s

F s F s

F s

−
−−

−
−

<<

<

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

αα

α

α

α ( )( )
( )( ) ( )( )( )

1| ( )
x

min min ,min  ;       0

UPP j n
UPP jj F s

LOW j UPP jj j

F s

F s F s

−<

⎛ ⎞ =⎜ ⎟
⎝ ⎠

= =

α

α

  
( 3.13) 

 

 

 
 

1 1 max max ;LOW j UPP jj j
F s F s= = =

⎛

α
 

 
 

.........

1n+

 
and define: 
 

( ) ( ){ } 1| ; ; ( )i i
j UPP j i LOW j i i iA s S F s F s m Aα α α α−

+= ∈ ≥ < = −  ( 3.14) 

 
Consequently: 
- the lower/upper probabilities for subsets T ⊆ S are Choquet capacities and Alternate 

∞ Belief and Plausibility set functions 

 
the babili assignmen f the equivalent random set can alternativel  derived from 
the Belief function through e Möbius t

the upper b s uj of the singletons e the co  of the 
equivalent random set R. 

 (Alvarez 2006) the procedure is extended to p-boxes on infinite spaces, thus deriving 
equivalent random sets with infinite focal elements given by the α-cuts of the upper/lower CDFs. 
 
 
Example  3—2. Let us consider S ={s1, s2, s3, s4} and the p-box defined in the first three columns 
of Table  3—2. The table also displays the bounds for the singletons. The upper bounds give the 
contour function of the associated non-consonant random set, R. The five extreme points in the 
two-dimensional space (P(s1), P(s2)) (case b)) determine the 10 extreme points shown in Figure 

Choquet capacities of order  respectively (or 
respectively); 

- pro stic t o y be
 th ransform; 

 
- ound (Eq. ( 3.12)) giv ntour function

In
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15 Extreme probability distributions of random/fuzzy sets and p-boxes 
 

ensional space (P(s1), P(s2), P(s3)). Of course in the four-
2 3 (s4)) 10 extreme distributions are obtained when P(s4)=1– 

s1) T e nt d spond to the cumulative distribution 
cti s FLO j) and (sj

 3—2a for the projection in the three-dim
dimensional space (P(s ), P(s ), P(s ), P1

he extrP(  –P(s2) –P(s3). me poi s PEXT,1 an PEXT,2 corre
fun on W(s  FUPP ) respectively.  
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Table  3—3 presents the lower probabilities for all of the subsets in S together with their Möbius 
ns  m, which confirms the rules given b ( 3.13 4). The resulting focal 
me  and probabilistic assignments for R are calculated in T d displayed in Figure 
2b d b ack of re s: the width of each 
 i onvex, e ge nvex) focal element 

ng ox is e pr gnment. Hence, the 
al qual to 1. The focal  re  in such a way as to 
tain e cumulative upper a boun ox. 

able  3—2. Bounds and lower/upper CDF in Example 3-2. 

 Bel({sj})  u=Pla({sj})=μ(sj)   

tra form y Eqs. ) and (3.1
ele nts able  3—3 an
 3— . The random set is completely describe y a st ctangular boxe
box dentifies its (in this particular case c  but mor nerally non co
alo  the S axis, and the height of each b qual to its 

a
obabilistic assi

tot height of the stack is e
 by th

 elements
d lower 

 here ordered
s of the p-bob  a stack enclosed n d

T

sj FLOW(sj) FUPP(sj) FLOW(s - j) l=
s1 0 0 .2 0.2 0 0
s2 0.1 0, 0. 00.3 0 max( 1 – 0.2) = 0 .3 – 0 = 0.3 
s3 0.7 .0  0. 3) = 0.4 1. 9 1 0.1 max(0, 7 – 0. 0 – 0.1 = 0.
s4 1.0 1.0 max(0, ) = 0 1. 3 0.7  1 – 1 0 – 0.7 = 0.
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17 Extreme probability distributions of random/fuzzy sets and p-boxes 
 

Table  3—3.  Set functions in Example 3-2. 

i χi(s1) χi(s2) χi(s3) χi(s4) μLOW (Ai) mi= m(Ai) 
1  1 0 0 0 0 0 
2  0 1 0 0 0 0 
3  0 0 1 0 0.4 0.4 
4 0 0 0 0 1 0 
5 1 0 0. 1 0 0.1 1 
6 0 1  0.5-0.1 0 0.5 4=0.1 
7 0 0  0.7-01 1 0.7 .4=0.3 
8 1 0  0.4-1 0 0.4 0.4=0 
9 0 1  0 0 1 0 
10 1 0 0 1 0 0 
11 1 1 1 0 0.7 0.7-1+0.4=0.1 
12 0 1  0.8-1.1 1 0.8 2+0.4=0 
13 1 0 1 1 0.7 .7-1 0.4=0  0 .1+
14 1 1 0 1 0.1 1-00. .1+0=0 
15 1 1 1 1 1.0 1-2.3+ 0.4=0 1.7-

 

 
 

a) b) 

Figure  3—2.: Example 3-2 a) extreme points in the 3-dimensional space (P(s1), P(s2), P(s3)); b) equivalent 
random set R. 
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3

3 (0, 0.1), max (0.2, 0.3)) = 0.3 {s2 , s3} 0.3 – 0.2 = 0.1 
4 max(max(0, 0.1, 0.7), max (0.2)) = 0.2 {s1, s2, s3} 0.2 – 0.1 = 0.1 
5 max(max(0, 0.1)) = 0.1 {s1 , s2} 0.1 – 0 = 0.1 
6 max(max(0)) = 0   
 

Table  3—5. Dual extreme distributions for Example 3-2. 
T Pla(T) PEXT,UPP(s) Tc Bel(T) = 1- Pla(Tc) PEXT,LOW(s) 

T1 ={s2} 0.3 P(s2)= 0.3 {s1, s3, s4} 0 P(s2)= 0 

T2 ={s2, s3} 1 P(s3)= 0.7  0.5 P(s3)= 0.5 

T3 ={s2, s3, s1} 1 P(s1)= 0  0.7 P(s1)= 0.2 
T4 =S 1 P(s4)= 0 ∅ 1 P(s4)= 0.3 
 
Now, let us evaluate the expectation bounds for the same function considered in Example  3—1, 

treme 
 as in Table  3—1. 
ounds are: 

EUPP[f  20x 0.3 .7 W[f]   = 10x 0.5 6 

y to show that the random se  determine  Eqs. ( 3.13) and t the only 
m ible with x. However it must be considered as the natural extension of 

formation given by t  because the set  determined by E and (3.14) 
es all prob ility distributions comp he set y other 

t R  w
nction defined by the p-box (Eq. ( 3.12) 

andom set R’ and a 
orresponding set Ψ  of probability distributions, and of course Ψ ⊆Ψ . 

i.e. the point-valued function f(sj) mapping onto the set Y= {5, 20, 10, 0}. The ex
distributions are identified in Table  3—5: events T are the same as events T
Pla(T) and Bel(T) are calculated by using m from Table  3—3. The expectation b

]  = + 10 x 0 = 13 ;   ELO + 5x0.2+ 0 x 0.3 = 
 

It is eas t R d by (3.14) is no
random set co pat  the p-bo
the in

clud
he p-box ΨR qs. ( 3.13) 

ΨR* of anin ab atible with the p-box, and also t
random se * compatible ith the p-box. 

For example, when the maximum of the contour fu
with μ(sj)=uj) is equal to 1, the algorithm (3.5)-(3.6) can be used to derive a consonant random set 
compatible with the p-box: the focal elements are now the α-cuts of the contour function and the 
probabilistic assignment is again defined by the increments of α. In other words: the information 
given by the p-box together with additional information suggesting that the structure of the 
underlying random set should be consonant determine a consonant r

R’ R’ Rc
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19 Extreme probability distributions of random/fuzzy sets and p-boxes 
 
Example  3—3. Table  3—6 p ed p-box (with respect to the p-box 

F F

u=Pla({s })=μ(s )   

resents a slightly modifi
discussed in Example 3-2). The 8 extreme points EXT  of set Ψ  and the underlying non-
consonant random set are shown in Figure  3—3 a) and b), respectively. The projection of ΨF onto 
the two-dimensional space (P(s1), P(s2)) now contains 4 extreme points because FLOW(s1) = 
FLOW(s2).  Table  3—7 shows that the extreme distributions giving the expectation bounds are the 
same as in Example 3-2 (compare with Table  3—5): hence E[f ] = [6, 13]. 

Table  3—6. Reachable bounds and lower/upper CDF in Example  3—3. 

sj FLOW(sj) FUPP(sj) l= Bel({sj})  j j

s  1 0 0.2 0 0.2 
s2 0 0.3 max(0, 0 – 0.2) = 0 0.3 - 0 = 0.3 
s3 0.7 1.0 max(0, 0.7 – 0.3) = 0.4 1.0 – 0 = 1 
s4 1.0 1.0 max(0, 1 – 1) = 0 1.0 – 0.7 = 0.3 

Table  3—7. Dual extreme distributions for Example  3—3. 
T Pla(T) PEXT,UPP(s) Tc Bel(T) = 1- Pla(Tc) PEXT,LOW(s) 

T1 ={s } 0.3 P(s )= 0.3 {s , s , s } 0 2  2 1 3 4  P(s2)= 0 

T2 ={s2, s3} 1 P(s3)= 0.7  0.5 P(s3)= 0.5 

T3 ={s2, s3, s1} 1 P(s1)= 0  0.7 P(s1)= 0.2 
T4 =S 1 P(s4)= 0 ∅ 1 P(s4)= 0.3 
 

  
a) b) 

Figure  3—3. Example  3—3: a) extreme points in the 3-dimensional space (P(s1), P(s2), P(s3)); b) 

 

equivalent random set. 
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Since now μ(s3) = 1, the contour function can be assumed to be a possibility distribution that 
defines a consonant random set R’, and corresponding set EXTR’ of extreme distributions shown 
in Figure  3—4. The set EXTR’ contains only 5 of the 8 extremes in set EXTF. These 5 extreme 
points are the vertices of a pyramid with vertex in PEXT,1 and quadrangular base on the equilateral 
triangle P(s4)= 1 - P(s1)- P(s2) - P(s3) = 0. Both EXTR’ and EXTF contain the extreme points PEXT,1 
and PEXT,2, which correspond to the cumulative distribution functions FLOW(sj) and FUPP(sj) 
respectively.  
 

 
a) b) 

Figure  3—4. Consonant random set in Example  3—3: a) extreme points in the 3-dimensional space 

Table  3—8. Dual extreme distributions for the consonant random set in Example  3—3 

T Pla(T) PEXT,UPP(s) Tc Bel(T) = 1- Pla(Tc) PEXT,LOW(s) 
T1 ={s2} 0.3 P(s2)= 0.3 {s1, s3, s4} 0 P(s2)= 0 

T2 ={s2, s3} 1 P(s3)= 0.7  0.7 P(s3)= 0.7 

T3 ={s2, s3, s1} 1 P(s1)= 0  0.7 P(s1)= 0 
T4 =S 1 P(s4)= 0 ∅ 1 P(s4)= 0.3 
 
Hence:  EUPP[f]  = 13 ;   ELOW[f]  = 10x 0.7 + 0 x 0.3 = 7 

 
The same procedure (to get a consonant random set) cannot be applied to the p-box discussed in 
Exampe 3-2 because the contour function maximum value is equal to 0.9; however, it is easy to 
derive a second random set compatible with the p-box in Example 3-2 that has a nearly consonant 
structure: it is enough to modify the third focal element displayed in Figure  3—4 b) by taking m3 
= 0.1 and introducing a fourth focal element  A4 = ={s1, s2}, with m4 = 0.1. 
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4 3BConclusions 
 
Random sets, which combine aleatory and set uncertainty, appear to be a powerful generalization 
of the classical probability theory. On the other hand, they are particular cases of a more general 
theory of monotone non-additive measures, Choquet capacities of different orders, coherent 
upper/lower probabilities, and previsions. More precisely, belief functions are coherent lower 
probabilities and Choquet capacities of infinite order. 

The set of probability distributions compatible with the information given by a random set 
coincides with the natural extension of the belief/plausibility set functions, and also with the 
convex hull of a set of extreme distributions. 

Therefore, exact bounds of the expectation of any real-valued function can be derived through 
the Choquet integral or equivalently by a couple of dual extreme distributions. This property 
seems to be very useful in engineering applications, optimal design and decision making under 
strong uncertainty conditions. 

Fuzzy sets and p-boxes can be considered as particular indexable-type random sets, whose set 
of focal elements are ordered and uniquely determined by a single real number. In both the cases, 
simple rules can be given to derive the corresponding family of focal elements, the probabilistic 
assignment, and the extreme distributions of the associated random set. 

Finally, the possibility of considering a hierarchy of random sets ordered by the inclusions of 
the corresponding sets of probability distributions has been highlighted. For example, conditions 
have been given to derive an included consonant random set (a fuzzy set) from the contour 
function of the random set corresponding to a p-box. 
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